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Abstract. This paper connects the vanishing at the central critical value of the L-
functions of certain polarized regular motives with the positivity of the rank of the
associated p-adic (Bloch-Kato) Selmer groups. For the motives studied it is shown that
vanishing of the L-value implies positivity of the rank of the Selmer group. It is further
shown that if the the order of vanishing is positive and even then the Selmer group has
rank at least two. The proofs make extensive use of families of p-adic modular forms.
Additionally, the proofs assume the existence of Galois representations associated to
holomorphic eigenforms on unitary groups over an imaginary quadratic field.
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0. Introduction

This paper aims to connect the order of vanishing of the L-functions of certain (motivic
p-adic) Galois representations with the ranks of their associated Selmer groups. This
connection, really an assertion of equality, is part of the general Bloch-Kato conjectures
(cf. [BK] and [FP]), but its orgins are in the ‘class number formula’ for number fields
- part of which is the assertion that the order of vanishing at s = 0 of the Dedekind
zeta-function ζK(s) of a number field K equals the rank of the group of units of K - and
the celebrated conjecture of Birch and Swinnterton-Dyer - which asserts that the order
of vanishing at s = 1 of the L-function L(E, s) of an elliptic curve over a number field K
equals the rank of the Mordell-Weil group E(K). In both of these instances the equality
can be restated in terms of ranks of Selmer groups (in the case of elliptic curves this
requires finiteness of the (p-primary part of the) Tate-Shafarevich group of the curve).

In this paper we work in the context of a polarized regular (pure motivic) Galois
representation R : GK → GLd(L) of the absolute Galois group GK of an imaginary
quadratic field K defined over a p-adic field L; we fix a prime p that splits in K. The
polarization condition is an isomorphism

R∨(1) ∼= Rc
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of the arithmetic dual of R with the conjugate of R by the non-trivial automorphism c
of K. The (motivic and) regular condition is that R is Hodge-Tate at the primes above
p and that the Hodge-Tate weights are regular. We further restrict to the case where
the Hodge-Tate weights of R do not include 0 or −1. Unfortunately, this excludes the
case of elliptic curves. The L-functions L(R, s) of such Galois representations, defined
using geometric Frobenius elements (throughout we adopt geometric conventions), are
expected to have meromorphic continuations to all of C and to satisfy the functional
equation

L(R, s) = ε(R, s)L(R∨, 1− s).

The value s = 0 is a critical value of L(R, s), and the connection between orders of
vanishing and ranks of Selmer groups is the following.

Conjecture. ords=0L(R, s) = rankLH1
f (K, R∨(1)).

Here H1
f (K, R∨(1)) ⊆ H1(K, R∨(1)) is the Bloch-Kato Selmer group. This is defined by

imposing local conditions at all primes. At primes not dividing p the classes are required
to be unramified, while at primes v dividing p they are required to be crystalline: their
image in H1(Iv, R

∨(1)⊗Bcris) is zero, where Bcris is Fontaine’s ring of p-adic periods.

The Galois representations we consider are expected to be automorphic in the sense
that for a given R there should exist a unitary group U(V ) in d-variables, an au-
tomorphic representation π of U(V ) with infinity-type a holomorphic discrete series,
and an algebraic idele class character χ of K satisfying χ|×AQ

= | · |2κ′
AQ

such that
L(R, s) = L(π, χ−1, s + κ′ + 1/2), where the right-hand side is a twist of the standard
L-function of π. Such an identification is generally the only known strategy for proving
the conjectured analytic properties of L(R, s). So we start by assuming that given π and
χ, the corresponding R exists. In general this is only known for unitary groups in 3 or
fewer variables (see [BR92]) or under certain local hypotheses on π (see [HL04]) (these
conditions certainly do not hold in all the cases we consider). We further assume that
π and χ are unramified at primes above p. We then prove two theorems - Theorems
4.3.1 and Theorems 5.1.1 - in the direction of the above conjecture. We emphasize that
their proofs require the existence of Galois representations associated to certain cuspidal
representations of unitary groups; this existence is made precise in Conjecture 4.1.1. The
first of these theorems is the following.

Theorem A. If L(π, χ−1, κ′ + 1/2) = L(R, 0) = 0 then rank H1
f (K, R∨(1)) ≥ 1.

We include a few remarks about this theorem.

(i) In earlier work [SU02], [SU06] we proved a result similar to Theorem A: if F is a
holomorphic modular form of even weight 2k and trivial nebentypus and ordinary for
p and if ords=kL(F, s) is odd then the rank of the corresponding p-adic Selmer group
H1

f (Q, VF (k)) is positive (VF is the p-adic Galois representation associated to F ). The
positivity of the rank in the case of even order vanishing - at least if F is unramified
at p - will follow from our forth-coming work [SU-MC] on the Iwasawa main conjecture
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for modular forms1. For prior results in the same vein (by Gross and Zagier, Greenberg,
Nekovář, Belläıche...) the interested reader should consult the introduction to [SU06].

(ii) When π is just an idele class character, so R is one-dimensional, Theorem A is
unconditional. Since no hypothosis is imposed on the epsilon factor ε(R, 0), Theorem A
in this case generalizes the complex multiplication case of [SU02], [SU06], where ε(R, 0) =
−1 is required (the ε(R, 0) = −1 case is also the main result of [BC04]; our proof of
Theorem A provides an alternate proof of this case).

(iii) Suppose F is a holomorphic modular form of even weight 2k > 2, trivial nebenty-
pus, and level prime to p. One consequence of Theorem A is that if L(F, k) = 0, then the
rank of H1

f (K, VF (k)) is positive. Choosing K so that the twist FK of F by the character
of K is such that L(FK, k) 6= 0 and appealing to a result of Kato [Ka04] that asserts
H1

f (Q, VFK(k)) = 0 in this case, we can then conclude that H1
f (Q, VF (k)) has positive

rank. This provides another proof of the results from remark (i) as well as an extension
of them to the non-ordinary case.

(iv) The authors of [BC04] have announced a result in the spirit of Theorem A but with
a number of additional hypotheses, including ε(R, 0) = −1, and certain of the Arthur
conjectures.

Our proof of the Theorem A follows along the same lines as the proof of the main
result in [SU02], [SU06]. As explained in §1, the vanishing of the L-function at s =
0 implies the existence of a holomorphic Eisenstein series on a larger unitary group.
This is analogous to the situation in loc. cit. where odd-order vanishing implies the
existence of a special cuspform on a larger group, there a symplectic group of genus
2. In §§2 and 3 we construct a p-adic deformation of this Eisenstein series, a p-adic
family of automorphic representations containing the Eisenstein representation. The
generic member of this family is cuspidal. The Galois representations associated to
these cuspidal representations (whose existence is one of our primary hypotheses) are
generically irreducible. Putting all this together, we construct an irreducible family of
Galois representations that specializes at one point to the reducible Galois representation
1 ⊕ εp ⊕ R (the Galois representation of the Eisenstein series). By a now standard
argument, we then deduce the existence of a non-trivial GK-extension 0 → L(1) → E →
R → 0. Using a result of Kisin [Ki] we are able to deduce that this extension lies in
H1

f (K, R∨(1)).

In the last section of this paper we extend Theorem A to a higher-rank case (under the
same hypotheses on χ and π).

Theorem B. If ords=0L(π, χ−1, s+κ′+1/2) = ords=0L(R, s) is even and positive, then
rank H1(K, R∨(1)) ≥ 2.

The proof of Theorem B relies on that of Theorem A. The hypothesis that L(R, s)
vanishes to even order at s = 0 means that ε(R, 0) = 1. And so the epsilon factor of the

1This work includes a local hypothesis on the modular form F and its associated mod p Galois
representation.
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primitive L-function of the Eisenstein series constucted in the proof of Theorem A is equal
to −1. This is then true of all the cuspidal representations in the p-adic family from the
proof of that theorem. In particular, their L-functions satisfy the hypothesis of Theorem
A. So running through the proof of that theorem for these cuspidal representations, one
deduces the existence of a p-adic family of generically irreducible Galois representations
which specializes at one point to the representation L2⊕L(1)2⊕R. And then from this
we deduce the existence of a subspace of rank 2 in the Selmer group.

The proofs of Theorems A and B rely crucially on the theory of p-adic families of
automorphic representations, especially as developed in [KL] and in [U06].

The authors thank Laurent Berger and Mark Kisin for some useful conversations.

Standard notation. Throughout this paper p is a fixed prime. Let Q and Qp be,
respectively, algebraic closures of Q and Qp and let C be the field of complex numbers.
We fix embeddings ι∞ : Q ↪→ C and ιp : Q ↪→ Qp. Throughout we implicitly view Q as
a subfield of C and Qp via the embeddings ι∞ and ιp. Let Cp be the completion of Qp

with respect to its p-adic metric. We fix an identification Cp
∼= C compatible with the

embeddings ιp and ι∞.

We fix K ⊂ Q an imaginary quadratic field. We denote by c the complex conjugation
of C (and hence of K). We assume that p splits in K: p = ℘℘c with ℘ the prime ideal
of K induced by ιp. We write $ for an uniformizer of ℘.

1. Eisenstein series and vanishing of L-functions

1.1. Unitary groups. Let θ be a totally imaginary element in K such that −iθ > 0
and let ∆ = θθ̄ (a positive rational number). In sections §§2-5 we will assume that
ordp(∆) = 0. Given integers b ≥ a ≥ 0, a + b = d > 0, we let

Ta,b =
(

1b

θ−1

−1b

)
∈ GLd(K).

We let Ga,b be the unitary group associated to this (skew-Hermitian) matrix: for any
Q-algebra R

Ga,b(R) = {g ∈ GLd(K ⊗R) : gTa,b
tḡ = Ta,b}.

Then Ga,b(R) is a real unitary group of signature (a, b). The unbounded symmetric
domain associated to this group is

Da,b = {
[

z
u
1a

]
∈ Md×a(C) : z ∈ Ma×a(C), u ∈ M(b−a)×a(C), θ−1(z − z∗)− u∗u > 0}.

The action of Ga,b(R) on Da,b is defined as follows: for g ∈ Ga,b(R) and x ∈ Da,b

g(x) = g · x · t−1, g · x =
[

r
s
t

]
, r, t ∈ Ma×a(C),

where · denotes the usual matrix multiplication. Let

x0 =
[

i
0
1

]
∈ Da,b.
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The stabilizer of x0 in Ga,b(R) is a maximal compact, which we denote Ka,b. This is the
group of R-points of an R-group that we also denote by Ka,b. The map g 7→ g(x0) is
a real analytic isomorphism of Ga,b(R)/Ka,b with Da,b. We will often write an element
g of Ga,b or Md×d in block form: g = (gij)1≤i,j≥3 with g11, g33 ∈ Ma×a. We let Ba,b

be the Q-rational Borel of Ga,b defined by requiring g21 = g31 = g32 = 0 and g33 to be
upper-triangular (so g11 is lower-triangular).

Let

c = ca,b = 2−1/2

(
1a −i1a√

|θ|1b−a

−i1a 1a

)
∈ GLd(K).

Then cTa,b
tc̄ = i/2diag(1a,−1b), so k 7→ ckc−1 identifies Ka,b with the R-group U(a)×

U(b) (embedded diagonally in GLd(K)). Let Ha,b be the Cartan subgroup of Ka,b that is
identified with the group of diagonal matrices in U(a)×U(b). Let Ja,b : Ga,b(R)×Da,b →
Ka,b(C) be the canonical automorphy factor: if k ∈ Ka,b then Ja,b(k, x0) = k, and

cJa,b(
(

a11 a12 a13
a22 a23

a33

)
, x0)c−1 = (a11, ( a22 a23

a33 )).

These properties, together with the usual cocycle condition, completely determine Ja,b.

We also fix for each prime ` a maximal compact Ka,b,` ⊂ Ga,b(Q`), and let Ka,b,f =∏
Ka,b,`.

Let a′ = a + 1, b′ = b + 1. Let Pa,b be stabilizer in Ga′,b′ of the line {(0, ..., 0, x) ∈
Kd+2 : x ∈ K}. Then Pa,b is a standard, maximal Q-parabolic of Ga′,b′ with standard
Levi subgroup La,b isomorphic to Ga,b × ResK/QGm: a pair (g, t) ∈ Ga,b × ResK/QGm

is identified with

m(g, t) =

( g11 g12 g13

t̄−1

g21 g22 g23
g31 g32 g33

t

)
∈ Ga′,b′ .

We write Na,b for the unipotent radical of Pa,b. The map ra,b : Da′,b′ → Da,b given by

ra,b(
[ z

u
1a′

]
) =

[
z′

u′
1a

]
,

z = (zij)1≤i,j≤a+1, z′ = (zij)1≤i,j≤a,

u = (ui,j), u′ = (ui,j)j≤a,

is Pa,b(R)-equivariant in the sense that if p = m(g, t)n ∈ Pa,b(R) = La,b(R)Na,b(R) then
ra,b(p(x)) = g(ra,b(x)).

The algebraic characters of Ga,b correspond to d-tuples of integers (cd, ...., cb+1; c1, ..., cb)
in the usual way. The irreducible algebraic representations of Ka,b are then classified by
those d-tuples satisfying c1 ≥ c2 ≥ · · · ≥ cb and cb+1 ≥ cb+2 ≥ cd. Such d-tuples also
classify the L-packets of discrete series representations of Ga,b(R). The holomorphic
discrete series correspond to those d-tuples such that cb−cb+1 ≥ d. Given such a d-tuple
τ , we write πH

τ for the correspoding holomorphic discrete series.

When a and b are fixed or their exact values unimportant, we write G for Ga,b and H
for Ga′,b′ . In our remaining notation we drop the subscript ‘a, b’ and replace the subscript
‘a′, b′’ with with a superscript ′.
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1.2. L-functions. Let π be an automorphic representation of G and χ an idele class
character of A×

K. We write L(π, χ, s) for the standard L-function associated to π and χ:
if BC(π) is the formal base change of π to GL(d)/K then L(π, χ, s) = L(BC(π), χ, s).
If S is a finite set of places of Q then the superscript ‘S’ on LS(π, χ, s) will, as usual,
mean that the Euler factors at the places in S have been omitted. If d > 1 and π is
cuspidal and not endoscopic or CAP, then BC(π) is expected to be cuspidal, hence the
L-functions LS(π, χ, s) are expected to satisfy the following:

(1.2.1) LS(π, χ, s) is holomorphic on all of C

and

(1.2.2) if π and χ are unitary, then LS(π, χ, s) 6= 0 for Re(s) ≥ 1.

Remark 1.2.1. That BC(π) is cuspidal as expected is known in certain cases: (1) if
d = 2, 3 or (2) if πv is supercuspidal for some finite place v.

1.3. Eisenstein series. Given a cuspidal automorphic representation π of G with un-
derlying space Vπ and an idele class character χ of A×

K, we let ρ = ρπ,χ be the rep-
resentation of P (A) on Vπ defined by ρ(m(g, t)n)v = χ(t)π(g)v, m(g, t) ∈ M(A),
n ∈ N(A). Let I(ρ) be the space of smooth, K ′-finite functions f : H(A) → V sm

π

such that f(pg) = ρ(p)f(g). We assume that Vπ has been identified with a cuspidal
subspace of L2(G(Q)\G(A)), so the smooth vectors V sm

π are smooth functions and the
smooth, K-finite vectors V sm,fin

π are cuspforms. Then evaluation at the identity converts
f ∈ I(ρ) into a C-valued function on H(A); we often write f(x) for f(x)(1). Bearing
this in mind, given f ∈ I(ρ) and a complex number s we consider the Eisenstein series

E(f ; s, g) =
∑

γ∈P (Q)\H(Q)

f(γg)δ(γg)s+1/2,

where δ is the usual modulus function for P : δ(m(g, t)) = |tt̄|−(d+1)
A . If Re(s) is suf-

ficiently large (if π and χ are unitary and π is tempered then Re(s) > 1/2 suffices)
then this series converges absolutely and uniformly for s and g in compact sets and so
is holomorphic in s and defines an automorphic form on H(A). The general theory of
Eisenstein series provides a meromorphic continuation of E(f ; s, g) to all of C.

1.4. Holomorphy and vanishing of L-functions. Suppose that π = ⊗πv is such
that π∞ = πH

τ for some d-tuple τ = (cd, ..., cb+1; c1, ..., cb). We identify τ with the
corresponding algebraic representation of K and write Vτ for the complex points of the
underlying module (so Vτ is a finite-dimensional complex vector space and τ defines an
action of K(C) on Vτ ). Then (V sm,fin

π∞ ⊗Vτ )K is one-dimensional. Let ϕ∞ be a non-zero
generator of this space. Let ϕf ∈ ⊗` 6=∞V sm

π`
and let ϕ = ϕ∞ ⊗ ϕf ∈ V sm,fin

π ⊗ Vτ . We
convert ϕ into something more classical as follows. We write τ(g, x) for τ(J(g, x)) and
set

F (Z) = τ(g, x0)ϕ(gx), g ∈ G(R), g(x0) = Z ∈ DG.
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This is a holomorphic function of Z, and if U ⊆ G(Af ) is an open compact such that
ϕ(gk) = ϕ(g) for all k ∈ U then F satisfies

F (γ(Z)) = τ(γ, Z)F (Z), γ ∈ Γ = G(Q) ∩ U.

Let χ = ⊗χv be an idele class character of A×
K such that χ∞ = znz̄m with n+m having

the same parity as d. Let κ, κ′ ∈ 1
2Z be defined by 2κ = n − m and 2κ′ = n + m and

assume κ satisfies

(1.4.1) cb ≥ κ + d/2 + 1, κ− d/2− 1 ≥ cb+1.

Let ξ be the d + 2-tuple ξ = (cd, ..., cb+1, κ − d/2 − 1; c1, ..., cb, κ + d/2 + 1). As in
the case of τ , we identify ξ with the corresponding algebraic representation of K ′ and
write Vξ for the complex points of the underlying module. The representation τ appears
with multiplicity one in the restriction of ξ to K, the latter viewed as a subgroup of
K ′ via k 7→ m(k, 1); the other irreducible representations appearing in this restriction
have highest weight dominated by τ . We fix a K-equivariant inclusion of Vτ into Vξ

(explicitly, if v and w are respective highest weight vectors of these representations then
v 7→ w determines such an inclusion). Then (V sm,fin

π ⊗ Vξ)K = (V sm,fin
π ⊗ Vτ )K since τ

is the minimal K-type in π∞.

There are compatible factorizations ρ = ⊗ρv and I(ρ) = ⊗I(ρv), with ρv = ρπv ,χv and
I(ρv) defined similary to ρ and I(ρ). Let ρf = ⊗v 6=∞ρv and I(ρf ) = ⊗v 6=∞I(ρv). A
straight-forward application of Frobenius reciprocity shows that (I(ρ∞)⊗ Vξ)K′

is one-
dimensional. Let Φ∞ be a generator of this space. Let Φf ∈ I(ρf ) and let Φ = Φ∞⊗Φf ∈
(I(ρ)⊗Vξ)KH,∞ . For h ∈ H(Af ), Φ(h) ∈ (V sm,fin

π ⊗Vξ)KG,∞ = (V sm,fin
π ⊗Vτ )KG,∞ . Let

ϕh = Φ(h). Then ϕh = ϕ∞ ⊗ ϕh,f .

We relate Φ to something more classical as we did ϕ (and hence each ϕh). For g ∈ H(R)
and Z ∈ D′ we let ξ(g, Z) = ξ(J ′(g, Z)). For h ∈ H(Af ) and s ∈ C we then set

Fh(s, Z) = ξ(g, x0)Φ(gh)δ(g)s+1/2, g ∈ H(R), g(x0) = Z ∈ D′.

If U ⊆ H(Af ) is an open compact such that Φf (gkh) = Φf (gh) for all k ∈ U , then Fh

satisfies
Fh(s, p(Z)) = ξ(p, Z)Fh(s, Z), p ∈ P (Q) ∩ U.

It follows from the definition of Fh(s, Z) that if p = m(g, t)n ∈ P (R) is such that
p(x0) = Z (such a p always exists since H(R) = P (R)KH), then

Fh(s, Z) = (tt̄)1/2+κ′−s(d+1)Fh(r(Z)),

where Fh is the function on D associated to ϕh = Φ(h) ∈ (V sm,fin
π ⊗ Vξ)K as above. In

particular, if
s0 = (1/2 + κ′)/(d + 1)

then Fh(s0) is visibly holomorphic as a function on D′.

Let v1, ..., vn be a basis for Vξ and write Φ∞ =
∑

Φ∞,i ⊗ vi with Φ∞,i ∈ I(ρ∞). Put
Φi = Φ∞,i ⊗ Φf and E(Φ; s, g) =

∑
E(Φi; s, g)⊗ vi and

E(Fh; s, Z) = ξ(g, x0)E(Φ; s, gh), g ∈ H(R), g(x0) = Z.
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This last is a Vξ-valued Eisenstein series on D′. It is holomorphic at s ∈ C if E(Φ; s, g)
(so if each E(Φi; s, g) is).

We denote by ηK the quadratic Dirichlet character attached to the extension K/Q.
Then we have the following proposition.

Proposition 1.4.1. Suppose π is the twist of a tempered representation and suppose
(1.2.1) and (1.2.2) hold.

(i) The series E(Fh; s, Z) is holomorphic as a function of s at s = s0.
(ii) If χ|A×Q 6= | · |2κ′

A ηd
K or if L(π, χ−1, 1/2 + κ′) = 0 then E(Fh;Z) = E(Fh; s0, Z) is

holomorphic as a function of Z.

Remark 1.4.2. An important observation is that no hypotheses have been imposed on
the section Φf . In practice we will assume π and χ to be unramified at p and take the
p-component of Φf to be a certain ‘p-stabilization’ of the spherical vector, chosen to be
amenable to methods of p-adic deformations of modular forms. At the primes different
from p we will generally take Φf to be as unramified as possible.

Proof. We briefly indicate a proof of Proposition 1.4.1. Parts (i) and (ii) both follow from
analyzing the constant terms of the Eisenstein series E(Φi; s, g) and E(Φ; s, g). First we
note that since π is cuspidal and P is maximal, the constant term along a standard
parabolic other than P or G is zero. The constant term of E(Φi; s, g) along P can be
expressed in terms of the image of Φi under a certain intertwining operator, as we now
recall.

Implicit in the factorization Vπ = ⊗Vπv is the choice of a newvector φv ∈ V Kv
πv

at each v

at which πv is unramified. If πv and χv are both unramified then we let Φsph
v ∈ I(ρv)K′

v

be the generator such that Φsph
v (1) = φv. The factorization I(ρ) = ⊗I(ρv) is with respect

to the Φsph
v ’s.

Let ρ∨ and I(ρ∨) be defined as ρ and I(ρ) were but with χ replaced by χ∨ = (χc)−1),
and let ρ∨v and I(ρ∨v ), v a place of Q, be similarly defined. If πv and χv (and hence χ∨v )
are unramified at v, the we let Φ∨,sph

v ∈ I(ρ∨v )K′
v be such that Φ∨,sph

v (1) = φv. We let
Φ∨
∞ ∈ (I(ρ∨∞)⊗ Vξ)K′

be a non-zero generator and write Φ∨
∞ =

∑
Φ∨
∞,i ⊗ vi.

For φ ∈ I(ρ) or I(ρ∨) and s ∈ C we let φs = φδs+1/2. The constant term of E(Φi; s, g)
along P is Φi,s + M(s,Φi)−s where M(s,−) : I(ρ) → I(ρ∨) is the usual intertwining
operator associated to P ; this is meromorphic as a function of s and for Re(s) sufficiently
large it is defined by the integral

(1.4.1) M(s, ϕ)−s(g) =
∫

N(A)
ϕs(wng)dn, w =

( 1a
1

1b
−1

)
∈ H(Q).

We let Mv(s,−) : I(ρv) → I(ρ∨v ) be the usual local intertwining operator associated to
P ; for Re(s) sufficiently large, but independent of v, these are given by the local versions
of the integral (1.4.1). If ϕ = ⊗ϕv we then have M(s, ϕ) = ⊗Mv(s, ϕv), provided the
right-hand side converges.
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Let ηKv the quadratic character of Q×
v attached to the extension Kv/Qv if v is inert

in K/Q and the trivial character otherwise. For us, the important properties of the
Mv(s,−)’s are

(a) if πv and χv are unramified then

Mv(s,Φsph
v ) =

L(πv, χ
−1
v , (d + 1)s)L(χ′vη

d
Kv

, (2d + 2)s)
L(πc, χv, (d + 1)s + 1)L(χ′vηd

Kv
, (2d + 2)s + 1)

Φ∨,sph
v ,

where χ′v = χ−1
v |Q×v ;

(b) for a finite place v, Mv(s,−) is holomorphic at s = s0;
(c)

∑
M∞(s,Φ∞,i) ⊗ vi = c(s)Φ∨

∞, where c(s) is a meromorphic function with a
simple zero at s = s0.

Part (a), of course, is a well-known computation. Part (b) follows from [Sh] and the
hypothesis that π is a twist of a tempered representation. Part (c) is a relatively straight-
forward computation.

Suppose Φf = ⊗Φ`; we may assume this without loss of generality since any Φf is a
linear combination of such. Let S be the set of primes ` such that π` or χ` is ramified
or Φ` 6= Φsph

` . From (a) and (c) above it follows that for Re(s) sufficiently large we then
have

M(s,Φi) =
c(s)LS(π, χ−1, (d + 1)s)LS(χ′ηd

K, (2d + 2)s)
LS(π, χ−1, (d + 1)s + 1)LS(χ′ηd

K, (2d + 2)s + 1)
Φ∨
∞,i⊗` 6∈SΦsph

` ⊗`∈SM`(s,Φ`).

Note that χ′ = χ−1|A×Q is an idele class character of A×
Q with infinity type z−2κ′ . Thus

LS(χ′ηd
K, (2d + 2)s) is holomorphic at s = s0 unless χ′ = | · |−2κ′

A ηd
K in which case the L-

function has a simple pole at s = s0. It also follows that LS(χ′, (2d+2)s+1) is holomophic
and non-zero at s = s0. In particular, c(s)LS(χ′ηd

K, (2d + 2)s)/LS(χ′ηd
K, (2d + 2)s + 1) is

holomorphic at s = s0 and non-zero only if χ′ = | · |−2κ′

A ηd
K. It follows from (1.2.1) and

(1.2.2) that LS(π, χ−1, (d + 1)s/LS(π, χ−1, (d + 1)s + 1) is holomorphic at s = s0 and
zero if and only if LS(π, χ−1, 1/2 + κ′) = 0. Putting all this together with (b) above we
find that

(d) M(s,Φi) is holomorphic at s = s0;
(e) M(s,Φi) = 0 if χ′ 6= | · |−2κ′

A or if L(π, χ−1, 1/2 + κ′) = 0.

The general theory of Eisenstein series implies that E(Φi; s, g) is holomorphic at s = s0

if the constant terms are. Thus (d) above implies the holomorphy of E(Φi; s, g), and
hence of each E(Fh; s, Z), at s = s0, proving part (i) of the proposition. It also follows
from the general theory of Eisenstein series that E(Fh; s0, Z) is holomorphic as a function
of Z if its constant terms are. This is equivalent to the holomorphy of the functions

Z 7→ ξ(g, x0) (Φs(gx) + M(s,Φ)−s(gx)) , g ∈ H(R), g(x0) = Z, x ∈ H(Af ),
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where M(s,Φ) =
∑

M(s,Φi)⊗ vi. If χ′ 6= | · |−2κ′

A ηd
K or L(π, χ−1, 1/2+κ′) = 0, it follows

from (e) above that this function equals Fa(s0, Z) at s = s0 and so is holomorphic. This
proves part (ii) of the proposition.

2. p-adic deformations of automorphic representations

It is impossible to list here all the contributors to this area. However, we want to
emphasize that the important recent developments grew from the seminal ideas of Hida,
Coleman, Mazur and Stevens. For our application, we rely mostly on an approach
that has been stressed in [U06]: instead of constructing a space interpolating spaces of
automorphic forms, one directly studies the p-adic properties of the ‘trace’ distribution.
This approach is analogous to Wiles’ introduction of pseudo-representations for the study
of deformations of Galois representations.

2.1. Hecke operators. In this paper we take a Hecke operator to be a compactly
supported smooth Q-valued function on G(Af ). We fix a Haar measure on G(Af ) such
that the maximal compact Kf has volume 1. If (π, Vπ) is a smooth representation, then
the action of a Hecke operator on Vπ is defined using this Haar measure.

We need to restrict attention to Hecke operators of specific types at the prime p.
To describe these we first fix an isomorphism G(Qp) ∼= GLd(K℘) = GLd(Qp) so that
g = (gij) ∈ G(Qp) is identified with g′ = (g′ij) ∈ GLd(K℘) with g′11 = tg11 and g′33 = g33

and so that B(Qp) is identified with a standard parabolic of GLd(Qp) (i.e., contains
the subgroup of upper-triangular matrices). We assume that the maximal compact
Kp ⊂ G(Qp) is identified with GLd(Zp).

For each positive integer m we let Im ⊂ GLd(Zp) be the subgroup of matrices that
are upper-triangular modulo pm. Let t = (t1, . . . , td) be a decreasing sequence of n
integers. We denote by ut the characteristic function on GLd(Qp) of the double class
Im.diag(pt1 , . . . , ptn).Im. The ut’s generate a commutative algebra2 via the convolution
product. We denote this algebra by Up.

Let S be a set of finite primes containing p and the primes at which G is ramified. We
let KS =

∏
` 6∈S K` ⊂ G(AS

f ), a maximal compact open subgroup, and we put

RS,p := C∞c (KS\G(AS
f )/KS),Z)⊗ Up.

This Hecke operator acts naturally on any V In.KS

π .

2.2. p-stabilizations and normalizations. Let (π, Vπ) be an automorphic represen-
tation such that V KS .In

π 6= 0 and π∞ ∼= πH
τ with τ a d-tuple as in §1.1. There is a

natural action of RS,p on the subspace V KS .In
π . The choice of an eigenspace is called a

p-stabilization of π. Given an eigenspace, we write λπ for the corresponding character

2It is easily checked that this algebra is independant of m.
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of RS,p. Of course, the choice of a p-stabilization is purely local at p: it depends only on
the choice of an eigenvector for Up in πIm

p .

For any τ = (cd, ..., cb+1; c1, ..., cb) as in §1.1, the associated normalized weight is wτ :=
(c1 − a, . . . , cb − a, cb+1 + b, . . . cd + b); this defines a dominant weight of the diagonal
torus of GLd(Qp) since cb − cb+1 ≥ d. For the purpose of p-adic variation we normalize
the character λπ, setting λ†π(f) = λπ(f) for any f ∈ C∞c (KS

m\G(AS
f )/KS

m),Z) and

λ†π(ut) :=
λπ(ut)
wτ (t)

for any ut ∈ Up. It can be checked (cf. [Hi04]) that this normalization preserves the
p-integrality of the eigenvalues.

Given a p-stabilization of π, we let Iπ be the distribution defined by

C∞c (G(Ap
f ),Z)⊗ Up 3 f ⊗ ut 7→ Iπ(f) := tr(π(f))λπ(ut),

and we define the normalized distribution I†π by replacing λπ with λ†π. We call I†π a
p-stabilized distribution associated to π. Note that I†π|RS,p

= λ†π.

Let Td ⊂ GLd be the diagonal torus and Bd ⊂ GLd the Borel subgroup of upper-
triangular matrices. Assume that πp = I(χ) := Ind

GLd(Qp)
Bd(Qp) χ with χ an unramified

character of Td(Qp). Let I = I1. The choice of a p-stabilization is given by the choice
of an eigenvector for Up in I(χ)I . For each element of the Weyl group W (G, T ), there
exists such an eigenvector vχ,w ∈ I(χ)I with the property that

ut.vχ,w = χwρ(t) · vχ,w,

where ρ = (d−1
2 , d−3

2 , . . . , 1−d
2 ) is half the sum of the positive roots. The choice of a

p-stabilization is therefore equivalent to an ordering of the Langlands parameters of the
spherical representation I(χ). If (α1, . . . , αd) is the corresponding ordering, then we have

λπ(ut) =
d∏

i=1

αti
i .

In general, if πp is spherical but associated to a non-unitary character χ, it may not equal
the full induction of χ, in which case some orderings of the Langlands parameters do not
have a corresponding p-stabilizations (see [SU02] for an example in the symplectic case).

A p-stabilization is said to be of finite slope if there is a d-tuple s(λ†π) = (s1, . . . , sn) ∈
Qn such that

vp(λ†π(ut)) = −
d∑

k=1

tk.sk, t = diag(t1, . . . , td).

Such a d-tuple is necessarily unique and called the slope of the p-stabilization. The
integrality of the normalization implies that s(λ†π) belongs to the positive obtuse cone
(in more automorphic terms this means that the Newton polygon lies above the Hodge
polygon), and it can be easily checked that s1 + · · ·+sd = 0 (i.e., the Newton and Hodge
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polygon meet at their beginning and end) by considering the action of the center. If
s(λ†π) = (0, . . . , 0) then the p-stabilization is said to be ordinary. In general, the slope is
said to be non-critical if si+1 − si < ci+1 − ci + 2 for all i = 1, . . . , d− 1. Otherwise, it is
said to be critical. Note that the non-critical conditions define an alcove of the obtuse
cone.

2.3. Families. We consider X/Qp
, the rigid analytic variety over Qp such that

X(L) = Homcont(T (Zp), L×)

for any finite extension L of Qp. A point (or p-adic weight) w ∈ X(L) is called arith-
metic if the restriction of w to some open subgroup of T (Zp) is algebraic and dominant.
The corresponding algebraic character is then denoted walg = (a1, . . . , ad) and we write
X(Qp)alg for the subset of arithmetic weights. We sometimes write Xd instead of X, d
being the dimension of X, to emphasize the dimension of X.

For any rigid space U we denote by A(U) the ring of analytic function on U. For our
purposes a p-adic family of automorphic forms is a character:

λ : RS,p → A(U),

where U is an irreducible rigid space over X of positive dimension with projection map
denoted w and such that there is a Zariski dense set of points Σ ⊂ U(Qp)alg := {y ∈
U(Qp)| w(y) ∈ Xalg(Qp)} with the property that for any y ∈ Σ the compositum λy of
λ with the evalutation map3 at y is a normalized p-stabilization λ†π of an automorphic
representation π of normalized weight w(y)alg.

Definition 2.3.1 (strong form). A p-adic family of automorphic representations is a
linear functional

I : C∞c (G(AS),Zp)⊗RS,p → A(U)
such that λI := I|RS,p

is a p-adic family in the weak sense and such that for all y ∈ Σ as
above, the compositum Iy of I with the evalutation map at y is the p-stabilized distribution
I†π of an automorphic representation π of normalized weight w(y)alg.

Note that these definitions, and hence all subsequent discussion, are relative to some
fixed set S of primes containing the prime p.

A fundamental question in area is whether an individual p-stabilization I†π is a member
of a p-adic family. A positive answer to this question has been given by Hida in the
ordinary case. Using the techniques of [Hi04], it can be shown that any ordinary p-
adic almost cuspidal4 eigenform is the member of a (strong) p-adic family of almost
cuspidal eigenforms of dimension d. We say that an holomorphic modular form for
Ga,b is almost cuspidal if its constant terms along the parabolic subgroup Pa−1,b−1 are
cuspidal. Using the techniques of [SU06], this can be generalized to forms with slope s

statisfying sb = sb+1 (i.e., the semi-ordinary case, which means that I†π(u0) is a p-adic

3The map A(U)→ Qp given by f 7→ f(y).
4This terminology is non standard.
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unit where u0 is the operator corresponding to the trace of the relative Frobenius 5 on
the Shimura variety associated to Ga,b in characteristic p. Note also that the following
theorem is a special case of the results of [U06].

Theorem 2.3.2. If I0 is a non-critical cuspidal finite slope distribution of regular arith-
metic weight w0, then there exists U

w→ X of dimension d, y0 ∈ U(Qp), and a p-adic
U-family I such that

Iy0 = I0 + I1 + · · ·+ Is

with I1, . . . , Is irreducible character distributions of C∞
c (AS)⊗RS,p such that

Ii|RS,p
= I0|RS,p

∀i = 1, . . . , s.

We expect that a similar result must be true for general overconvergent modular forms.
Using techniques from Kisin-Lai [KL], it is possible to construct such a deformation
provided one only requires it to be of dimension one. We will use this technique for
critical Eisenstein series.

3. Deformations of Eisenstein series

We keep to the notation of sections 1 and 2. Recall that we have groups G = Ga,b and
H = Ga′,b′ and L = G×ResK/QGm a standard Levi subgroup of a parabolic P of H. In
this sectiopn, we will consider specific p-adic families for the groups G and H. Keeping
with our practice from section 1, we will add a superscript ′ when the notion is relative
to H. For instance, I ′m means an Iwahori subgroup of H(Qp).

3.1. Critical Eisenstein series. We now fix a cuspidal tempered representation π of
G(A) and an idele class character χ of A×

K as in §1.4. We will assume that

χ′ = | · |2κ′
AQ

ηd
K(3.1.1)

and that the assumptions of Proposition 1.4.1 are satisfied along with

(3.1.2) L(π, χ−1, κ′ + 1/2) = 0.

To simplify matters, we will also assume that π and χ are unramified at primes above p.
We let S be the set comprising the primes of ramification of π, χ, and G (and hence also
of H) together with p. Let m > 0 be an integer. Then πIm

p 6= 0, and we choose v0 ∈ πIm
p

a p-stabilization of πp. We consider the section Φcrit
p ∈ I(ρp) defined for all h ∈ H(Qp)

by

Φcrit
p (h) =

{
χ(t)πp(g).v0 if h = n.m(g, t)wk0 ∈ P (Qp)wI ′m
0 otherwise(3.1.3)

Here w is the Weyl element from (1.4.1).

5It corresponds to the d-tuplet (1, . . . , 1| {z }
b

, p, . . . , p| {z }
a

).
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For s ∈ C let I(ρv, s) = {ϕs = ϕδs+1/2 ; ϕ ∈ I(ρv)}. The following lemma follows from
a direct computation.

Lemma 3.1.1. For each s ∈ C the section Φcrit
p,s = Φcrit

p δs+1/2 ∈ I(ρp, s) is an eigenvec-
tor for the action of U ′p. Moreover, if (α1, . . . , αd) is the ordering of Langlands parameters
specifying the chosen p-stabilization v0 of πp then the ordering associated to Φcrit

p,s0
is given

by
(α1, . . . , αb, χ($)pκ′ , χ($)pκ′+1, αb+1, . . . , αd),

and if the slope of v0 is (s1, . . . , sd) then the slope of Φcrit
p,s0

is

(s1, . . . , sb, 1,−1, sb+1, . . . , sd).

In particular, it is critical6.

We consider the space V0 generated by the Eisenstein series E(Fh; s0, Z) associated to
the sections Φ = Φ∞,i ⊗ Φcrit

p ⊗ Φp,∞ with Φp,∞ = ⊗v 6=p,∞Φv with Φv = Φsph
v if v 6∈ S.

We let V1 ⊂ V0 be the subspace of Eisenstein series as above with the extra condition
that M(Φv, s0) = 0 for all v ∈ S\{p} and let Ecr(π, χ) := V0/V1. This last space, a
quotient of a space of almost cuspidal holomorphic automorphic forms for H of weight
ξ = (cd, . . . , cb+1, κ−d/2−1; c1, . . . , cb, κ+d/2+1), is acted on by RS,p⊗C∞

c (H(AS),Zp)
and decomposes as

Ecr(π, χ) =
⊗

v∈S\{p}

L(πv, χv, s0)

with L(πv, χv, s0) the Langlands quotient of I(ρv, s0). We denote by IEcr(π,χ) the corre-
sponding distribution of RS,p ⊗ C∞

c (H(AS),Zp).

For any finite place v of K and any representation Πv of GLn(Kv), we denote by rec(Πv)
the n-dimensional representation of the Weil-Deligne group associated to Πv by the local
Langlands correspondance as established by Harris-Taylor [HT01]. Then we have

rec(BC(L(πv, χv, s0))) = rec(BC(π)v)⊕ χv ◦Art−1
Kv
⊕ ε−1χv ◦Art−1

Kv

where ArtKv stands for the Artin reciprocity map sending a uniformizer to a geometric
Frobenius and where ε denotes the cyclotomic character.

3.2. p-adic deformations. Let Xd+2/Qp be the weight space for H. For any w0 =
(c1, . . . , cd+2) ∈ Xd+2, we put

Xd+2
w0

= {w = (e1, . . . , ed+2) ∈ Xd+2|ei − ei+1 = ci − ci+1∀i 6= b + 1}

This is clearly a two-dimensional closed subspace of Xd+2.

Theorem 3.2.1. Let w0 = wξ = (c1 − a − 1, . . . , cb − a − 1, κ + (b − a)/2, κ + (b −
a)/2, cb+1 + b + 1, . . . , cd + b + 1). There exist an affinoid U sitting over Xd+2

w0
, a point

6In contrast, the semi-ordinary p-stabilization obtained by taking Φord
p := M(Φcrit,∨

p ,−s0), where

Φcrit,∨
p ∈ I(ρ∨p ) is defined analogously to Φcrit

p , has slope (s1, . . . , sb, 0, 0, sb+1, . . . , sd).
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y0 ∈ U(Qp) over w0, and a two-dimensional family I : C∞
c (H(AS),Zp) ⊗RS,p → A(U)

such that
Iy0 = IEcr(π,χ) + I1 + · · ·+ Is

with the Ii’s irreducible characters distributions satisfying

Ii|RS,p
= IEcr(π,χ)|RS,p

∀i = 1, . . . , s.

If π∞ = πH
τ with τ regular, then this family extends to a d + 2-dimensional family over

Xd+2.

Proof. We give just an idea of how this theorem is proved. The details will appear
elsewhere. The proof does not require one to start from an Eisenstein series. The
techniques one uses to prove the first point of this theorem are similar to those used
by Coleman, Kisin-Lai, and Kassaei. The deformations are constructed by studying the
compact action of u0 on the space of overconvergent modular forms for H obtained by
multiplying one of the original critical Eisenstein series by powers of a characteristic
zero lifting of powers of the Hasse invariant7. This requires that we first establish the
rationality of (scalar multiples of) our critical Eisenstein series. The proof then employs
the theory of the canonical subgroup as developed by various authors (Abbes-Mokrane,
Kisin-Lai, Conrad). This provides a one-variable family. To obtain a two-variable, one
twists the one-variable family by anticyclotomic characters of p-power conductor. To
prove the second point, one shows that the constructed curve sits in the eigenvarieties
associated to H in [U06]. The regularity condition on τ should not be necessary in this
special case. In general, however, it might be necessary to make sure that the ‘classical’
systems of Hecke eigenvalues occuring in the one variable family contribute only to the
middle cohomology of the Shimura variety for H.

The next lemma helps describe the restrictions I|C∞c (H(Qv), v ∈ S\{p}. Its proof will
appear elsewhere.

Lemma 3.2.2. Let π0 be a unitary irreducible representation of G(Qv) and χ0 a unitary
character of K×v . Let J : C∞

c (H(Qv)) → A(U) be an analytic U-family of local character
distributions such that

Jx0(f) = tr(L(π0, χ0, s0)(f)) + I1(f) + · · ·+ Is(f)

where I1, . . . , Is are irreducible character distributions of H(Qv). Assume J is generically
irreducible. Then one of the two following cases holds:

(i) There exist an analytic U-family of representations π of G(Qv) and an analytic
U-family of characters χ of Kv such that Jx(f) = tr(L(πx, χx, s0)(f)) for all
x ∈ U(Qp).

(ii) The place v is split. There exist an analytic U-family of representations π of
GLd(Qv) and two analytic U-families of characters µ and ν of Qv with µ 6= ν|·|±1

v

7This is possible thanks to the theory of arithmetic toroidal compactification of the Shimura variety
associated to H by K. Fujiwara [Fu]
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such that JH
x (f) = tr((µx × πx × νx)(f)) for a Zariski dense set of points x ∈

U(Qp) where µx×πx×νx is the irreducible induction Ind
GLd+2

Gm×GLd×Gm
µx⊗πx⊗νx.

4. Galois representations and applications to Selmer groups

4.1. Galois representations for automorphic representations. We begin with no-
tation for the local theory.

Let w be a finite place of K and GKw the absolute Galois group of the completion of
K at w. We denote by Frobw ∈ GKw a geometric Frobenius element, IKw ⊂ GKw the
inertia subgroup, and WKw ⊂ GKw the Weil subgroup.

Assume first that the residual characteristic of w is not p. To any finite-dimensional
representation R : GKw → GLn(Qp), one associates a Weil-Deligne representation
WD(R) = (r, N) where r : WKw → GLn(Qp) is a representation and N ∈ Mn(Qp)
is such that

R(Frobm
w σ) = r(Frobm

w σ)exp(t(σ)N)

where t : IKw → Zp is defined by σ( pf√$w) = ζ
t(σ)

pf . pf√$w for a fixed choice of a
compatible system {ζpf } of p-power roots of unity and a uniformizer $w of Kw. It is
well-known that (r, N) is uniquely defined up to isomorphism.

If the residual characteristic of w is equal to p, one generally uses Fontaine’s rings
to study the p-adic representations of GKw . If V is such a representation, one defines
D?(V ) = (V ⊗Qp B?)GKw with ? = dR, cris or st, where BdR, Bcris and Bst are the usual
rings of p-adic periods introduced by Fontaine. We write Di

dR(V ) for the i-th step of the
Hodge filtration of DdR(V ). We adopt the geometric conventions for the Frobenius and
the Hodge-Tate weights (so the Hodge-Tate weights of V are the jumps of the Hodge
filtration of DdR(V )).

In both the local and global cases, we denote by εp the p-adic cyclotomic character and
we write V (n) for the n-th Tate twist of a Galois representation V .

Let now π = πf⊗π∞ be an automorphic representation of G(A) such that π∞ = πH
τ for

some τ = (cd, ..., cb+1; c1, ..., cb). Let κτ = (κ1, ...., κd) be the strictly increasing sequence
of integers defined by

κd−i+1 := ci + d− i + δi ∀i = 1, . . . , d,

where δi = −a if i ≤ b and δi = b if i ≥ b + 1. Let Sπ be the set of finite places of K
above primes of ramification of π. The following conjecture8 is expected to result from
the stabilization of the trace formula for unitary groups.

Conjecture 4.1.1. There exists a finite extension L of Qp and a Galois representation

Rp(π) : GK −→ GLd(L)

8This conjecture is a theorem for unitary groups appearing in the works of Kottwitz, Clozel, Harris-
Taylor, Yoshida-Taylor [HT01, TY06]
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satisfying the following properties:

(1) Rp(π)∨(1− d) ∼= Rp(π)c

(2) Rp(π) is unramified outside Sπ ∪ {℘, ℘̄}
(3) For each finite place w of K of residue characteristic prime to p, we have

WD(Rp(π)|WKw
) ∼= rec(BC(π)∨w ⊗ |det|

1−d
2 )

where rec is the reciprocity map given by the Local Langlands correspondance of
Harris-Taylor [HT01] (using our identification of Cp with C).

(4) Rp(π)|GK℘
is Hodge-Tate with Hodge-Tate weight given by κτ .

(5) If πp is unramified, the eigenvalues of the Frobenius endomorphism of Dcrys(Rp(π))
are given by the Langlands parameters of πp (again using the identification of Cp

with C)

Let χp be the Galois character of GK associated to an idele class character χ as in §1.4
(i.e., such that χp(Frobw) = χ($w) if χ is unramified at w). We see in particular that
(3) implies that

(4.1.1) L{p}(Rp(π)⊗ χp, s) = L{p}(π∨, χ, s +
1− d

2
)

where L{p} means we have omitted the Euler factor at p and the L-function for the
Galois representation is defined using the geometric Frobenius elements. Moreover, if χ
also satisfies (3.1.1) then (4.1.1) implies

(4.1.2) L(p}(Rp(π)⊗ χp, s) = L{p}(π, χ−1, s + 2κ′ +
1− d

2
).

4.2. Families of Galois representations. Let U be a smooth connected affinoid vari-
ety defined over a p−adic field, and let GF be the absolute Galois group of a number or
`-adic field F (` may be equal to p). We call a pseudo-representation T : GF → A0(U)
an analytic family of Galois representations over U. For any reduced affinoid subdo-
main Z ⊂ U, we denote by RT

Z the semi-simple Galois representation (defined up to
isomorphism) over a finite extension of the fraction ring F (Z) of Z whose trace is the
pseudo-representation GF → A0(U) → A0(Z). We say that T is n-dimensional if RT

Z is.
If L is a GF -stable lattice of RT

U and y ∈ U(Qp), then we denote by RL
y the representation

on the specialization L ⊗A0(U) A(U)/Iy, where Iy is the ideal of analytic function on U
vanishing at y.

Assume F is a p-adic field. Let T be a family of representations of GF of dimension d
over an affinoid U. We denote by κ1, . . . , κd ∈ A(U) the Hodge-Tate-Sen weights of T .
Let r be the dimension of the affinoid U. The family T is said to be of finite slope9 if
there exist

(i) ϕ1, . . . , ϕd ∈ A0(U),
(ii) Σ ⊂ U(Qp),

9This is ”trianguline” in the terminology of Colmez.
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(iii) A subset of {1, . . . , d} of r positive integers i1 ≤ · · · ≤ ir,

such that

(a) For all y ∈ Σ, we have the inequalities κ1(y) ≤ · · · ≤ κd(y),
(b1) For all i /∈ {i1, . . . , ir}, y 7→ κi+1(y)− κi(y) is constant on U,
(b2) For all positive real numbers C, the subset ΣC of points y ∈ Σ such that κij (y)−

κij+1(y) > C for all i = 1, . . . , r is Zariski dense.
(c) For all y ∈ Σ, RT

y is crystalline, and the eigenvalues of Frobenius on Dcris(RT
y )

are given by ϕ1(y)pκ1(y), . . . , ϕd(y)pκd(y)

Let y0 ∈ U(L) such that (κ1(y0), . . . , κd(y0)) is an increasing sequence of integers.
According to a terminology of B. Mazur [M00], we say that T is a finite slope deformation
of Ry0 of refinement (ϕ1(y0)pk1(y0), . . . , ϕd(y0)pkd(y0)) and Hodge-Tate variation (i1, i2 −
i1, . . . , d− ir).

Of course, there is a close link between p-stabilization and refinement. More precisely,
we have the following easy lemma.

Lemma 4.2.1. Assume conjecture 4.1.1. Let π be a cuspidal representation which is
tempered and unramified at p and of weight τ (i.e., π∞ = πH

τ ). Let U be an affinoid sitting
over X and let I be a p-adic deformation of π with p-stabilization given by (α1, . . . , αd).
Then there exists a p-adic deformation TI over U of Rp(π) such that the restriction of
TI to GK℘ is a finite slope deformation of ρπ|GK℘

of refinement (ϕ1p
κ1 , . . . , ϕdp

κd) with

ϕi = α−1
d−i+1.p

−κi+(d−1)/2 ∀i = 1, . . . , d,(4.2.1)

where κτ = (κ1, ..., κd).

Proof. The existence of TI follows from the theory of pseudo-representations. The as-
serted properties of the restriction of TI to GK℘ follows from parts (4) and (5) of the
conjecture 4.1.1. The details are left to the reader.

We recall the following useful result of Kisin.

Proposition 4.2.2. Let T : GF → A0(U) be a finite slope family as above. Let L be
any GF -stable free A(U)-lattice of RT

U . Let F0 be the maximal unramified subfield of F .
After shrinking U around some fixed y0 ∈ U(Qp), the following holds:

(i) Let 1 ≤ i ≤ i1 be an an integer. If y ∈ U(Qp) is such that κi(y) ∈ Z, then

rkL⊗K0Dcris(RL
y )φ=ϕi(y)pκi(y) ≥ 1,

where L = A(U)/Iy. Furthermore, there exists an integer N independant of y such that

Dcris(RL
y )φ=ϕi(y)pκi(y)

↪→ (RL
y ⊗BdR/tκi(y)+NB+

dR)GK .

for all y ∈ U(Qp).
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(ii) Let Qy(X) :=
∏i1

i=1(X − ϕi(y)pκi(y)). For any y such that κ1(y) ∈ Z,

rkL⊗F0Dcris(RL
y )Qy(φ)=0 ≥ i1,

where L = A(U)/Iy. Furthermore, there exists an integer N independant of y such that

Dcris(RL
y )Qy(φ)=0 ↪→ (RL

y ⊗BdR/tκi(y)+NB+
dR)GK .

for all y ∈ U(Qp).

Proof. The first part of the proposition, and hence the second part when Qy(X) has
only simple roots, is a direct consequence of Corollary 5.3 of [Ki]. When Qy(X) has
multiple roots a simple generalization of the argument of [Ki] does the job. We can also
as suggested to us by M.Kisin apply (i) to the case V := Sp(A(U)[X]/(Q(X)) at least
when Q(X) has only generic simple roots.

We deduce from this proposition a few interesting consequences that we will use to
construct elements in Selmer groups.

Lemma 4.2.3. Let T be a finite slope U-family of representations of GF as in Propo-
sition 4.2.2, and let y ∈ U(L) be such that RT

y := L(1)f ⊕ Le ⊕ V ss for V a de Rham
representation of GF . We assume that

(i) 1 is a root of Qy(X) of order e.
(ii) Dcris(V )φ=1 = 0.

Let L be a free lattice such that we have an exact sequence

0 → V → RL
y → W → 0

then

(a) Any non trivial extension of L by L(1) appearing as a subquotient of W is crys-
talline.

(b) If E is the inverse image of WGF by the projection map from RL
y to W , then E is

an extension of WGF by V , the class [E] of which is contained in H1
f (K, Hom(WGF , V )).

Proof. Since Dcris(W/WGF )φ=1 and Dcris(E)φ=1 have rank at most e − dim WGF and
dim WGF , respectively, by hypothesis (ii), and since the rank of Dcris(RL

y )φ=1 is e by hy-
pothesis (i) and Proposition 4.2.2, we deduce that the respective ranks of Dcris(W/WGK )φ=1

and Dcris(E)φ=1 equal e−dim WGK and dim WGK . From Dcris(V )φ=1 = 0 and Dcris(E)φ=1

being of rank dim WGK , we deduce the surjectivity in the following short exact sequence:

0 → Dcris(V ) → Dcris(E) → Dcris(WGK ) → 0

The exactness of this sequence means, by definition, that [E] ∈ H1
f (K, Hom(WGK , V ))

and (b) is proved. The proof of (a) follows similarly using rkDcris(W/WGK )φ=1 =
e− dim WGK . The details are left to the reader.
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The following lemma will be used in the last section of this paper.

Lemma 4.2.4. Let K be a p-adic field and let R0 be a de Rham representation of GK

over a finite extension L of Qp. Let U be an affinoid and T : GK → A(U) a finite slope
deformation of the character representation T0 = 1 + tr(R0) of refinement ϕ1, . . . , ϕn+1

and Hodge-Tate weight variation (i1, i2 − i1, . . . , n + 1 − ir) Let L be a free GK-stable
A(U)-lattice. We assume the following hypotheses are satisfied.

(i) ϕi 6= 1 if i ≤ i1.
(ii) There exists y ∈ U(L) such that Ty = T0 and ki(y) > 0 for i > i1.
(iii) The representation RL

U is an extension of the form:

0 → A(U) → RL
U → SU → 0

with trivial action of GK on A(U).

Then the rank over L⊗K of gr0DdR(RL
y ) = (RL

y ⊗Cp)GK is one more than the rank of
gr0DdR(R0)

Proof. We have to prove that the Sen operator determining the action of a finite index
subgroup of GK on RL

y ⊗ Cp has the eigenvalue 0 with multiplicity 1 + h0 with h0 :=
rk gr0DdR(R0). Equivalently, we need to show that the order of vanishing at 0 of the
minimal polynomial of the Sen operator of RL

y is one. By hypothesis (ii), it is easy to
see that it is therefore sufficient to show the same statement for RL

z for any z sufficiently
closed to y and such that

(a) ki(z) = ki(y) if i ≤ i1
(b) ki(z) > C if i > i1

where C is any arbitrary large constant (we know that we can approach y by such points
by the axioms of a finite slope deformation). We now prove the result for z satisfying
(a) and (b).

After (if necessary) replacing U by a sufficiently small neighborhood of y, we know by
Proposition 4.2.2 that

Dcris(RL
z )Qz(φ)=0 ⊗K ↪→ (RL

z ⊗BdR/tki1
(z)+NB+

dR)GK

If C > N + ki1(y), we therefore have that if z statisfies (a) and (b) then the image of
Dcris(RL

z )Qz(φ)=0⊗K ∩D0
dR(RL

z ) in gr0(DdR(RL
z )) is of rank h0. On the other hand, by

our hypothesis (iii), we have an exact sequence

0 → L → RL
z → Sz → 0

and therefore gr0(DdR(RL
z )) contains also the non trivial image of Dcris(L) on which the

action of φ is given by the eigenvalue 1. By hypothesis (i) we may assume that Qz(1) 6= 0
for z sufficiently close to y and therefore the images of Dcris(L) and Dcris(RL

z )Qz(φ)=0 ⊗
K ∩D0

dR(RL
z ) in gr0(DdR(RL

z )) are disjoint and hence gr0(DdR(RL
z )) has rank 1 + h0.
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4.3. Deformations of some reducible Galois representations and Selmer groups.
Let χ and π be as in §§1.4 and 3.1. Let S be a finite set of places of K containing ℘, ℘c

and the primes of ramification of BC(π) and χ. Assuming L(π, χ−1, κ′ + 1/2) = 0, we
have constructed in §§1 and 3 an Eisenstein representation Ecr(π, χ) whose S-primitive
L-function is given by

LS(Ecr(π, χ), s) = LS(π, s)LS(χ, s− κ′ − 1/2)LS((χc)−1, s + κ′ + 1/2)

Therefore the Galois representation associated to our Eisenstein representation is:

Rp(π)(−1)⊕ χ−1
p ε1+κ′−d/2 ⊕ χc

pε
κ′−d/2

Assume now that χ satisfies (3.1.1). We consider the Galois representation

R := Rp(π)⊗ χpε
d/2−κ′ .

It satisfies

Rc ∼= R∨(1)(4.3.1)

and we therefore have the functional equation

L(R,−s) = ε(R, s)L(R, s),

and s = 0 is the central value for L(R, s). By (4.1.2), LS(R, 0) = LS(π, χ−1, κ′ + 1/2).
Note that the conditions on the weights of χ and π at the beginning of the section 1.4
implies that R does not have the Hodge-Tate weights 0 and −1. It can be seen that any
(automorphic) irreducible Galois representation of GK with regular Hodge-Tate weights
having no Hodge-Tate weights equal to 0 and −1 and satisfying the condition (4.3.1)
should be obtained in this way. Although it is not necessary, we will assume that R is
irreducible.

The following result is suggested by the Bloch-Kato conjectures.

Theorem 4.3.1. Assume conjecture 4.1.1 for unitary groups in d+2 variables. Assume
π is tempered and that π and χ are unramified at primes above p. Assume also that
Rp(π) is irreducible. Then, if L(R, 0) = 0, we have

rk H1
f (K, R∨(1)) ≥ 1

Here H1
f (K, R∨(1)) is the Bloch-Kato Selmer group associated to the p-adic representa-

tion R∨(1); for a definition see [BK] or [FP].

Proof. The proof of this theorem runs along the same lines as that of Theorem 4.1.4 in
[SU06].

We first choose a non-critical p-stabilization (α1, . . . , αd) of π and denote by (ϕ1, . . . , ϕd)
the corresponding refinement of Rp(π) (given by (4.2.1)). Recall that we write τ for
the weight of π∞ and ξ for the weight of the Eisenstein series. Since we assume the
existence of Galois representations for cuspidal representations of the unitary group
Ga+1,b+1, by Theorem 3.2.1 there exists a two-dimensional affinoid subdomain U sitting
over a closed subspace of Xd+2

wξ
, a point y0 ∈ U(Qp) over w0 = wξ , and a U-family T of
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Galois representations such that the specialization of T at y0 is the pseudo-representation
associated to Rp(π)(−1)⊕ χ−1

p εκ′−d/2 ⊕ χ−1
p εκ′−d/2−1 and such that the restriction of T

to GK℘ is of refinement

(pϕ1, . . . , pϕa, χ($)−1pd/2−κ′+1, χ($)−1pd/2−κ′ , pϕa+1, . . . , pϕd)

and Hodge-Tate variation (a + 1, b + 1) (i.e r = 1 and i1 = a + 1). Furthermore, from
Lemma 3.2.2 and property (3) of the Conjecture 4.1.1, for all finite places w of K prime
to p,

(4.3.1) RT
U |GKw

∼= µ1 ⊕Rw ⊕ µ2

where µ1, µ2 are two A(U)-valued characters of GKw specializing to χ−1
p εκ′−d/2|GKw

and
χ−1

p εκ′−d/2+1|GKw
at the point y and Rw is a d-dimensional representation specializing

to Rp(π)|GKw
at y.

We consider the normalized deformation R̃U := RT
U⊗χpε

d/2−κ′+1
p . We have R̃∨

U(1) = R̃c
U,

and the semi-simplified specialization of R̃U at y ∈ U(L) is given by R̃U,y = L ⊕
L(1) ⊕ R. The restriction of R̃U to GK℘ is a deformation of R̃U,y|GK℘

of refinement
(β1, . . . , βa, 1, p−1, βa+1, . . . , βd) with βi = ϕiχ($)pκ′−d/2 and of Hodge variation (a +
1, b + 1). We deduce from this that the restriction of R̃U to the decomposition subgroup
GK℘c is a deformation of R̃U,y|GK℘c

of refinement (p−1β−1
d , . . . , p−1β−1

a+1, 1, p−1, p−1β−1
a , . . . , p−1β−1

1 )
and of Hodge variation (b + 1, a + 1).

We claim that Tr(R̃ss
U ) is not of the form T ′ + T ′′ where T ′ and T ′′ are two pseudo-

representations. Were this the case, then they would have to satisfy T ′
y(g) = 1 + εp(g)

and T ′′(g) = tr(R(g)) for all g ∈ GK. Assume this is so, and let us show we get a contra-
diction. First we show that the restriction to GK℘ of the representation R′ associated to
T ′ would be irreducible. By Proposition 4.2.2 the specialization of R′ at any arithmetic
point y′ such that s = κb+2(y′) − κb+1(y′) > 1 would be a crystalline representation of
Hodge-Tate weights (0, s) and slopes (1, s − 1) and is therefore irreducible. The same
statement holds for the restriction to GK℘c . Moreover, the restriction of R′ to GKw for
w - p is a split sum of two characters by (4.3.1). Then exactly as in [SU06, Thms 4.2.7
or 4.3.4] we would deduce that there is an non-trivial extension class in H1

f (K,Qp(1));
but we know that this group is trivial since the rank of the units in K is 0.

From the above discussion we deduce that R̃U is irreducible. Let g ∈ GK be such that
one of the eigenvalues, say α0, of R̃(g) is distinct from 1 and εp(g) and choose α in some
finite normal extension A(V) of A(U) such that α(z) = α0 for some z ∈ V(Qp) above y.
We take v in the representation space of R̃′

V := R̃′
U ⊗A(U) A(V) such that g.v = α.v. We

then consider the A(V)-lattice L of R̃′
V generated by g.v over A(V) as g runs through

GK. After possibly shrinking V around z, we can assume L is free. By construction, Lz

has a unique irreducible quotient, and this quotient is isomorphic to R. We therefore
have an exact sequence of GK-representations

0 → W → RL
z → R → 0
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with W ss ∼= L ⊕ L(1), L being the residue field of z. We first note that by (4.3.1)
the restriction of W to GKw , w - p, is split. Moreover, we know by the application of
Proposition 4.2.2 that Dcris(RL

z )φ=1 is non zero. Since 1 is not a root of Frobenius for R
since L(BC(π)w, χw, 1/2)−1 6= 0 at w|p by [JS, sect. 2.5], we deduce Dcris(W |GKw

)φ=1

has rank 1 for all w|p. This shows that W is not a non-trivial extension of L by L(1) since
this extension would belong to H1

f (K, L(1)) = 0 (same argument as in [SU06, 4.3.4]).

Therefore Lz contains the trivial representation L and we can take E := Lz/L. This
gives a non-trivial extension:

0 → R∨(1) → E∨(1) → L → 0.

It follows from lemma 4.2.3, that ResKw([E∨(1)]) ∈ H1
f (Kw, R∨(1)) for w|p. Note that

we again use the fact that 1 is not a root of the Frobenius for R∨(1) ∼= Rc as this is an
hypothesis of the quoted lemma. If w - p, ResKw([E∨(1)]) ∈ H1

f (Kw, R∨(1)) follows from
(4.3.1). This ends the proof of the Theorem.

5. Higher order vanishing and higher rank Selmer groups

5.1. Higher order of vanishing. In this section, we assume, as in Theorem 4.3.1, that

L(π, χ−1, 1/2 + κ′) = L(R, 0) = 0

. Since we are assuming (4.3.1), the primitive L-function of the Eisenstein representation
Ecr(π, χ) twisted by χ−1 is

L(Ecr(π, χ), χ−1, s) = L(π, χ−1, s)ζK(s− κ′ − 1/2)ζK(s− κ′ + 1/2).

Therefore the order of vanishing of LS(Ecr(π, χ), χ−1, s) at s = s0 = κ′ + 1/2 is one less
than the order of vanishing of L(π, χ−1, s) at s = s0, because ζK(0) 6= 0 and ζF (s) has
a simple pole at s = 1. This remark is the starting point of a method of constructing a
higher rank subspace in the Selmer group H1

f (K, R∨(1)) when such a space is predicted
by the Bloch-Kato conjecture (i.e., when L(R, s) vanishes to higher orders at s = 0).
In this final section of this paper, we deal with the case of even order vanishing. More
precisely, we will sketch a proof of the following theorem.

Theorem 5.1.1. Let π and χ as in Theorem 4.3.1. We assume Conjecture 4.1.1 for
Ga+2,b+2. If L(R, s) vanishes to even order at s = 0, then

rk H1
f (K, R∨(1)) ≥ 2

5.2. Sketch of proof. Since L(R, s) vanishes to even order at s = 0, ε(π, χ−1, 1/2+κ′) =
ε(R, 0) = 1. This implies, by the remark at the begining of this section, that

ε(R⊕ εp ⊕ 1) = −ε(R, 0) = −1.(5.2.1)

Let U above Xd+2 and Σ be as in Theorem 3.2.1 and let R̃U be as in the proof of Theorem
4.3.1. By (5.2.1), for each z ∈ U(Qp), ε(R̃z, 0) = −1. In particular, for each arithmetic
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point z ∈ Σreg, the subset of elements z ∈ Σ with w(z) = (w1, ...., wd+2) satisfying the
regularity condition wb+1 ≥ κ + (b− a)/2 + 1 and wb+2 ≤ κ + (b− a)/2 + 1 (the analog
of (1.4.1) with d replaced by d + 2), we have L(π(z), χ−1, 1/2 + κ′) = 0 where π(z) is
the (holomorphic) cuspidal automorphic representation of Ga+1,b+1(A) associated to z.
We can therefore apply Proposition 1.4.1 and Theorem 3.2.1 with π(z) and Ga+1,b+1 in
place of π and Ga,b and then repeat the argument of Theorem 4.3.1. Let ξz the weight of
the Eisenstein series representation Ecr(π(z), χ). For each z ∈ Σ, there exists Uz above
Xd+4

wξz
, a point yz ∈ Uz(Qp) over wξz , and a pseudo-representation Tz : GK → A(Uz) as

in the proof of Theorem 4.3.1.

Let w1 be the arithmetic weight of Xd+4 defined by w1 := (c1−a−2, . . . , cb−a−2, κ+
b−a
2 − 1, κ + b−a

2 , κ + b−a
2 , κ + b−a

2 + 1, cb+1 + b + 2, . . . , cd + b + 2). Let Y ⊂ Xd+4 be
the set of weight w = (e1, . . . , ed+4) such that ei = ei+1 for i 6= b + 1, b + 2, b + 3, d + 4.
This is a 4-dimensional subspace of Xd+4. One can show there exists a 4-dimensional
affinoid V sitting over Yw1 := w1 + Y, containing Uz for each z ∈ Σreg, and admitting
a V-family of automorphic representations interpolating the Uz-families. In other words
the Uz-families fit together into a 4-dimensional family.

Let S : GK → A(V) be the Galois deformation associated to the above V-family. It is
a deformation of

Sy1 = tr(Rp(π)(−2)) + χ−1
p εκ′−d/2−1

p + χ−1
p εκ′−d/2−1

p + χ−1
p εκ′−d/2−2

p + χ−1
p εκ′−d/2−2

p .

for some point y1 ∈ V(L) sitting over w1. We consider the normalization defined by
˜̃RV := RS

V ⊗ χpε
d/2−κ′+2
p . Then, ˜̃RV is a deformation of tr(R) + 1 + 1 + εp + εp. It

is also a deformation of tr(Rz) + 1 + εp for all z ∈ Σreg where we have written Rz :=

Rp(π(z))⊗χpε
d/2−κ′+1
p . From the construction, it follows also that ˜̃RV|GK℘

is a finite slope
deformation of refinement (β1, . . . , βa, 1, 1, p−1, p−1, βa+1, . . . , βd) and Hodge variation
type (a + 1, 1, 1, b + 1), and similarly for the restriction of ˜̃RV to GK℘c .

As in the Theorem 4.3.1, we consider a lattice L ⊂ ˜̃RV such that the specialization RL
y1

has a unique quotient isomorphic to R. In particular, this implies that RL
z has a unique

quotient isomorphic to Rz. Moreover, from the proof of the Theorem 4.3.1 applied to
π(z), we see that RL

z contains the trivial representation as a unique subrepresentation
and has a quotient defining an extension Ez whose class belongs to H1

f (K, R∨
z (1)). In

what follows, we will assume for simplicity that L is free although this might not be the
case in general. However, it would not be difficult - although a bit cumbersome - to put
ourselves in such a situation with a ‘localization’ argument similar to the one used in
[SU06, §4.3.2].

Let U := V×Yw1
Xd+4

w1
. This is the Zariski closure of Σreg. It follows from the discussion

above that RL
V⊗A(U) contains the trivial representation and that the quotient Ẽ by the

latter is an extension

0 → A(U).εp → Ẽ → R̃ → 0
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where R̃ is the deformation of tr(R) + 1 + εp having a unique quotient isomorphic to
R that appeared in the proof of Theorem 4.3.1. Then the restriction of Ẽ to GK℘ is
a finite slope deformation of refinement (β1, . . . , βa, 1, p−1, p−1, βa+1, . . . , βd) and Hodge
variation type (a + 1, b + 2), and similarly for the restriction of Ẽ to GK℘c .

We now study the specialization Ẽy1 . It has a unique quotient isomorphic to R and has
semi-simplification L⊕L(1)⊕L(1)⊕R. We first remark that the trivial representation
has to be a subrepresentation of Ẽy1 , for otherwise the latter would contain a non-trivial
extension of L by L(1). This extension would be unramified outside p and crystalline
at p by another application of Proposition 4.2.2 and therefore would give a non-trivial
element in H1

f (K, L(1)).

Quotienting Ẽy1 by this trivial representation, we get an extension E1. We will now
prove that E1 contains L(1)⊕L(1). Otherwise, it will contain a non-trivial extension of
L(1) by L(1). It is easy to see that this extension would be unramified outside p. It would
also be Hodge-Tate by the Lemma 4.2.4 applied to E1 ⊗ L(−1) with R0 = R(−1) ⊕ L.
Such a non-trivial extension does not exist.

We deduce that E∨
1 (1) is an extension of the form:

0 → R∨(1) → E∨
1 (1)

f→ V → 0

with V a L-vector space of dimension 2 with trivial action of Galois. We deduce that
we have an exact sequence

0 → H0(K, R∨(1)) → H0(K, E∨
1 (1)) → V

δ→ H1(K, R∨(1).

We have H0(K, E∨
1 (1)) = 0, for otherwise E∨

1 (1) contains the trivial representation,
but R∨(1) is the only subrepresentation to E∨(1) since R is the only quotient of E1

and R∨(1) ∼= Rc does not contain the trivial representation by hypothesis. Thus δ is
injective. We can show that its image is contained in H1

f (K, R∨(1)) using the Lemma
4.2.3 just as we proved this for the class [E∨(1)] in the proof of Theorem 4.3.1. Since V
is dimension 2, this proves the theorem.
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