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1 Introduction

These are notes for the class that was supposed to have been taught on March
9, 2020, will discuss online March 11, 2020.

2 The Poisson summation formula and some ap-
plications

Given a Schwarz function f ∈ S(R) on the real number line R, you can construct
a periodic function by taking the infinite sum

F1(x) =

∞∑
n=−∞

f(x+ n)

This has the properties

• The sum converges for any x, since f is falling off at ±∞ faster than any
power.

• F1(x) is periodic with period 1

F1(x+ 1) = F1(x)

This is because going from x to x+1 just corresponds to a shift of indexing
by 1 in the defining sum for F1(x).

Since F1(x) is a periodic function, you can treat it by Fourier series methods.
Note that the periodicity here is chosen to be 1, not 2π, so you need slightly dif-
ferent formulas. For a function g with period 1 whose Fourier series is pointwise
convergent, you have

ĝ(n) =

∫ 1

0

g(x)e−i2πnxdx
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g(x) =

∞∑
n=−∞

ĝ(n)ei2πnx

If you compute the Fourier coefficients of F1(x) you find

F̂1(m) =

∫ 1

0

∞∑
n=−∞

f(x+ n)e−i2πmxdx

=

∞∑
n=−∞

∫ 1

0

f(x+ n)e−i2πmxdx

=

∞∑
n=−∞

∫ n+1

n

f(x+ n)e−i2πmxdx

=

∫ ∞
−∞

f(x)e−i2πmxdx

= f̂(m)

Theorem (Poisson Summation Formula). If f ∈ S(R)

∞∑
n=−∞

f(x+ n) =

∞∑
n=−∞

f̂(n)ei2πnx

Proof: The left hand side is the definition of F1(x), the right hand side is its
expression as the sum of its Fourier series.

What most often gets used is the special case x = 0, with the general case
what you get from this when translating by x:

Corollary. If f ∈ S(R)

∞∑
n=−∞

f(n) =

∞∑
n=−∞

f̂(n)

This is a rather remarkable formula, relating two completely different infinite
sums: the sum of the values of f at integer points and the sum of the values of
its Fourier transform at integer points.

2.1 The heat kernel

The Poisson summation formula relates the heat kernel on R and on S1. Recall
that the formula for the heat kernel on R is

Ht,R(x) =
1√
4πt

e
x2

4t

with Fourier transform
Ĥt,R(p) = e−4π

2p2t
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Applying the Poisson summation formula to Ht,R gives

∞∑
n=−∞

Ht,R(x+ n) =

∞∑
n=−∞

e−4π
2n2te2πinx = Ht,S1(x) (1)

where Ht,S1 is the heat kernel on S1.
Recall that earlier in the class we claimed that Ht,S1 was a “good kernel”

and thus, for continuous functions f(θ) on the circle

lim
t→0+

f ∗Ht,S1(θ) = f(θ)

At the time we were unable to prove this, but using the above relation with the
simpler Ht,R in equation 1, we can now show that Ht,S1 has the desired three
properties:

• ∫ 1

0

Ht,S1(x)dx = 1

(the only contribution to the integral is from the n = 0 term).

•
Ht,S1(x) > 0

(since Ht,R > 0).

• To show that Ht,S1(x) concentrates at x = 0 as t→ 0+, use

Ht,S1(x) = Ht,R(x) +
∑
|n|≥1

Ht,R(x+ n)

The first term is a Gaussian that has the concentration property for t→
0+. The second term goes to 0 as t→ 0+ for |x| ≤ 1

2 (see Stein-Shakarchi,
pages 157).

2.2 The Poisson kernel

Recall that, given a Schwarz function f on R, one could construct a harmonic
function u(x, y) on the upper half plane with that boundary condition by taking

u(x, y) = f ∗ Py,R(x)

where the Poisson kernel in this case is

Py,R =
1

π

y

x2 + y2

which has Fourier transform

P̂y,R(p) = e−2π|p|y
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For continuous functions f on the circle bounding the unit disk, a unique
harmonic function u(r, θ) on the disk with that boundary condition is given by

u(r, θ) = f ∗ Pr,S1(θ)

where the Poisson kernel in this case is

Pr,S1(θ) =

∞∑
n=−∞

r|n|einθ =
1− r2

1− 2r cos θ + r2

Applying Poisson summation to Py,R one gets a relation between these two
kernels

∞∑
n=−∞

Py,R(x+ n) =
∞∑

n=−∞
P̂y,R(n)e2πinx

=

∞∑
n=−∞

e−2π|n|ye2πinx

= Pe−2πy,S1(2πx)

which is the Poisson kernel on the disk, with r = e−2πy and θ = 2πx.

3 Theta functions

One can define a fascinating class of functions called “theta functions”, with the
simplest example

θ(s) =

∞∑
n=−∞

e−πn
2s

Here s is real and the sum converges for s > 0, but one can also take s ∈ C, with
Re(s) > 0. Applying the Poisson summation formula to the Schwarz function

f(x) = e−πsx
2

, f̂(p) =
1√
s
e−π

p2

s

gives

θ(s) =

∞∑
n=−∞

f(n)

=

∞∑
n=−∞

f̂(n)

=
1√
s

∞∑
n=−∞

e−π
n2

s

=
1√
s
θ(

1

s
)
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which is often called the “functional equation” of the theta function. We will
later see that this can be used to understand the properties of the zeta function
in number theory.

3.1 The Jacobi theta function

May add more detail to this section
This section is about a more general theta function, called the Jacobi theta

function. It is getting a bit far from the material of this course, but I wanted to
write it up here so that you can see the connection to the heat and Schrödinger
equations on the circle.

Definition (Jacobi theta function). The Jacobi theta function is the function
of two complex variables given by

Θ(z, τ) =

∞∑
n=−∞

eiπn
2τei2πnz

This sum converges for z, τ ∈ C, with τ in the upper half plane. Note that
the heat kernel is given by

Ht,R(x) = Θ(x, i4πt)

and is well-defined for t > 0. The Schrödinger kernel is given by

St(x) = Θ(x,
~

2m

t

π
)

which (to stay in the upper half plane of definition), really should be defined as

St(x) = lim
ε→0+

Θ(x,
~

2m

t+ iε

π
)

The Jacobi theta function has the following properties:

• Two-fold periodicity in z (up to a phase, for fixed τ). Clearly

Θ(z + 1, τ) = Θ(z, τ)

One also has
Θ(z + τ, τ) = Θ(z, τ)e−πiτe−2πiz
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since

Θ(z + τ, τ) =

∞∑
n=−∞

eπin
2τe2πin(z+τ)

=

∞∑
n=−∞

eπi(n
2+2n)τe2πinz

=

∞∑
n=−∞

eπi(n+1)2τe−πiτe2πinz

=

∞∑
n=−∞

eπi(n+1)2τe−πiτe2πi(n+1)ze−2πiz

= Θ(z, τ)e−πiτe−2πiz

• Periodicity in τ
Θ(z, τ + 2) = Θ(z, τ)

since

Θ(z, τ + 2) =

∞∑
n=−∞

eπin
2(τ+2)e2πinz

=

∞∑
n=−∞

e2πin
2

eπin
2τe2πinz

=

∞∑
n=−∞

eπin
2τe2πinz

= Θ(z, τ)

• The following property under inversion in the τ plane, which follows from
the functional equation for θ(s).

Θ(z,−1

τ
) =

√
τ

i
eπiτz

2

Θ(zτ, τ)

4 The Riemann zeta function

Recall that we have shown that one can evaluate the sums

∞∑
n=1

1

n2
=
π2

6
,

∞∑
n=1

1

n4
=
π4

90

using Fourier series methods. A central object in number theory is
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Definition (Riemann zeta function). The Riemann zeta function is given by

ζ(s) =

∞∑
n=1

1

ns

For s ∈ R, this converges for s > 1.

One can evaluate ζ(s) not just at s = 2, 4, but at s any even integer (see
problem sets) with result

ζ(2n) =
(−1)n+1

2(2n)!
B2n(2π)2n

Here Bn are the Bernoulli numbers, which can be defined as the coefficients of
the power series expansion

x

ex − 1
=

∞∑
n=0

Bn
xn

n!

There is no known formula for the values of ζ(s) at odd integers.
The zeta function contains a wealth of information about the distribution of

prime numbers. Using the unique decomposition of an integer into primes, one
can show

ζ(s) =

∞∑
n=1

1

ns

=
∏

primes p

(1 +
1

ps
+

1

p2s
+ · · ·

=
∏

primes p

1

1− p−s

One can consider the zeta function for complex values of s, in which case
the sum defining it converges in the half-plane Re(s) > 1. This function of s
can be uniquely extended as a complex valued function to parts of the complex
plane with Re(s) ≤ 1 by the process of “analytic continuation”. This can be
done by finding a solution of the Cauchy-Riemann equations which matches the
values of ζ(s) for values of s where the sum in the definition converges, but also
exists for other values of s. This analytically extended zeta function then has
the following properties:

• ζ(s) has a well-defined analytic continuation for all s except s = 1. There
is a pole at s = 1 with residue 1, meaning ζ(s) behaves like 1

1−s near
s = 1.

•
ζ(0) = −1

2
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Note that if you tried to define ζ(0) using the sum, this would imply

−1

2
= 1 + 1 + 1 + · · ·

• At negative integers

ζ(−n) =

{
0 n even

(−1)n Bn+1

n+1 n odd

In particular, ζ(−1) = − 1
12 which motivates claims one sometimes sees

that

− 1

12
= 1 + 2 + 3 + 4 + · · ·

4.1 The Mellin transform

To prove the functional equation for the zeta function, we need to relate it to
the theta function, and will do this using

Definition (Mellin transform). The Mellin transform of a function f(x) is the
function

(Mf)(s) =

∫ ∞
0

f(x)xs
dx

x

Note that the Mellin transform is the analog of the Fourier transform one
gets when one replaces the additive group R with the multiplicative group of
positive real numbers. The analogy goes as follows:

• For the Fourier transform, we are using behavior of functions under the
transformation

f(x)→ f(x+ a)

where a ∈ R.

For the Mellin transform, we are using behavior of functions under the
transformation

f(x)→ f(ax)

where a ∈ R is positive.

• In the Fourier transform case, the function eipx behaves simply (multipli-
cation by a scalar) under the transformation:

eipx → eip(x+a) = eipaeipx

In the Mellin transform case, the function xs behaves simply (multiplica-
tion by a scalar) under the transformation:

xs → (ax)s = asxs
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• In the Fourier transform case, the integral∫ ∞
−∞

(·)dx

is invariant under the transformation.

In the Mellin transform case, the integral∫ ∞
0

(·)dx
x

is invariant under the transformation, since

d(ax)

ax
=
dx

x

Using the Mellin transform, one can define the gamma function by

Definition (Gamma function). The gamma function is

Γ(s) = (Mex)(s) =

∫ ∞
0

e−xxs−1dx

The gamma function generalizes the factorial, satisfying Γ(n) = n! for n a
positive integer. This is because one has

Γ(s+ 1) =

∫ ∞
0

e−xxsdx

= −xse−x
∣∣∞
0

+s

∫ ∞
0

e−xxs−1dx

= sΓ(s)

and

Γ(1) =

∫ ∞
0

e−xdx = −e−x
∣∣∞
0

= 1

If one allows s to be a complex variable, the definition of Γ(s) as an integral
converges for Re(s) > 0. One can extend the region of definition of Γ(s) to the
entire complex plane using the relation

Γ(s) =
1

s
Γ(s+ 1)

This satisfies the Cauchy-Riemann equations and is the analytic continuation
of Γ(s) from the region of C where it is defined by an integral. This definition
does imply poles at the non-positive integers s = 0,−1,−2, . . ..
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For another example of the Mellin transform, one can take the transform of
a Gaussian and get a gamma function:

(Me−x
2

)(s) =

∫ ∞
0

e−x
2

xs−1dx

=

∫ ∞
0

e−y(y
1
2 )s−1

dy

2
√
y

=
1

2

∫ ∞
0

e−yy
s
2−1dy

=
1

2
Γ(
s

2
)

where in the second line we have made the substitution

y = x2, dy = 2xdx, dx =
dy

2
√
y

4.2 The zeta function and the Mellin transform of the
theta function

It turns out that the zeta function is closely related to the Mellin transform
of the theta function. In this section we will show this, in the next use the
functional equation of the theta function to give a functional equation for the
zeta function.

Recall the definition of the theta function

θ(x) =

∞∑
n=−∞

e−n
2πx

We will work with a slight variant of this, defining

w(x) =

∞∑
n=1

e−n
2πx =

1

2
(θ(x)− 1)

Taking the Mellin transform one finds

(Mw)(s) =

∫ ∞
0

w(x)xs−1dx

=

∞∑
n=1

∫ ∞
0

e−πn
2xxs−1dx

One can do these integrals with the substitution

u = πn2x, dx =
du

πn2
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with the result∫ ∞
0

e−πn
2xxs−1dx =

∫ ∞
0

e−u(
u

πn2
)s−1

du

πn2

= (
1

πn2
)s−1

1

πn2

∫ ∞
0

e−uus−1du

=
1

πsn2s
Γ(s)

and one finally gets for the Mellin transform of w(x)

(Mw)(s) =

∞∑
n=1

1

πs
1

n2s
Γ(s) (2)

=
1

πs
Γ(s)ζ(2s+ 1) (3)

4.3 The functional equation for the zeta function

Finally we would like to use the relation between the zeta function and the
Mellin transform of the theta function, together with the functional equation of
the theta function to show

Theorem (Functional equation of the zeta function). If we define

Λ(s) = π−
s
2 Γ(

s

2
)ζ(s)

then
Λ(s) = Λ(1− s)

This theorem allows us to extend our definition of Λ(s) (and thus ζ(s)) from
the region Re(s) > 1 where it is defined by a convergent infinite sum to the
region Re(s) < 0, giving us an analytic continuation of Λ(s) to this region. The
most mysterious behavior of Λ(s) is in the “critical strip” 0 < Re(s) < 1 where
has no definition other than as an analytic continuation exists. Perhaps the
most famous unproved conjecture in mathematics is

Conjecture (The Riemann Hypothesis). The zeros of Λ(s) all lie on the cen-
terline of the critical strip, where the real part of s is 1

2 .

We will of course not prove the Riemann hypothesis, but will prove the func-
tional equation for the zeta function, by showing that the functional equation
of the theta equation implies

(Mw)(s) = (Mw)(
1

2
− s) (4)

This implies (using equation 2) that

π−sΓ(s)ζ(2s) = πs−
1
2 Γ(

1

2
− s)ζ(1− 2s)

11



which implies (changing s to s
2 ) that

π−
s
2 Γ(

s

2
)ζ(s) = π−

1−2
2 Γ(

1− s
2

)ζ(1− s)

and thus
Λ(s) = Λ(1− s)

To show equation 4, we will use the fact that the functional equation for the
theta function

θ(s) =
1√
s
θ(

1

s
)

implies

w(x) =
1

2
(θ(x)− 1)

=
1

2
(

1√
x
θ(

1

x
)− 1)

=
1

2
(

1√
x

(2w(
1

x
) + 1)− 1)

=
1√
x
w(

1

x
) +

1

2

1√
x
− 1

2

Breaking the integral for the Mellin transform of w(x) into two parts and using
the above relation for w(x) in the first part we find

(Mw)(s) =

∫ 1

0

w(x)xs−1dx+

∫ ∞
1

w(x)xs−1dx

=

∫ 1

0

(
1√
x
w(

1

x
) +

1

2

1√
x
− 1

2
)dx+

∫ ∞
1

w(x)xs−1dx

=

∫ ∞
1

u−1−s(u
1
2w(u)− 1

2
+

1

2
u

1
2 )du+

∫ ∞
1

w(x)xs−1dx

=

∫ ∞
1

u−
1
2−sw(u)du− 1

2s
− 1

1− 2s
+

∫ ∞
1

w(x)xs−1dx

=

∫ ∞
1

w(u)(u−
1
2−s + us−1)du− 1

2s
− 1

2( 1
2 − s)

This is symmetric under the interchange of s and 1
2 − s, which gives equation

4. In the second step we used the substitution

u =
1

x
, du = −x−2dx = −u2dx
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