LIE GROUPS AND REPRESENTATIONS, SPRING 2012: SYLLABUS

- Lie Groups and Lie Algebras: review of fall semester and survey of classification results
- Generalities about representations
 - Complete reducibility, Lie algebra cohomology
 - Induced representations, Frobenius reciprocity
 - Verma modules
 - Peter-Weyl theorem
- Finite-dimensional representations and highest-weight theory
 - Finite dimensional representations of $\mathfrak{sl}(2, \mathbb{C})$
 - Highest-weight theorem via Verma modules
 - Examples, $\mathfrak{sl}(3, \mathbb{C})$ and SU(3)
 - Borel-Weil theorem
 - Weyl character formula, dimension and multiplicity formulae
 - Conjugacy classes in semi-simple Lie algebras
 - Harish-Chandra homomorphism, the infinitesimal character
 - n-cohomology
 - Borel-Weil-Bott theorem
- The Spinor Representation
 - Spin(2n) as a double cover of SO(2n)
 - The Clifford Algebra, Canonical Anticommutation Relations
 - The Dirac operator and Dirac cohomology
- Hamiltonian mechanics, symplectic geometry, geometric quantization and the orbit method
- The Metaplectic Representation
 - The Heisenberg algebra and group, Canonical Commutation Relations
 - Stone-von Neumann Theorem.
 - The Metaplectic double cover of $\operatorname{Sp}(2n)$ and the Metaplectic Representation
- Representations of non-compact semi-simple groups: generalities
- Representations of $SL(2, \mathbf{R})$