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1 The Borel-Weil theorem

We'll now turn to a geometric construction of irreducible finite-dimensional
representations, using induction on group representations, rather than at the
Lie algebra level. In this section G will be a compact Lie group, 7' a maximal
torus of G.

Recall that according to the Peter-Weyl theorem

(@) =P yiov;

with the left regular representation of G on L?(G) corresponding to the action
on the factor V; and the right regular representation corresponding to the dual
action on the factor V;*. Under the left regular representation L?(G) decomposes
into irreducibles as a sum over all irreducibles, with each one occuring with
multiplicity dim V; (which is the dimension of V;*). To make things simpler
later, we’ll interchange our labeling of representations and use Peter-Weyl in
the form

L*(G) = @V ®V;

i.e. the left regular representation will be on V;*, the right regular on V;.

Recall also that we can induce from representations C, of T' to representa-
tions of GG, with the induced representation interpretable as a space of sections
of a line bundle Ly over G/T.

Ind$(Cy =T(Ly

Here
I(Ly) C L*(G)

is the subspace of the left-regular representation picked out by the condition
flgt) = pA(t™1) f(9)
Here the representation (py, C)of T is one dimensional and if ¢t = e’

paAEY) = e

where A is an integral weight in t*.
This condition says that under the action of the subgroup T C Gg, I'(L))
is the subspace of L?(G) that has weight —\. In other words

Nz = @V @ (V) s



[(L_y) = @ivg‘ ® (Vi)a

where (V;), is the A weight space of V;.

Our induced representation I'(L_ ) thus breaks up into irreducibles as a sum
over all irreducibles V;*, with multiplicity given by the dimension of the weight
Ain V;. We can get a single irreducible if we impose the condition that A be a
highest weight since by the highest-weight theorem A will be the highest weight
for just one irreducible representation.

So if we impose the condition on T'(L_)) that infinitesimal right translation
by an element of a positive root space give zero, we will finally have a construc-
tion of a single irreducible: it will be the dual of the irreducible with highest
weight A. It turns out (see discussion of complex structures in next section,
more detail in [2]) that imposing the condition of infinitesimal right invariance
under the action of n™ on I'(L_)) is exactly the holomorphicity condition cor-
responding to using the complex structure on G/T to give Ly the structure of
a holomorphic line bundle. So, on the subspace

Fhol(L—)\) C F(L_)\) C LQ(G)
we have
nfv=0
RS (Vz),\

= D V' ® (Vi)
Vi has highest-weight A\
= (V) ecC

Fhol(L—)\) = @Z‘/Z* (%9 {”U cV;: { }

where V* is the irreducible representation of highest weight .
The Borel-Weil version of the highest-weight theorem is thus:

Theorem 1 (Borel-Weil). As a representation of G, for a dominant weight X,
Tho(L_y) is the dual of a non-zero, irreducible representation of highest weight
A. All irreducible representations of G can be constructed in this way.

For an outline of the proof from the point of view of complex analysis, see
[1] chapter 14. Note however, that we have shown how the Borel-Weil theo-
rem is related to the highest-weight classification of irreducible representations
discussed using Lie algebras and Verma modules, with a different explicit con-
struction of the representation. The Lie algebra argument made clear that
having a dominant, integral highest weight is a necessary condition for a finite
dimensional irreducible. The Verma module construction was such that it was
not so easy to see that these conditions were sufficient for finite dimensionality.
Finite dimensionality can be proved for the Borel-Weil construction using either

e General theorems of algebraic geometry to show that

Chot(Ly) = H(G/T,O(Ly))



is finite dimensional (sheaf cohomology of a holomorphic bundle over a
compact projective variety is finite-dimensional), or

e Hodge theory. Picking a metric the Cauchy-Riemann operator has an
adjoint, and the corresponding Laplacian is elliptic. An elliptic operator
on a compact manifold has finite-dimensional kernel.

2 Flag manifolds and complex structures.

We need to show that the holomorphicity condition on the space of sections
['(Ly) corresponds to imposing the condition that Lie algebra elements in the
positive root spaces act trivially, as vector fields corresponding to the infinites-
imal right-action of the group. For a detailed argument, see [2], section 7.4.3.
The complex geometry involved goes as follows.

We'll need the general notion of what a complex structure on a manifold is.
To begin, on real vector spaces:

Definition 1 (Complex structure on a vector space). Given a real vector space
V' of dimension n, a complex structure is a non-degenerate operator J such that
J? = —1. On the complezification V ® C it has eigenvalues i and —i, and an
etgenspace decomposition

VeC=v"0evo!

V19 is a complex vector space with complex dimension n, with multiplication by
i given by the action of J, VO its complex conjugate.

For manifolds

Definition 2 (Almost complex manifold). A manifold with a smooth choice of
a complex structure J, on each tangent space T, (M) is called an almost complex
manifold.

and

Definition 3 (Complex manifold). A complez manifold is an almost complex
manifold with an integrable complex structure, i.e. the Lie bracket of vector
fields satisfies

[Tl,o Tl,O] C Tl,O

By the Newlander-Nirenberg theorem, having an integrable complex struc-
ture implies that one can choose complex coordinate charts, with holomorphic
transition functions, and thus have a notion of which functions are holomorphic.

Going back to Lie groups and case of the manifold G/T, to even define the
positive root space, we need to begin by complexifying the Lie algebra

gc=tc® Y ga
a€ER



and then making a choice of positive roots R™ C R

gc=tc® ) (8a+0-a)

a€ERT

Note that the complexified tangent space to G/T at the identity coset is

TQ%G/T)®(32:§:QQ

aER

and a choice of positive roots gives a choice of complex structure on T, (G/T),
with decomposition

Tr(G/T)® C =T (G/T) & T (G/T) = 3 ga® Y -a

a€RT aER*

While g/t is not a Lie algebra,

oS gandn = Y g

a€ERT a€ERT
are each Lie algebras, subalgebras of g¢ since

+ ot

nt,nf]Cnt

(and similarly for n™). This follows from

waagﬁ}C:ga+ﬁ

The fact that these are subalgebras also implies that the almost complex struc-
ture they define on G/T is actually integrable, so G/T is a complex manifold.

Note that the choice of positive roots is not unique or canonical. There are
|W| inequivalent choices that will work. The Weyl group acts on the inequivalent
complex structures. In particular, it permutes the Weyl chambers, and it is the
choice of positive roots that determines which Weyl chamber is the dominant
one. Changing choice of positive roots will correspond to changing choice of
complex structure. We’ll see later on that a representation appearing as a
holomorphic section (in H’) with respect to one complex structure, appears in
higher cohomology when one changes the complex structure.

The choice of a decomposition into positive and negative roots takes the
original g/t, which is not a Lie subalgebra of g, and, upon complexification,
gives two Lie subalgebras instead:

g/teC=nt@n"

Recall that in the case u(n), this corresponds to the fact that, upon complexifi-
cation to gl(n, C), the non-diagonal entries split into two nilpotent subalgebras:
the upper and lower triangular matrices.



Another important Lie subalgebra is
b=tc®n’

This is the Borel subalgebra of go. One also has parabolic subalgebras, those
satisfying
bCpCgc

The Borel subalgebra is the minimal parabolic subalgebra. Other parabolic
subalgebras can be constructed by adding to the positive roots some of the neg-
ative roots, with the possible choices corresponding to the nodes of the Dynkin
diagram.
Corresponding to the Lie sub-algebras n™, b, p one has Lie subgroups N, B, P
of Gg. One can identify
G/T =Gc/B

and another approach to Borel-Weil theory would be to do “holomorphic induc-
tion”, inducing from a one-dimensional representation of B on C to a represen-
tation of G¢ using holomorphic functions on G¢.

One can see that the complex manifolds G/T = G¢/B and G¢ /P are actu-
ally projective varieties as follows (for more details, see [3]):

Pick a highest-weight vector vy € V* and look at the map

g€ Ge = [gua] € P(V)‘)

i.e. the orbit in projective space of the line defined by the highest-weight vector.
For a generic dominant weight, the Borel subgroup B will act trivially on this
line, for weights on the boundary of the dominant Weyl chamber one gets larger
stabilizer groups, the parabolic groups P. The orbit can be identified with
Gc/B or Gg/P, and this gives a projective embedding.

In the special case that the orbit is the full projective space, one can under-
stand the Borel-Weil theorem in the following way:

Given a projective space P(V'), one can construct a “tautological” line bundle
above it by taking the fiber above a line to be the line itself. In the complex
case, this give a holomorphic bundle L, one that has no holomorphic sections.
But for each element of V*, one can restrict this to the line L, getting a section
of the dual bundle T'(L*). It turns out this is an isomorphism

V* =Tha(L")
and more generally one has
homogeneous polys on V of degree n = I',,;((L*)®™)

i.e. the sections of the n’th power of the dual of the tautological bundle are
the homogeneous polynomials on V' of degree n. These give special cases of the
Borel-Weil theorem, and we’ll see explicitly how this works for V = C? in the
next section.



3 The Borel-Weil theorem: Examples

Recall that for the case of G = SU(2), we had an explicit construction of irre-
ducible representations in terms of homogeneous polynomials in two variables.
Such a construction can be interpreted in the Borel-Weil language by identifying
holomorphic sections explicitly in terms of homogeneous polynomials. We will
begin by working this out for the SU(2) case. For this case

G/T = SU(2)/U(1) = SL(2,C)/B = CP*
the space of complex lines in C2. Elements of SL(2,C) are of the form
o f _

and elements of the subgroup B are of the form

_ (> B
- 2)

B can also be defined as the subgroup that stabilizes a standard complex line
in C2, and one can check that for b € B

()= ) 6) = (o)

The subgroup N of B in this case is the matrices of the form

=29

and the subgroup T¢ is elements of the form

o 0
=5 o)

The space of holomorphic sections 'y (Ly) will be functions on SL(2,C)
such the subgroup IV acts trivially from the right and the subgroup T¢ acts via
a character of T', which corresponds to an integer k. More explicitly

Thot(L—x) = {f : SL(2,C) = C, f(gb) = a” f(9) V b € B}

We’ll analyze what this equivariance condition says in two parts. First choos-

ing b € N, since
o (@ BY (L B\ _ (o Batp
=y )\ 1)7\y By+4
the condition f(gb) = f(g) means that f depends only on the first column of
the matrix.



Secondly, choosing b € T,

o~ D ) 6

so the equivariance condition f(gb) = (o/)¥ f(g) implies that

o (S) = @rr(2))

so our homogeneous polynomials of degree k in two variables («,~) provide
holomorphic

sections in Iy (Lk) and it turns out these are all such sections.

Another way of thinking about how to produce the appropriate holomorphic
function on SL(2, C) out of a homogeneous polynomial P(z1, z2) is by the map

Pt =r(g) =P F) () =r(2)

In the more general case of G = SU(n), representations on polynomials in
n variables correspond to sections of a line bundle over

SU(n)/U(n—1) = SL(n,C)/P = CP"*

the space of complex lines in C™. The parabolic subgroup P in this case can
be taken to be the set of all matrices with zero in the first column, except for
the diagonal element in the first row. The equivariance condition defining line
bundles over this space is the same as in the SU(2) case and the relation of
holomorphic sections and homogeneous polynomials is much the same.

Note that for G = U(n), Ge/B = Fl(n), the space of flags in C has an
obvious map to any of the partial flag manifolds G/ P such as G /P = cp" i,
given by just forgetting some parts of the flag. In the case of Gg/P = CP™" !,
the map just forgets all parts of the flag except for the complex line. The
line bundle on G¢/B of the Borel-Weil theorem is just the pull-back under
this forgetting map of the one we constructed on CP" ! with homogeneous
polynomials as its holomorphic sections.

The fundamental representations of SU(n) include the k¥ = 1 case above
which is just the defining representation on C™, but also include the represen-
tations on the higher degree parts of A*(C™). The representation on A*(C")
corresponds to holomorphic sections of a certain line bundle over the Grassma-
nian

U(n)
Uk) xU(n—k)

For more details about this, the Borel-Weil theorem and its relation to the
examples discussed here, see Chapter 11 and 14 of [1].

Gr(k,n) = SL(n,C)/P =
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