
Topics in Representation Theory: Fourier
Analysis and the Peter Weyl Theorem

1 Fourier Analysis, a review

We’ll begin with a short review of simple facts about Fourier analysis, before
going on to interpret these in terms of representation theory of the group G =
U(1).

Consider the space of complex-valued functions on R, periodic with period
2π, or, equivalently, the space of complex valued functions on the circle S1.
One can consider various possible classes of such functions, a convenient one
to choose is L2(S1), the (Lebesgue) square-integrable functions on the circle.
Any such function f(θ) has a convergent Fourier expansion with coefficients
an ∈ C (another common notation is f̂(n), for the n’th coefficient of the Fourier
expansion of f)

f(θ) =
n=+∞∑
n=−∞

aneinθ

with
n=+∞∑
n=−∞

|an|2 < ∞

We can interpret this in terms of group representation theory, for the group
G = U(1), which is just S1, acting on itself by rotation. Group elements are
given explicitly by g = eiθ and group multiplication is just complex multi-
plication. Since the group is Abelian, all irreducible representations are one-
dimensional. They are indexed by an integer n and given by

πn(eiθ) = einθ ∈ U(1) ⊂ GL(1,C)

Just like in the finite group case, on any U(1) representation, we can con-
struct a U(1)-invariant inner product by picking any particular one, and then
averaging over the group. In this case we average over the group not by taking
a sum, but by integrating, i.e.

1
|G|

∑
g∈G

→ 1
2π

∫ 2π

0

The same argument as in the finite group case shows that U(1) representa-
tions are completely reducible. The representation ring is just R(U(1)) = Z,
and the characters of the irreducible representations are just

χn(eiθ) = einθ
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The space of characters is the space of all functions on the group, since it is
Abelian so all functions are conjugation invariant. The characters are orthonor-
mal with respect to the invariant integral on the group:

< χn, χm >=
1
2π

∫ 2π

0

e−inθeimθ =

{
0 if n 6= m

1 if n = m

The analog of the (left) regular representation here is the action on L2(S1)
given by translation:

π(eiθ)f(θ0) = f(θ0 − θ)

(the analog of the right regular representation is essentially the same, except
shifting by a positive angle, so there’s not much use in considering, U(1)×U(1),
i.e. both the right and left actions in this case.)

Decomposing L2(S1) into irreducible representations corresponds to the fact
that

L2(S1) = ⊕̂nVn

Here
Vn = {f(θ0) : f(θ0 − θ) = einθf(θ0)} = Ce−inθ0

and the direct sum ⊕nVn is the space of “trigonometric polynomials” (finite
linear combinations of einθ), and we are taking the “completed direct sum”,
the completion in the inner product on the Hilbert space L2(S1). This includes
infinite sums, with coefficients an satisfying

∑
n |an|2 < ∞. Other function

spaces like C∞(S1) correspond to other conditions on the coefficients.
The Stone-Weierstrass theorem says we can uniformly approximate contin-

uous or L2 functions on S1 by trignometric polynomials. The space of trigono-
metric polynomials is dense in C0(S1) and thus in L2(S1).

A standard notation for the set of isomorphism classes of irreducible unitary
representations of a group G is Ĝ. So we have seen that Û(1) = Z. The ring
structure on this corresponding to tensor product of representations is just the
standard ring structure on Z. One can associate to the irreducible representation
with character χn(θ) = einθ the monomial zn. Then the representation ring
R(U(1)) is the ring one gets by taking sums of these with integral coefficients,
i.e.

R(U(1)) = Z[z, z−1]

For Abelian groups, Ĝ is itself an Abelian group, and one can show (Pon-

tryagin duality) that ˆ̂
G = G. In this case this corresponds to the fact that

unitary representations of Z are determined by choosing the phase eiθ by which
1 ∈ Z acts. For general Abelian groups, if G is compact, Ĝ will be discrete, and
vice-versa. Some groups that are “self-dual”, such that G = Ĝ, include G = Zn

and G = R.
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2 Convolution

There is another interesting product that one can define on L2(S1), besides the
usual point-wise multiplication:

Definition 1 (Convolution). The convolution of two functions f1 and f2 in
L2(S1) is the function

f1 ∗ f2 =
1
2π

∫ 2π

0

f1(θ − θ′)f2(θ′)dθ′

This product is commutative and associative (the generalization we will see
later will be commutative only for commutative groups).

One use of the convolution product is to construct an orthogonal projection

L2(S1) → Vn

using convolution with an irreducible character. It is easy to show that if

f =
∑

n

aneinθ

then
f ∗ χn = aneinθ

and characters provide idempotents in the algebra (L2(S1), ∗), satisfying

χn ∗ χm =

{
0 if n 6= m

χn if n = m

We have
f =

∑
n

f ∗ χn

The construction of the convolution, with the same properties as above,
generalizes to the case of non-abelian groups with an invariant integral

Definition 2. The convolution product on L2(G) is

(f1, f2) → f1 ∗ f2 =
∫

G

f1(gh−1)f2(h)dh

With this product, the functions on G become an algebra, called the Group
Algebra, which is non-commutative when the group is non-commutative. Given
a representation (π, V ) of G, one can make V into a module over the group
algebra, defining an algebra homomorphism

π̃ : L2(G) → End(V )

by

π̃v =
∫

G

f(g)π(g)vdg
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One can check that this satisfies

π̃(f1 ∗ f2) = π̃(f1)π̃(f2)

An alternate approach to representation theory of groups is to think of it
as the theory of these algebras and their modules. In the finite group case this
is especially effective since the algebras are finite-dimensional. As an example,
the general structure theory of finite-dimensional algebras over C shows

CG = ⊕iM(ni,C)

i.e. that such algebras are sums of matrix algebras. In our case the ni are the
dimensions of the irreducible representations of G.

Finally, it is useful to think of general group representation theory as re-
flecting two generalizations of the Fourier transform, which differ only in the
non-commutative case. These are:

• Conjugation-invariant functions on G can be in expanded in terms of char-
acters:

f =
∑

i

(dimVi)f ∗ χVi

• Arbitrary functions on G can be expanded in terms of matrix elements of
operators on irreducible representations of G. Recall that

CG = ⊕iV
∗
i ⊗ Vi = ⊕iEnd(Vi)

One can define an operator-valued generalization of the Fourier transform,
such that the Fourier transform F of a function on G will be an operator-
valued function on Ĝ:

Ff([Vi] = π̃Vi(f) =
∫

G

f(g)πVi(g)dg

As in the case of the usual Fourier transform, it may be convenient to nor-
malize this differently, for instance by multiplying by a factor of

√
dimVi.

3 Compact Lie Groups and the Peter-Weyl The-
orem

The arguments we gave concerning finite-dimensional unitary representations
of finite groups all continue to hold in the case of general compact Lie groups,
since they rely only on the existence of an invariant measure and the possibility
of averaging over the group using it. In particular, just changing

1
|G|

∑
g∈G

→
∫

G

we can derive the following facts about finite-dimensional unitary representa-
tions of compact Lie groups:
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• These representations are completely reducible (direct sums of irreducible
representations).

• Given two irreducible representations V1, V2, the intertwiners satisfy:

HomG(V1, V2) = {0} (the zero map) if V1 is not isomorphic to V2.

HomG(V1, V2) = C if V1 is isomorphic to V2.

• Canonical decomposition theorem:

µ = ⊕iµi : ⊕iHomG(Vi, V )⊗ Vi → V

is an isomorphism.

• There is an inner product on R(G), with respect to which irreducible
representations are orthonormal

< V, W >= dim HomG(V,W )

• Representations can be studied using their characters, with the charac-
ters of irreducible representations orthonormal with respect to the inner
product

< χV , χW >=
∫

G

χV (g)χW (g)dg

• Matrix elements of irreducible representations give functions on G, or-
thogonal with respect to the inner product above.

The one place where the proofs used fail in the general compact Lie group
case is that the regular representation is no longer finite dimensional. As a
result one cannot just use complete reducibility and character computations to
show that the regular representation decomposes as a G ×G representation in
the form

C(G) = ⊕i(V ∗
i ⊗ Vi)

We can replace C(G) by the function space L2(G), but the (left) regular rep-
resentation is now no longer finite dimensional, and many of our arguments
don’t directly apply to infinite-dimensional representations. One can see this
for example if one tries to take the character of the representation. In the case
G = U(1), we saw that the irreducible representations Vn are labeled by the in-
tegers, and have characters χn(θ) = einθ. The regular representation (π, L2(G))
should have a character

χπ(θ) =
∑

n

χn(θ) =
∑

n

einθ

but this sum does not converge to a function on G. It does converge to the distri-
bution δ(0), the “delta function” at θ = 0, and in general for infinite-dimensional
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representations, characters will be distributions: one needs to consider the dis-
tributional character

χπ(f) = Tr(
∫

G

f(g)π(g)dg)

As a distribution, the character of the regular representation will be a delta
function at the identity

χπ(f) = f(e)

Just as in the finite group case, for each irreducible representation (πi, Vi),
with character χi(g), we can produce a (dim Vi)2 subspace of L2(G). One way
to think of this is as the set of all functions of the form

l(πi(g)v), v ∈ Vi, l ∈ V ∗
i

or, equivalently, all functions of the form

tr(πi(g)X), X ∈ End(Vi)

The map
X ∈ End(Vi) → tr(πi(g)X) ∈ L2(G)

embeds End(Vi) = V ∗
i ⊗ Vi as a subspace of L2. One can show that under this

identification of End(Vi) with a space of functions on G, matrix multiplication
becomes convolution of functions. Orthogonal projection onto this subspace is
given by convolution with the character

f → f ∗ χi

and one can see that the identity map in End(Vi) gets identified with the func-
tion χi(g).

The subspaces of functions corresponding to different Vi are orthogonal sub-
spaces of L2(G). Taking their direct sum gives what is sometimes called the
space of representative functions

Crf (G) = ⊕iEnd(Vi)

This is a subspace of L2(G), and it is a generalization of the space of trigono-
metric polynomials in the case G = U(1). An obvious question is whether L2(G)
is the completion of Crf (G), or whether something is missing. One might worry
that there is an infinite dimensional irreducible representation of G whose ma-
trix elements would be in L2(G), but orthogonal to Crf (G). The content of
the following theorem is that this doesn’t happen. For compact Lie groups, the
situation is as close to that of finite groups as one can hope, with the matrix
elements of finite-dimensional representations giving a basis of L2(G).

Theorem 1 (Peter-Weyl). The matrix elements of finite dimensional irre-
ducible representations form a complete set of orthogonal vectors in L2(G).
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Equivalently, this theorem says that every f ∈ L2(G) can be written uniquely
as a series

f =
∑

i

fi, fi ∈ End(Vi)

which we can also write

L2(G) = ⊕̂iEnd(Vi) = ⊕̂i(V ∗
i ⊗ Vi)

There’s also an easy corollary, which says that one can expand any conjuga-
tion invariant function in terms of characters of irreducible representations:

Corollary 1. The characters of finite dimensional irreducible reps of G give an
orthonormal basis of L2(G)G (the conjugation invariant subspace of L2(G).

The difficult part of the Peter-Weyl theorem is to show that Crf (G) is dense
in L2(G). If one assumes that one’s compact Lie group is a group of matrices,
a subgroup of GL(n,C) for some n, then one can use the Stone-Weierstrass
theorem. One just needs to show that polynomial functions on G are in Crf (G),
then Stone-Weierstrass implies that Crf (G) is dense in the continuous functions
on G, and thus in L2(G).

There is a much trickier proof of Peter-Weyl that works for any compact Lie
group. One reason for using it is that you can then derive the existence of a
finite dimensional faithful representation of G, which implies that any compact
Lie group G must be a subgroup of some GL(n,C). This proof is based on the
construction of a suitable compact self-adjoint operator (basically a conjugation-
invariant approximation to convolution by a delta-function), and use of the
spectral theorem for compact self-adjoint operators on a Hilbert space, which
implies finite-dimensionality of the eigenspaces of the operator. For a more
extensive sketch of the proof of Peter-Weyl, see chapter 9 of [1]. For more
detailed proofs, see section 3.3 of [2], or chapter III of [3]. Chapter 3 of [2]
provides a much more detailed discussion of harmonic analysis on compact Lie
groups, along the lines outlined here.
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