Problem 1: Show that every symplectic manifold is orientable. Hint: consider the top exterior power of the symplectic form.

Problem 2:
Show that the Stokes and divergence theorems of vector analysis in \mathbb{R}^3 are special cases of the general Stokes theorem using differential forms discussed in class.

Problem 3: Show that $SO(3)$ is diffeomorphic to the real projective space $\mathbb{R}P^3$.

Problem 4: Show that $GL(n, \mathbb{R})^+$ (the orientation-preserving component of $GL(n, \mathbb{R})$) is diffeomorphic to $SO(n) \times \mathbb{R}^{\frac{n(n+1)}{2}}$. Hint: use the Gram-Schmidt algorithm to get the relation between an arbitrary basis of \mathbb{R}^n and an orthonormal basis.