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K is a knot in S8, X =S3\K, 7 = m(X).
7 is residually finite: 3 a nested sequence of normal subgroups

T=GypDG; DGy...
[ﬂ'ZGk] < oo, NGk :{1}

If [7: G] < o0, let X = G-covering of X

X&' = branched G-covering of S3

Want: Asymptotics of Hy(X2',Z) as k — co.
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Growth and Volume

by (Xg}) .
(Kazhdan-Luick) I|m =0 (= L? — Betti number).
k—o0 [7T Gk]

t(K,G) := [TorHy (X&', Z)).

Definition of Vol(K): X = S%\ K is Haken.
X\ (Utori) = L pieces

each piece is either hyperbolic or Seifert-fibered.

Vol(K) ZVO| hyperbolic pieces) = C(Gromov norm of X).

Theorem

limsupt(K, Gy )Y/ImC] < exp(Vol(K)).

k—oo
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Knots with 0 volumes

As a corollary, when Vol(K) = 0, we have

lim t(K, Gy )Y = exp(Vol(K)) = 1.

k—o0

@ Vol(K) = 0if and only if K is in the class
i) containing torus knots
i) closed under connected sum and cabling.
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More general limit: limitas G — oo

7. a countable group.
S: a finite symmetric set of generators, i.e. g €S =g~' € S.

@ The length of x € 7:
ls(x) = smallest length of words representing x
@ S’: another symmetric set of generators. Then 3k, k, > 0 s.t.

VX €, klgs(X) < ES/(X) < kzgs(X).

(¢s and ¢s, are quasi-isometric.)

@ It follows that

lim ls(Xn) = 00 <= lim ls/(Xn) = 0.
n—oo n—oo
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More general limit

For a subgroup G C m, let

diams(G) = min{/s(g9),9 € G\ {1}}.

f: a function defined on a set of finite index normal subgroups of .

im f(G)=L

diamG—oo
means there is S such that

im  f(G)=L.

diamgG—o0

Similarly, we can define

limsup f(G).

diamG—oco

Remark: If limy_ ., diamG = oo then NGy = {1}

(co-final).
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Homology Growth and Volume

Conjecture

(“volume conjecture”) For every knot K ¢ S3,

limsup t(K, G)Y[Cl = exp(Vol(K)).

G—o0

@ True: LHS < RHS. True for knots with Vol = 0.

@ To prove the conjecture one needs to find {Gy } — finite index
normal subgroups of 7 s. t. limy diam(Gg) = oo and

lim t(K, Gy )Y/ImC = exp(Vol(K)).

k—o00

It is unlikely that for any sequence Gy of normal subgroups s.t.
lim diamGy = co one has (*). Which {G } should we choose?

*)
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Expander family

Long-Lubotzky-Reid (2007): V hyperbolic knot, 3 {Gy } — finite index
normal subgroups, such that
7 has property 7 w.r.t. {Gg}.

< Cayley graphs of 7 /Gy w.r.t. a fixed symmetric set of generators
form a family of expanders

< the least non-zero eigenvalue of the Laplacian of the Cayley graphs
of /Gy is > afixed € > 0.

Based on deep results of Bourgain-Gamburg (2007) on expanders
from SL(2, p).

Conjecture
(*) holds for the Long-Lubotzky-Reid sequence {Gy}.

Justification: to follow.
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Reidemeister Torsion
@ C: Chain complex of finite dimensional C-modules (vector spaces).

0-CiBcs ™ ..c; B0
Suppose C is acyclic and based. Then the torsion 7(C) is defined.
C; : base of Ci. Each 9, is given by a matrix.

@ Simplest case: C is 0—-Cq % Co— 0.
T(C) = det0;.

0-C2c, B¢c,-o0.

o)« [

C1
Here [a/b] is the determinant of the change matrix from b to a.
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Torsion of chain of Hilbert spaces

C: complex of finite dimensional Hilbert spaces over C; acyclic.
Choose orthonormal base c; for each C;, define 7(C, c).

Change of base:  7(C) := |7(C,c)| is well-defined.
@ C: complex of Hilbert spaces over C[r]. Want to define 7(C).
0=Chic, 12 .. .c,%c,—o0.

More specifically,

C; = Z[x]", free Z[r] — module, or C; = ¢?()"

0, € Mat(n; x nj_q, Z[r]), acting on the right.

@ Need to define what is the determinant of a matrix
A € Mat(m x n, Z[n]).
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Trace on CJr]

For square matrix A with complex entries: logdetA = trlog A.
One can define a good theory of determinant of there is a good trace.

Regular representation: C[r] acts on the right on the Hilbert space

() =1{>_cgg | Y Iegl? < oo}.
9

Remark. If 7 = m1(S% \ K), K is not a torus knot, then the regular
representation is of type Il;.

@ Adjoint operator: x = " cqg € C[r], then x* =Y Cqg 1.

@ Similarly to the finite group case, define Vg € ,

'[I‘(g) = 59,1
vx € C[r], tr(x) = (x, 1) = coeff. of 1 in x.
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Trace
The trace can be extended to the Von Neumann algebra N (7) D C[x].
@ A € Mat(n x n,C[r]). Define

tI’(A) = zn:tl’(Aii).
i=1

@ (not rigorous) Define det(A) using

logdetA = trlog A

=t i(l —AP/p

p=1
_ N MO =A)

@ Convergence of the RHS?
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Fuglede-Kadison-Liick determinant for
A € Mat(m x n,C[x])

@ B := A*A, where (A*); := (Aj)*. ker(B) =kerA, B >0.

@ Choose k > ||B||. LetC=B/k. |>1-C>0,and
(1-C)P> (I -C)P*t >0.

@ The sequence tr[(I — C)P] is decreasing = limtr[(I - C)P] =b > 0.
b = b(A) depends only on A, equal to the Von- Neumann
dimension of ker A.

@ Use b as the correction term in the log series to define det,. C:

logdet,C = —> ;(tr[(l — C)P] — b) = finite or — oc.

@ B=KkC, det,B=k"PdetC c Ry, det,A=/det,B.
Most interesting case: A is injective (b = 0), m = n, but not invertible.
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FKL determinant — Example: Finite group
@ D € Mat(n x n,C). Let p(\) = det(Al + D).

det'D := coeff. of smallest degree of p = H A

A eigenvalue #0

o 7= {1}, A Mat(m xn,C). Then in general det;; A # detA.

det(1;A = \/det’'(A*A) = ] ] (non-zero singular values).
@ |7| < oo, A€ Mat(m x n,C[r]). Then Ais given by a matrix
D € Mat(m|=| x n|x|, C).

det,A = (det'(D*D))"/?.
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FKL determinant— Example: = = Z*
o f(ti!, ... ttY) e C[z#] = C[t;, . .. tF1].
Assume f # 0. f: 1 x 1 matrix.

@ Itis known that (Luck) detz.(f) is the Mahler measure:

detz.f = M(f) :=exp </ log |f|dcr>
Tr

where T+ = {(z1,...,2,) € C* | |zj| = 1}, the p-torus.
do: the invariant measure normalized so that [;, do = 1.

o f(t) € Z[t*], f(t) = ao [T\L4(t — Z),z € C. Then

M(f)=ao [] Izl

lzj/>1
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L2-Torsion, L2-homology of C[r]- complex

On_
C: 0-Chac, 1. i8¢y

Ci = (n)", & € Mat(n; x ni_y, C[x]).

@ Cis of det-class if det,(9;) # 0Vi. In that case

7'(2)(C) o detﬂ(al) detﬂ(ag) detw(85) ax

det,(0,) det.(9s) ...
@ L2-homology (no need to be of det-class)
Hi(z) = kerg;/Im(9_1).

e Cis L2-acyclic if H®) = 0Vi.
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L2-Torsion of manifolds: Definition

° >:( is a m-space such thatp : X — X := )~(/7r is a regular covering.
X, X manifold.

@ Finite triangulation of X: C(X) becomes a complex of free

Z[r]-modules. ;
If C(X) is of det-class, then L?-torsion, denoted by 7(?)(X), can be

defined. Depends on the triangulation.

@ If C(X) is acyclic and of det-class for one triangulation, then it is
acyclic and of det-class for any other triangulation, and TN(Z)(X) of
the two triangulations are the same: we can define 7(2)(X).
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L2-Torsion of knots: universal covering

@ KaknotinS3. X =83-K, X: universal covering.
m = m(X). Then X is a w-space with quotient X.

@ C(X) is acyclic and is of det-class.
r@(K) == 1(X).
@ Theorem (Luck-Schick)

log 7 (K) = —VoI(K).

based on results of Burghelea-Friedlander-Kappeler-McDonald,
Lott, and Mathai.
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L2-Torsion of knots: computing using knot group
o 7 =m(S3\K).

m=(a,...,an+1|r1,---, ).

@ Y: 2-CW complex associated with this presentation. X and Y are
homotopic. :
Y has 1 0-cell, (n+1) 1-cells, and n 2-cells. Y : universal covering.

C(Y): 0— z[]" 2z 2 zix]—o.

a — 1 ari
By = : . 02 = () €Mat(n x (n+1),Z[x])
|
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L2-Torsion of knots: computing using knot group

By definition

det, 0

(2) _ =Yl

TR det,; 9»
Let

o \"
0y = <'> € Mat(n x n,Z[x]).
9 /i1

Lick showed that

1
@(K) =
T ) det, 0,

It follows that
log det.(95) = Vol(K).
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L2-Torsion of knots: Figure 8 knot

7 = (a,blab*a 'ba = bab~ta'b).

o — or —1l-abtat+abtalb—b—babta?l
27 da

Then

ar

Iogdet,r(aa

) = Vol(K).
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Ci = Z[ZM, & € Mat(n; x ni_q, Z[Z"]).
C ® F: complex over F — fractional field of Z[Z#] = Z[t;*, ..., t¥1].

If C is F-acyclic = Reidemeister torsion 77 (C) can be defined.
Milnor-Turaev formula to calculate Reidemeister torsion. In this case,
R(C) e Z(tF, ..., t7"), a rational function.

For C: L2-acyclic <= F-acyclic (Liick, Elek).

Theorem
If C is F-acyclic, then
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L2-Torsion for abelian covering of links

L a link of ; components. X = S3\ L.

m = m1(X).
Abelianization map ab: m — Z*.

X2 apelian covering corresponding to ker(ab), Z*-space.
Let Ag(L) be the (first) Alexander polynomial.

Proposition

C(X2) is of det-class. C(X2) is acyclic if and only if Ag(L) # 0. If
Ao(L) #0 .

) = G Bamy):

If © =1, then Ag # 0 always.



Outline

e Approximation by finite groups
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Finite quotient

C: Z[r]-complex, free finite rank. G a normal subgroup, 7 — I = 7/G.
Cg:=C ®z[r] Z[r].

@ If I' is finite, then Cg is a Z-complex of free finite rank Z-modules.

Cc may not be acyclic even when C is. But the Betti numbers of Cg are
“small” compared to 7 : G].

@ If Cs is acyclic, then TR (Cg) = t(C, G) (Milnor-Turaev formula),
where

t(C G) ._ ‘TorHO(Csz)‘ ’TOrHZ(CG, Z)’ .
"7/ [TorHy(Cg, Z)| [TorH3(Cg, Z)|
@ In general, lim  tr,g(x) = tre(x).

diamG—oo
Question When

lim t(c,G)Y[mCl = +(2)¢c?

diamG—oo
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Full result for 7 = Z

Theorem
T =2. Gk =kZ C Z.

lim t(C,Gy)Y* = r@c.

k—o0

@ Proof of theorem used a special case, a result of Liick (Riley,
Gonzalez-Acuna, and Short) based on Gelfond-Baker theory of
diophantine approximation): f € Q[Z], then

detyf = nll—>moo dety x (fz/k)

and a result relating detz, to |Tor|.
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Partial result 7 = Z*

Consider only lattice G < Z* such that rkG = p.

Theorem
A € Mat(m x n,C[Z"]). Then

detz.A = limsup detz.,g(Ag).

diamG—oo
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Application: Link case

L: u-component link in S3. Assume Ag(L) # 0 (always the case if

w=1).
G a lattice in Z* of rank p. XGbr: branched G-covering of X = S3\ L.

t(L,G) = [TorHy (X2, Z)|.

Corollary
(Silver-Williams)

M(Ao(L)) = limsup t(L,G)YZ"Cl,

diamG—oo

If » = 1, then lim sup can be replaced by lim.

v

was proved by Silver and Williams using tools from symbolic dynamics.

@ For knots: Question of Gordon, answered by Riley and by
Gonzalez-Acuna and Short.
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Aog=0

When Ap = 0, it's natural to take A(L) = Ag(L), the smallest s such
that Ag(L) # O.

Conjecture (Silver and Williams):

limsup t(L,G)YZ"Cl = M(A(L)).

diamG—oo
Proposition

limsup t(L,G)YZ*Cl > M(A(L)).

diamG—oo

Used a theorem of Schinzel-Bombieri-Zannier (2000) on co-primeness
of specializations of multivariable polynomials.
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Knot case: Expander family

& o
0—-C, =C;, —Cy—0, = det. 5,

One can prove the volume conjecture

exp(Vol(K)) = limsup t(K,G)Y/[™Cl

diamG—oo
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Knot case: Expander family
det, 9,

o o
0-C, >%C; —Cyp—0,
One can prove the volume conjecture

exp(Vol(K)) = limsup t(K,G)Y/[™Cl

diamG—oo0

if one can approximate both det; 91, det, 9, by finite quotients.

A convergence criterion of Luck: For A € Mat(m x n,Z[r]), B = A*A | if
the eigenvalues of the Bg near 0 “behaves well”, then

detﬂ—A: lim detﬂ./G AG'
G—oo

For expander family, requirements of Lick criterion are satisfied
trivially for A = 01
01 can be approximated by finite quotients (from expander family).

Same for 9,? Yes = ‘volume conjecture” for hyperbolic knots.



THANK YOU!
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