
Topics in Representation Theory: The Weyl
Integral and Character Formulas

We have seen that irreducible representations of a compact Lie group G can
be constructed starting from a highest weight space and applying negative roots
to a highest weight vector. One crucial thing that this construction does not
easily tell us is what the character of this irreducible representation will be.
The character would tell us not just which weights occur in the representation,
but with what multiplicities they occur (this multiplicity is one for the highest
weight, but in general can be larger). The importance of the knowing the
characters of the irreducibles is that, given an arbitrary representation, we can
then compute its decomposition into irreducibles.

As a vector space, the character ring R(G) has a distinguished basis given by
the characters χi(g) of the irreducible representations. Recall that the orthog-
onality relations for characters are essentially the same as in the finite group
case, with the sum over group elements replace by an integral∫

χi(g)χj(g)dg = δij

where i and j are labels for irreducible representations and dg is the standard
Haar measure, normalized so that the volume of g is 1. For an arbitrary repre-
sentation V , once we know its character χ we can compute the multiplicities ni

of the irreducibles in the decomposition

V =
⊕
i∈Ĝ

niVi

as
ni =

∫
χi(g)χ(g)dg

Another way of thinking of this is that as a vector space R(G) has an inner
product < ·, · >G and the characters of the irreducible representations form an
orthonormal basis.

1 The Weyl Integral Formula

We have seen that representations of G can be analyzed by considering their
restrictions to a maximal torus T . On restricting to T , the character χV (g) of
a representation V gives an element of R(T ) which is invariant under the Weyl
group W (G, T ). We need to be able to compare the inner product < ·, · >G on
R(G) to < ·, · >T , the one on R(T ). This involves finding a formula that will
allow us to compute integrals of conjugation invariant functions on G in terms
of integral over T , this will be the Weyl integral formula.

We’ll be considering the map:
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q : (gT, t) ∈ G/T × T → gtg−1 ∈ G

An element n of the Weyl group W (G, T ) acts on G/T × T by

(gT, t) → gn−1T, ntn−1

and all points in a Weyl group orbit are mapped by q to the same point in G.
It turns out that away from the singular points of T the map u is a covering
map with fiber W (G, T ). One way to see this is to consider an element

x ∈ t ⊂ g

Under the adjoint action
x → gxg−1

T leaves x invariant, elements of G/T move it around in an orbit in g, one that
intersects T at points corresponding to the elements of the Weyl group. For x
regular these points are all distinct (one for each Weyl chamber).

The map q is a covering map of degree |W | away from the singular elements
of T , these are of codimension one in T . As long as a function f on G doesn’t
behave badly at the images of the singular elements, one can integrate a function
over G by doing the integral over the pull-back function u∗(f) on G/T × T ,
getting |W | copies of the answer one wants. The result of this calculation is the

Theorem 1 (Weyl Integral Formula). For f a continuous function on a
compact connected Lie group G with maximal torus T one has∫

G

f(g)dg =
1

|W (G, T )|

∫
T

det((I−Ad(t−1))|g/t)(
∫

G/T

f(gtg−1)d(gT ))dt

and if f is a conjugation invariant function (f(gtg−1) = f(t)), then∫
G

f(g)dg =
1

|W (G, T )|

∫
T

det((I−Ad(t−1))|g/t)f(t)dt

For a detailed proof of this formula, see [2] Chapter IV.1, for a less detailed
proof see [5] Chapter IV.3 or [3] page 443. The essence of the computation is
computing the Jacobian of the map u. Using left invariance of the measures
involved and translating the calculation to the origin of G/T × T , in the de-
composition g = g/t+ t the Jacobian is trivial on t, but picks up the non-trivial
factor

J(t) = det((I−Ad(t−1))|g/t)

from the the g/t piece.
One can explicitly calculate the Jacobian factor J(t) in terms of the roots,

since they are the eigenvalues of Ad on g/t with the result

J(t = eH) =
∏
α∈R

(1− e−α(H)) =
∏

α∈R+

(1− eα(H))(1− e−α(H))
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where R is the set of roots, R+ is the set of positive roots. From this formula
we can see that we can in some sense take the square root of J(t), one choice of
phase for this is to set

δ(eH) = eρ(H)
∏

α∈R+

(1− e−α(H)) =
∏

α∈R+

(e
1
2 α(H) − e−

1
2 α(H))

where ρ is half the sum of the positive roots. Then

J(t) = δδ

.

2 The Weyl Character Formula

The Weyl integral formula was used by Weyl to derive a general formula for
character of an irreducible G representation. In this section we’ll give this char-
acter formula and outline its proof. This proof is rather indirect and there are at
least two other more direct ways of deriving the formula. We’ll see one of them
later when we discuss the Borel-Weil-Bott theorem. Another important one
derives the formula using a fixed point argument. For the fixed point argument,
see [4], Chapter 14.2, or [1].

Weyl’s derivation of the character formula uses a surprising and hard to
motivate trick. A character of a G representation gives an element of R(T )
(explicitly a complex-valued function on T ), one that is invariant under the
Weyl group W (G, T ). The trick is to carefully analyze not the Weyl-symmetric
character functions, but the antisymmetric characters, those elements of R(T )
that are antisymmetric under Weyl reflections. These are functions on T that
change sign when one does a Weyl reflection in the hyperplane perpendicular to
a simple root, i.e.

f(wt) = sgn(w)f(t)

where sgn(w) is +1 for elements of w ∈ W (G, T ) built out of an even number
of simple reflections, −1 for an odd number. The character function we want
will turn out to be the ratio of two such antisymmetric characters.

Theorem 2 (Weyl Character Formula). The character of the irreducible G
representation Vλ with highest weight λ ∈ t∗ is

χVλ
(eH) =

∑
w∈W sgn(w)e(λ+ρ)(wH)

δ

where H ∈ t, ρ is one-half the sum of the positive roots and δ is the function on
T defined in the discussion of the Weyl integral formula

Outline of Proof:
Weyl’s proof begins by showing that the antisymmetric characters

Aλ(eH) =
∑

w∈W

sgn(w)eλ(wH)
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for λ a weight in the dominant Weyl chamber form an integral basis for the
vector space of all antisymmetric characters. Furthermore they satisfy the or-
thogonality relations

< Aγ , Aλ >T =
∫

T

AγAλ = ±|W |, Aγ = ±Aλ

and 0 if γ 6= λ.
The irreducibility of V implies that < χV , χV >G=

∫
G

χV χV = 1 and the
Weyl integral formula implies this is

1 =
1
|W |

∫
T

χV χV δδdt =
1
|W |

∫
T

(χV δ)(χV δ)dt

Now χV δ is an antisymmetric character since one can show that δ is anti-
symmetric under Weyl reflections and thus must be of the form

χV δ =
∑

β

nβAβ

where β are weights in the dominant Weyl chamber and nβ are integers. So we
must have

1
|W |

∫
T

(
∑

β

nβAβ)(
∑

β

nβAβ) = 1

but by the orthogonality relations this is

1 =
∑

β

(nβ)2

so only one value of β can contribute, with coefficient ±1. Finally one can show
that for an irreducible representation with highest weight λ, Aλ+δ must occur
in χδ with coefficient 1.

This finishes the outline of the proof, the details are in many textbooks, see
for instance [2].

The Weyl character formula has a wide range of corollaries and applications,
for example

Corollary 1 (Weyl Denominator Formula). Applying the Weyl character
formula to the case of the trivial representation gives

δ(eH) =
∑

w∈W

eρ(wH)

By evaluating the character formula at H = 0 one can compute the dimen-
sion of the irreducible representations giving

Corollary 2 (Weyl Dimension Formula). The dimension of the irreducible
representation with highest weight λ is

dim Vλ =
∏

α∈R+ < α, λ + ρ >∏
α∈R+ < α, ρ >

Here R+ is the set of positive roots.
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Proof:
This calculation is a little bit tricky since the Weyl character formula gives

the character at H = 0 as the quotient of two functions that vanish to several
orders there and so one has to use l’Hôpital’s rule. We’ll compute the values
of the numerator and denominator of the Weyl character formula at sρ ∈ t (we
need the inner product to identify ρ as an element of t) and then take the limit
as s goes to 0.

Aλ+ρ(sρ) =
∑

w∈W

sgn(w)es<λ+ρ,wρ>

= Aρ(s(λ + ρ))
= δ(s(λ + ρ))

=
∏

α∈R+

(e
s
2 <α,λ+ρ> − e−

s
2 <α,λ+ρ>)

=
∏

α∈R+

s < α, λ + ρ > +O(sn+1)

where n is the number of positive roots. Taking the ratio of this to the same
expression with λ = 0 and taking the limit as s goes to zero gives the corollary.

3 Some Examples

For the case of G = U(n), the Weyl integration formula gives a very explicit
formula for how to integrate a function of unitary matrices that only depends on
their eigenvalues over the space of all unitary matrices. In this case an element
of T is a set of n angles eiθi and the Jacobian factor in this case is

J(θ1, · · · , θn) =
∏
α∈R

(1− e−α)

=
∏
j 6=k

(1− ei(θk−θj))

=
∏
j<k

(1− ei(θj−θk))(eiθke−iθk)(1− ei(θk−θj))

=
∏
j<k

(eiθk − eiθj )(e−iθk − e−iθj )

=
∏
j<k

|eiθk − eiθj |2

Note that this factor suppresses contributions to the integral when two eigen-
values become identical. The full integration formula becomes∫

U(n)

f =
1
n!

∫ 2π

0

· · ·
∫ 2π

0

f(θ1, · · · , θ2)
∏
j<k

|eiθk − eiθj |2 dθ1

2π
· · · dθn

2π
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One can check that the Weyl character formula gives the character formula
for SU(2) representations previously shown to hold.

χn(θ) =
ei(n+1)θ − e−i(n+1)θ

eiθ − e−iθ
=

sin((n + 1)θ)
sin(θ)

If an irreducible representation with highest weight ρ exists, the Weyl di-
mension formula implies that its dimension will be

dim Vρ = 2m

where m is the number of positive roots. For G = SU(3), this is the adjoint
representation, which has dimension 8 = 23 as predicted.
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