Hyperbolic volume, Mahler measure, and homology growth

Thang Le

School of Mathematics
Georgia Institute of Technology

Columbia University, June 2009
Outline

1. Homology Growth and volume
2. Torsion and Determinant
3. L^2-Torsion
4. Approximation by finite groups
Outline

1. Homology Growth and volume
2. Torsion and Determinant
3. L^2-Torsion
4. Approximation by finite groups
Finite covering of knot complement

\(K \) is a knot in \(S^3 \), \(X = S^3 \setminus K \), \(\pi = \pi_1(X) \).
Finite covering of knot complement

\(K \) is a knot in \(S^3 \), \(X = S^3 \setminus K \), \(\pi = \pi_1(X) \).

\(\pi \) is residually finite: \(\exists \) a nested sequence of normal subgroups

\[\pi = G_0 \supset G_1 \supset G_2 \ldots \]

\[[\pi : G_k] < \infty, \quad \cap_k G_k = \{1\} . \]
Finite covering of knot complement

\(K \) is a knot in \(S^3 \), \(X = S^3 \setminus K \), \(\pi = \pi_1(X) \).

\(\pi \) is residually finite: \(\exists \) a nested sequence of normal subgroups

\[\pi = G_0 \supset G_1 \supset G_2 \ldots \]

\([\pi : G_k] < \infty, \quad \cap_k G_k = \{1\} \).

If \([\pi : G] < \infty \), let \(X_G = G\text{-covering of } X \)

\(X_G^{\text{br}} = \text{branched } G\text{-covering of } S^3 \)
Finite covering of knot complement

K is a knot in S^3, $X = S^3 \setminus K$, $\pi = \pi_1(X)$.

π is residually finite: \exists a nested sequence of normal subgroups

$$\pi = G_0 \supset G_1 \supset G_2 \ldots$$

$$[\pi : G_k] < \infty, \quad \cap_k G_k = \{1\}.$$

If $[\pi : G] < \infty$, let $X_G = G$-covering of X

$$X_G^{br} = \text{branched } G\text{-covering of } S^3$$

Want: Asymptotics of $H_1(X_G^{br}, \mathbb{Z})$ as $k \to \infty$.
Growth and Volume

(Kazhdan-Lück) \[
\lim_{k \to \infty} \frac{b_1(X^{\text{br}}_{G_k})}{[\pi : G_k]} = 0 \quad (= L^2 - \text{Betti number}).
\]
Growth and Volume

(Kazhdan-Lück) \[
\lim_{k \to \infty} \frac{b_1(X_G^\text{br})}{[\pi : G_k]} = 0 \quad (= L^2 - \text{Betti number}).
\]

\[t(K, G) := |\text{Tor}H_1(X_G^\text{br}, \mathbb{Z})|.\]
(Kazhdan-Lück) \[
\lim_{k \to \infty} \frac{b_1(X_{br}^G_k)}{[\pi : G_k]} = 0 \quad (= L^2 - \text{Betti number}).
\]

\[t(K, G) := |\text{Tor}H_1(X_{br}^G, \mathbb{Z})| .\]

Definition of \(\text{Vol}(K)\): \(X = S^3 \setminus K\) is Haken.

\[X \setminus (\sqcup \text{tori}) = \sqcup \text{pieces}\]

each piece is either hyperbolic or Seifert-fibered.

\[\text{Vol}(K) := \frac{1}{6\pi} \sum \text{Vol}(\text{hyperbolic pieces}) = C(\text{Gromov norm of } X).\]
Growth and Volume

(Kazhdan-Lück) \[
\lim_{k \to \infty} b_1(X_{G_k}^\text{br}) = 0 \quad (= L^2 \text{ – Betti number}).
\]

\[
t(K, G) := |\text{Tor}H_1(X_{G, \mathbb{Z}}^\text{br})|.
\]

Definition of Vol(K): \(X = S^3 \setminus K\) is Haken.

\[
X \setminus (\sqcup \text{tori}) = \sqcup \text{pieces}
\]

each piece is either hyperbolic or Seifert-fibered.

\[
\text{Vol}(K) := \frac{1}{6\pi} \sum \text{Vol(hyperbolic pieces)} = C(\text{Gromov norm of } X).
\]

Theorem

\[
\limsup_{k \to \infty} t(K, G_k)^{1/[\pi:G_k]} \leq \exp(\text{Vol}(K)).
\]
Knots with 0 volumes

As a corollary, when $\text{Vol}(K) = 0$, we have

$$\lim_{k \to \infty} \frac{t(K, G_k)}{[\pi : G_k]} = \exp(\text{Vol}(K)) = 1.$$
Knots with 0 volumes

As a corollary, when $\text{Vol}(K) = 0$, we have

$$\lim_{k \to \infty} t(K, G_k)^{1/[\pi:G_k]} = \exp(\text{Vol}(K)) = 1.$$

$\text{Vol}(K) = 0$ if and only if K is in the class

i) containing torus knots

ii) closed under connected sum and cabling.
More general limit: limit as $G \to \infty$

π: a countable group.
S: a finite symmetric set of generators, i.e. $g \in S \Rightarrow g^{-1} \in S$.
More general limit: limit as $G \to \infty$

π: a countable group.
S: a finite symmetric set of generators, i.e. $g \in S \Rightarrow g^{-1} \in S$.

- The length of $x \in \pi$:

$$\ell_S(x) = \text{smallest length of words representing } x$$

It follows that

$$\lim_{n \to \infty} \ell_S(x_n) = \infty \iff \lim_{n \to \infty} \ell_{S'}(x_n) = \infty$$
More general limit: limit as $G \to \infty$

π: a countable group.
S: a finite symmetric set of generators, i.e. $g \in S \Rightarrow g^{-1} \in S$.

- The length of $x \in \pi$:
 \[
 \ell_S(x) = \text{smallest length of words representing } x
 \]

- S': another symmetric set of generators. Then $\exists k_1, k_2 > 0$ s.t.
 \[
 \forall x \in \pi, \quad k_1 \ell_S(x) < \ell_{S'}(x) < k_2 \ell_S(x).
 \]
 (ℓ_S and $\ell_{S'}$ are quasi-isometric.)
More general limit: limit as $G \to \infty$

$
\pi$: a countable group.
S: a finite symmetric set of generators, i.e. $g \in S \Rightarrow g^{-1} \in S$.

- The length of $x \in \pi$:

$$\ell_S(x) = \text{smallest length of words representing } x$$

- S': another symmetric set of generators. Then $\exists k_1, k_2 > 0$ s.t.

$$\forall x \in \pi, \quad k_1 \ell_S(x) < \ell_{S'}(x) < k_2 \ell_S(x).$$

(ℓ_S and $\ell_{S'}$ are quasi-isometric.)

- It follows that

$$\lim_{n \to \infty} \ell_S(x_n) = \infty \iff \lim_{n \to \infty} \ell_{S'}(x_n) = \infty.$$
More general limit

For a subgroup $G \subset \pi$, let

$$
\text{diam}_S(G) = \min\{\ell_S(g), g \in G \setminus \{1\}\}.
$$
More general limit

For a subgroup \(G \subset \pi \), let

\[
\text{diam}_S(G) = \min\{\ell_S(g), g \in G \setminus \{1\}\}.
\]

\(f \): a function defined on a set of finite index normal subgroups of \(\pi \).

\[
\lim_{\text{diam} G \to \infty} f(G) = L
\]

means there is \(S \) such that

\[
\lim_{\text{diam}_S G \to \infty} f(G) = L.
\]
More general limit

For a subgroup $G \subset \pi$, let

$$\text{diam}_S(G) = \min\{\ell_S(g), g \in G \setminus \{1\}\}.$$

f: a function defined on a set of finite index normal subgroups of π.

$$\lim_{\text{diam}G \to \infty} f(G) = L$$

means there is S such that

$$\lim_{\text{diam}_S G \to \infty} f(G) = L.$$

Similarly, we can define

$$\limsup_{\text{diam}G \to \infty} f(G).$$
More general limit

For a subgroup $G \subset \pi$, let

$$\text{diam}_S(G) = \min\{\ell_S(g), g \in G \setminus \{1\}\}.$$

f: a function defined on a set of finite index normal subgroups of π.

$$\lim_{\text{diam}G \to \infty} f(G) = L$$

means there is S such that

$$\lim_{\text{diam}_S G \to \infty} f(G) = L.$$

Similarly, we can define

$$\limsup_{\text{diam}G \to \infty} f(G).$$

Remark: If $\lim_{k \to \infty} \text{diam}G = \infty$ then $\cap G_k = \{1\}$ (co-final).
Homology Growth and Volume

Conjecture

("volume conjecture") For every knot $K \subset S^3$,

$$\limsup_{G \to \infty} t(K, G)^{1/[\pi:G]} = \exp(\text{Vol}(K)).$$
Homology Growth and Volume

Conjecture

(“volume conjecture”) For every knot \(K \subset S^3 \),

\[
\limsup_{G \to \infty} t(K, G)^{1/[\pi:G]} = \exp(\text{Vol}(K)).
\]

• True: \(LHS \leq RHS \). True for knots with \(\text{Vol} = 0 \).
Conjecture

(“volume conjecture”) For every knot $K \subset S^3$,

$$\limsup_{G \to \infty} t(K, G)^{1/[\pi:G]} = \exp(\text{Vol}(K)).$$

- True: $LHS \leq RHS$. True for knots with $\text{Vol} = 0$.
- To prove the conjecture one needs to find $\{G_k\}$ — finite index normal subgroups of π s. t. $\lim_k \text{diam}(G_k) = \infty$ and

$$\lim_{k \to \infty} t(K, G_k)^{1/[\pi:G_k]} = \exp(\text{Vol}(K)).$$

\text{(\textit{*})}
Homology Growth and Volume

Conjecture

("volume conjecture") For every knot $K \subset S^3$,

$$\limsup_{G \to \infty} t(K, G)^{1/\left[\pi : G\right]} = \exp(\text{Vol}(K)).$$

- True: $LHS \leq RHS$. True for knots with $\text{Vol} = 0$.

- To prove the conjecture one needs to find $\{G_k\} -$ finite index normal subgroups of π s. t. $\lim_k \text{diam}(G_k) = \infty$ and

$$\lim_{k \to \infty} t(K, G_k)^{1/\left[\pi : G_k\right]} = \exp(\text{Vol}(K)).$$

\(\text{(*)}\)

It is unlikely that for any sequence G_k of normal subgroups s.t. $\lim \text{diam}G_k = \infty$ one has (\(\ast\)). Which $\{G_k\}$ should we choose?
Long-Lubotzky-Reid (2007): \(\forall \) hyperbolic knot, \(\exists \{ G_k \} \) — finite index normal subgroups, such that \(\pi \) has property \(\tau \) w.r.t. \(\{ G_k \} \).
Expander family

Long-Lubotzky-Reid (2007): \(\forall \) hyperbolic knot, \(\exists \ \{ G_k \} \) — finite index normal subgroups, such that

\(\pi \) has property \(\tau \) w.r.t. \(\{ G_k \} \).

\(\iff \) Cayley graphs of \(\pi / G_k \) w.r.t. a fixed symmetric set of generators form a family of expanders

Based on deep results of Bourgain-Gamburg (2007) on expanders from \(\text{SL}(2, \mathbb{F}_p) \).

Conjecture (*) holds for the Long-Lubotzky-Reid sequence \(\{ G_k \} \).

Justification: to follow.
Expander family

Long-Lubotzky-Reid (2007): ∀ hyperbolic knot, ∃ \{ G_k \} – finite index normal subgroups, such that
π has property τ w.r.t. \{ G_k \}.
⇔ Cayley graphs of \pi/G_k w.r.t. a fixed symmetric set of generators form a family of expanders
⇔ the least non-zero eigenvalue of the Laplacian of the Cayley graphs of \pi/G_k is ≥ a fixed ε > 0.
Expander family

Long-Lubotzky-Reid (2007): \(\forall \) hyperbolic knot, \(\exists \ \{ G_k \} \) — finite index normal subgroups, such that \(\pi \) has property \(\tau \) w.r.t. \(\{ G_k \} \).

\[\iff \] Cayley graphs of \(\pi / G_k \) w.r.t. a fixed symmetric set of generators form a family of expanders

\[\iff \] the least non-zero eigenvalue of the Laplacian of the Cayley graphs of \(\pi / G_k \) is \(\geq \) a fixed \(\epsilon > 0 \).

Based on deep results of Bourgain-Gamburg (2007) on expanders from \(SL(2, p) \).
Expander family

Long-Lubotzky-Reid (2007): \(\forall \) hyperbolic knot, \(\exists \{ G_k \} \) — finite index normal subgroups, such that
\(\pi \) has property \(\tau \) w.r.t. \(\{ G_k \} \).

\(\iff \) Cayley graphs of \(\pi / G_k \) w.r.t. a fixed symmetric set of generators form a family of expanders

\(\iff \) the least non-zero eigenvalue of the Laplacian of the Cayley graphs of \(\pi / G_k \) is \(\geq \) a fixed \(\epsilon > 0 \).

Based on deep results of Bourgain-Gamburg (2007) on expanders from \(SL(2, p) \).

Conjecture

(*) holds for the Long-Lubotzky-Reid sequence \(\{ G_k \} \).

Justification: to follow.
Outline

1. Homology Growth and volume
2. Torsion and Determinant
3. L^2-Torsion
4. Approximation by finite groups
Reidemeister Torsion

- \mathcal{C}: Chain complex of finite dimensional \mathbb{C}-modules (vector spaces).

$$0 \rightarrow C_n \xrightarrow{\partial_n} C_{n-1} \xrightarrow{\partial_{n-1}} \ldots C_1 \xrightarrow{\partial_1} C_0 \rightarrow 0.$$

Suppose \mathcal{C} is acyclic and based. Then the torsion $\tau(\mathcal{C})$ is defined.
Reidemeister Torsion

- \mathcal{C}: Chain complex of finite dimensional \mathbb{C}-modules (vector spaces).

$$0 \to C_n \xrightarrow{\partial_n} C_{n-1} \xrightarrow{\partial_{n-1}} \cdots C_1 \xrightarrow{\partial_1} C_0 \to 0.$$

Suppose \mathcal{C} is acyclic and based. Then the torsion $\tau(\mathcal{C})$ is defined.

c_i: base of C_i. Each ∂_i is given by a matrix.
Reidemeister Torsion

- C: Chain complex of finite dimensional \mathbb{C}-modules (vector spaces).

$$0 \rightarrow C_n \xrightarrow{\partial_n} C_{n-1} \xrightarrow{\partial_{n-1}} \cdots C_1 \xrightarrow{\partial_1} C_0 \rightarrow 0.$$

Suppose C is acyclic and based. Then the torsion $\tau(C)$ is defined.

c_i: base of C_i. Each ∂_i is given by a matrix.

- Simplest case: C is $0 \rightarrow C_1 \xrightarrow{\partial_1} C_0 \rightarrow 0$.

$$\tau(C) = \det \partial_1.$$
Reidemeister Torsion

- C: Chain complex of finite dimensional \mathbb{C}-modules (vector spaces).

\[
0 \to C_n \xrightarrow{\partial_n} C_{n-1} \xrightarrow{\partial_{n-1}} \ldots C_1 \xrightarrow{\partial_1} C_0 \to 0.
\]

Suppose C is acyclic and based. Then the torsion $\tau(C)$ is defined. c_i : base of C_i. Each ∂_i is given by a matrix.

- Simplest case: C is

\[
0 \to C_1 \xrightarrow{\partial_1} C_0 \to 0.
\]

\[
\tau(C) = \det \partial_1.
\]

\[
0 \to C_2 \xrightarrow{\partial_2} C_1 \xrightarrow{\partial_1} C_0 \to 0.
\]

\[
\tau(C) = \left[\frac{\partial_2(c_2) \partial^{-1} c_0}{c_1} \right]
\]

Here $[a/b]$ is the determinant of the change matrix from b to a.
Torsion of chain of Hilbert spaces

C: complex of finite dimensional Hilbert spaces over \mathbb{C}; acyclic.
Choose orthonormal base c_i for each C_i, define $\tau(C, c)$.

Change of base: $\tau(C) := |\tau(C, c)|$ is well-defined.
Torsion of chain of Hilbert spaces

C: complex of finite dimensional Hilbert spaces over \mathbb{C}; acyclic.

Choose orthonormal base c_i for each C_i, define $\tau(C, c)$.

Change of base: $\tau(C) := |\tau(C, c)|$ is well-defined.

C: complex of Hilbert spaces over $\mathbb{C}[\pi]$. Want to define $\tau(C)$.

0 \to C_n $\xrightarrow{\partial_n}$ C_{n-1} $\xrightarrow{\partial_{n-1}}$ \cdots C_1 $\xrightarrow{\partial_1}$ C_0 \to 0.

More specifically,

$C_i = \mathbb{Z}[\pi]^{n_i}$, free $\mathbb{Z}[\pi]$ module, or $C_i = \ell^2(\pi)^{n_i}$

$\partial_i \in \text{Mat}(n_i \times n_{i-1}, \mathbb{Z}[\pi])$, acting on the right.
Torsion of chain of Hilbert spaces

C: complex of finite dimensional Hilbert spaces over \mathbb{C}; acyclic. Choose orthonormal base c_i for each C_i, define $\tau(C, c)$. Change of base: $\tau(C) := |\tau(C, c)|$ is well-defined.

C: complex of Hilbert spaces over $\mathbb{C}[\pi]$. Want to define $\tau(C)$.

$0 \rightarrow C_n \xrightarrow{\partial_n} C_{n-1} \xrightarrow{\partial_{n-1}} \ldots C_1 \xrightarrow{\partial_1} C_0 \rightarrow 0$.

More specifically,

$C_i = \mathbb{Z}[\pi]^{n_i},$ free $\mathbb{Z}[\pi]$ module, or $C_i = \ell^2(\pi)^{n_i}$

$\partial_i \in \text{Mat}(n_i \times n_{i-1}, \mathbb{Z}[\pi])$, acting on the right.

Need to define what is the determinant of a matrix $A \in \text{Mat}(m \times n, \mathbb{Z}[\pi])$.

Trace on $\mathbb{C}[\pi]$

For square matrix A with complex entries: $\log \det A = \text{tr} \log A$.
One can define a good theory of determinant of there is a good trace.
Trace on $\mathbb{C}[\pi]$

For square matrix A with complex entries: $\log \det A = \text{tr} \log A$. One can define a good theory of determinant of there is a good trace.

Regular representation: $\mathbb{C}[\pi]$ acts on the right on the Hilbert space

$$\ell^2(\pi) = \{ \sum_g c_g g \mid \sum_g |c_g|^2 < \infty \}.$$
Trace on $\mathbb{C}[\pi]$

For square matrix A with complex entries: $\log \det A = \text{tr} \log A$. One can define a good theory of determinant if there is a good trace.

Regular representation: $\mathbb{C}[\pi]$ acts on the right on the Hilbert space

$$\ell^2(\pi) = \left\{ \sum_g c_g g \mid \sum_g |c_g|^2 < \infty \right\}.$$

Remark. If $\pi = \pi_1(S^3 \setminus K)$, K is not a torus knot, then the regular representation is of type II_1.

Trace on $\mathbb{C}[\pi]$

For square matrix A with complex entries: $\log \det A = \text{tr} \log A$.

One can define a good theory of determinant if there is a good trace.

Regular representation: $\mathbb{C}[\pi]$ acts on the right on the Hilbert space

$$\ell^2(\pi) = \left\{ \sum_{g} c_g g \mid \sum_{g} |c_g|^2 < \infty \right\}.$$

Remark. If $\pi = \pi_1(S^3 \setminus K)$, K is not a torus knot, then the regular representation is of type II_1.

- Adjoint operator: $x = \sum c_g g \in \mathbb{C}[\pi]$, then $x^* = \sum \bar{c}_g g^{-1}$.
Trace on $\mathbb{C}[\pi]$

For square matrix A with complex entries: $\log \det A = \text{tr} \log A$.

One can define a good theory of determinant of there is a good trace.

Regular representation: $\mathbb{C}[\pi]$ acts on the right on the Hilbert space

$$\ell^2(\pi) = \{ \sum g c_g g | \sum |c_g|^2 < \infty \}.$$

Remark. If $\pi = \pi_1(S^3 \setminus K)$, K is not a torus knot, then the regular representation is of type II_1.

- Adjoint operator: $x = \sum c_g g \in \mathbb{C}[\pi]$, then $x^* = \sum \bar{c}_g g^{-1}$.

- Similarly to the finite group case, define $\forall g \in \pi$,

 $$\text{tr}(g) = \delta_{g,1}$$

 $\forall x \in \mathbb{C}[\pi], \text{tr}(x) = \langle x, 1 \rangle = \text{coeff. of 1 in } x$.
Trace

The trace can be extended to the Von Neumann algebra $\mathcal{N}(\pi) \supset \mathbb{C}[\pi]$.
The trace can be extended to the Von Neumann algebra $\mathcal{N}(\pi) \supset \mathbb{C}[\pi]$.

- $A \in \text{Mat}(n \times n, \mathbb{C}[\pi])$. Define

$$\text{tr}(A) := \sum_{i=1}^{n} \text{tr}(A_{ii}).$$

Convergence of the RHS?
The trace can be extended to the Von Neumann algebra $\mathcal{N}(\pi) \supset \mathbb{C}[\pi]$. Define $A \in \text{Mat}(n \times n, \mathbb{C}[\pi])$. Define

$$\text{tr}(A) := \sum_{i=1}^{n} \text{tr}(A_{ii}).$$

(not rigorous) Define $\det(A)$ using

$$\log \det A = \text{tr} \log A$$

$$= -\text{tr} \sum_{p=1}^{\infty} (I - A)^p / p$$

$$= -\sum \frac{\text{tr}[(I - A)^p]}{p}.$$
The trace can be extended to the Von Neumann algebra \(\mathcal{N}(\pi) \supset \mathbb{C}[\pi] \).

- \(A \in \text{Mat}(n \times n, \mathbb{C}[\pi]) \). Define

\[
\text{tr}(A) := \sum_{i=1}^{n} \text{tr}(A_{ii}).
\]

- (not rigorous) Define \(\det(A) \) using

\[
\log \det A = \text{tr} \log A
= -\text{tr} \sum_{p=1}^{\infty} (I - A)^p / p
= -\sum \text{tr}[(I - A)^p] / p.
\]

- Convergence of the RHS?
Fuglede-Kadison-Lück determinant for
\(A \in \text{Mat}(m \times n, \mathbb{C}[\pi]) \)

\[B := A^* A, \text{ where } (A^*)_{ij} := (A_{ji})^*. \quad \ker(B) = \ker A, \quad B \geq 0. \]
Fuglede-Kadison-Lück determinant for $A \in \text{Mat}(m \times n, \mathbb{C}[[\pi]])$

- $B := A^*A$, where $(A^*)_{ij} := (A_{ji})^*$. $\ker(B) = \ker A$, $B \geq 0$.
- Choose $k > \|B\|$. Let $C = B/k$. $I \geq I - C \geq 0$, and $(I - C)^p \geq (I - C)^{p+1} \geq 0$.

$b = b(A)$ depends only on A, equal to the Von-Neumann dimension of $\ker A$.

$log \det \pi C = -\sum 1_p (tr(I - C)^p - b) = \text{finite or } -\infty$.

$B = kC$, $\det \pi B = k^n - b \det C \in \mathbb{R} \geq 0$, $\det \pi A = \sqrt{\det \pi B}$.

Most interesting case: A is injective ($b = 0$), $m = n$, but not invertible.
Fuglede-Kadison-Lück determinant for $A \in \text{Mat}(m \times n, \mathbb{C}[\pi])$

- $B \coloneqq A^*A$, where $(A^*)_ij := (A_{ji})^*$. $\ker(B) = \ker A$, $B \geq 0$.

- Choose $k > \|B\|$. Let $C = B/k$. $I \geq I - C \geq 0$, and $(I - C)^p \geq (I - C)^{p+1} \geq 0$.

- The sequence $\text{tr}[(I - C)^p]$ is decreasing $\Rightarrow \lim \text{tr}[(I - C)^p] = b \geq 0$. $b = b(A)$ depends only on A, equal to the Von-Neumann dimension of $\ker A$.
Fuglede-Kadison-Lück determinant for $A \in \text{Mat}(m \times n, \mathbb{C}[\pi])$

- $B := A^* A$, where $(A^*)_{ij} := (A_{ji})^*$. \quad \ker(B) = \ker A, \quad B \geq 0.$

- Choose $k > \|B\|$. Let $C = B/k$. \quad I \geq I - C \geq 0$, and $(I - C)^p \geq (I - C)^{p+1} \geq 0$.

- The sequence $\text{tr}[(I - C)^p]$ is decreasing $\Rightarrow \lim \text{tr}[(I - C)^p] = b \geq 0.$ $b = b(A)$ depends only on A, equal to the Von-Neumann dimension of $\ker A$.

- Use b as the correction term in the log series to define $\det_\pi C$:

$$\log \det_\pi C = - \sum \frac{1}{p} (\text{tr}[(I - C)^p] - b) = \text{finite or } -\infty.$$
Fuglede-Kadison-Lück determinant for
\(A \in \text{Mat}(m \times n, \mathbb{C}[\pi]) \)

- \(B := A^* A \), where \((A^*)_{ij} := (A_{ji})^*\). \(\ker(B) = \ker A \), \(B \geq 0 \).

- Choose \(k > \|B\| \). Let \(C = B/k \). \(I \geq I - C \geq 0 \), and
 \((I - C)^p \geq (I - C)^{p+1} \geq 0 \).

- The sequence \(\text{tr}[(I - C)^p] \) is decreasing \(\Rightarrow \lim \text{tr}[(I - C)^p] = b \geq 0 \).
 \(b = b(A) \) depends only on \(A \), equal to the Von-Neumann dimension of \(\ker A \).

- Use \(b \) as the correction term in the log series to define \(\det_\pi C \):
 \[
 \log \det_\pi C = - \sum 1/p \left(\text{tr}[(I - C)^p] - b \right) = \text{finite or } -\infty.
 \]

- \(B = kC \), \(\det_\pi B = k^{n-b} \det C \in \mathbb{R}_{\geq 0} \), \(\det_\pi A = \sqrt{\det_\pi B} \).
Fuglede-Kadison-Lück determinant for $A \in \text{Mat}(m \times n, \mathbb{C}[[\pi]])$

- $B := A^* A$, where $(A^*)_{ij} := (A_{ji})^*$. \(\ker(B) = \ker A, \quad B \geq 0.\)

- Choose $k > \|B\|$. Let $C = B/k$. \(I \geq I - C \geq 0,\) and \((I - C)^p \geq (I - C)^{p+1} \geq 0.\)

- The sequence $\text{tr}[(I - C)^p]$ is decreasing $\Rightarrow \lim \text{tr}[(I - C)^p] = b \geq 0$. $b = b(A)$ depends only on A, equal to the Von-Neumann dimension of $\ker A$.

- Use b as the correction term in the log series to define $\det_\pi C$:

 \[
 \log \det_\pi C = - \sum \frac{1}{p} (\text{tr}[(I - C)^p] - b) = \text{finite or } -\infty.
 \]

- $B = kC$, $\det_\pi B = k^{\overline{n-b}} \det C \in \mathbb{R}_{\geq 0}$, \(\det_\pi A = \sqrt{\det_\pi B}.\)

Most interesting case: A is injective ($b = 0$), $m = n$, but not invertible.
FKL determinant – Example: Finite group

Let $D \in \text{Mat}(n \times n, \mathbb{C})$. Let $p(\lambda) = \det(\lambda I + D)$.

$$\det' D := \text{coeff. of smallest degree of } p = \prod_{\lambda \text{ eigenvalue } \neq 0} \lambda.$$
FKL determinant – Example: Finite group

- $D \in \text{Mat}(n \times n, \mathbb{C})$. Let $p(\lambda) = \det(\lambda I + D)$.

\[
\det' D := \text{coeff. of smallest degree of } p = \prod_{\lambda \text{ eigenvalue } \neq 0} \lambda.
\]

- $\pi = \{1\}$, $A \in \text{Mat}(m \times n, \mathbb{C})$. Then in general $\det_{\{1\}} A \neq \det A$.

\[
\det_{\{1\}} A = \sqrt{\det'(A^* A)} = \prod \text{(non-zero singular values)}.
\]
FKL determinant – Example: Finite group

- $D \in \text{Mat}(n \times n, \mathbb{C})$. Let $p(\lambda) = \det(\lambda I + D)$.

 $$\det' D := \text{coeff. of smallest degree of } p = \prod_{\lambda \text{ eigenvalue } \neq 0} \lambda.$$

- $\pi = \{1\}$, $A \in \text{Mat}(m \times n, \mathbb{C})$. Then in general $\det_{\{1\}} A \neq \det A$.

 $$\det_{\{1\}} A = \sqrt{\det'(A^* A)} = \prod \text{(non-zero singular values)}.$$

- $|\pi| < \infty$, $A \in \text{Mat}(m \times n, \mathbb{C}[\pi])$. Then A is given by a matrix $D \in \text{Mat}(m|\pi| \times n|\pi|, \mathbb{C})$.

 $$\det_{\pi} A = \left(\det'(D^* D)\right)^{1/2|\pi|}.$$
FKL determinant— Example: \(\Pi = \mathbb{Z}^{\mu} \)

- \(f(t_1^{\pm 1}, \ldots, t_\mu^{\pm 1}) \in \mathbb{C}[\mathbb{Z}^{\mu}] \equiv \mathbb{C}[t_1^{\pm 1}, \ldots, t_\mu^{\pm 1}] \).

 Assume \(f \neq 0 \). \(f \): 1 \times 1 \) matrix.
FKL determinant— Example: $\pi = \mathbb{Z}^\mu$

- $f(t_1^{\pm 1}, \ldots, t_{\mu}^{\pm 1}) \in \mathbb{C}[\mathbb{Z}^\mu] \equiv \mathbb{C}[t_1^{\pm 1}, \ldots, t_{\mu}^{\pm 1}]$. Assume $f \neq 0$. f: 1×1 matrix.

- It is known that (Lück) $\det_{\mathbb{Z}^\mu}(f)$ is the Mahler measure:

$$\det_{\mathbb{Z}^\mu} f = M(f) := \exp \left(\int_{\mathbb{T}^\mu} \log |f| d\sigma \right)$$

where $\mathbb{T}^\mu = \{(z_1, \ldots, z_\mu) \in \mathbb{C}^\mu \mid |z_i| = 1\}$, the μ-torus. $d\sigma$: the invariant measure normalized so that $\int_{\mathbb{T}^\mu} d\sigma = 1$.
FKL determinant— Example: \(\pi = \mathbb{Z}^\mu \)

- \(f(t_1^{\pm 1}, \ldots, t_\mu^{\pm 1}) \in \mathbb{C}[\mathbb{Z}^\mu] \equiv \mathbb{C}[t_1^{\pm 1}, \ldots, t_\mu^{\pm 1}] \). Assume \(f \neq 0 \). \(f \): 1 \times 1 matrix.

- It is known that (Lück) \(\det_{\mathbb{Z}^\mu}(f) \) is the Mahler measure:

 \[
 \det_{\mathbb{Z}^\mu} f = M(f) := \exp \left(\int_{\mathbb{T}^\mu} \log |f| d\sigma \right)
 \]

 where \(\mathbb{T}^\mu = \{(z_1, \ldots, z_\mu) \in \mathbb{C}^\mu \mid |z_i| = 1\} \), the \(\mu \)-torus.

 \(d\sigma \): the invariant measure normalized so that \(\int_{\mathbb{T}^\mu} d\sigma = 1 \).

- \(f(t) \in \mathbb{Z}[t^{\pm 1}] \), \(f(t) = a_0 \prod_{j=1}^n (t - z_j) \), \(z_j \in \mathbb{C} \). Then

 \[
 M(f) = a_0 \prod_{|z_j| > 1} |z_j|.
 \]
Outline

1. Homology Growth and volume
2. Torsion and Determinant
3. L^2-Torsion
4. Approximation by finite groups
L^2-Torsion, L^2-homology of $\mathbb{C}[\pi]$- complex

\[C : \quad 0 \to C_n \xrightarrow{\partial_n} C_{n-1} \xrightarrow{\partial_{n-1}} \ldots C_1 \xrightarrow{\partial_1} C_0 \to 0. \]

$C_i = \ell^2(\pi)^{n_i}$, \quad $\partial_i \in \text{Mat}(n_i \times n_{i-1}, \mathbb{C}[\pi])$.
L^2-Torsion, L^2-homology of $\mathbb{C}[\pi]$- complex

$$C : \quad 0 \rightarrow C_n \xrightarrow{\partial_n} C_{n-1} \xrightarrow{\partial_{n-1}} \ldots C_1 \xrightarrow{\partial_1} C_0 \rightarrow 0.$$

$C_i = \ell^2(\pi)^{n_i}, \quad \partial_i \in \text{Mat}(n_i \times n_{i-1}, \mathbb{C}[\pi]).$

C is of det-class if $\det_\pi(\partial_i) \neq 0 \forall i$. In that case

$$\tau^{(2)}(C) := \frac{\det_\pi(\partial_1) \det_\pi(\partial_3) \det_\pi(\partial_5)\ldots}{\det_\pi(\partial_2) \det_\pi(\partial_4)\ldots}.$$
L^2-Torsion, L^2-homology of $\mathbb{C}[\pi]$- complex

$$C : \quad 0 \to C_n \xrightarrow{\partial_n} C_{n-1} \xrightarrow{\partial_{n-1}} \cdots C_1 \xrightarrow{\partial_1} C_0 \to 0.$$

$C_i = \ell^2(\pi)^{n_i}$, \quad $\partial_i \in \text{Mat}(n_i \times n_{i-1}, \mathbb{C}[\pi]).$

- C is of det-class if $\det_\pi(\partial_i) \neq 0 \forall i$. In that case

 $$\tau^{(2)}(C) := \frac{\det_\pi(\partial_1) \det_\pi(\partial_3) \det_\pi(\partial_5) \cdots}{\det_\pi(\partial_2) \det_\pi(\partial_4) \cdots}.$$

- L^2-homology (no need to be of det-class)

 $$H_i^{(2)} := \ker \partial_i / \text{Im}(\partial_{i-1}).$$
L^2-Torsion, L^2-homology of $\mathbb{C}[\pi]$- complex

\[\mathcal{C} : \quad 0 \rightarrow C_n \xrightarrow{\partial_n} C_{n-1} \xrightarrow{\partial_{n-1}} \ldots C_1 \xrightarrow{\partial_1} C_0 \rightarrow 0. \]

\[C_i = \ell^2(\pi)^{n_i}, \quad \partial_i \in \operatorname{Mat}(n_i \times n_{i-1}, \mathbb{C}[\pi]). \]

- \(\mathcal{C} \) is of \textit{det-class} if \(\det_\pi(\partial_i) \neq 0 \ \forall i \). In that case

\[\tau^{(2)}(\mathcal{C}) := \frac{\det_\pi(\partial_1) \det_\pi(\partial_3) \det_\pi(\partial_5) \ldots}{\det_\pi(\partial_2) \det_\pi(\partial_4) \ldots}. \]

- L^2-homology (no need to be of det-class)

\[H_i^{(2)} := \ker \partial_i / \text{Im}(\partial_{i-1}). \]

- \(\mathcal{C} \) is L^2-acyclic if \(H_i^{(2)} = 0 \ \forall i \).
\(L^2 \)-Torsion of manifolds: Definition

- \(\tilde{X} \) is a \(\pi \)-space such that \(p : \tilde{X} \to X := \tilde{X}/\pi \) is a regular covering.
- \(\tilde{X}, X \) manifold.
\(L^2 \)-Torsion of manifolds: Definition

- \(\tilde{X} \) is a \(\pi \)-space such that \(p : \tilde{X} \to X := \tilde{X}/\pi \) is a regular covering. \(\tilde{X}, X \) manifold.

- Finite triangulation of \(X \): \(C(\tilde{X}) \) becomes a complex of free \(\mathbb{Z}[\pi] \)-modules.
 If \(C(\tilde{X}) \) is of det-class, then \(L^2 \)-torsion, denoted by \(\tau(2)(\tilde{X}) \), can be defined. Depends on the triangulation.
\tilde{X} is a π-space such that $p : \tilde{X} \rightarrow X := \tilde{X}/\pi$ is a regular covering. \tilde{X}, X manifold.

Finite triangulation of X: $C(\tilde{X})$ becomes a complex of free $\mathbb{Z}[\pi]$-modules. If $C(\tilde{X})$ is of det-class, then L^2-torsion, denoted by $\tau^{(2)}(\tilde{X})$, can be defined. Depends on the triangulation.

If $C(\tilde{X})$ is acyclic and of det-class for one triangulation, then it is acyclic and of det-class for any other triangulation, and $\tau^{(2)}(\tilde{X})$ of the two triangulations are the same: we can define $\tau^{(2)}(\tilde{X})$.

L^2-Torsion of manifolds: Definition
L^2-Torsion of knots: universal covering

- K a knot in S^3. $X = S^3 - K$, \tilde{X}: universal covering. $\pi = \pi_1(X)$. Then \tilde{X} is a π-space with quotient X.

Theorem (Lück-Schick) \[\log \tau(2)(K) = -\text{Vol}(K) \]

based on results of Burghelea-Friedlander-Kappeler-McDonald, Lott, and Mathai.
L^2-Torsion of knots: universal covering

- K a knot in S^3. $X = S^3 - K$, \tilde{X}: universal covering. $\pi = \pi_1(X)$. Then \tilde{X} is a π-space with quotient X.

- $C(\tilde{X})$ is acyclic and is of det-class.

$$\tau^{(2)}(K) := \tau^{(2)}(\tilde{X}).$$
\(L^2 \)-Torsion of knots: universal covering

- \(K \) a knot in \(S^3 \). \(X = S^3 - K \), \(\tilde{X} \): universal covering. \(\pi = \pi_1(X) \). Then \(\tilde{X} \) is a \(\pi \)-space with quotient \(X \).

- \(C(\tilde{X}) \) is acyclic and is of det-class.

\[
\tau^{(2)}(K) := \tau^{(2)}(\tilde{X}).
\]

- **Theorem** (Lück-Schick)

\[
\log \tau^{(2)}(K) = -\Vol(K).
\]

based on results of Burghelea-Friedlander-Kappeler-McDonald, Lott, and Mathai.
L^2-Torsion of knots: computing using knot group

$\pi = \pi_1(S^3 \setminus K)$.

$\pi = \langle a_1, \ldots, a_{n+1} | r_1, \ldots, r_n \rangle$.
L^2-Torsion of knots: computing using knot group

- $\pi = \pi_1(S^3 \setminus K)$.

- $\pi = \langle a_1, \ldots, a_{n+1} | r_1, \ldots, r_n \rangle$.

- Y: 2-CW complex associated with this presentation. X and Y are homotopic.

 Y has 1 0-cell, $(n+1)$ 1-cells, and n 2-cells. \tilde{Y}: universal covering.

- $C(\tilde{Y}) : 0 \to \mathbb{Z}[\pi]^n \xrightarrow{\partial_2} \mathbb{Z}[\pi]^{n+1} \xrightarrow{\partial_1} \mathbb{Z}[\pi] \to 0$.
L^2-Torsion of knots: computing using knot group

- \(\pi = \pi_1(S^3 \setminus K) \).

\[
\pi = \langle a_1, \ldots, a_{n+1} | r_1, \ldots, r_n \rangle.
\]

- \(Y \): 2-CW complex associated with this presentation. \(X \) and \(Y \) are homotopic.
 \(Y \) has 1 0-cell, \((n + 1)\) 1-cells, and \(n \) 2-cells. \(\tilde{Y} \): universal covering.

\[
C(\tilde{Y}) : \quad 0 \rightarrow \mathbb{Z}[\pi]^n \xrightarrow{\partial_2} \mathbb{Z}[\pi]^{n+1} \xrightarrow{\partial_1} \mathbb{Z}[\pi] \rightarrow 0.
\]

\[
\partial_1 = \begin{pmatrix}
a_1 - 1 \\
a_2 - 1 \\
\vdots \\
a_{n+1} - 1
\end{pmatrix}, \quad \partial_2 = \left(\frac{\partial r_i}{\partial a_j} \right) \in \text{Mat}(n \times (n + 1), \mathbb{Z}[\pi])
\]
By definition

$$\tau^{(2)}(K) = \frac{\det_\pi \partial_1}{\det_\pi \partial_2}$$

L^2-torsion of knots: computing using knot group

Lück showed that

$$\tau^{(2)}(K) = 1 \cdot \det_\pi \partial'$$

It follows that

$$\log \det_\pi (\partial') = \text{Vol}(K).$$
By definition

\[\tau^{(2)}(K) = \frac{\det_\pi \partial_1}{\det_\pi \partial_2} \]

Let

\[\partial'_2 := \left(\frac{\partial r_i}{\partial a_j} \right)_{i,j=1}^n \in \text{Mat}(n \times n, \mathbb{Z}[\pi]). \]

Lück showed that

\[\tau^{(2)}(K) = \frac{1}{\det_\pi \partial'_2} \]
\(L^2 \)-Torsion of knots: computing using knot group

By definition

\[
\tau^{(2)}(K) = \frac{\det_\pi \partial_1}{\det_\pi \partial_2}
\]

Let

\[
\partial'_2 := \left(\frac{\partial r_i}{\partial a_j} \right)_{i,j=1}^n \in \text{Mat}(n \times n, \mathbb{Z}[\pi]).
\]

Lück showed that

\[
\tau^{(2)}(K) = \frac{1}{\det_\pi \partial'_2}
\]

It follows that

\[
\log \det_\pi (\partial'_2) = \text{Vol}(K).
\]
L^2-Torsion of knots: Figure 8 knot

\[\pi = \langle a, b | ab^{-1}a^{-1}ba = bab^{-1}a^{-1}b \rangle. \]

\[\partial'_2 = \frac{\partial r}{\partial a} = 1 - ab^{-1}a^{-1} + ab^{-1}a^{-1}b - b - bab^{-1}a^{-1}. \]
L^2-Torsion of knots: Figure 8 knot

\[\pi = \langle a, b \mid ab^{-1}a^{-1}ba = bab^{-1}a^{-1}b \rangle. \]

\[\partial'_2 = \frac{\partial r}{\partial a} = 1 - ab^{-1}a^{-1} + ab^{-1}a^{-1}b - b - bab^{-1}a^{-1}. \]

Then

\[\log \det_\pi(\frac{\partial r}{\partial a}) = \text{Vol}(K). \]
L^2-Torsion: free abelian group $\pi = \mathbb{Z}^\mu$

$C : \quad 0 \to C_n \xrightarrow{\partial_n} C_{n-1} \xrightarrow{\partial_{n-1}} \cdots C_1 \xrightarrow{\partial_1} C_0 \to 0.$

$C_i = \mathbb{Z}[[\mathbb{Z}^\mu]]^{n_i}, \quad \partial_i \in \text{Mat}(n_i \times n_{i-1}, \mathbb{Z}[[\mathbb{Z}^\mu]]).$
L^2-Torsion: free abelian group $\pi = \mathbb{Z}^\mu$

$$C : \quad 0 \to C_n \xrightarrow{\partial_n} C_{n-1} \xrightarrow{\partial_{n-1}} \ldots C_1 \xrightarrow{\partial_1} C_0 \to 0.$$

$$C_i = \mathbb{Z}[\mathbb{Z}^\mu]^{n_i}, \quad \partial_i \in \text{Mat}(n_i \times n_{i-1}, \mathbb{Z}[\mathbb{Z}^\mu]).$$

$C \otimes F$: complex over F – fractional field of $\mathbb{Z}[\mathbb{Z}^\mu] = \mathbb{Z}[t_1^{\pm 1}, \ldots, t_\mu^{\pm 1}].$
L^2-Torsion: free abelian group $\pi = \mathbb{Z}^\mu$

$$C : \quad 0 \to C_n \xrightarrow{\partial_n} C_{n-1} \xrightarrow{\partial_{n-1}} \ldots C_1 \xrightarrow{\partial_1} C_0 \to 0.$$

$$C_i = \mathbb{Z}[\mathbb{Z}^\mu]^{n_i}, \quad \partial_i \in \text{Mat}(n_i \times n_{i-1}, \mathbb{Z}[\mathbb{Z}^\mu]).$$

$C \otimes F$: complex over F – fractional field of $\mathbb{Z}[\mathbb{Z}^\mu] = \mathbb{Z}[t_1^{\pm 1}, \ldots, t_\mu^{\pm 1}]$.

If C is F-acyclic \implies Reidemeister torsion $\tau^R(C)$ can be defined. Milnor-Turaev formula to calculate Reidemeister torsion. In this case, $\tau^R(C) \in \mathbb{Z}(t_1^{\pm 1}, \ldots, t_\mu^{\pm \mu})$, a rational function.
L^2-Torsion: free abelian group $\pi = \mathbb{Z}^\mu$

\[C : \quad 0 \rightarrow C_n \xrightarrow{\partial_n} C_{n-1} \xrightarrow{\partial_{n-1}} \ldots C_1 \xrightarrow{\partial_1} C_0 \rightarrow 0. \]

\[C_i = \mathbb{Z}[\mathbb{Z}^\mu]^{n_i}, \quad \partial_i \in \text{Mat}(n_i \times n_{i-1}, \mathbb{Z}[\mathbb{Z}^\mu]). \]

$C \otimes F$: complex over F – fractional field of $\mathbb{Z}[\mathbb{Z}^\mu] = \mathbb{Z}[t_1^{\pm 1}, \ldots, t_\mu^{\pm 1}]$.

If C is F-acyclic \implies Reidemeister torsion $\tau^R(C)$ can be defined. Milnor-Turaev formula to calculate Reidemeister torsion. In this case, $\tau^R(C) \in \mathbb{Z}(t_1^{\pm 1}, \ldots, t_\mu^{\pm 1})$, a rational function.

For C: L^2-acyclic \iff F-acyclic (Lück, Elek).
L^2-Torsion: free abelian group \(\pi = \mathbb{Z}^\mu \)

\[C : \quad 0 \to C_n \xrightarrow{\partial_n} C_{n-1} \xrightarrow{\partial_{n-1}} \cdots C_1 \xrightarrow{\partial_1} C_0 \to 0. \]

\[C_i = \mathbb{Z}[\mathbb{Z}^\mu]^{n_i}, \quad \partial_i \in \text{Mat}(n_i \times n_{i-1}, \mathbb{Z}[\mathbb{Z}^\mu]). \]

\(C \otimes F \): complex over \(F \) – fractional field of \(\mathbb{Z}[\mathbb{Z}^\mu] = \mathbb{Z}[t_1^{\pm 1}, \ldots, t_\mu^{\pm 1}] \).

If \(C \) is \(F \)-acyclic \(\implies \) Reidemeister torsion \(\tau^R(C) \) can be defined. Milnor-Turaev formula to calculate Reidemeister torsion. In this case, \(\tau^R(C) \in \mathbb{Z}(t_1^{\pm 1}, \ldots, t_\mu^{\pm \mu}) \), a rational function.

For \(C \): \(L^2 \)-acyclic \(\iff \) \(F \)-acyclic (Lück, Elek).

Theorem

If \(C \) is \(F \)-acyclic, then

\[\tau^{(2)}(C) = M(\tau^R(C)). \]
L^2-Torsion for abelian covering of links

L a link of μ components. $X = S^3 \setminus L$.

$$\pi = \pi_1(X).$$

Abelianization map $ab : \pi \rightarrow \mathbb{Z}^\mu$.

\tilde{X}^{ab}: abelian covering corresponding to ker(ab), \mathbb{Z}^μ-space.

Let $\Delta_0(L)$ be the (first) Alexander polynomial.

Let $\Delta_0(L) \neq 0$ always.
L^2-Torsion for abelian covering of links

L a link of μ components. $X = S^3 \setminus L$.

$\pi = \pi_1(X)$.

Abelianization map $\text{ab} : \pi \to \mathbb{Z}^\mu$.

\tilde{X}^{ab}: abelian covering corresponding to $\ker(\text{ab})$, \mathbb{Z}^μ-space.

Let $\Delta_0(L)$ be the (first) Alexander polynomial.

Proposition

$C(\tilde{X}^{\text{ab}})$ is of det-class. $C(\tilde{X}^{\text{ab}})$ is acyclic if and only if $\Delta_0(L) \neq 0$. If $\Delta_0(L) \neq 0$

$$\tau^{(2)}(\tilde{X}^{\text{ab}}) = \frac{1}{M(\Delta_0(L))}.$$

If $\mu = 1$, then $\Delta_0 \neq 0$ always.
Finite quotient

C: $\mathbb{Z}[\pi]$-complex, free finite rank. G a normal subgroup, $\pi \to \Gamma = \pi / G$.

$$C_G := C \otimes_{\mathbb{Z}[\pi]} \mathbb{Z}[\Gamma].$$
Finite quotient

C: $\mathbb{Z}[\pi]$-complex, free finite rank. G a normal subgroup, $\pi \to \Gamma = \pi / G$.

$C_G := C \otimes_{\mathbb{Z}[\pi]} \mathbb{Z}[\Gamma]$.

- If Γ is finite, then C_G is a \mathbb{Z}-complex of free finite rank \mathbb{Z}-modules.

C_G may not be acyclic even when C is. But the Betti numbers of C_G are “small” compared to $[\pi : G]$.

Question

When $\lim_{\text{diam } G \to \infty} t(C_G) = \tau(C)$?
Finite quotient

C: $\mathbb{Z}[\pi]$-complex, free finite rank. G a normal subgroup, $\pi \to \Gamma = \pi / G$.

$C_G := C \otimes_{\mathbb{Z}[\pi]} \mathbb{Z}[\Gamma]$.

- If Γ is finite, then C_G is a \mathbb{Z}-complex of free finite rank \mathbb{Z}-modules. C_G may not be acyclic even when C is. But the Betti numbers of C_G are “small” compared to $[\pi : G]$.

- If C_G is acyclic, then $\tau^R(C_G) = t(C, G)$ (Milnor-Turaev formula), where

 $$t(C, G) := \frac{|\text{Tor}H_0(C_G, \mathbb{Z})| |\text{Tor}H_2(C_G, \mathbb{Z})| \cdots}{|\text{Tor}H_1(C_G, \mathbb{Z})| |\text{Tor}H_3(C_G, \mathbb{Z})|}.$$
Finite quotient

C: $\mathbb{Z}[\pi]$-complex, free finite rank. G a normal subgroup, $\pi \rightarrow \Gamma = \pi / G$.

$C_G := C \otimes_{\mathbb{Z}[\pi]} \mathbb{Z}[\Gamma]$.

- If Γ is finite, then C_G is a \mathbb{Z}-complex of free finite rank \mathbb{Z}-modules.
- C_G may not be acyclic even when C is. But the Betti numbers of C_G are “small” compared to $[\pi : G]$.
- If C_G is acyclic, then $\tau^R(C_G) = t(C, G)$ (Milnor-Turaev formula), where

\[
t(C, G) := \frac{|\text{Tor}H_0(C_G, \mathbb{Z})| |\text{Tor}H_2(C_G, \mathbb{Z})| \cdots}{|\text{Tor}H_1(C_G, \mathbb{Z})| |\text{Tor}H_3(C_G, \mathbb{Z})|}.
\]

- In general, \[\lim_{\text{diam}G \rightarrow \infty} \text{tr}_{\pi / G}(x) = \text{tr}_\pi(x)\].
Finite quotient

\(C: \mathbb{Z}[\pi]\)-complex, free finite rank. \(G\) a normal subgroup, \(\pi \to \Gamma = \pi/G\).

\[C_G := C \otimes_{\mathbb{Z}[\pi]} \mathbb{Z}[\Gamma].\]

- If \(\Gamma\) is finite, then \(C_G\) is a \(\mathbb{Z}\)-complex of free finite rank \(\mathbb{Z}\)-modules. \(C_G\) may not be acyclic even when \(C\) is. But the Betti numbers of \(C_G\) are “small” compared to \([\pi: G]\).
- If \(C_G\) is acyclic, then \(\tau^R(C_G) = t(C, G)\) (Milnor-Turaev formula), where
 \[t(C, G) := \frac{|\text{Tor}H_0(C_G, \mathbb{Z})|}{|\text{Tor}H_1(C_G, \mathbb{Z})|} \frac{|\text{Tor}H_2(C_G, \mathbb{Z})|}{|\text{Tor}H_3(C_G, \mathbb{Z})|} \cdots.\]
- In general,
 \[\lim_{\text{diam}G \to \infty} \text{tr}_{\pi/G}(x) = \text{tr}_{\pi}(x).\]

Question When

\[\lim_{\text{diam}G \to \infty} t(C, G)^{1/[\pi: G]} = \tau^{(2)}C?\]
Theorem

\[\pi = \mathbb{Z}. \quad G_k = k\mathbb{Z} \subset \mathbb{Z}. \]

\[\lim_{k \to \infty} t(C, G_k)^{1/k} = \tau(2)C. \]
Full result for $\pi = \mathbb{Z}$

Theorem

$\pi = \mathbb{Z}$. \quad \mathcal{G}_k = k\mathbb{Z} \subset \mathbb{Z}$.

$$\lim_{k \to \infty} t(\mathcal{C}, \mathcal{G}_k)^{1/k} = \tau^{(2)}\mathcal{C}.$$

- Proof of theorem used a special case, a result of Lück (Riley, Gonzalez-Acuna, and Short) based on Gelfond-Baker theory of diophantine approximation): $f \in \mathbb{Q}[\mathbb{Z}]$, then

$$\det_{\mathbb{Z}} f = \lim_{n \to \infty} \det_{\mathbb{Z}/k}(f_{\mathbb{Z}/k})$$

and a result relating $\det_{\mathbb{Z}_k}$ to $|\text{Tor}|$.
Partial result $\pi = \mathbb{Z}^\mu$

Consider only lattice $G < \mathbb{Z}^\mu$ such that $\text{rk } G = \mu$.
Partial result $\pi = \mathbb{Z}^\mu$

Consider only lattice $G < \mathbb{Z}^\mu$ such that $\text{rk } G = \mu$.

Theorem
$A \in \text{Mat}(m \times n, \mathbb{C}[\mathbb{Z}^\mu])$. Then

$$\det_{\mathbb{Z}^\mu} A = \limsup_{\text{diam } G \to \infty} \det_{\mathbb{Z}^\mu} / G(A_G).$$
Application: Link case

L: μ-component link in S^3. Assume $\Delta_0(L) \neq 0$ (always the case if $\mu = 1$).

G a lattice in \mathbb{Z}^μ of rank μ. X_G^{br}: branched G-covering of $X = S^3 \setminus L$.

$$t(L, G) = |\text{Tor}H_1(X_G^{br}, \mathbb{Z})|.$$
Application: Link case

L: μ-component link in S^3. Assume $\Delta_0(L) \neq 0$ (always the case if $\mu = 1$).

G a lattice in \mathbb{Z}^μ of rank μ. X_G^{br}: branched G-covering of $X = S^3 \setminus L$.

\[t(L, G) = |\text{Tor}H_1(X_G^{br}, \mathbb{Z})|. \]

Corollary

(Silver-Williams)

\[M(\Delta_0(L)) = \limsup_{\text{diam } G \to \infty} t(L, G)^{1/[\mathbb{Z}^\mu : G]}. \]

If $\mu = 1$, then \limsup can be replaced by \lim.

was proved by Silver and Williams using tools from symbolic dynamics.
Application: Link case

L: μ-component link in S^3. Assume $\Delta_0(L) \neq 0$ (always the case if $\mu = 1$).

G a lattice in \mathbb{Z}^μ of rank μ. X^br_G: branched G-covering of $X = S^3 \setminus L$.

$$t(L, G) = |\text{Tor}H_1(X^\text{br}_G, \mathbb{Z})|.$$

Corollary

(Silver-Williams)

$$M(\Delta_0(L)) = \limsup_{\text{diam} G \to \infty} t(L, G)^{1/[\mathbb{Z}^\mu : G]}.$$

If $\mu = 1$, then \limsup can be replaced by \lim.

was proved by Silver and Williams using tools from symbolic dynamics.

- For knots: Question of Gordon, answered by Riley and by Gonzalez-Acuna and Short.
When $\Delta_0 = 0$, it’s natural to take $\Delta(L) = \Delta_s(L)$, the smallest s such that $\Delta_s(L) \neq 0$.
When $\Delta_0 = 0$, it's natural to take $\Delta(L) = \Delta_s(L)$, the smallest s such that $\Delta_s(L) \neq 0$.

Conjecture (Silver and Williams):

$$\limsup_{\text{diam} G \to \infty} t(L, G) \left(\frac{1}{[\mathbb{Z}^\mu : G]} \right) = M(\Delta(L)).$$
$\Delta_0 = 0$

When $\Delta_0 = 0$, it’s natural to take $\Delta(L) = \Delta_s(L)$, the smallest s such that $\Delta_s(L) \neq 0$.

Conjecture (Silver and Williams):
\[\limsup_{\text{diam} G \to \infty} t(L, G)^{1/[\mathbb{Z}^\mu : G]} = M(\Delta(L)). \]

Proposition
\[\limsup_{\text{diam} G \to \infty} t(L, G)^{1/[\mathbb{Z}^\mu : G]} \geq M(\Delta(L)). \]

Knot case: Expander family

$$0 \rightarrow C_2 \xrightarrow{\partial_2} C_1 \xrightarrow{\partial_1} C_0 \rightarrow 0,$$

$$\tau^{(2)} = \frac{\det_\pi \partial_1}{\det_\pi \partial_2}$$
Knot case: Expander family

\[0 \rightarrow C_2 \xrightarrow{\partial_2} C_1 \xrightarrow{\partial_1} C_0 \rightarrow 0, \]

One can prove the volume conjecture

\[\exp(\text{Vol}(K)) = \limsup_{\text{diam}G \to \infty} t(K, G)^{1/[\pi:G]} \]

if one can approximate both \(\det_{\pi} \partial_1, \det_{\pi} \partial_2 \) by finite quotients.

For expander family, requirements of Lück criterion are satisfied trivially for \(\partial_1 \): \(\partial_1 \) can be approximated by finite quotients (from expander family). Same for \(\partial_2 ? \) Yess \(\Rightarrow \) 'volume conjecture" for hyperbolic knots.
Knot case: Expander family

\[0 \rightarrow C_2 \xrightarrow{\partial_2} C_1 \xrightarrow{\partial_1} C_0 \rightarrow 0, \quad \tau(2) = \frac{\det_\pi \partial_1}{\det_\pi \partial_2} \]

One can prove the volume conjecture

\[\exp(\text{Vol}(K)) = \lim_{\text{diam } G \rightarrow \infty} \sup t(K, G)^{1/[\pi:G]} \]

if one can approximate both \(\det_\pi \partial_1, \det_\pi \partial_2 \) by finite quotients.

A convergence criterion of Lück: For \(A \in \text{Mat}(m \times n, \mathbb{Z}[\pi]) \), \(B = A^* A \), if the eigenvalues of the \(B_G \) near 0 "behaves well", then

\[\det_\pi A = \lim_{G \rightarrow \infty} \det_\pi/G A_G. \]
Knot case: Expander family

\[0 \to C_2 \xrightarrow{\partial_2} C_1 \xrightarrow{\partial_1} C_0 \to 0, \quad \tau^{(2)} = \frac{\det \pi \partial_1}{\det \pi \partial_2} \]

One can prove the volume conjecture

\[\exp(\text{Vol}(K)) = \lim_{\text{diam} G \to \infty} \sup t(K, G)^{1/[\pi:G]} \]

if one can approximate both \(\det \pi \partial_1, \det \pi \partial_2 \) by finite quotients.

A convergence criterion of Lück: For \(A \in \text{Mat}(m \times n, \mathbb{Z}[\pi]) \), \(B = A^* A \), if the eigenvalues of the \(B_G \) near 0 “behaves well”, then

\[\det \pi A = \lim_{G \to \infty} \det \pi / G A_G. \]

For expander family, requirements of Lück criterion are satisfied \textit{trivially} for \(A = \partial_1 \):

\(\partial_1 \) can be approximated by finite quotients (from expander family).
Knot case: Expander family

\[0 \to C_2 \xrightarrow{\partial_2} C_1 \xrightarrow{\partial_1} C_0 \to 0, \quad \tau(2) = \frac{\det \pi \partial_1}{\det \pi \partial_2} \]

One can prove the volume conjecture

\[\exp(\text{Vol}(K)) = \lim \sup_{\text{diam } G \to \infty} t(K, G)^{1/|\pi:G|} \]

if one can approximate both \(\det \pi \partial_1 \), \(\det \pi \partial_2 \) by finite quotients.

A convergence criterion of Lück: For \(A \in \text{Mat}(m \times n, \mathbb{Z}[\pi]) \), \(B = A^* A \), if the eigenvalues of the \(B_G \) near 0 “behaves well”, then

\[\det \pi A = \lim_{G \to \infty} \det \pi / G A_G. \]

For expander family, requirements of Lück criterion are satisfied \textit{trivially} for \(A = \partial_1 \):
\(\partial_1 \) can be approximated by finite quotients (from expander family).

Same for \(\partial_2 \)? Yes \(\implies \) ‘volume conjecture” for hyperbolic knots.
THANK YOU!