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Abstract

The following are extended notes of a lecture given by the author at the international col-
loquium on L-functions and Automorphic Representation held at TIFR in january 2012. This
lecture reported on some joint work of Chris Skinner and the author on the link between central
L-values and Selmer groups of elliptic curves. The detailed proofs of our results will appear in
[SU13]. The author presents here the main lines of the arguments.

1 Introduction

Let E be an elliptic curve over the rational. By the works initiated by Wiles, it is known that E is
modular and therefore that its L-function L(E, s) is entire on the whole complex plane. The Birch
and Swinnerton-Dyer conjecture predicts that

ord L(E, s)|s=1 = rankZ E(Q)

This conjecture is proved thanks to the works of Kolyvagin and Gross-Zagier when the order of
vanishing is 0 or 1. When the order of vanishing is higher, very little is known in general for the
Mordell-Weil rank. However studying the co-rank of the Selmer group of E seems more accessible.
Let p be a rational prime and let Selp(Q, E) be the p-Selmer group of E over Q. Recall that it is
a subgroup of H1(Q, E[p∞]) fitting in the Kümmer exact sequence:

0→ E(Q)⊗Qp/Zp → Selp(Q, E)→Xp(Q, E)→ 0

where Xp(Q, E) ⊂ H1(Q, E) stands for the p-part of the Tate-Shafarevitch group of E over Q.
Birch and Swinnerton-Dyer conjecture also that this later is finite. The corank of the Selmer group
should therefore be equal to the Mordel-Weil rank of E. A special case of our result is the following:

Theorem 1.1 ([SU13]) Let E be a semi-stable elliptic curve over Q having good reduction at p.
If L(E, 1) = 0 then Selp(Q, E) is infinite. Furthermore if L(E, s) vanishes at s = 1 with a positive
even order then the corank of Selp(Q, E) is at least 2.

This result is valid for a larger class of elliptic curves. More generally, we prove a similar result for
the Bloch-Kato Selmer group attached to an elliptic cuspidal eigenform of trivial nebentypus. In
this note, we explain the main steps of the strategy to prove such a result. In section 2, one recalls
the definition of the Bloch-Kato Selmer groups and states the main result. The basic strategy is
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to construct and use a certain deformation of a reducible Galois representation like in our previous
work [SU06a, SU06b] but in a different way than in [SU10] where we proved the Iwasawa conjecture
for p-ordinary elliptic curves. In section 3, we explain how the existence of such a deformation leads
to the construction of a non trivial extension in the Bloch-Kato Selmer group. There isn’t much
novelty in that part of the argument, except that the Hodge-Tate weights of the reducible Galois
representation that is deformed have multiplicities and a slightly different argument is necessary
to prove the first part of Theorem 1.1. From this, the even order situation can be resolved like in
[SU06b]. In section 4, we explain how to construct a p-adic deformation of a certain critical p-adic
Eisenstein series whose Galois representation is isomorphic to the Galois representation we want to
deform. This will give rise to the deformation of the Galois representation studied in section 3. In
[SU06b], we treated the case of the Bloch-Kato Selmer group for a cuspidal eigenform f of weight
k ≥ 4, because this condition on the weight is necessary to construct the appropriate holomorphic
Eisenstein series. The case of weight 2 we treat here1 is obtained by constructing a p-adic Eisenstein
series that we can think of as an overconvergent automorphic form with a non arithmetic p-adic
weight. By overconvergent here, we mean a p-adic modular form which defines a point of the
Eigenvariety for the quasi-split unitary group U(2, 2). This can be achieved under the condition
that L(f, 1) = 0. To construct this p-adic Eisenstein series, we put the modular eigenform f into
a Coleman family. For each member of this family of weight ≥ 4, we can construct an Eisenstein
series with the arithmetic appropriate weight but that is holomorphic only if the central L-value
of this member vanishes. However, this Eisenstein series is always nearly holomorphic in a sense
defined originally by Shimura in the seventies for elliptic modular forms and generalized later for
symplectic and unitary groups (see [Sh04] for an unified treatment of his theory). We are therefore
led to study the arithmetic of nearly holomorphic forms and give an algebraic definition2 of those.
This naturally leads us to define the notion of nearly overconvergent forms which can be seen
naturally as special p-adic modular forms. We have given a taste of this notion here although it is
not really necessary for our goal but it gives a good idea of the kind of objects we are dealing with
in this work. This notion of nearly overconvergence have other applications in particular for the
construction of p-adic L-function. We hope to come back to this in the future.

The author would like to thank Michael Harris, Haruzo Hida, Benoit Stroh, Vincent Pilloni and
Jacques Tilouine for their interest in this work. The author wishes also to thank the organizers
of the International Colloquium on Automorphic Representations and L-functions that was held
at the TIFR for their kind invitation to give a lecture and for their hospitality. The author have
been founded by the CNRS and the NSF during periods when this research was undertaken and is
grateful to these institutions for their financial support.

1We actually treat the general case k ≥ 2.
2We learned after this was achieved that Michael Harris had given an equivalent definition in [Ha85, Ha86].
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Notations and conventions. Throughout this paper p is a fixed prime. We denote by Z and
Zp the rings of integers and p-adic integers with respective field of fractions Q and Qp. We denote
respectively by Q and Qp the algebraic closures of Q and Qp and by C the field of complex

numbers. We fix embeddings ι∞ : Q ↪→ C and ιp : Q ↪→ Qp and we fix an identification Qp
∼= C

compatible with these embeddings. Throughout we implicitly view Q as a subfield of C and Qp

via the embeddings ι∞ and ιp. All number fields will be considered as subfield of Q and of Qp

or C via the above embeddings. We denote respectively by A and Af the rings of adeles and
finite adeles of Q. For each place v of a number field K, we denote Kv the completion of K with
respect to the norm | · |v associated to v. If X is a rigid analytic variety over an extension of Qp, we
denote by A(X) the ring of analytic functions on X. If H is a reductive group over Z, an algebraic
representation of H is seen a functorial pair (ρ, V ) in the sense that for any ring R, we have a group
homomorphism ρ : H(R) → GLR(VR) where VR = VZ ⊗ R is free over R satisfying the obvious
base change property for any ring homomorphism R→ S.
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2 Bloch-Kato Selmer groups

2.1 Some definitions

We recall the definition of the Bloch-Kato Selmer group attached to a Galois representation and
precise our conventions for L-functions. Let K be a number field and GK = Gal(Q/K) be its
absolute Galois group. Let L be a finite extension of Qp and let V be a finite dimensional L-vector
space equipped with a continuous linear action of GK . We assume that this Galois representation
is geometric in the sense of Fontaine. For such a representation, we denote by V (n) the n-th Tate
twist of V .

We denote by H1(K,V ) the continuous cohomology of GK with coefficients in V . This space
parametrizes the isomorphisms classes [E] of extensions E of the form

0→ V → E → L→ 0.

where we understand L as the one dimensional L-vector space with trivial GK-action. Then
H1
g (K,V ) is the subset of H1(K,V ) classifying classes of extensions [E] such that E is also ge-

ometric. We now assume that the action of the decomposition subgroups of GK at the places above
p are crystalline. Then, H1

f (K,V ) denotes the subspace of H1(K,V ) of extensions classes [E] such
that E is crystalline at all places above p and such that for all places v not divising p, we have

0→ V Iv → EIv → L→ 0.

where Iv stands for an inertia subgroup at v. In general, we have

H1
f (K,V ) ⊂ H1

g (K,V ) (1)

We now recall the definition of the L-function attached to a Galois representation. For any finite
place v not dividing p, we put

Pv(V,X) := det(1−XFrobv;V Iv)

where Frobv stands for a geometric Frobenius at v and

Pv(V, s) := det(1−Xϕv;Dcrys,v(V ))

if v divides p and where ϕv stands for the geometric crystalline Frobenius induced on

Dcrys,v(V ) := (Bcrys ⊗ V )Dv .

For each finite place v, let qv be the cardinal of the residue field of K at v. Then we put Lv(V, s) :=
Pv(V, q

−s
v )−1 and the L-function of V is defined as

L(V, s) =
∏
v<∞

Lv(V, s)

It is conjectured that L(V, s) has a meromorphic continuation to the complex plane. This fact is
of course established when we know that V is attached to an automorphic representation.

Remark 2.1 The inclusion (1) is an equality if Pv(V, qv) 6= 0 for all finite place v.
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2.2 Selmer groups for modular forms

Let f be a new cuspidal elliptic eigenform of even weight k = 2m with trivial nebentypus and
conductor N . Assume f is normalized and let us write its Fourier expansion

f(q) =
∞∑
n=1

a(n, f)qn

Let L be a finite extension of Qp containing the Hecke eigenvalues of f . By Eichler-Shimura and
Deligne, there exists a two dimensional L-vector space Vf with a continuous GQ-linear action such
that

L(Vf , s) = L(f, s) :=

∞∑
n=1

a(n, f)n−s.

Recall that L(f, s) satisfies a functional equation of the form:

L(f, s) = ε(f, s)L(f, 2m− s)

Our main result is the following theorem.

Theorem 2.2 ([SU13]) Assume N is prime to p. If k = 2 and ε(f, 1) = 1, we further assume
that a` 6= 0 for some prime `|N . Then,

a) if L(f,m) = 0, we have H1
f (Q, Vf (m)) 6= 0,

b) if L(f,m) = 0 and ε(f,m) = 1, then rankL H
1
f (Q, Vf (m)) ≥ 2.

Remark 2.3 Theorem 1.1 follows from Theorem 2.2 because for fE the weight 2 square free level
cusp form associated to E, the rank of H1

f (Q, VfE (1)) is equal to the co-rank of Selp(Q, E). Notice
that we have VfE (1) ∼= Vp(E) = Tp(E)⊗Qp where Tp(E) stands for the Tate module of E.

Remark 2.4 If f is ordinary at p, the part a) of this Theorem follows from [SU10]. It follows also
from [SU02] if the order of vanishing is odd. The method used in [SU02] works mutatis mutandis
if p is a supersingular prime for E. The construction of the deformation of the corresponding
Saito-Kurokawa lift follows from Example 5.5.3 of [Ur11].

Remark 2.5 If k > 2, this Theorem is proved using the strategy outlined in [SU06b]. It is based
on the construction of an holomorphic Eisenstein series on the quasi-split unitary group U(2, 2)
attached to an imaginary quadratic field K. To include the case k = 2, we use an arithmetic theory
of nearly holomorphic forms to construct a specific p-adic (overconvergent) Eisenstein series (having
a non-arithmetic weight).

Remark 2.6 The condition on the conductor N when k = 2 is a simplified assumption making
sure f is in the image of the Jacquet-Langlands correspondence for a definite quaternion algebra.
This is necessary to show that the p-adic (overconvergent) Eisenstein series that will construct as
a p-adic limit is non-trivial. See (iv) in Theorem 4.8.
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2.3 The basic strategy

In this note, we explain the main steps of the basic strategy for proving the part a) of this theorem.
The main idea is an extension and generalization of a method introduced and developed by C.
Skinner and the author in a series of papers3 [SU02, SU06a, SU06b]. We introduce an imaginary
quadratic field K and construct a generically irreducible deformation of the GK-representation

Wf := L⊕ Vf (m)⊕ L(1)

From this deformation, we are able to construct a non-split extension of the following form by using
a version of Ribet’s lemma

0→ L(1)→ Ef → Vf (m)→ 0

Since V ∨f
∼= Vf (k − 1), we get a non trivial class [Ef ] ∈ H1(K, Vf (m)). We further show that it is

contained in H1
f (K, Vf (m)). Let denote by χK the quadratic character attached to the extension

K/Q. If K is chosen so that

L(f, χK,m) 6= 0 (2)

we know by results of Kato or Kolyvagin that H1
f (Q, Vf (m) ⊗ χK) = 0. We deducet that [Ef ] ∈

H1
f (Q, Vf (m)) and the part a) of Theorem 1.1 follows. For the part b), the strategy is already

explained in [SU06b].

3 An analytic family of trianguline Galois representations

Using the theory of p-adic families of automorphic forms of finite slopes, we will construct a certain
family of trianguline Galois representations. We describe the family in Theorem 3.1 and show how
we deduce the part a) of Theorem 1.1

3.1 Polarized Galois representations

We fix K ⊂ Q an imaginary quadratic field. We denote by c the complex conjugation of C (and
hence of K induced by the embedding ι∞). Sometimes we write ā instead of ac for a ∈ C. Let
OK the ring of integers of K. We assume p splits in K, i. e. p.OK = ℘.℘c where ℘ stands for the
prime ideal of OK induced by ιp. We denote by O(℘) the localization of OK at ℘ and by O℘ its
completion.

We will consider Galois representations (ρ,W ) of GK. For such a representation, we denote by
(ρc,W c) the representation on the space W with the conjugate action by c (i.e. ρc(g) = ρ(cgc), ∀g ∈
GK) and by (ρ∨,W∨) the contragredient representation. We will say W is polarized if it satisfies:

W c ∼= W∨(1).

Notice that the representation Wf that we have defined in the previous section satisfies this condi-
tion. We will consider families of such representations of dimension 4. For this, it is convenient to

3In [SU02, SU06a], one does not need to introduce an imaginary quadratic field.
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define the parametrizing space of Hodge-Tate-Sen weights. Let W be the rigid analytic space over
Qp such that W(L) = Homcont((Z

×
p )4, L×). An element κ = (κ1, κ2, κ3, κ4) ∈ W(Qp) is called a

weight. If k1, . . . , k4 are integers, we write (k1, k2, k3, k4) for the weight defined by

(t1, t2, t3, t4) 7→ tk11 t
k2
2 t

k3
3 t

k4
4 .

Such a weight is called arithmetic regular if k1 < k2 < k3 < k4. Using the theory of p-adic families
of automorphic forms, one shows the following theorem.

Theorem 3.1 ([SU13]) Assume that L(f,m) = 0 and that the conditions of Theorem 2.2 are
satisfied. Let α be an eigenvalue of X2 − a(p, f)X + pk−1. Then there exist:

(i) V an irreducible finite cover of a one-dimensional affinoid subdomain U of W with structural
map κ,

(ii) a point x0 ∈ V(L) such that κ(x0) = κ0 = (−m,−1, 0,m− 1) ∈ U(L),

(iii) A pseudo-character4 T : GK → A(V) of dimension 4,

(iv) An infinite set Σ ⊂ V(Qp) sitting over arithmetic regular weights,

(v) Analytic functions ϕ = (ϕ1, ϕ2, ϕ3, ϕ4) ∈ A(V)4

For x ∈ V(Qp), let us write Tx for the evaluation of T at x. The data T , Σ, ϕ and x0 satisfy the
following properties:

(a) Tx0 is the character associated to Wf and ϕ(x0) = (αp−m, 1, p−1, α−1pm−1),

(b) For all x ∈ Σ, Tx is the trace of a semi-simple polarized representation ρx such that

dim(ρx)Iv = dimV Iv
f + 2

for all finite places v not dividing p.

(c) For all x ∈ Σ, the restriction5 of ρx at G℘ is crystalline with Hodge-Tate weight κ(x) and
Frobenius eigenvalues (ϕ1(x)pκ1(x), ϕ2(x)pκ2(x), ϕ3(x)pκ3(x), ϕ4(x)pκ4(x)).

(d) For all integers N , the subset ΣN ⊂ Σ of points x ∈ Σ such that κi+1(x) − κi(x) > N for
i = 1, 2, 3 is infinite.

This theorem is proved by constructing a p-adic family of cuspidal representations for U(2, 2)
that specializes to an Eisenstein representation at the point x0 and by looking at corresponding
family of Galois representations. The strategy to construct this cuspidal family is explained in the
section 4.

Lemma 3.2 The pseudo representation T is (generically) irreducible.

The proof of this generical irreducibility property goes along the same lines as the one of
Theorems 3.3.12 and 4.2.7 of [SU06a]. It is done by contradiction. In loc. cit. one uses the fact
that there are finitely many units in Q, here the same fact for imaginary quadratic fields is crucial.

4 See the papers [Ro96] and [Ta91] for the definitions and properties of pseudo-characters.
5A similar property holds for the restriction of ρx to G℘c thanks to the polarization property satisfied by ρx.
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3.2 Construction of the desired extension

We keep the hypothesis and notations of Theorem 3.1. After replacing V by a finite cover, we may
assume that the representation attached to the pseudo-character T is defined over the fraction field
of A(V). We may also assume that A(V) is a Dedekind domain. Then, we consider a lattice L
of the representation of dimension 4 with trace given by T such that its localization L(x0) at the
maximal ideal corresponding to x0 has a unique irreducible quotient, this quotient being isomorphic
to Vf (m). To see how to construct such a lattice see [SU06b]. Let Lx0 the reduction of L modulo
the maximal ideal corresponding to x0. Notice that by condition (a) the semi-simplification of
Lx0 is isomorphic to Wf . By construction, Vf (m) is the unique irreducible quotient of Lx0 . An
important fact is the following.

Lemma 3.3 Lx0 contains the trivial representation as a subrepresentation. The quotient Ef of
Lx0 by this trivial subrepresentation is a nontrivial extension of the form

0→ L(1)→ Ef → Vf (m)→ 0

Proof Again the argument to prove this fact is already present in [SU06a] and [SU06b] at least
when k > 2. If the first assertion were not true, then the representation Lx0 would contain a non
trivial extension:

0→ L(1)→ E′ → L→ 0

By the condition (b) of the theorem, this extension would be unramified away from p. It remains
to prove that this representation is crystalline at ℘ and ℘c which would give the contradiction we
are seeking since H1

f (K, L(1)) = 0. By a result of B. Perrin-Riou, this extension is semi-stable at

℘ because it is ordinary. Let us call N ′ the monodromy operator on6 Dst,℘(E′). Let us consider
the exterior square ∧2Lx0 . It contains the representation E′ ⊗ Vf (m) as a subquotient. This latter
representation is also semi-stable since Vf (m) is crystalline7 and

Dst,℘(E′ ⊗ Vf (m)) = Dst,℘(E′)⊗Dcrys,℘(Vf (m))

Moreover, its monodromy operator is given by N = N ′⊗ IdDcrys,℘(Vf (m)). On the other hand using

a result of Kisin, we know that Dcrys,℘(∧2Lx0)Φ=αp−m 6= 0. This implies clearly that

rankL Dcrys,℘(E′ ⊗ Vf (m))Φ=αp−m = 1. (3)

From the relation, NΦ = pΦN in Dst,℘(E′), it is easy to see that if E′ is not crystalline there exists
v′ ∈ Dst,℘(E′)Φ=1 such that N ′v′ 6= 0. If vα ∈ Dcrys,℘(Vf (m)) is an eigenvector for the eigenvalue
αp−m, therefore v = v′ ⊗ vα is an eigenvector for the eigenvalue αp−m and N.v = Nv′ ⊗ vα 6= 0
which contradicts (3) since Dcrys,℘(E ⊗ Vf (m)) is the kernel of N . Therefore E′ is crystallline at
℘. A similar argument applies for ℘c using the fact that the polarization property implies that the
conditions satisfied for the restriction to the decomposition subgroup D℘ at ℘ are also satisfied for

6 For a representation W of GK, we put Dst,℘(W ) := (Bst ⊗ W )Gal(Qp/K℘) where Bst stands for the ring of
semi-stable periods of Fontaine. It is equipped with a filtration and an action of Frobenius φ.

7This is because the conductor N of f is prime to p
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the restriction to the decomposition subgroup D℘c at ℘c. The second assertion of the lemma is
clear from the construction.

�

Assuming the hypothesis and the conclusions of Theorem 3.1, we are now in position to finish
the proof of the part a) of Theorem 2.2.

Lemma 3.4 If vp(α) < k − 1, then [Ef ] ∈ H1
f (K, Vf (m)); in particular H1

f (K, Vf (m)) 6= 0.

Proof By remark 2.1, in order to prove that the extension class [Ef ] belongs to H1
f (K℘, Vf (m)),

we only need to show that the restriction to D℘ of Ef is de Rham. Indeed, since P℘(Vf (m), X) =
(1−αp−mX)(1−α−1pm−1X) and α is a Weil number of weight 2m−1, we see that P℘(Vf (m), p) 6= 0
and H1

f (K℘, Vf (m)) = H1
g (K℘, Vf (m)). In order to prove that Ef is de Rham at ℘, we use Lemma

4.2.3 of [SU06b]. Let g be the projection map from Ef onto Vf (m). We need to show there exists
D′ ⊂ DdR,℘(Ef ) such that

g ⊗ idBdR(D′)⊕ Fil0DdR,℘(Vf (m)) = DdR,℘(Vf (m)). (4)

Let D′ be the image in DdR,℘(Ef ) of Dcrys,℘(Ef )Φ=αp−m . We know that D′ 6= 0 by the Corollary
5.3 of [Ki03] (see also Proposition 4.2.2 of [SU06b]) . Moreover its image by g⊗idBdR is the image D

of Dcrys,℘(Vf (m))Φ=αp−m in DdR,℘(Vf (m)). Since vp(α.p
−m) < m−1 and the Hodge-Tate numbers

of Vf (m) are −m and m−1, we deduce that D∩Fil0DdR,℘(Vf (m)) = {0} by weak admissibility of
Dcrys,℘(Vf (m)). This finishes the proof of (4) and that [Ef ] ∈ H1

f (K℘, Vf (m)). Similarly we have

[Ef ] ∈ H1
f (K℘c , Vf (m)).

One need to prove a similar fact at places w not dividing p. More precisely, one has to show
that the following sequence is right exact:

0→ L(1)Iw → EIwf → Vf (m)Iw → 0

but this follows easily by the property (b) of Theorem 3.1. This finishes the proof of our lemma.
�

4 Nearly overconvergent Eisenstein series on U(2, 2)

In this section, we explain how the vanishing of the L-value L(f,m) implies the existence of a
certain overconvergent automorphic forms for the quasi-spplit unitary group U(2, 2). We will start
by recalling standard facts on unitary automorphic forms mainly due to Shimura and then give
their algebraic interpretations which enables us to have an arithmetic theory for nearly holomorphic
forms. This will be the cornerstone of the construction of p-adic families of nearly holomorphic
forms and the notion of nearly overconvergent forms. Strictly speaking, the theory of nearly over-
convergent forms could be avoided as it will appear in the last subsection of these notes. However,
we have introduce them because when k = 2, the Eisenstein series which is deformed is obtained as
a p-adic limit of nearly holomorphic Eisenstein series and cannot be seen as a nearly holomorphic
form since its (p-adic) weight (1, 2,−2, 1) is not dominant. So it is a purely p-adic object. We have
not defined it as a section of some p-adic sheaf but this could be done easily by using the technics
of Andreatta-Iovita-Pilloni [AIP].
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4.1 Nearly holomorphic unitary automorphic forms

4.1.1 Unitary automorphic forms

We consider the skew-hemitian form on K4 given by the matrix

J =

(
02 12

12 02

)
.

Let G = GU(2, 2) ⊂ GL4/OK be the group scheme of unitary similitudes preserving the skew-
hermitian form on K4 given by J . That is for any ring R, we put

G(R) := {g ∈ GLd(OK ⊗Z R) : gJ tḡ = ν(g)J}.

with ν(g) ∈ Gm(R) = R×. We denote by G = U(2, 2) the unitary group defined as the kernel of
ν : G → Gm. We similarly define GU(1, 1) and U(1, 1). A matrix γ ∈ G(R) will be written by
blocs of size 2× 2 in the following way:

γ =

(
aγ bγ
cγ dγ

)
The hermitian tube domain associated to G is the four dimensional complex analytic manifold D
defined by

D := {z ∈M2×2(C) : i.(z∗ − z) > 0}

where we write z∗ = tz̄. The identity component G+(R) of G(R) acts transitively on D by the
usual Möbius transformation

γ.z = (aγz + bγ) · (cγz + dγ)−1 for γ ∈ G+(R).

We consider the automorphic factor

j(γ, z) := (cγz + dγ , (c̄γ
tz + d̄γ))

taking values in H(C) with H := GL2 ×GL2. We also define

Ξ(z) := (i(z̄ − tz), i(z∗ − z)) and r(z) := i(z̄ − tz)−1

Let (ρ, V ) be an algebraic representation of H and let K ⊂ G(Af ) be an open compact subgroup.
We denote by Aρ(K,C) the space of VC-valued real analytic functions on G(Af )×D such that

f(γ.gf .k, γ.z) = ρ(j(γ, z)).f(gf , z)

for all γ ∈ G(Q) and k ∈ K. Following Shimura [Sh04], we now define some differential operators
on the space of automorphic forms. We first introduce a few more notations. Let (S,M2(−)) be the
representation of H = GL2×GL2 on the space of 2×2 matrices M2(−) given S(g1, g2).M = g1M

tg2

for M ∈ M2(R) and (g1, g2) ∈ H(R). Let St+ (resp. St−) be the standard representation of the
first (resp. second) copy of GL2 in H then we have S ∼= St+ ⊗ St−.
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Let ( ∂
∂rij

)i,j be the differential operators on the differentiable functions on D defined by the

relation
∂

∂z̄kl
=
∑
i,j

∂rij
∂z̄kl

∂

∂rij

where for 1 ≤ i, j ≤ 2, the function rij(z) stands for the (i, j) entry of the function r(z). We
consider the differential operator ερ from Aρ(K,C) taking value in the space of real analytic
HomC(M2(C), VC)-valued functions on G(Af )×D defined by:

(ερf)(gf , z)(uij) :=
∑
i,j

uij .
∂

∂r̄ij
f(gf , z)

for (uij) ∈ M2(C). If there is no possible confusion, we sometimes just write ε. The image of ερ
is contained in AS∨⊗ρ(K,C). The space of nearly holomorphic forms N r

ρ (K,C) of order ≤ r is by
definition the kernel of the differential operator of degree r + 1 defined by

εr+1
ρ = ε(S∨)⊗r⊗ρ ◦ · · · ◦ ερ.

For r = 0, one obtains the usual space of holomorphic unitary automorphic forms of weight ρ.

We now recall the generalized Maass-Shimura differential operators. For f ∈ N r
ρ (K,C), one

defines δρ.f ∈ N r+1
ρ⊗S(K,C) as the function taking values in VC ⊗M2(C) defined by the formula

(δρ.f)(gf , z) :=
∑
ij

(
ρ(Ξ(z))−1 ∂

∂zij
[ρ(Ξ(z)).f(gf , z)]

)
⊗ Eij

where Eij stands for the elementary matrix of M2(C) having the (i, j)-entry equal to 1 and zero
elsewhere. If ρ = detk⊗1, we denote by δk the Maass-Shimura operator. We record the following
lemma which follows from a simple direct computation.

Lemma 4.1 Let f be an holomorphic form of scalar weight k. Then we have:

δk(f) =
∑
i,j

∂f

∂zij
Eij + kf(z)tr(tr(z)E∗∗)

where E∗∗ stands for the formal matrix with entries Eij. Moreover

εdetk⊗S(δkf)(z) = kf(z)
∑
ij

E∗ij ⊗ Eij

where E∗ij stands for the dual basis of Eij. In particular εdetk⊗S(δkf) takes values in the canonical
invariant line of S∨ ⊗ S.

It is possible to define algebraic and arithmetic versions of these spaces and differential operators.
We will do that in the next sections, we first need to introduce the unitary Shimura variety attached
to G.

11



4.1.2 Unitary Shimura variety

We fix a neat open compact subgroup Kp ⊂ G(Ap
f ) and we denote by X = XK the Shimura variety

of level K = Kp.G(Zp) given by the usual Shimura data so that its complex points are given by

XK(C) = G(Q)\(D ×G(Af )/K)

The Shimura variety XK is a smooth quasi-projective scheme defined over K which is not geomet-
rically connected in general. By the work of Kottwitz, we know it has a canonical model over O(℘)

that we denote by XK . The scheme XK represents the functor which sends a O(℘)-scheme S to the
set of the equivalent classes of certain quadruplets (f : A→ S, ι, λ, α) where

• f : A→ S is an abelian scheme over S of relative dimension 4,

• ι is a a ring homomorphism ι : OK → EndS(A),

• λ : A→ At is a polarization of degree prime to p,

• α is a Kp-level structure, that is to say an isomorphism modulo Kp :

α : H1(A/S,Ap
f ) ∼= (Af ⊗K)4

/S

Let ωA/S = f∗ΩA/S . It is a locally free sheaf over S. Let ω+
A/S (resp. ω−A/S) the sub-sheaf of sections

on which the complex multiplication by O(℘) coincides with the one (resp. with the conjugate of
the one) induced by the O(℘)-scheme structure of S. We denote by αt the K-level structure of At

induced by λ and α. These quadruplets are required to satisfy the following conditions.

• ω+
A/S and ω−A/S are locally free of rank 2 over S

• The pairing on (Ap
f ⊗K)4 induced by α, αt and the Weil pairing has matrix J

We also consider the relative de Rham cohomology H1
dR(A/S) := R1f∗Ω

•
A/S . It is a locally free

sheaf of rank 8 and it fits in the canonical exact sequence

0→ ωA/S → H1
dR(A/S)→ ω∨A/S → 0

after we have identified R1f∗OA with ω∨A/S using Poincaré duality and the polarization λ. One

defines its + part H1
dR(A/S)+ as we did for ωA/S and for which we have

0→ ω+
A/s → H

1
dR(A/S)+ → (ω−A/S)∨ → 0

We define J (A/S) the sheaf obtained by making the following diagramm commutative and the
bottom short sequence exact:

0 // ω+
A/S ⊗ ω

−
A/S

// H1
dR(A/S)+ ⊗ ω−A/S // (ω−A/S)∨ ⊗ ω−A/S // 0

0 // ω+
A/S ⊗ ω

−
A/S

// J (A/S) //
?�

OO

OS //?�

OO

0
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We denote by π : A → X the universal abelian scheme over X = XK . We consider the sheaves
ω± := ω±A/X and H± := H1

dR(A/X)±. Let X̄ be a smooth toroidal compactification of X over

O(℘) constructed by K.W. Lan in his thesis [La08]. The boundary ∂X̄ = X̄\X is a normal crossing
divisor of X̄. We denote by ΩX/O(℘)

(log ∂X̄) the sheaf of Khäler differential having logarithmic

poles along ∂X̄. Recall we have the Gauss-Manin connexion

∇ : H1
dR(A/X)→ H1

dR(A/X)⊗ ΩX/O(℘)
(log ∂X̄)

It induces on the + part a map

ω+ ↪→ H1
dR(A/X)+ → H1

dR(A/X)+ ⊗ ΩX/O(℘)
(log ∂X̄)→ (ω−)∨ ⊗ ΩX/O(℘)

(log ∂X̄)

which yields the Kodaira-Spencer isomorphism ([La08]):

ω+ ⊗ ω− ∼→ ΩX/O(℘)
(log ∂X̄)

We will identify these sheaves. Notice that we therefore have

0 // ΩX/O(℘)
(log ∂X̄) // J // OS // 0

with J = J (A/X) and it could be seen that J ∨ is isomorphic to the sheaf of 1-jets on X.

4.1.3 Automorphic sheaves

We define now locally free coherent sheaves on our unitary Shimura varieties in order to get rational
and integral structures on the spaces of automorphic forms we have introduced above. Since ω+

and ω− are locally free of rank 2, we may consider the following H = GL2 ×GL2-torsor over X:

T := Isom(ω+ ⊕ ω−, (OX)2 ⊕ (OX)2)

For any algebraic representation (ρ, V ) of H = GL2 ×GL2, we denote by ωρ the coherent sheaf on
X defined as the contracted product

ωρ := V ×H T .

In particular we have ωSt± = ω± and

ωS = ω+ ⊗ ω− ∼= ΩX/O(℘)
(log ∂X̄)

Let ω1
ρ := ωρ ⊗ J ∨. By the isomorphism above we have the short exact sequence of locally free

sheaves:
0→ ωρ → ω1

ρ → ωρ⊗S∨ → 0

The Hodge decomposition provides the isomorphisms:

H0(XK , ωρ/C) ∼= N 0
ρ (K,C) and H0(XK , ω

1
ρ/C) ∼= N 1

ρ (K,C)

13



Moreover the map ω1
ρ → ωρ⊗S∨ induces the differential operator ερ we have defined in Section 4.1.1.

Using Leibnitz rule, there is a canonical way to define a connexion on H1
dR(A/X)⊗

r
, from which

we deduce a connexion8 :
∇ρ : ωρ → ω1

ρ⊗S

in the sense that it satisties the relation9 :

∇ρ(f.ω) = df ⊗ ω + f∇ω

for f ∈ OX(U) and ω ∈ ωρ(U) for any Zariski open set U ⊂ X

Remark 4.2 We can more generally define ωrρ := HomOX (Symr(J ), ωρ) and verify that

H0(XK , ω
r
ρ/C) = N r

ρ (K,C)

But we will not use this generalization in this note.

We now give a more concrete definition of the sections of ω1
ρ à la Katz. Let Q be the standard

parabolic of GL4 stabilizing a plane. Then we identify H with the Levi subgroup of Q by the
map (g1, g2) 7→ diag(g1,

tg−1
2 ). Let Xij be formal variables with i, j ∈ {1, 2} and let R[Xij ]r be

the polynomials in Xij of total degree at most r with coefficients in a ring R. We consider the
representation ρrV of Q on VR[Xij ]r := VR ⊗R[Xij ]r given by

(ρrV (g).P )(X) := ρV (diag(ag,
td−1
g ).P ((a−1

g .Xdg − a−1
g bg)

where

X =

(
X11 X12

X21 X22

)
and g =

(
ag bg
0 dg

)
∈ Q(R)

A global section ϕ of ωrρ can be seen as a functorial rule defined as follows. We consider quintuplet
(f : A → Spec(R), ι, λ, α, ψ) where (f : A → Spec(R), ι, λ, α) is an in section 4.1.2 and ψ is an
isomorphism H1

dR(A/Spec(R)+ ∼= R4 inducing ω+
A/Spec(R)

∼= R2 ⊕ {0} ⊂ R4. Then ϕ can be seen

as a functor on such quintuplets taking values in VR[Xij ]r = V ⊗R[Xij ]r and such that

ϕ(f : A→ Spec(R), ι, λ, α, g ◦ ψ) = ρrV (g)ϕ(f : A→ Spec(R), ι, λ, α, ψ)

for g ∈ Q(R).

4.1.4 Polynomial q-expansions

We define the polynomial q-expansion of a nearly holomorphic form by evaluating it on a Mumford-
Tate object. The general theory of the q-expansion of holomorphic forms is written in great details
by K.W. Lan in [La08, La12]. We extend here the definition in the case of nearly holomorphic

8The fact that the image of ωρ is contained in ω1
ρ⊗S follows from Griffith transversality.

9Notice that df ⊗ ω ∈ ΩX/O(℘)
(log ∂X̄)⊗ ωρ = ωρ⊗S ⊂ ω1

ρ⊗S .
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forms. For simplicity, we now assume that K = Kf ⊂ G(Ẑ). We consider the lattice H = HKf of
hermitian matrices inside Her2(K) ⊂M2(K) such that

H := {h ∈M2(K)|
(

12 h
02 12

)
∈ Kf}

We denote by H∨ the dual lattice for the pairing on Her2(K) defined by (h, h′) = tr(hh′) ∈ Q. We
will denote H∨≥0 the submonoid of H∨ of positive hermitian matrices. For any ring A and a monoid

M with a neutral element 0, we denote by A[[qM ]] the formal power series ring with coefficient in
A over the monoid M . We denote element qh of H inside A[[qM ]] multiplicatively as q and q0 is
just denoted 1. We will consider the case A is a OK-algebra and M = H∨≥0.

We consider the decomposition of K4 = W ⊕W ′ where W (respectively W ′) is the standard
totally isotropic subspace of vectors whose last (respectively first) two coordinate entries with
respect to the standard basis of K4 are zero. Let L and L′ be respectively the free OK-lattices of W
and W ′ such that L⊕ L′ = O4

K. For any h ∈ H, h induces a canonical OK-linear map h : L→ L′.
Let q the map

q : L→ L′ ⊗Gm/O(℘)[[q
H≥0 ]]

defined by the composition L→ Hom(H,L′) = H∨⊗L′ → L′⊗Gm
/O(℘)[[q

H∨≥0 ]]
where the first map

is the obvious map and the last one is defined by h⊗ l′ 7→ l′ ⊗ qh. By the work of Mumford, there
exists a abelian variety Mum(q) over O(℘)((q

H)) endowed with a canonical complex multiplication
noted ιcan by OK which can be described as the quotient L′ ⊗Gm/q(L). In particular, the formal
completion along the origin gives a canonical isomorphism:

M̂um(q) ∼= L′ ⊗ Ĝm/O(℘)((q
H))

which induces a canonical isomorphism

ωMum(q)/O(℘)((q
H))
∼= L⊗Z O(℘)((q

H))

From the decomposition O(℘) ⊗ O(℘)
∼= O(℘) ⊕ O(℘) given by z ⊗ a 7→ (za, z̄a), we deduce an

isomorphism
ω+
Mum(q)/O(℘)((q

H))
∼= L⊗O(℘)

O(℘)((q
H))

We define ω+
can = (ω1,can, ω2,can) the basis of the left hand side of this isomorphism induced by the

canonical basis of L. We complete it into a basis of H1
dR(Mum(q)/O(℘)((q

H)))+ ∼= L⊗ZpO(℘)((q
H))

using the Gauss-Manin connection. Let Dij be the derivation of O(℘)((q
H)) such that Dij(q

h) =

hijq
h. Then we define10.

δi,can = ∇(Dii)(ωi,can).

Then (ω1,can, ω2,can, δ1,can, δ2,can) is a basis of H1
dR(Mum(q)/O(℘)((q

H))+ which defines an isomor-
phim

ψcan : H1
dR(Mum(q)/O(℘)((q

H))+ ∼= O(℘)((q
H))4

10It can be checked easily using the complex uniformization that it defines an horizontal section.
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as in the end of the previous section. Finally, it is not difficult to define a canonical polarization
λcan and a canonical level structure αcan. We are now ready to define the polynomial q-expansion11

of a global section of ω1
ρ. For any O(℘)-algebra R, we consider the map

H0(XK , ω
1
ρ/R)→ R((qH))⊗R VR[Xij ]1

defined by
f 7→ f(q,Xij) := f(Mum(q)/O(℘)((q

H)), λcan, ιcan, αcan, ψcan)

Moreover, it can be shown as usual that

f(q,Xij) ∈ VR[[qH
∨
≥0 ]][Xij ]1

On can see the action of ερ on the polynomial q-expansion is given by the following formula:

(ερf)(q,Xij) =
∑
ij

E∗ij ⊗
∂

∂Xij
f(q,Xij)

4.2 p-adic unitary automorphic forms

4.2.1 p-adic unitary automorphic forms

Let Xrig be the rigid space obtained as the generic fiber of the formal scheme obtained by taking the
formal completion of XK along its special fiber at p. We consider Xord ⊂ Xrig the ordinary locus
(i.e. the open rigid analytic subvariety of points (f : A → Spec Qp, ι, λ, α) for abelian varieties A
having good ordinary reduction). The space of p-adic forms of weight ρ is defined as

Mp−adic
ρ (K,Qp) := H0(Xord, ωρ/Qp

)

We defined the spaces of overconvergent and nearly overconvergent forms of degree at most 1 by:

N r,†
ρ (K,Qp) := lim

V⊃Xord

H0(V, ωrρ/Qp
)

Here the V ’s in the injective limit run in the set of strict neighborhood of Xord inside Xrig. Recall
that Dwork defines a canonical splitting HdR(A/Xord) ∼= ω ⊕U where U is the unit root crystal of
HdR(A/Xord). For any representation ρ of H, it induces a splitting

ωrρ/Xord

splitp−→ ωρ/Xord
→ 0.

The following proposition follows from the fact that the canonical Dwork splitting does not extend
to any strict neighborhood of Xord. We will write a proof in a subsequent paper (See [Ur12] in the
case GL(2)). It shows nearly overconvergent forms or just nearly holomorphic forms can be seen
as special p-adic forms. It will not be used in this paper.

11In fact, we can (and need to) define a polynomial expansion for each connected component of XK to be able to
formulate a polynomial q-espansion principle.
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Proposition 4.3 For any strict neighborhood V of Xord, the compositum of the two following maps

H0(V, ωrρ/Qp
)→ H0(Xord, ω

r
ρ/Qp

)
splitp−→ H0(Xord, ωρ/Qp

)

induces a canonical injection

N r,†
ρ (K,Qp) ↪→Mp−adic

ρ (K,Qp).

Let I ⊂ G(Zp) be the Iwahori subgroup associated to the standard Borel subgroup of GL4. We
can define the unitary Shimura variety of Iwahori level above X we denote by XI

rig the corresponding

rigid analytic space and XI
ord its ordinary part. We can define similarly the space of p-adic ,

overconvergent and nearly overconvergent forms of Iwahori level in a similar way as in [PS11]. We

denote them respectively Mp−adic
ρ (KpI,Qp), M†ρ(KpI,Qp) and N r,†

ρ (KpI,Qp). The proposition
above extends to these spaces without difficulty.

4.2.2 Families of finite slope nearly overconvergent forms

Weights. For any decreasing quadruplet of integers k := (k1, k2; k3, k4), we write ωk and ω1
k for the

sheaves attached to the representation ρk of H given by V +
k1,k2

⊗ V −−k4,−k3 where we denote by V +
a,b

(resp. V −a,b) the representation of the first (resp. second) copy of GL2 in H of highest weight (a, b)
for any pair of integers (a, b) with a ≥ b. A unitary automorphic form of one of the types we have
defined before will be said of weight k if the corresponding representation of H is ρk. It is well-
known that an holomorphic eigenform of weight k is attached to an automorphic representation
which archimedean component is a discrete series when k2 − 2 ≥ k3 + 2. It will be convenient to
consider the coordinate function functor on Vk/Z along the highest weight vector. We denote this
function by

πk : Vk(R)→ R.

it satisfies πk(tn.v) = tk11 t
k2
2 t
−k4
3 t−k34 πk(v) for any diagonal t = diag(t1, t2, t3, t4) ∈ H and n in the

standard unipotent subgroup of H. It is defined up to sign.

Weight space. Let X be the rigid analytic space such that X(L) := Homcont((Z
×
p )4, L×). The

points of X(Qp) are called p-adic weights. If k = (k1, k2, k3, k4) ∈ Z4, we write [k] the point of

X(Qp) corresponding to the continuous character (x1, x2, x3, x4) 7→
∏4
i=1 x

ki
i . Those points are

called algebraic weights if k1 ≥ k2 ≥ k3 ≥ k4. We denote by X(Qp)
alg the subset of algebraic

weights of X.

Slopes. For each t = diag(t1, t2, t3, t4) ∈ T (Qp) such that

vp(t1) ≤ vp(t2) ≤ vp(t3) ≤ vp(t4), (5)

we consider the Hecke operators ut attached to the double class ItI and acting on the various
spaces automorphic forms of level Kp.I we have defined. It is important to remember that there
are two way to normalize the action of these operators on the spaces N r

k . We call them the algebraic
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and p-adic normalizations. The difference between the two normalization is given by the following
formula:

(ut)
p−adic = |λk(t)|p(ut)alg (6)

where λk is the algebraic weight12 (k1 − 2, k2 − 2, k3 + 2, k4 + 2). Here the algebraic normalization
is defined as usual by

(f |ut)(gf , z) :=
∑
i

f(gfξ
−1
i , z)

where Iξi are the left coset representatives such that ItI = tiIξi. The p-adic normalization
extends to an action on the space of overconvergent and p-adic forms and this action preserves the
integrality of those. We refer to [Hi04] for this fact and to [PS11] for the definition of the action on
the overconvergent forms using the theory of the canonical subgroup. This definition extends easily
to nearly overconvergent forms. Again we don’t really need this fact here but it is an important
feature of the general theory which is good to keep in mind.

Let Up the Hecke algebra generated by the ut’s for t satisfying (5). It is isomorphic to a
polynomial algebra in 4 variables. More precisely if θ is a character of Up, one can find a quadruple

(α1, α2, α3, α4) ∈ Q
4
p such that

θ(t) =
4∏
i=1

α
vp(ti)
5−i

We say that θ is of finite slope if the αi’s are all non zero and we define the slope of θ as the
quadruplet s = (s1, s2, s3, s4) with si = vp(αi) for i = 1, 2, 3, 4. A p-adic form is said of finite slope
if it belongs to the sum of generalized Up-eigenspaces of finite slope characters.

Remark 4.4 If θ is a character of Up acting on the I-invariants of an unramified principal series,
then the corresponding Hecke polynomial is

4∏
ii=1

(X − pi−1αi)

Definition 4.5 Let V be an affinoid over a finite extension of Qp and w : V → X be a finite
morphism. We assume that the subset ΣV = V(Qp)∩w−1(Xalg(Qp)) is Zariski dense. A V-family13

of nearly overconvergent forms F of degree at most r is a polynomial q-expansion14 of degree at
most r with coefficient in A(V) (i.e. F ∈ A(V)[Xij ]r[[q

H∨≥0 ]]) such that there exists a Zariski dense
set ΣF ⊂ ΣV satisfying:
∀x ∈ ΣF , there exist a finite slope nearly holomorphic form Fx of weight kx with w(x) = [kx]

and level Kp.I such that ιp(πkx(Fx(q,Xij))) ∈ Qp[Xij ][[q
H∨≥0 ]] is equal to the evaluation of the

formal polynomial q-expansion F at the point x.

12This character is dominant exactly when the weight correspond to holomorphic discrete series and is the coho-
mological weight of this holomorphic discrete series.

13 It is possible to give a definition using a theory similar to [AIP] for unitary groups. Instead we use a shortcut
here which is sufficient for our application.

14In fact, the correct definition is to take a formal q-expansion for each connected component of XK . We will not
do it for the sake of the notations.
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4.3 Eisenstein series

4.3.1 Klingen-type Eisenstein series

We recall some results of [SU06b] on certain Eisenstein series for G. Let P be the stabilizer in G of
the line {(0, ∗, 0, 0) ∈ K4 : ∗ ∈ K}. Then P is a standard, maximal Q-parabolic subgroup of G with
standard Levi subgroup L isomorphic to U(1, 1)×ResK/QGm. A pair (g, t) ∈ U(1, 1)×ResK/QGm

is identified with

m(g, t) =

(
a 0 b 0
0 t̄−1 0 0
c 0 d 0
0 0 0 t

)
∈ G.

with g =
(
a b
c d

)
∈ U(1, 1) and t ∈ Gm/K. We write N for the unipotent radical of P .The modulus

function giving the determinant of the action of L on the Lie N is given by

δ(m(g, t)) = |t|−3
AK

Let f be an elliptic cusp form of weight k = 2m > 2 for Γ0(N). We denote by φf be the automorphic
form on U(1, 1) such that:

ϕf (γg∞kz) = (c∞i+ d∞)−m(c̄∞i+ d̄∞)−mf(g∞.i)

for γ ∈ U(1, 1)(Q), g∞ ∈ U(1, 1)(R), z in the center of U(1, 1)(A) and k ∈ U(1, 1)(Ẑ) such that ck
is divisible by N . We denote by (π, Vf ) the irreducible cuspidal representation of U(1, 1) generated
by ϕf . For any s ∈ C, we then consider the induced representation I(s) of smooth functions
φs : G(A)→ Vf satisfying

φs(h.m(g, t).n) = δ(m(g, t))1/2|t|−sA π(g).φs(h)

for all h ∈ G(A), g ∈ U(1, 1)(A) and t ∈ A×K. Let us decompose π into the restricted tensor
product of its local component πf =

⊗′
v πv. For each place v, we consider the local induction

Iv(s) = Ind
G(Qv)
P (Qc)

πv ⊗ δs/3. Then we have

I(s) =

′⊗
v

Iv(s)

For each finite place v, we denote L(πv) the Langlands quotient of Iv(πv) := Iv(s0) for s0 = 1/2.
Let w be a finite place of K above v. Let us write WKw for the Weil group of Kw and denote

recw the isomorphism of the local class field theory W ab
Kw

∼→ K×w sending arithmetic Frobenius onto
uniformizor and by Nw = | · |w ◦ recw. By the local Langlands correspondence, the parameter of
the base change Πw of L(πv) to GL4(Kw) with w a finite place of K above v is given by:

rec(Πw)(x) =

 Nw(x)1/2

rec(πw)(x)

Nw(x)−1/2

 ∀x ∈WKw (7)

where πw stands for the base change of πv to GL2(Kw) and rec(πw) is the image of πw by the local
Langlands correspondence for GL2(Kw). In particular, the local L-function of Πw is given by:

L(Πw, s) = (1− qs+1/2
w )−1L(πw, s)(1− qs−1/2

w )−1
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Let Φ ∈ I(π) such that Φ(1) ∈ Π ⊗ C(m,−m)]U(1)×U(1). Here we denote C(a, b) is the one
dimensional representaion of U(1) × U(1) defined by the character (u1, u2) 7→ ua1u

−b
2 . Then, we

consider the form fΦ on H defined by:

fΦ(z) = (ci+ d)m(c̄i+ d̄)mΦ(1)(
(
a b
c d

)
)

with z = ai+b
ci+d belongs to the Poincaré upper half plane H. It is an holomorphic form of weight k.

Let N an integer divisible by the conductor of π and φ ∈
∏
v|N I(π(f)v), we consider

Φ = φ⊗ (
⊗

v such that
v(N)=0

φ0
v)⊗ φ∞

where φ0
v is a canonical spherical section of I(πv) for v 6 |N and φ∞(1) is a basis of [π∞ ⊗

C(m,−m)]U(1)×U(1). We now define the Eisenstein series attached to φ. For z ∈ D, gf ∈ G(Af )
and s ∈ C such that Re(s) is sufficiently large, we put

E(φ, s)(gf , z) :=
∑

γ∈P (Q)\G(Q)

ρκm(j(γ, z))|det(cγz + dγ)|−s.fγfgf .Φ([γ.z])vκm

where the map [·] : D → H is defined by [z] = z11 for z = ( z11 z12z21 z22 ) ∈ D, the weight κm is defined by

κm := (m, 2;−2,−m),

vκm is an highest weight vector of ρκm , γf is the image of γ in G(Af ) and γfgf .Φ is defined by the
action of G(Af ) on I(π).

Proposition 4.6 Let f be an eigenform of weight k = 2m > 2 for Γ0(N) and φ ∈
∏
v|N I(π(f)v),

then Eκm(φ, s) has no pole at s = 0 and its evaluation at s = 0 is a nearly holomorphic form
Eκm(f, φ) of weight κm of order at most 1. It is an holomorphic form if L(f,m) = 0. This latter
condition is necessary if φ projects non trivially in the Langlands quotient ⊗v|NL(πv). Moreover,

after an adequate normalization, Eκm(f, φ) is defined over Q.

Proof This was proved in [SU06b] except the fact that it is nearly holomorphic in general. How-
ever this point follows easily from the computation of the constant term realized in loc. cit. This
will be explained in greater details in [SU13]. The algebraicity follows from a general result due
to M. Harris [Ha81]. His argument is written only for holomorphic Eisenstein series but it extends
easily to nearly holomorphic ones.

�

Remark 4.7 Let Eκm(f) be the image of the G(Af )-representation generated by the Eκm(f, φ)’s in
the product of the local Langlands quotients at the finite places. It is an irreducible representation
and we have

L(BC(Eκm(f)), s) = L(f, s+m− 1/2)ζK(s+ 1/2)ζK(s− 1/2)

with ζK the Dedekind zeta function of K. According to the conventions of [SU06b, §4], its associated
Galois representation is

ρEκm (f) = L(−1)⊕ L(−2)⊕ Vf (m− 2)
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Theorem 3.1 establishes the existence of a deformation of ρEκm (f)(2) when L(f,m) = 0. It will
follow from the existence of a p-adic family of cusp forms degenerating into a p-adic version of
Eκm(f). The construction is outlined in the next paragraphs. Notice that when k = 2, the
previous proposition does not hold and we will need to replace Eκm(f) by a finite slope p-adic
automorphic representation having the Galois representation Wf (−2).

4.3.2 Families of Eisenstein series

Let X1 be the rigid rigid variety over Qp such that X1(Qp) = Homcont(Z
×
p ,Q

×
p ). Let U be an

affinoid, k : U→ X1 be a finite morphism and

F =
∞∑
n=1

a(n, F )qn ∈ A(U)[[q]]

be a Coleman family15 of normalized new cuspidal eigenforms for Γ0(N) of slope s0 ∈ Q≥0. This
means that for each x ∈ V(Qp) such that k(x) = [kx] with kx ∈ Z≥2 and kx > s0 + 1, Fx =∑∞

n=1 a(n, F )(x)qn = ιp(fx(q)) where fx(q) is the q-expansion of a normalized N -new eigenform of
even weight kx = 2mx and level Γ0(Np).

Theorem 4.8 ([SU13]) We keep the hypothesis and notations as above. Let κ = i ◦ k with i the
closed immersion of X1 into X given by i(ξ) = (ξ1/2, [2], [−2], ξ−1/2). Then there exists a U-family
of nearly holomorphic automorphic forms E(F ) such that for all x ∈ V(Qp) such that k(x) = [kx]
and fx is of trivial nebentypus and weight kx = 2mx ∈ Z, we have:

(i) If kx ∈ Z≥4 and kx > s0 + 1, then E(F )x is the polynomial q-expansion of a nearly holo-
morphic Klingen-Eisenstein series Eκmx (fx, φx) of weight κx = κmx for some section φx ∈
⊗v|NpIv(π(fx)v) projecting non trivially on the Langlands quotient ⊗v|NpL(π(fx)v).

(ii) E(F )x is an eigenform of finite slope for a character of Up with normalized eigenvalues
given by the quadruplet (a(p, F )(x), p, p−1, a(p, F )(x)−1. In particular, its slope is s0 =
(s0, 1,−1,−s0).

(iii) If kx ≥ 2, ε(E(F )x) = 0 when L(fx, kx/2) = 0.

(iv) If kx ≥ 2, then E(F )x is non trivial.

The general construction of this family is done using the doubling method and the use of
differential operators on the Siegel Eisenstein series on U(3, 3). It uses an explicit description of
certain harmonic polynomials and the effect of the Maass-Shimura differential operators on the
polynomial q-expansion. The fact that we can make an analytic interpolation is easy from these
facts by using the standard technic of the p-adic Petersson inner product due to Hida.

The point (ii) is done by making a good choice of families of sections at p, that is, Iwahori
invariant sections which are proper for the Hecke operators ut with eigenvalues given by the same
quadruplet after renormalization. Notice that the slope of the Eisenstein series E(F )x is critical

15This corresponds to an affinoid of the Eigencurve of Coleman-Mazur on which the slope is constant.
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with respect to the weight λκx = (mx − 2, 0, 0, 2−mx) in the sense of [Ur11]. Therefore any larger
deformation of this family will no longer be Eisenstein. The point (iii) follows from Proposition
4.6 when kx > 2. For the case kx = 2, it follows by showing that ε(E(F )x) is divisible by the
p-adic L-function interpolating the central values L(fx,mx). This fact is another consequence of
the doubling method. The point (iv) is easy when kx > 2, it follows from the computation of
the Fourier coefficients of the Eisenstein series. When kx = 2, one needs16 to show that some
p-sdic limit is non trivial and we use crucially that f is in the image of the Jacquet-Langlands
correspondence for a definite quaternion algebra.

When kx = 2, E(F )x is the q-expansion of a p-adic form as it is obtained as a limit of p-adic
(since nearly holomorphic) forms. Its weight is (1, 2;−2,−1), so it is not arithmetic since not
dominant. Therefore E(F )x is even not nearly holomorphic in general. However it can be proved
it is nearly overconvergent for a suitable p-adic sheaf as those constructed in [AIP]. In the next
section, we show that when L(f, 1) = 0, it defines a point of the Eigenvariety so it can be considered
as overconvergent in that sense. To do this we will show that it is a p-adic limit of holomorphic
forms of arbitrary regular weight and fixed slope s0.

Remark 4.9 The corresponding family of Galois representations ρEκmx (Fx) is a finite slope defor-
mation in the sense of the section 3. In that case the function ϕ is given by

ϕ(x) = (a(p, F )(x), p, p−1, a(p, F )(x)−1).

However, it does not satisfy the property (d) of Theorem 3.1 and this is why this family is reducible.

Remark 4.10 In fact there are two ways to do the construction of this family of nearly holomor-
phic Eisenstein series. The first one is by making the construction directly from the pull-back to
obtain a nearly holomorphic form of weight κm. The second one is by constructing a family of
Eisenstein series of weights (a, b;−b,−a) with slope (s0, 0, 0,−s0) and apply one time a differential
operator δ∗(a,b;−b,−a) to obtain a family of slope (s0, 1,−1,−s0) and weights (a, b + 1;−b − 1,−a)

and then evaluate at a = m and b = 1. Here δ∗k is the differential operator for k = (k1, k2, k3, k4)
obtained as the composition of the generalized Maasss-Shimura operator δVk and the projection

H0(XK , ω
1
Vk⊗S)→ H0(XK , ω

1
k1,k2+1;k3−1,k4

) coming from the decomposition when k is regular:

Vk ⊗ S ∼= Vk1+1,k2;k3−1,k4 ⊕ Vk1,k2+1;k3−1,k4 ⊕ Vk1+1,k2;k3,k4−1 ⊕ Vk1,k2+1;k3,k4−1

For GL2, the similar construction gives the critical Eisenstein series Ecrit2 from the ordinary family
of Eisenstein series Eordk−2 by applying one time the Maass-Shimura operator δk−2 and then evaluate
the result at k = 2 (see [Ur12]).

4.3.3 Cuspidal deformation of critical Eisenstein series

We sketch the construction of a generically cuspidal deformation of the p-adic Eisenstein series17

Eκm(φ, f). More precisely, we show that the Eisenstein Eκm(φ, f) when f is as in Theorem 3.1

16This fact is more delicate but much less difficult than proving that the ordinary Eisenstein series appearing in
our previous work [SU10] is non zero modulo p.

17This Eisenstein series is purely p-adic only when m = 1.
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can be seen as a p-adic limit of finite slope holomorphic forms of very regular weights. From the
theory of the Eigenvariety as developed in [Ur11], this implies our Theorem 3.1 and therefore would
conclude the first part of the main theorem stated in these notes. The details of this argument will
appear in [SU13].

A common feature to construct p-adic families of modular forms is to use high p-powers of a
lifting of the Hasse invariant. This is insufficient to construct families of very regular weight in
general but combining this with our previous family of Eisenstein series it will be sufficient for
our goal. Before sketching our argument, we therefore start by explaining how this technic can be
extended in the context of nearly holomorphic forms. Let A be a lifting of some power of the Hasse
invariant. It is an holomorphic form of weight k0 ∈ (p− 1)Z>0. For any integer s > 0, we write

Bs :=
1

4k0s
δsk0(As)

By lemma 4.1, Bs is a global section of det(ω+)⊗
k0s ⊗J ⊂ ω1

ρ⊗S for ρ = det(St+)⊗
k0s , because its

image ε(Bs) by ε in H0(XK , det(ω
+)⊗

k0s ⊗ ωS⊗S∨) is As. In other words, we have:

ε(Bs) = As ∈ H0(XK , det(ω
+)⊗

k0s
) ⊂ H0(XK , det(ω

+)⊗
k0s ⊗ ωS⊗S∨)

By computing the polynomial q-expansion of Bs, it is also very easy to verify that Bs is a p-adic
analytic family in the variable s.

We now return to our goal. We treat the general case k ≥ 2 but the main reason we have to
work with nearly holomorphic forms is to treat the special case k = 2. Let f be as in Theorem 3.1
and let us choose a p-stabilization fα such that its Up-eigenvalue α satisfies s0 := vp(α) < k − 1.
Let F be a Coleman family as in Theorem 4.8 passing through fα at a point x0 ∈ U(Qp). For a
point x in U such that kx ∈ Z>2 with [kx] = k(x), we consider

G′x,s := AsE(F )x −Bsε(E(F )x)

Since E(F )x ∈ H0(XK , ωκmx ⊗J
∨), this is a well defined section of ωκkx ⊗ωS∨ ⊗J ⊗ det(ω

+)⊗
k0s

because J ∨ ⊂ ωS∨ ⊗ J . Moreover since ε(E(F )x) is an holomorphic18 form, we have

ε(G′s,x) = Asε(E(F )x)− ε(Bs)ε(E(F )x) = 0

Therefore G′x,s is a global section of ωS∨ ⊗ ωS ⊗ det(ω+)⊗
k0s ⊗ ωκmx . We define Gx,s as the

projection of G′x,s onto H0(X, det(ω+)⊗
k0s ⊗ ωκmx ). Therefore Gs,x is an holomorphc form of

weight κx,s = (sk0 + mx, sk0 + 2;−2,−mx). When s >> 0 and x varies, we can make the weight
of Gs,x arbitrary regular. Since L(f,m) = 0, by the point (iii) of Theorem 4.8, we have

G′x0,0 = E(F )x0 (8)

This implies that Gx0,0 = E(F )x0 and in particular that Gx,s is non-trivial thanks to the point (iv)
of Theorem 4.8. We now make use of the construction of the Eigenvariety in [Ur11] to prove the
existence of a deformation that will lead us to the proof of Theorem 3.1. Let κ0 = (m, 2;−2,−m) ∈

18This is because E(F )x is nearly holomorphic of degree ≤ 1.
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X(Qp) and s = (s0, 1,−1,−s0) ∈ Q4. For each x as in Theorem 4.8, E(F )x is of slope s. From the
results in [Ur11], one can deduce there exists a neighborhood V of κ0 and a polynomial Q(κ,X) ∈
A(V)[X] such that Q(κ, u0) projects the space of nearly holomorphic forms of weight κ, order ≤ 1
and level Kp.I onto its subspace of slope s0 for any sufficiently regular weight inside V. Here u0 is
the Hecke operator udiag(1,p,p2,p3). In particular, that implies that

Q(κmx , u0).E(F )x = E(F )x (9)

when kx = 2mx > 2 and therefore for all x ∈ U(Qp) ∩ i−1(V(Qp)) by analytic continuation and in
particular for x = x0. Now, we consider the family of forms given by:

Kx,s := Q(κx,s, u0).Gx,s

for (x, s) such that κx,s ∈ V. Then Kx,s is a well defined holomorphic form for all but finitely many
pairs (x, s) for which κx,s is algebraic dominant. Moreover by (8) and (9), we have

lim
(x,s)→(x0,0)

Kx,s = E(F )x0 (10)

From this, it is easy to see that E(F )x0 gives a point of the cuspidal Eigenvariety for U(2, 2) with
slope s0. Then, by using the theory developed in [Ur11], one shows that there is a 4-dimensional p-
adic family of automorphic representations of finite slope specializing to the representation Eκ0(f)
in the sense of [SU06b, §2, Thm 2.3.2] and [Ur11, Thm 5.4.4.].

From this, we construct the corresponding families of Galois representations using the theory
of pseudo-characters and the existence of Galois representations for cuspidal representations of
U(2, 2) and their properties19 with respect to the local-global compatibility with the Langlands
correspondence. We can deduce easily Theorem 3.1 by taking a suitable 1-dimensional subfamily
of it. The fact that the sections used for constructing the Eisenstein series project subjectively on
the Langlands quotient implies the crucial local property (b) in Theorem 3.1 by (7) and local-global
compatibility of the Galois representation with the Langlands correspondence.
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[Ro96] R. Rouquier, Caractérisation des caractères et Pseudo-caractres , Journal of Algebra 180,
571-586 (1996).

[Ta91] R. Taylor, Galois representations associated to Siegel modular forms of low weight, Duke
Math. J. 63, 281-332, (1991).

[Ur11] E. Urban, Eigenvarieties for reductive groups, Annals of math. 174 (2011), pp 1685–1784.

[Ur12] E. Urban, Nearly overconvergent modular forms, preprint 2012.

Current Address: Eric Urban, Department of Mathematics, Columbia Univer-
sity, 2990 Broadway, New York, NY 10027

E-mail: urban@math.columbia.edu, urban@math.jussieu.fr

25


	Introduction
	Bloch-Kato Selmer groups
	Some definitions
	Selmer groups for modular forms
	The basic strategy

	An analytic family of trianguline Galois representations
	Polarized Galois representations
	Construction of the desired extension

	Nearly overconvergent Eisenstein series on U(2,2)
	Nearly holomorphic unitary automorphic forms
	Unitary automorphic forms
	Unitary Shimura variety
	Automorphic sheaves
	Polynomial q-expansions

	p-adic unitary automorphic forms
	p-adic unitary automorphic forms
	Families of finite slope nearly overconvergent forms

	Eisenstein series
	Klingen-type Eisenstein series
	Families of Eisenstein series
	Cuspidal deformation of critical Eisenstein series



