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Abstract. We develop the theory of overconvergent cohomology intro-
duced by G. Stevens and we use it to give a construction of Eigenvarieties
associated to any reductive group G over Q such that G(R) has discrete
series. We prove that the so-called Eigenvarieties are equidimensional
and flat over the weight space.

0. Introduction

The theory of p-adic families of automorphic forms has known many de-
veloppments since the original breakthrough of H. Hida in the early eighties
who constructed p-adic families of ordinary modular cusp eigenforms. His
results were further extended to finite slope modular forms by Coleman us-
ing the p-adic spectral theory of the Atkin Up operator and the construction
by Coleman-Mazur of the Eigencurve brought a more geometric and global
aspect to the theory.

Although Hida’s original approach as well as Coleman’s strategy were built
on Katz’ theory of p-adic and overconvergent modular forms, the cohomo-
logical1 method, whose idea is originally due to Shimura, using cohomology
of arithmetic subgroups to study congruences between Hecke eigenvalues led
several authors following H. Hida in the ordinary case and G. Stevens in the
finite slope case to construct families of Hecke eigensystems for reductive
groups G over Q whose archimedean part G(R) is compact modulo cen-
ter. For example, see [Bu04, Ch04, Em06]. However, the extension of these
techniques for more general reductive group were hindered by the difficulty
to handle the torsion of the cohomology of the corresponding arithmetic
subgroups.

In this paper, we by-pass this difficulty for groups G such that Gder(R)
satisfy the Harish-Chandra condition2 (i.e. containing a compact Cartan
subgroup) and construct p-adic families of automorphic (cuspidal) represen-
tations for G. In particular, we construct Eigenvarieties associated to such

During the preparation of this work, the author was supported by grants from the
National Science Foundation and by a fellowship from the Guggenheim Foundation.

1The original geometric approach has also been also generalized by Hida to all Shimura
varieties of PEL type and also in some non-ordinary case by other authors. See for example
[K04, K06, KL05, SU06b].

2For example it applies to any unitary or symplectic groups over a totally real field.
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groups whose points are in bijection with automorphic representations hav-
ing non trivial Euler-Poincaré characteristic and we prove that it is equidi-
mensional of the expected dimension. The main difference between our
approach and other authors’ strategy is to work with the total cohomol-
ogy instead of studying the cohomology separately in each degree. More
precisely, we work with some kind of “perfect complex” that computes the
cohomology of the corresponding arithmetic groups with coefficients in a
family of certain p-adic distribution spaces. Moreover, instead of trying to
construct a universal module that interpolates the cohomology when the
weight of the system of coefficients varies, we rather make a p-adic analytic
interpolation of the trace of the Hecke operators acting on the total coho-
mology. Our approach is somehow similar to Wiles’ idea of constructing
families of Galois representations by the use of pseudo-representations. We
give two applications of the p-adic analyticity property with respect to the
weight of these traces. One concerns the construction of Eigenvarieties and
therefore of p-adic families of automorphic representations. We give actu-
ally an axiomatic treatment of the construction of Eigenvarieties from the
existence of p-adic analytic families of traces of Hecke operators. The other
one is to derive a p-adic trace formula in geometric terms very similar to the
one by Arthur-Selberg.

For groups G such that G(R) do not satisfy Harish-Chandra condition,
like GLn with n > 2, our method provides evidences that the reason of the
presence of torsion is related to the vanishing of the Euler-Poincaré charac-
teristic of the π-isotypical component of the cohomology when π is a cuspidal
representation of G(A). In fact, for GL3/Q

3, Ash and Stevens have noticed
that certain cuspidal representations do not lie in a p-adic family and came
up with a conjecture that says vaguely that a cuspidal representation can be
deformed p-adically in a family of classical cuspidal representations if and
only if it is essentially self-dual. According to Langlands’ philosophy, all such
representations should come from orthogonal or symplectic groups, and the
“if” part of this conjecture would follow from our result applied to these
classical groups. Surprisingly, it turns out4 that our method can be modi-
fied in order to give a proof of this without assuming Landglands’transfer
principle (see section 5.6).

After I gave several lectures on this work, I learned that M. Koike and L.
Clozel had worked on a somehow similar approach in the past, similar in
the sense that they also proved some continuity statement w.r.t the weight
of the trace of the Hecke operators (see Clozel’s unpublished manuscript
[Cl93] and Koike’s papers [Ko75, Ko76]) by using the explicit form of the

3For G = GL(2)/K with K imaginary quadratic, Calegari and Mazur have remarked

the same phenomena.
4I am grateful to D. Vogan for drawing my attention to the fact that the twisted Euler

characteristic by a Cartan type involution is non trivial for most of the cohomological
representations.
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Selberg trace formula. Our approach differs from theirs in two ways. Firstly,
we don’t use an explicit form of the trace formula to prove the analyticity
statement and we use p-adic spectral theory on the Banach spaces defined
by the locally analytic induction of p-adic characters. Secondly, our trace is
a trace of a compact operator acting on a complex of p-adic Banach spaces
although theirs is the usual classical trace computed by Arthur-Selberg. As
a by-product, we have obtained a p-adic trace formula. We hope to give
some applications of it in the future.

To illustrate our work, we now give a description of a special case of our
main result on the existence of p-adic families of automorphic represen-
tations. We want to stress upon the fact that we have constructed here
deformations of automorphic representations rather than deformations of
automorphic forms as it is done usually in the literature. It has especially
the advantage to give a better control of the informations at the ramified
places. This fact is very useful for applications like in [SU06a, SU06b].

We fix G a reductive group such that G(R) has discrete series. Let SG(K)
be the locally symmetric space associated to G and a neat open subgroup K
of the finite adelic points of G. Let π be an automorphic representation of
G(A) occurring in the cohomology of SG(K) with the system of coefficient
V∨
λalg

(C) the dual of the irreducible algebraic representation of highest weight
λalg with respect to some Borel pair. Such a representation will be called
automorphic and cohomological of weight λalg. It can be seen (and we
will see such a representation in this way) as a representation of the Hecke
algebra of the Q-valued locally constant functions on G(Af ) with compact
support that we denote C∞c (G(Af ),Q).

We now fix a prime p. For simplicity let us assume in this introduction
that G splits over Qp and fix a Borel pair (B, T ). Let R+ be the set of the
corresponding positive roots. We denote by I an Iwahori subgroup of G(Qp)
in good position w.r.t. (B, T ). More generally, we denote Im the Iwahori
subgroup of depth m defined by

Im := {g ∈ G(Zp)|g (mod pm) ∈ B(Z/pmZ)}

We consider the semi-group

T− := {t ∈ T (Qp)||α(t)|p ≤ 1 ∀α ∈ R+}

and we denote T−− ⊂ T− the sub-monoid of elements t such that the
inequalities in the above definition are strict. Then put ∆− := I.T−.I and
∆−− := I.T−−.I. We consider Up the local Hecke algebra5 at p generated
over Zp by the characteristic function of the double classes ut := ImtIm. Let
Kp ⊂ G(Ap

f ) be an open compact subgroup of the finite adelic points of G

5It is an easy fact that the structure of this algebra does not depend upon m. Hence
we have dropped m from the notation.
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away from p. We now consider

Hp(Kp) := C∞c (Kp\G(Ap
f )/Kp,Qp)⊗ Up ⊂ C∞c (G(Af ),Qp)

where the left hand side of the tensor product denotes the the locally con-
stant function on G(Af ) with compact support which are bi-invariant by
Kp. We call finite slope representations of G of level Kp, the finite di-
mensional representations of Hp(Kp) over a complete field extension of Qp

such that for each t ∈ T−, the double class ut acts as an invertible automor-
phism. In particular, if such a representation is irreducible, the ut’s act by
multiplication by non zero scalars.

Let π be a cohomological automorphic representation. Let us choose
Kp ⊂ G(Ap

f ) and some sufficiently deep pro-p-Iwahori subgroup I ′m such

that πK
p.I′m

f 6= 0. We consider the action of Im/I ′m ∼= T (Z/pmZ) on this
subspace and choose a character ε of this group such that the ε-isotypical
component of πK

p.I′m
f is non trivial. Then we have an action of Hp(Kp) on

π
Kp.I′m
f ⊗ ε−1. An irreducible constituent of the representation of Hp(Kp)

acting on this space will be called a p-stabilization of π. The finite slope
irreducible representations of Hp(Kp) obtained in this way will be called
finite slope classical automorphic representations of weight λ = λalgε
that we consider as a p-adic valued continuous character of T (Zp). If the
original π is cuspidal, a p-stabilization of it will be called cuspidal too.

Fix S a finite set of primes such that the open subgroup Kp ⊂ G(Ap
f ) is

maximal hyperspecial away from S. Then consider RS,p the abstract Hecke
algebra defined as the sub-algebra of Hp(Kp) of Zp-valued locally constant
functions with compact support contained in G(AS∪{p}

f ).∆−. Note that RS,p
is contained in the center of Hp(Kp). Therefore the action of RS,p on a finite
slope representation σ of Hp(Kp) is given by multiplication by a character
θσ of RS,p

Let π0 be a finite slope irreducible cuspidal representation ofG(A) of weight
λ0. We normalize this action so that the double class ut acts by multiplying
the usual standard action by |λ0(t)|−1

p and we denote θ0 the corresponding
character of RS,p.

We say that θ0 is not critical with respect to λ0 if for some t ∈ T−− we
have

vp(θ0(ut)) < (λ0(Hα) + 1)vp(α(t))
for each simple root α, with Hα denotes the corresponding co-root.

Finally, we introduce the weight space. Let Zp = Zp(Kp) be the p-adic
closure of the image of Z(Q) ∩ Kp.T (Zp) in T (Zp) for some Kp neat and
hyperspecial maximal away from S. It easy to see that Zp does not depend
of Kp but only of S. If G is Q-split, then Zp is trivial; otherwise, its rank
is related to the rank of some units and also some Leopoldt defect. Our
weight space is the rigid analytic space X = XKp defined over Qp such that
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X(Qp) = Homcont(T (Zp)/Zp,Q
×
p ). Then we have the following theorem (See

subsection 5.4.3).
Theorem: Assume that θ0 is not critical with respect to λ0 and that the
algebraic part of λ0 is dominant regular. Then, there exists

(1) an affinoid open neighborhood U ⊂ X of λ0,
(2) a generically flat finite cover V of U with structural morphism w,
(3) a homomorphism θV from RS,p to the ring O(V) of analytic func-

tions on V,
(4) a distribution character IV : Hp(Kp)→ O(V),
(5) a point y0 ∈ V(Qp) above λ0,
(6) a Zariski dense subset Σ ⊂ V(Qp) such that w(y) is algebraic regular

dominant ∀y ∈ Σ,
(7) for each y ∈ Σ, a non empty set Πy of finite slope irreducible auto-

morphic representation of weight λy = w(y) = λalgy εy,

satisfying the following:

(i) The specialization of θV at y0 is equal to θ0,
(ii) For any y ∈ Σ, the specialization θy of θV at y is a character occur-

ring in the representation of RS,p in πImK
p

for all π ∈ Πy.
(iii) For each y ∈ Σ, the specialization Iy of IV at y satisfies:

Iy(f) =
∑
σ∈Πy

m(π, λ)Iπ(f)

for all f ∈ Hp(Kp) where m(π, λ) is the Euler-Poincaré character-
istic of π in H∗(S̃G,V∨λ) defined as

m(π, λ) :=
∑
i

(−1)idimCHomHp(Kp)(π
KpIm , H i

cusp(SG(KpIm),V∨λ))

where f 7→ Iπ(f) is the trace distribution f 7→ tr(π(f)) defined on
Hp(Kp)

Moreover, the distribution character IV can be chosen such that Πy be a
singleton for a Zariski dense subset of Σ.

In a recent preprint, Ash-Stevens have constructed6 all we need to con-
struct the total Eigenvariety for any reductive group (see [AS06]). By total,
we mean that the points occurring in that Eigenvariety are in bijections
with systems of Hecke eigenvalues of finite slope occurring in the cohomol-
ogy with coefficients in a Banach space of p-adic distributions (and not only
those having a non trivial Euler-Poincaré characteristic). However, their
result does not give any informations about the dimension of the irreducible

6They have actually constructed local pieces of the total Eigenvariety. A global con-
struction has been recently carried out by Z. Xiang in [Xi10].
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components. Our construction gives a complete description of the compo-
nents of the Eigenvariety having the same dimension as weight space. When
the group is anisotropic, it is exactly the set of Hecke eigensystems having
a non trivial Euler-Poincaré characteristic. In general, we describe it as a
union of cuspidal and various Eisenstein components. In section 5.4 of the
present paper, we present a conjecture for the dimension of the irreducible
component passing through a given point of the Eigenvariety in terms of
the multiplicities of the corresponding system of Hecke eigenvalues in the
various degrees of the cohomology. It is also worth noticing that these com-
ponents do not always7 contain a Zariski dense subset of classical points (i.e
attached to a classical automorphic representation). I hope this paper will
convince the reader that the good framework to study p-adic automorphic
representations and their families is the one of derived category.

We now give a brief description of the content of the different sections. In
section 1, we introduce the basic notations and we give a brief account of
the cohomolgy of arithmetic groups with algebraic coefficients. Especially,
we recall the main important results of Borel-Wallach, Saper, Li-Schwermer
and Franke. In section 2, we introduce some formalism of derived category
of complex of Banach spaces and the spectral theory of compact operators
acting on them. In the section 3, we define the locally p-adic analytic in-
duction spaces “ à la Ash-Stevens-Hida” that will be used to define what
we have called the “overconvergent cohomology”. In section 4, we study
this cohomology and we prove that the trace of the compact operators ut
acting on it is an analytic function of the weight λ ∈ X(Qp). We also in-
troduce the notion of effective finite slope character distribution which is a
linear functional on the Hecke algebras H′p(Kp) that behaves like the trace
of compact operator acting on a p-adic Banach space. In section 5, we make
an axiomatic construction of Eigenvariety associated to analytic families of
effective finite slope distribution and we apply it to the analytic families of
finite slope distribution constructed in the previous chapter. In section 6,
we establish some p-adic trace formulae interpolating Arthur’s and Franke’s
trace formulae.
Acknowledgments. It will be obvious to the reader that this work is much
influenced by the works of Ash-Stevens, Coleman-Mazur and Hida. But it
is especially my pleasure to thank H. Hida for many inspiring conversations
all over the years and also for pointing out a few inaccuracies in an early
version of this paper. I would also like to thank A. Ash, L. Clozel, M.
Harris, B. Mazur, C. Skinner, G. Stevens, J. Tilouine and D. Vogan for
useful conversations during the preparation of this work. I am also grateful
to the organizers of the Eigenvarieties semester at Harvard in the spring 2006
for giving me the opportunity to think about these questions again. I would

7See the GL(3)/Q-example of Ash-Pollack-Stevens [APS] or the GL(2)/K-case with K

imaginary quadratic case considered by Calegari-Mazur [CaM].
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like also to thank the CRM8 for his hospitality during which some revisions
of this paper have been done. Finally I want to thank the anonymous referee
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8Centre de Recerca Matematica (Bellaterra, Spain)



8 ERIC URBAN

Contents

0. Introduction 1
1. Cohomology of arithmetic groups 10
1.1. Notations and conventions 10
1.2. Local systems and cohomology 11
1.3. Cohomology and automorphic forms 13
1.4. Franke’s trace formula 16
2. Spectral theory on p-adic Banach spaces 18
2.1. Perfect complexes of Banach spaces 18
2.2. Compact operators 20
2.3. Spectral decompositions 23
3. p-adic Overconvergent coefficients 29
3.1. Basic Notations and Definitions 29
3.2. Local analytic induction 31
3.3. The locally analytic BGG-resolution 37
3.4. Analytic variation and weight spaces 42
4. Overconvergent Finite Slope Cohomology 46
4.1. Hecke algebras and finite slope representations 46
4.2. Automorphic finite slope representations 53
4.3. Finite slope cohomology 58
4.4. A spectral sequence 63
4.5. The p-adic automorphic character distributions 63
4.6. The Eisenstein and Cuspidal finite slope p-adic character

distributions 65
4.7. Automorphic Fredholm Series 69
5. Construction of Eigenvarieties 73
5.1. Spectral Varieties 73
5.2. First Construction of the Eigenvarieties 75
5.3. Second Construction 77
5.4. Application to finite slope automorphic character distributions 82
5.5. Examples 84
5.6. The twisted Eigenvarieties for GLn 88
5.7. Some more Eigenvarieties 89
6. A p-adic trace formula 92
6.1. Spectral side of the p-adic trace formula 92



EIGENVARIETIES FOR REDUCTIVE GROUPS 9

6.2. Franke’s trace formula for Lefschetz numbers 92
6.3. A formula for I†G(f, λ) 93
Index 95
References 97



10 ERIC URBAN

1. Cohomology of arithmetic groups

1.1. Notations and conventions.

1.1.1. General notations. We denote respectively by Q,R and C the fields
of rational, real and complex numbers. For any prime p, Qp is the field
of p-adic numbers and we denote by Cp the closure of an algebraic closure
Qp of Qp. Throughout this paper, we fix Q an algebraic closure of Q and
embeddings ι∞ and ιp of Q into C and Cp. Any number field M will be
considered as a subfield of Q.

We denote by | · |p the non-archimedean norm of Cp normalized by |p|p =
p−1. We denote by A the adèle ring over Q and we fix a decomposition
A = Af × R. If M is a number field, we will denote also AM = A⊗M and
for each place v of M , we write Mv for the completion of M at v.

Sometimes we denote by |X| or by #X the cardinal of a finite set X.
For any algebraic group H defined over Q, we set Hf = H(Af ) and H∞ =

H(R). We denote by H+
∞ the connected component of H∞ containing the

identity. Whenever we put the superscript + to a given group, it will mean
that we consider the subgroup of the elements whose infinity part belongs
to the connected component of this infinity part.

1.1.2. Locally symmetric spaces and reductive groups. We fix G a connected
reductive group over Q. We denote by Z = ZG the center of G. We fix
P0 a minimal parabolic subgroup defined over Q and a Levi decomposition
P0 = M0.N0 and we denote by PG the set of standard parabolic subgroup
P of G defined over Q (i.e. those containing P0). We denote also LG the set
of standard Levi subgroup (i.e. containing M0). For any Levi subgroup M ,
we will denote by W0

M its (rational) Weyl group i.e. W0
M := NM (M0)/M0

(Here NM (M0) denotes the normalizator of M0 in M).

We fix K∞ a maximal compact subgroup of G∞ := G(R) and put CG∞ =
K∞.Z∞. We denote by G+

∞ the identity component of G∞. We also write
G1
∞ ⊂ G+

∞ for the kernel of the map from G∞ onto the connected component
of the R-split part of the co-center G∞/Gder∞ of G∞.

We fixKmax ⊂ G(Af ) a maximal compact subgroup and dg a Haar measure
of Gf such that ∫

Kmax

dg = 1

If K ⊂ Gf is a measurable set we write

Meas(K) = Meas(K, dg) :=
∫
K
dg.

For any open compact subgroup K ⊂ Gf , we consider the locally symmet-
ric space

SG(K) := G(Q)\G(A)/K.CG∞
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. Let HG = G+
∞/C

G
∞ ∩ G+

∞. In all this paper, we assume that the strong
approximation theorem applies to Gder. In particular, for any open compact
subgroup K ⊂ Gf ), we have a finite decomposition

(1) G(A) =
⊔
i

G(Q)×G+
∞ × gi.K

For any x ∈ G(Af ) and any open subgroup K ⊂ G(Af ), we set Γ(x,K) the
image of xKx−1 ∩G(Q)+ in Gad(Q) = G(Q)/ZG(Q). Then we have

SG(K) ∼=
⊔

Γi\HG.

with Γi := Γ(gi,K). We say that K is neat if none of the Γi := Γ(gi,K)
contains finite order elements. In that case, SG(K) is a smooth real analytic
variety and for each connected component the morphism from its universal
covering to itself is étale.

1.2. Local systems and cohomology. We will be interested in the co-
homology of local systems on SG(K). They are defined by representations
of the fundamental group of each connected component. We recall below
different equivalent constructions of these.

1.2.1. First definition. If M is a Q-vector space equipped with an action of
G(Q), we set M̃ the local system defined as the sheaf of locally constant
sections of the cover

M̃ := G(Q)\(G(A)×M)/K.C∞ → G(Q)\G(A)/K.C∞ = SG(K).

with left action of G(Q) and right action of K.C∞ defined by the formula

γ.(g,m).k := (γgk, γ.m)

for any γ ∈ G(Q), g ∈ G(A), k ∈ K.C∞ and m ∈M .

Let ZK := ZG(Q)∩K. Then a necessary condition for M̃ to be non trivial
is that

ZK acts trivially on M(2)

When this condition is satisfied, the subgroups Γ(x,K) act on M . Then
for each irreducible component Γi\H, the local system is defined by:

M̃i := Γi\(HG ×M)→ Γi\HG

and the isomorphism M̃ ∼= tiM̃i is induced by the maps (γ.gi.g∞.k,m) 7→
(g∞, γ−1.m).
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1.2.2. Second definition. If M is a group which is left K-module, we can
define also the local system

M̃K := G(Q)\G(A)×M)/K.C∞ → G(Q)\G(A)/K.C∞ = SG(K).

with left action of G(Q) and right action of K.C∞ given by the formula

γ.[g,m].k := [γgk, k−1.m]

When the action of K or G(Q) on M in the definitions (1.2.1) and (1.2.2)
above extends in a compatible way to an action of G(A), then the two defined
local systems M̃ and M̃K coincide by the isomorphism (g,m) 7→ [(g, g−1.m].
Again the sheaf M̃ is non trivial only if the condition (2) is satisfied.

1.2.3. Let v be a place of Q such that the action of K factorizes through the
projection K 7→ Kv with Kv the image of K into G(Qv). Assume that the
image of gi in G(Qv) be trivial, then we can now describe the local system
M̃ on each irreducible component by:

M̃i := M̃ |Γi\HG = Γi\(HG ×M)→ Γi\HG

with γ.[z,m] = [γ.z, γ.m] for all z ∈ HG and γ ∈ Γi, the map from the M̃
onto tiM̃i being given by [γ.gi.g∞.k,m] 7→ [γ.g∞, k.m].

1.2.4. Cohomology. We will respectively writeH•(SG(K),F) andH•c (SG(K),F)
for the cohomology and cohomology with compact support of a local system
F on SG(K). We also denote by H•! (SG(K),F) the image of the canoni-
cal map from H•c (SG(K),F) into H•(SG(K),F). When F = M̃ , we will
sometimes drop the symbol˜from the notations; so we write H•(SG(K),M).
When M̃ is defined by an action of G(Q), we also write H•? (S̃G,M) for the
projective limit of the H•? (SG(K),M) over all the open compact subgroups
K ⊂ G(Af ).

We recall also that the decomposition into connected components induces
a canonical isomorphism

(3) H•(SG(K),M) = ⊕iH•(Γi\HG, M̃i) ∼= ⊕iH•(Γi,M).

1.2.5. Hecke operators. We now briefly recall some equivalent definitions of
the action of the Hecke operators on the cohomology.

Assume x ∈ G(Af ), then the right translation by x defines an isomorphism
Rx : SG(K)→ SG(x−1Kx) and we expect that it induces a map

(4) H•(SG(x−1Kx),M)→ H•(SG(K),M).

This is so indeed if M̃ is defined by a representation of G(Q) (i.e. like in
definition (1.2.1)). In that case, the definition above induces a left action of
G(Af ) on H•(SG,M) such that there is a canonical isomorphism

H•(S̃G,M)K ∼= H•(SG(K),M)
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where the left hand side of the above equation denotes the K-invariant of
H•(SG,M). If M is a Q-vector space, we can therefore define an action of
the Hecke algebra C∞c (G(Af ),Q) on H•(SG,M) from our choice of an Haar
measure on G(Af ).

In the case M is not a representation of G(Q) but is a left K-module, we
need to make some additional assumptions on M . Assume that we have
∆f ⊂ Gf a semi-group containing K and acting on M on the left. Then for
any x ∈ ∆f , the map m 7→ x.m induces canonically a map R∗xM̃x−1Kx →
M̃K . We therefore have a map in cohomology

(5) H•(SG(x−1Kx),M)→ H•(SG(K),M)

In each case, this enables us to define a left action of the double cosets
KxK. Moreover these actions coincide when the definitions (1.2.1) and
(1.2.2) do. We can also compare this action with the definition (1.2.3).
We write gix = γx,igjihg∞ with h ∈ K. To the double class Γiγ−1

x,iΓji , we
can associate the map H•(Γi\HG,M) → H•(Γji\HG,M). In view of the
isomorphism (3), the action of the double coset KxK can equivalently be
seen as

(6) [KxK] = ⊕i[Γiγ−1
x,iΓji ].

1.3. Cohomology and automorphic forms. In this section, we review
some of the important known results relating cohomology of arithmetic
groups and automorphic forms. The study of this relationship has been
originally undertaken by A. Borel and N. Wallach [BW00] and developed
by many authors including G. Harder, J. Schwermer, J.-S. Li and the the-
ory has culminated with the results of J. Franke [Fr98] who proved Borel’s
conjecture.

1.3.1. Algebraic representations of G. We recall here the definition and con-
struction of some irreducible and algebraic representations of G. Let F ⊂ Q
be the smallest splitting field for G. We fix a Borel pair (B/F , T/F ) con-
tained in the pair (P0/F ,M0/F and for all field L containing F , we denote
respectively by N/L, B−/L and N−/L the unipotent radical of B/L, the Borel
subgroup opposite to B/L and the unipotent radical of B−/L. For any alge-
braic dominant weight λ of G/L with respect to the Borel pair (B/L, T/L),
we denote by VG

λ (L) the irreducible algebraic representation over L of G/L
of highest weight λ defined as the set of algebraic functions G/L 7→ A1

/L such
that

f(n−tg) = λ(t)f(g)

for all n− ∈ N−(L), t ∈ T (L) and g ∈ G(L). When G is clear from the
context, we usually drop it from the notation and write Vλ(L).
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We are interested in the cohomology of V∨λ(C) because it can be interpreted
in terms of automorphic forms. We we will recall below the main results
about this fact.

1.3.2. (g,K∞)-cohomology. Let g := LieR(G1
∞) and k := LieR(K∞). For

any (g,K∞)-moduleH, one denotes its (g,K∞)-cohomology byH•(g,K∞;H).
The reader can consult [BW00] for the definitions and basic properties of
this notion. Let ωλ the character of Z∞ acting on Vλ(C). We denote by
C∞(G(Q)\G(A)/K, ωλ) the space of C∞-functions on G(Q)\G(A)/K which
transform by ωλ under the action of Z∞. This is a (g,K∞)-module. By
noticing that the tangent space at the origin of SG(K) is canonicaly iso-
morphic to g/k and that multiplication by g ∈ G(A) gives an isomorphism
between the tangent space at the origine and the one at the class of g, it is
not difficult and classical to obtain an isomorphism:

H•(g,K∞;C∞(G(Q)\G(A)/K, ωλ)⊗ V∨λ(C))
δ∼= H•dR(SG(K),V∨λ(C))
∼= H•(SG(K),V∨λ(C))

1.3.3. Cuspidal and L2-Cohomology. Let L2(G(Q)\G(A), ωλ) the space of
square integrable functions on G(Q)\G(A) which tranform by ωλ under the
action of Z∞. There is a natural action of G(A) on these spaces. Moreover
we have a decomposition

L2(G(Q)\G(A), ωλ) = L2
d(G(Q)\G(A), ωλ)⊕ L2

cont(G(Q)\G(A), ωλ)

where L2
cont and L2

d denote respectively the continuous and discrete spectrum
of L2 for the action of G(A). We also denote by L2

cusp(G(Q)\G(A), ωλ)the
subspace of automorphic functions φ ∈ L2(G(Q)\G(A), ωλ) satisfying:∫

NP (A/NP (Q)
f(ng)dn = 0

for the unipotent radical NP of any Q-rational parabolic subgroup P of G.
We have L2

cusp ⊂ L2
d. Notice also that there is a spectral decomposition:

L2
d(G(Q)\G(A), ωλ) =

⊕
π

V m(π)
π

where (π, Vπ) runs in a set of irreducible representation with central char-
acter at infinity ωλ. Similarly we have:

L2
cusp(G(Q)\G(A), ωλ) =

⊕
π

V
mcusp(π)
π

where now the representation π are irreducible and cuspidal. In the above
decomposition m(π) and mcusp(π) are non negative integer denoting respec-
tively the multiplicities of π in L2

d and L2
cusp.

For an irreducible representation π as above, let V fin
π be the subspace of

vectors that generate a finite dimension vector space under the action of K∞.
It can be shown that under the decomposition above V fin

π is contained in
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C∞(G(Q)/G(A), ωλ)-functions (in fact more generally if π∞ is an admissible
representation of G∞, πfin∞ is a (g,K∞)-module). One defines the cuspidal
cohomology as

H•cusp(SG(K),V∨λ(C)) :=
⊕

π⊂L2
cusp

H•(g,K∞; (V fin
π )K ⊗ V∨λ(C))

and the square integrable cohomology as

H•2 (SG(K),V∨λ(C)) :=
⊕
π⊂L2

d

H•(g,K∞; (V fin
π )K ⊗ V∨λ(C))

This is a theorem of A. Borel that both inject via δ in the cohomology of
SG(K). Then we have the following inclusions:

H•cusp(SG(K),V∨λ(C)) ⊂ H•! (SG(K),V∨λ(C)) ⊂ H•2 (SG(K),V∨λ(C))

For ? = ∅, !, cusp or 2, we put:

H•? (S̃G,V∨λ(C)) := lim−→
K⊂Gf

H•? (SG(K),V∨λ(C))

It has a natural action of Gf . Any irreducible representation π has a de-
composition π = πf ⊗π∞ where πf and π∞ are respectively representations
of Gf and G∞. We now recall which π∞ intervene in the cohomology.

1.3.4. L-packet at infinity: For each dominant weight λ, one defines the “
cohomological ” packet Πλ as the set of essentially unitary representation
π∞ of G(R) of central character ωλ and such that

H•(g,K∞;πfin∞ ⊗ V∨λ(C)) 6= 0.

A cuspidal representation π is said cohomological if its archimedean com-
ponent π∞ belongs to Πλ for some weight λ (that we call its cohomological
weight).

1.3.5. The Harish-Chandra condition. We say that G∞ satisfies the Harish-
Chandra condition if the compact rank of Gder∞ equals its semi-simple rank.
In other words, Gder∞ contains a compact Cartan subgroup. In that case, it
is known by the foundational work of Harish-Chandra that G∞ has discrete
series representations (i.e. with square integrable matrix coefficients). In
that case, the dimension of SG(K) is even and we write dG for half its real
dimension.

Assume G∞ satisfies the Harish-Chandra condition. Then, if λ is dominant
and regular, it is known that

(VZ): The representations in Πλ are in the discrete series (i.e. can be
realized in L2(G∞, ωλ)). Moreover π∞ ∈ Πλ has cohomology only
in degree dG. Moreover it has dimension 1.

(HC): The set Πλ is in bijection with {w.(λ+ρ)−ρ ;w ∈ WG∞/WK∞}.
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(VZ) is due to Vogan and Zuckerman and (HC) is due to Harish-Chandra.
Even if G∞ does not satisfies the Harish-Chandra condition, the representa-
tions in Πλ are known to be tempered9 when λ is regular. By a theorem of N.
Wallach, it is known that if π is such that π∞ is tempered then the respec-
tive multiplicities mcusp(π) and m(π) of π in L2

cusp and in L2
d are equal. An

immediate consequence of these facts is the following (well-known) proposi-
tion.

Proposition 1.3.6. Assume G∞ satisfies the Harish-Chandra condition
and that λ is regular, then

(i) We have
Hq
cusp(S̃G,V∨λ(C)) = Hq

(2)(S̃G,V
∨
λ(C))

and these groups vanish except for q = dG.
(ii) For q = dG, we have an isomorphism of Gf

HdG
cusp(S̃G,W

∨
λ (C)) ∼=

⊕
π

HdG(g,K∞;πfin∞ ⊗ Vλ)⊗ π⊕m(π)

f
∼=
⊕
π

π⊕
m(π)

f

Here π = πf ⊗ π∞ runs in the set of cuspidal representation such that
π∞ ∈ Πλ.

1.4. Franke’s trace formula. When the group G is not anisotropic, the
cohomology of SG(K) is not reduced to its cuspidal or square integral part.
In the case of GL(2), G.Harder has proved it can be decomposed into its
cuspidal part and Eisenstein part [H87]. This result has been generalized by
him [H93] and J. Schwermer [Sch] in many other cases including the rank
one case and when λ is regular. The questions has been settled in fairly good
generality thanks to the work of J. Franke [Fr98] and works built on it. See
for example, the results of J-S Li and J. Schwermer [LS04]. It also results
of the works of J. Franke, that there is a trace formula for the cohomology
H•(S̃G,V∨λ(C)) in terms of trace of the square integral cohomology of the
Levi subgroup of G. This formula becomes quite simple when the weight λ
is regular.

1.4.1. Eisenstein classes. Recall that PG and LG denotes respectively the
set of standard parabolic subgroup of G and standard Levi subgroup of G.
We also write LcG for the subset of LG of Levi satisfying the Harish-Chandra
condition. For P ∈ PG with Levi decomposition P = MN , we denote by
ρP (m) := det(m; n)1/2 with n := Lie N . Let

WM := {w ∈ WG | w−1(α) ∈ R+, ∀α ∈ R+ ∩RM}
This is the set of representatives of the cosets WG/WM of minimal length.

Here R+ is the set of positive root with respect to (B/L, T/L) and RM is

9This means that the matrix coefficients of this representations belong to
L2+ε(G∞/Z∞) for all ε > 0
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the set of root for the pair (M/L, T/L). Then we have the so-called Kostant
decomposition

Hq(n,Vλ(C)) :=
⊕

w∈WM
l(w)=q

VM
w(λ+ρP )−ρP (C)

where VM
µ denotes the irreducible algebraic representation of M of highest

weight µ. From the definition of WM , w(λ+ ρP )− ρP is a dominant weight
with respect to the pair (B/L ∩M/L, T/L). For further use, let us remind
the reader that we have the relation:

(7) w ∗ λ := w(λ+ ρB)− ρB = w(λ+ ρP )− ρP
for all w ∈ WM . Since Hdim n(n,C) = C(−2ρP ), by Poincaré duality the
Kostant decomposition gives:

Hq(n,V∨λ(C)) :=
⊕

w∈WM
l(w)=dim n−q

VM
w(λ+ρP )+ρP

(C)∨

Let RP ⊂ X∗(ZM ) be the set of roots for the pair (ZM , n) and denote by
R∨P ⊂ X∗(ZM ) the corresponding set of coroots. Then we put

WM
Eis := {w ∈ WM , w−1(β∨) ∈ R+,∀β ∈ RP }

From the definition, we see that if λ is regular, (w ∗ λ)|ZM∩Gder is RP -
dominant if and only if w ∈ WM

Eis. From results of Harder, Schwermer-Li
and Franke, it is known that for w ∈ WM

Eis and for regular λ the Eisen-
stein series associated to a cohomology class in H•(SM (KM ),VM

w∗λ(C)∨) is
in the domain of convergence and therefore defines an Eisenstein class in
H•(SG(K),V∨λ(C)). When the weight λ is regular, these authors have fur-
thermore proved that the cohomolgy can be expressed in terms of cuspidal
and Eisenstein classes. One formulation of this fact is stated in the next
theorem.

For any function f ∈ C∞c (G(Af )) and any M ∈ LG, we denote its constant
term fM ∈ C∞c (M(Af )). Recall that it is defined for any m ∈M(Af ) by

fM (m) :=
∫
Km×N(Af )

f(k−1mnk)dndk

where P = MN is the levi decomposition of the unique standard parabolic
subgroup of G of Levi subgroup M . This definition is relevant in view of
the following (standard) formula:

tr(f : IndG(Af )

P (Af )σ) = tr(fM : σ)(8)

The induced representation10 here is the set of smooth function on G(Af )
such that φ(pg) = σ(p).φ(g) for all p ∈ P (Af ) and g ∈ G(Af ).

10Notice here that we do not consider the unitary induction. The main reason is that
the non-unitary induction preserves rationality and integrality of the Hecke eigenvalues.
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Theorem 1.4.2 (Franke). Assume λ is regular and f ∈ C∞c (G(Af )), then
we have:

tr(f : H•(S̃G,V∨λ(C))) =
∑
M∈LG

(−1)dimnM

∑
w∈WM

Eis

(−1)l(w)tr(fM : H•cusp(S̃M ,VM
w(λ+ρP )+ρP

(C))∨)

Proof. This follows from formula (2) page 266 of the paper of Franke [Fr98].

2. Spectral theory on p-adic Banach spaces

The aim of this section is to set up some basic facts about the spectral
theory for the derived category of Banach modules over a Banach algebra.
We define the what we call the finite slope cohomology attached to complexes
of p-adic Banach spaces equipped with completely continuous (or compact)
operators. Then we extend it to p-adic Frechet spaces. We do not pretend
any originality in this section but it gives a convenient frame for the theory
developed in the fourth section.

2.1. Perfect complexes of Banach spaces. We introduce the notion
of perfect complexes of Banach spaces that will be suitable to our spec-
tral theory. It arises naturally as the theory of perfect complexes in the
Grothendieck theory of Lefschetz trace formula in étale cohomology.

2.1.1. In this section, A will be a topologically finitely generated Banach
Qp-algebra. Recall that it is a Qp algebra equipped with an ultrametric
norm |.|A satisfying

|ab|A ≤ |a|A · |b|A for all a, b ∈ A

and that we can normalize such that |x|A = |x|p for all x ∈ Qp. We
will assume (A, |.|) satisfies the Hypothesis M of [Co97, A1]. We write
A0 := {a ∈ A | |a| ≤ 1} and m := {a ∈ A | |a| < 1} ⊂ A0. Then we
furthermore assume that A is semi-simple in the sense of [Co97, A1], which
means A0/m is a field and that the norm on it induced by that of A is
multiplicative. We again refer to the reference [Co97] for the notions and
the basic properties of Banach A-modules. We call a Frechet A-module a
topological Qp-vectors space V equipped with a continuous A-module struc-
ture and which is topologically isomorphic to the projective limit of Banach
A-modules. A Frechet A-module will be said compact if the transition maps
of the projective limit are completely continuous.
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2.1.2. The categories BanA and FreA. For any Qp-Banach algebra A, we
consider the category BanA (respectively FreA) whose objects are the Ba-
nach (respectively Frechet) A-modules and the homomorphisms are the con-
tinuous A-linear maps. These categories are obviously additive but not
abelian. However, they are exact in the sense of Quillen, the short exact
sequences being those exact in the category of A-modules. Moreover BanA
satisfies11 the axiom 1.3.0 of [La83]. Every morphism f ∈ Hom(E,F ) has
a kernel and a coimage (and therefore an image and a cokernel). One can
check easily that

Ker f = f−1(0), Im f = f(E), Coker f = F/f(E) and Coim f = E/f−1(0)

Recall that a morphism f is said strict if and only if it induces an isomor-
phism from Coim f onto Im f . This means here that f(E) is closed in
F . Equivalently, an epimorphim is strict if it is surjective as a morphism of
A-module and a monomorphism is strict if its image is closed.

2.1.3. Let C(BanA) the category of complexes of Banach A-modules with
homomorphisms the maps of degree 0 between complexes. We denote by
K(BanA) the triangulated category of complexes of objects of BanA “modulo
homotopy”. We say that a complex is acyclic if it is exact at every degree and
denote by K∅(BanA) the full subcategory of acyclic complexes. This cate-
gory is “épaisse” and following Deligne, it is therefore possible to consider the
derived category D(BanA) as the quotient category K(BanA)/K∅(BanA).
The objects of D(BanA) are the same as those of K(BanA). Recall that
if M•, N• ∈ Ob(D(BanA)), a homomorphism from M• to N• is a triple
(P •, s, f) where s ∈ HomK(BanA)(P •, N•) and f ∈ HomK(BanA)(P •,M•)
such that s is a quasi-isomorphism. The latter means that the cone of s is
acyclic.

2.1.4. Projective Banach A-modules. Recall the following definition.

Definition 2.1.5. Let A be a Banach p-adic algebra over a p-adic field L and
M a Banach A-module. One says that M is an orthonormalizable A-module
or is orthonormalizable over A if there exists a family B = {mi; i ∈ I} of
elements of norm ≤ 1 and such that for any m ∈M there is a unique family
(ai)i∈I ∈ AI such that limi ai = 0 and m =

∑
i∈I ai.mi. We call B an

orthonormal basis of M .
For any Banach space over L, we denote N◦ the lattice of elements of norm
≤ 1. We recall the following lemma.

Lemma 2.1.6. Let M be a Banach A-module and a ∈ A such that |a| < 1.
Then if there exists a subset B ⊂M such that the image of B in M◦/a.M◦

11The category BanA is quasi-abelian in the sense of [S99]. This means that the pull-
back (resp. push-forward) of any strict epimorphism (resp. any strict monomorphism) is
still a strict epimorphism (resp. strict monomorphism). This fact can be easily verified as
in [S99, Prop. 3.2.4].
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is a basis of this module over A◦/a.A◦. Then B is an orthonormal basis of
N . Especially any Banach space over L is orthonormalizable on L.

An object P of BanA is said projective if for any strict epimorphism f :
N →M and any map g : P →M there exists a map h from P to N so that
the following diagram is commutative.

P
h

~~|
|

|
|

g

��
N

f
// // M

A complex M• is called perfect if it is bounded and if M q is projective for
all q. We denote Kpf(BanA) the full subcategory of K(BanA) of perfect
complexes.

Lemma 2.1.7. A Banach A-module is projective (in the category BanA) if
and only it is a direct factor of an orthonormalizable A-module.

Proof. Let us prove that an orthonormalizable P is projective. Let N,M, f
and g be as above. Since f strict, it induces an isomorphism of Qp-Banach
spaces N/Ker f onto M . Then we choose a Qp-direct factor M ′ of Ker f
inside N so that f induces an isomorphism of Qp-Banach spaces from M ′

onto M . If (ei)i is an A-basis of P , let hi ∈ M ′ for each i be such that
f(hi) = g(ei) for all i. Since g is continuous and f |M ′ is an isomorphism
of Qp-Banach spaces, we know that the family (hi)i is bounded. Therefore
there exists a continuous A-linear map from P to N such that h(ei) = hi
for all i and thus such that f ◦ h = g. What remains to be proved is formal
and left to the reader.

Lemma 2.1.8. Let M• and N• be two complexes of Banach A-modules.
Assume that M• is perfect, then the canonical following morphism is an
isomorphism:

HomK(BanA)(M
•, N•)→ HomD(BanA)(M

•, N•)

Proof. This is a special case of [La83, Cor. 2.2.3] in which the space X is
reduced to one point and the fibred category C over X is BanA and C0 is
the full subcategory whose objects are the projective objects of BanA.

2.1.9. Category of perfect complexes. We denote Dpf(BanA) the image of
Kpf(BanA) in D(BanA). It follows from the lemma above that Dpf(BanA)
is a full subcategory of D(BanA). If A = L is a finite extension of Qp,
every Banach space over L is orthonormalizable. Therefore, Dpf(BanL) =
D(BanL)

2.2. Compact operators.
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2.2.1. Fredholm determinant. Let M be an orthonormalizable Banach A-
module and u be a compact (or completely continuous) operator acting on
M . By definition, recall that this means there exists a sequence of projective
and finitely generated Banach A-modules (Mi)i such that u|Mi converges to
u when i→∞. One can define its Fredholm determinant by:

PM (u,X) = det(1−X.u|M) := lim
i→∞

det(1−X.ui|Mi)

where for all i, we have written ui for the composite of u|Mi with the pro-
jection onto Mi. This definition is independant of the choice of the sequence
(Mi)i cf. [Co97]. It extends easily to projective Banach modules.

2.2.2. Trace versus determinant. The first coefficient of the series det(1 −
X.u|M) is the opposite of the trace tr(u;M). On the other hand, one can
recover the Fredholm series from the trace map. There exists a universal
sequence of polynomials12 Qn(X1, . . . , Xn) ∈ Q[X1, . . . , Xn] for n ≥ 1 such
that we have

PM (u,X) = det(1−X.u|M) =
∞∑
n=1

tr(Qn(u, u2, . . . , un);M)Xn

These polynomials are well known, for instance, Q1(X1) = −X1, Q2(X1, X2) =
1
2(X2

1 −X2), etc . . .
From this, one can see that many properties of the Fredholm determinant

follow from the corresponding properties of the trace map. In particular, if
we have an A-valued linear map t from an ideal of a sub-algebra of EndA(M),
one can define the associated formal series for any element u of this ideal by

Pt(u,X) :=
∞∑
n=1

t(Qn(u, u2, . . . , un))Xn

2.2.3. We consider the category Ban∗A whose objects are pairs (M,uM ) with
M ∈ Ob(BanA) and uM be an A-linear compact operator on M . A mor-

phism (M,uM ) → (N, uN ) is given by a morphism M
f→ N in BanA such

that f ◦uM = uN ◦f . This category is also exact and has kernel and cokernel.
A sequence is exact if its image by the forgetful functor BanA → Ban∗A is an
exact sequence in BanA. We can define similarly the categories C(Ban∗A),
K(Ban∗A), Kpf(Ban∗A) and D(Ban∗A) Dpf(Ban∗A).

Lemma 2.2.4. Let M,N and P be three projective Banach A-modules fitting
in an exact sequence in the category Ban∗A:

0→ (N, uN )
f→ (M,uM )

g→ (P, uP )→ 0

Then we have

det(1−X.uM |M) = det(1−X.uN |N) · det(1−X.uP |P ).

12The Qn’s are sometimes called Newton polynomials.
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Proof. This follows easily from [Co97, Lemma A.2.4].

2.2.5. Definition. Let (M•, u•) ∈ Ob(C(Ban∗A)) such that M• is a perfect
complex. Then we put

det(1−X.u•|M•) :=
∏
q

det(1−X.uq|M q)(−1)q .

It follows from Lemma 2.2.4, that det(1−X.u•|M•) = 1 if M• is acyclic.

2.2.6. Let M• ∈ Ob(Dpf(BanA)). A homomorphism HomD(BanA)(M•,M•).
is said to be compact (or completely continuous) if it has a representative
u• ∈ HomK(BanA)(M•,M•) (i.e. in its homotopy class) such that (M•, u•) ∈
Ob(C(Ban∗A)).

Lemma 2.2.7. The operator u• is compact if and only if there exists a se-
quence of operators of finite rank (u•n)n in HomD(BanA)(M•,M•) such that
lim
n→∞

uqn = uq for all q. Equivalently, there are finite rank projection opera-

tors e•n ∈ HomD(BanA)(M•,M•) such that lim
n→∞

eqn ◦ uq = uq for all q.

Proof. This follows easily from [Co97, A.1.6].

Lemma 2.2.8. Let u• and v• be two A-linear compact operators on a per-
fect complex M•. If u• and v• are homotopically equivalent, then det(1 −
X.u•|M•) = det(1−X.v•|M•).

Proof. From the remark made in §2.2.2, it suffices to show that if u• and
v• are homotopycally equivalent then they have the same trace. For this,
it is sufficent to treat the case where v• = 0. Then, there are operators
kq : M q → M q−1 such that uq = dq−1 ◦ kq + kq+1 ◦ dq for all q with dq

denoting the differential of the complex M• in degree q. Let (e•n)n be as
in the previous lemma such that lim

n→∞
eqn ◦ uq = uq for all q. Let us put

kqn := eq−1
n ◦ kq ◦ eqn. Since eq+1

n ◦ dq = dq ◦ eqn, we have tr(eqn ◦ uq) =
tr(eqn◦uq◦eqn) = tr(eqn◦dq−1◦kq◦eqn+eqn◦kq+1◦dq◦eqn) = tr(dq−1◦kqn+kq+1

n ◦dq)
This implies that tr(e•n◦u•) :=

∑
q(−1)qtr(eqn◦uq) = 0 and therefore passing

to the limit we have tr(u•) = 0.

2.2.9. For any M• ∈ Ob(Dpf(BanA)) and any compact A-linear operator u•

of M•, it follows from the previous lemma that the Fredholm determinant
det(1 − X.u•|M•) does not depend of the homotopy class of u•. For any
compact homomorphism u ∈ HomDpf(BanA)(M•,M•), the Fredholm deter-
minant of u is therefore (well-)defined as the Fredholm determinant of any
of its representatives in its homotopy class.
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Corollary 2.2.10. Let (u•N , u
•
M , u

•
P ) be the morphism of a distinguished

triangle of Dpf(BanA)

N• //

u•N
��

M• //

u•M
��

P • //

u•P
��

N•[1]

u•N [1]

��
N• // M• // P • // N•[1]

such that u•N , u
•
M and u•P are compact. Then we have

det(1−X.u•M |M•) = det(1−X.u•N |N•) · det(1−X.u•P |P •)

Proof. Since this triangle is distinguished, (P •, u•P ) is homotopic to the cone
of (N•, u•N ) → (M•, u•M ). The corollary follows from this observation and
the previous lemma.

2.3. Spectral decompositions.

2.3.1. Slope decompositions. We recall here a notion13 introduced by Ash-
Stevens [AS00] in their work on GLn. Let L/Qp be a finite extension. A
polynomial Q(X) ∈ L[X] of degree d ∈ Z≥0 is said of slope ≤ h if Q(0) ∈ O×L
and if the roots of Q∗(X) := XdQ(1/X) in Qp have their slope (i.e p-adic
valuation) less or equal to h.

Let M be a vector space over L and let u be a (continuous) linear endo-
morphism of the vector space M . We do not require M to be equipped with
a p-adic topology. A ≤ h-slope decomposition of M with respect to u is a
direct sum decompostion M := M1 ⊕M2 such that:

(1) M1 and M2 are stable under the action of u.
(2) M1 is finitely dimensional over L.
(3) The polynom det(1−X.u|M1) is of slope ≤ h.
(4) For any polynomial Q of slope ≤ h, the restriction of Q∗(u) to M2

is an invertible endomorphism of M2.

Lemma 2.3.2. Let M and M ′ be two L-vector spaces. Let u and u′ be
two endomorphisms of M and M ′ respectively. Let M = M1 ⊕ M2 and
M ′ = M ′1 ⊕M ′2 be ≤ h-slope decomposition of M and M ′ with respect to u
and u′ respectively. Let f be a (continuous) L-linear map from M to M ′

satisfying f ◦ u = u′ ◦ f . Then f maps respectively M1 and M2 into M ′1 and
M ′2 (i.e. f(Mi) ⊂M ′i for i = 1, 2).

Proof. Let Q(X) := det(1 −X.u|M1) and Q′(X) := det(1 −X.u′|M ′1). Let
z ∈M1 and write f(z) = x+y with x ∈M ′1 and y ∈M ′2. Since Q∗(u).z = 0,
we must have Q∗(u′).x = −Q∗(u′).y = 0. By hypothesis, Q∗(u′) is invertible

13Our definition is actually stronger than theirs since they don’t require that M1 has
a stable direct factor.
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on M ′2. Therefore y = 0 and f(z) ∈ M ′1. Let now z ∈ M2. Since Q′∗(u)
is invertible on M2, there exists w ∈ M2 such that z = Q′∗(u).w. Write
f(w) = x+ y with x ∈ M ′1 and y ∈ M ′2. Since Q′∗(u′).x = 0, we must have
f(z) = Q′∗(u′).f(w) = Q′∗(u′).y ∈M ′2.

Corollary 2.3.3. Let M , u and h as in 2.3.1. Then, we have uniqueness
of the ≤ h-slope decomposition of M . We will write M≤h for M1 and M>h

for M2.

Proof. Apply the previous lemma for M = M ′ and f = idM .

Corollary 2.3.4. Let M ,M ′, u, u′ and f as in the previous lemma and
suppose there is a map φ : M ′ → M such that we have a commutative
diagram:

M
f //

u

��

M ′

φ

}}||
||

||
||

u′

��
M

f // M ′

Assume that M and M ′ have ≤ h-slope decompositions with respect to u and
u′. Then f induces an isomorphism between M≤h and M ′≤h.

Proof. By Lemma 2.3.2, f induces a map M≤h →M ′≤h. We want to show
it is an isomorphism. From the definition of the ≤ h-slope decomposition,
the restrictions of u and u′ to respectively M≤h and M ′≤h are invertible.
Since we have φ ◦ f = u and f ◦ φ = u′, this implies easily that f induces
an isomorphism from M≤h onto M ′≤h.

Corollary 2.3.5. Let M , u and h as in 2.3.1 and N ⊂M a subspace stable
under the action by u. Assume that M has a ≤ h-slope decomposition. Then
N has ≤ h-slope decomposition if and only if M/N does. When this is the
case, we have

• (M/N)≤h = M≤h/N≤h and N≤h = N ∩M≤h.
• (M/N)>h = M>h/N>h and N>h = N ∩M>h.

Proof. Assume N has a slope decomposition (The other case is left to the
reader). From the lemma 2.3.2, we have N≤h ⊂ M≤h and N>h ⊂ M>h.
Hence N≤h = N ∩ M≤h and N>h = N ∩ M>h therefore M̄ = M/N =
M̄1 ⊕ M̄2 with M̄1 := M≤h/N≤h and M̄2 := M>h/N>h. The first three
conditions of 2.3.1 are obviously satisfied. If Q is a polynomial of slope ≤ h,
Q∗(u) induces an isomorphism of M>h and of N>h. It therefore induces an
isomorphism on the quotient M̄2 which proves the fourth condition.
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2.3.6. Finite slope part of M for an operator u. Let M and u be as in
the section 2.3.1. Let h′ ∈ Q with h′ ≥ h. Then if M has a ≤ h′-slope
decomposition wrt. u, it has a ≤ h-slope decomposition and we have a u-
stable decomposition M≤h

′
= M≤h⊕M>h,≤h′ such that M>h = M>h,≤h′ ⊕

M>h′ . We will say that M has a slope decomposition with respect to u if
for an increasing sequence hn of rationals going to infinity (and therefore for
all such sequences) M has a ≤ hn-slope decomposition for all hn. Then we
put

det(1−X.u) := lim
n→∞

det(1−X.u|M≤hn)

for (hn)n any sequence of rationals going to infinity. It is straitforward to
check that this sequence is convergent in L[[X]] and that the limit does not
depend of the sequence (hn). If M has a slope decomposition with respect
to u, we write sometimes Mfs to denote the inductive limit over n of the
M≤hn ’s. We call it the finite slope part of M . The space Mfs has obviously
a slope decomposition and M≤hfs = M≤h for all h.

2.3.7. Let now N ⊂M be a u-stable subspace of M . Assume that N has a
slope decomposition. Then by Corollary 2.3.5, so does M/N and we have:

det(1−X.u|M) = det(1−X.u|N).det(1−X.u|(M/N))

Theorem 2.3.8. Let A be a Banach Qp-algebra, M be a projective Banach
A-module and u be a compact A-linear operator of M . Then P (X,u) :=
det(1 − X.u|M) is an entire power series with coefficient in A ( i.e. ∈
A{{T}}).

If we have a prime decomposition P (X,u) = Q(X)S(X) in A{{X}} with Q
a polynomial such that Q(0) = 1 and Q∗(0) is invertible in A, then there exist
an entire power series RQ(T ) ∈ TA{{T}} whose coefficients are polynomials
in the coefficients of Q and S and we have a decomposition of M

M = Nu(Q)⊕ Fu(Q)

of closed sub A-modules such that

(1) The projector on Nu(Q) is given by RQ(u),
(2) Q∗(u) annihilates Nu(Q),
(3) Q∗(u) is invertible on Fu(Q).

If moreover A is notherian then Nu(Q) is projective of rank r and

det(1−X.u|Nu(Q)) = Q(X).

Proof. This follows directly from results of Serre’s and Coleman’s works and
their proofs and some generalizations by Buzzard. See [Co97, Se62, Bu04]
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If A = L = is a finite extension of Qp, an immediate consequence of
the previous result is that M has a ≤ h-slope decomposition for any h ∈
Q. Moreover the definitions of det(1 −X.u|M) of §2.3.6 and §2.2 coincide.
The following proposition is not really needed but it shows that taking the
Hausdorff quotient does not harm when considering finite slope part for a
given operator.

Proposition 2.3.9. Let N
j
↪→M a continuous injection of L-Banach spaces

(we don’t assume the image is closed). Let uN and uM be respectively com-
pact endomorphisms of N and M such that j ◦uN = uM ◦ j. Then M/j(N)
have slope decompositions with respect to uM/N = uM (mod j(N)) and

det(1−X.uM ) = det(1−X.uN ).det(1−X.uM/N )

Let j(N) the closure of the j(N) inside M . Then u induces a compact

operator ũM/N on the Hausdorf quotient M̃/N = M/j(N) of M/N and we
have:

det(1−X.uM/N ) = det(1−X.ũM/N ).

Proof. By Serre’s theorem (Theorem 2.3.8 with A = L), N has a slope
decomposition with respect to uN and therefore so j(N) does with respect
to uM since j is injective and j ◦ uN = uM ◦ j. The first formula follows
from 2.3.7. We now prove the second part of the corollary. Notice first that

j(N) = j(N)≤h ⊕ j(N)>h.(9)

Indeed let zn = xn + yn be a sequence of N with xn ∈ N≤h and yn ∈ N>h

such that j(zn) is converging in M . To prove our claim, it suffices to show
for example that j(yn) converges in M>h. Let Q = det(1 − X.u|M≤h).
Then the sequence Q∗(u).j(zn) = Q∗(u).j(yn) must converge. Since Q∗(u)
is a continuous isomorphism of the Banach subspace M>h it is bi-continuous
by the open mapping theorem. Therefore yn converges to y and we have
proved (9). We deduce easily from the fact that M≤h and M>h are closed
and the inclusion j(N)≤h ⊂ M≤h and j(N)>h ⊂ M>h that (9) is the ≤ h-
slope decomposition of j(N). Since N≤h is finite dimensional, we have
j(N≤h) = j(N≤h) and from the decomposition (9), this is equal to the ≤ h-
slope part of j(N). Therefore det(1−X.uN |N≤h) = det(1−X.uM |j(N)

≤h
.

This equality for all h implies that det(1 − X.uN ) = det(1 − X.uM |j(N))
and the last claim follows from the first equality for the lemma applied to
j(N) ⊂M and j(N) ⊂M .

2.3.10. Fredholm determinant for complexes revisited. We assume that M•

is a perfect complex of Banach vector spaces over L a finite extension of Qp.
Let u• : M• → M• a continuous endomorphism of M• such that for all q,
the operator uq ∈ EndL(M q) is a compact operator.
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Let us denote by dq the differential homomorphism of the resolution from
M q to M q+1. By definition, this homomorphism is continuous and therefore
Ker dq is a Banach subspace of M q. However Im dq−1 ⊂ Ker dq is not
necessarily closed and therefore Hq(M•) = Ker dq/dq−1(M q−1) might not
be Hausdorff. We denote by H̃q(M•) its maximal Hausdorff quotient. We
have H̃q(M•) = Ker dq/Im dq−1 = Ker dq/dq−1(M q−1).

On the other hand, since dq is continuous and commutes with uq, Ker (dq)
is a Banach space with action of uq. It therefore has a slope decomposition
and this implies that M q/Ker (dq) ∼= Im (dq) has a slope decomposition.
This is true for all q’s therefore Hq(M•) = Ker (dq)/Im (dq−1) has a slope
decomposition. Let us write Hq

fs(M
•) its finite slope part. By the proposi-

tion above and its proof we can therefore deduce that

Hq
fs(M

•) = H̃q(M•)fs

Corollary 2.3.11. With the notations as above, we have

det(1−X.u•|M•) =
∏
q

det(1−X.uq|H̃q(M•))(−1)q .

Proof. We put M = Ker dq, N = M q−1/Ker dq−1 with its structure of
quotient Banach space and let j the continuous injective homomorphism
from N into M induced by dq so that j(N) = Im dq−1. By the previous
proposition, we have

det(1−X.uq|Hq(M•)) = det(1−X.uq|H̃q(M•)) =
det(1−X.uq|Ker dq)

det(1−X.uq|Im (dq−1)

On the other hand, from the exact sequence 0→ Ker dq →M q → Im dq →
0 by the previous proposition we have:

det(1−X.uq|M q) = det(1−X.uq|Ker dq). det(1−X.uq|Im dq)

Making now the alternate product over q and combining the above two
equalities provide the desired result.

2.3.12. Generalization to compact p-adic Frechet spaces or p-adic nuclear
spaces. Recall that a p-adic topological vector space V is called a compact
p-adic Frechet space if it is the projective limite of p-adic Banach spaces Vn
such that the transition maps Vn → Vm for n > m are completely continuous.
An endomorphism u of V will be said compact if it is continuous and if for
each n we have a commutative diagram of continuous maps:

V //

u

��

Vn−1

u′n
��

V // Vn
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where the horizontal arrows are the canonical projection maps coming from
the projective limit. By composing u′n with the transition map Vn → Vn−1

we get an endomorphism un of the Banach space Vn which is completely
continuous. It is easy to check that un is uniquely determined by u and that
we have the following commutative diagram for any n:

V //

u

��

Vn

un

��

// Vn−1

un−1

��u′n}}zz
zz

zz
zz

V // Vn // Vn−1

If the Vn are projective Banach space on some Banach algebra A, then we
put

tr(u;V ) := tr(un;Vn)

and it is clear from the above diagram that this definition is independant
of n. Similarly we can write slope decomposition for V as we did for p-
adic banach spaces. More generally, it is easy to see that all the previous
discussion on compact operators on complexes of p-adic Banach spaces ex-
tends mutatis mutandis to the case of compact operators on complexes of
compact Frechet spaces. We will take this fact for granted in the following
sections and apply the results explicitly stated for Banach spaces to the case
of compact p-adic Frechet spaces without further notice. We need to state
the following lemma.

Lemma 2.3.13. Let u be a compact operator on a compact Frechet space
V over a finite extension of Qp. For any h ≥ 0, there is a ≤ h-slope
decomposition of V with respect to u. Moreover, we have:

V ≤h ∼= V ≤hn

for all n where for each n, Vn = V ≤hn ⊕ V >h
n is the slope decomposition of

Vn with respect to un. This fact holds as well for compact maps between
complexes of compact Frechet spaces and the induced slope decomposition on
their cohomology.

Proof. By Lemma 2.3.2, the projection Vm → Vn for n > m induces projec-
tions on the ≤ h-slope decompositions of Vm and Vn with respect to um and
un. This implies that V ≤h = lim

←−
n

V ≤hn and V >h = lim
←−
n

V >h
n are well defined

and provide a ≤ h-slope decomposition for V . We are left now to prove that
the projections V ≤hn → V ≤hm are actually isomorphisms. By an induction
argument, it is sufficient to prove this for any m > n. But for m = n′ as
in the diagram above, this follows from Corollary 2.3.4. The result holds
clearly when one replaces V by a complex of compact Frechet spaces and
this implies the result for the cohomology by the arguments used in this
section.
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3. p-adic Overconvergent coefficients

Let L be a finite extension of Qp. The goal of this section is to define the
system of overconvergent14 coefficients that will be used to interpolate the
cohomology of the local systems Vλ(L). As in the original GL(2)-situation
carried over by H. Hida in the ordinary case and by G. Stevens in general, the
idea to do this is to replace Vλ(L) by a system of coefficients which doesn’t
depend on the weight but endowed with an action15 of G which does depend
on the weight. When G = GL(n), one recovers the construction due to A.
Ash and G. Stevens in [AS00] which they recently generalized in [AS06].

3.1. Basic Notations and Definitions.

3.1.1. Algebraic data. In this section, G is a connected reductive group over
Qp that we suppose quasi-split16 and splitting over a finite unramified exten-
sion of Qp. We fix T a maximal torus ofG andB a Borel subgroup containing
T . By our assumptions, we can (and do) choose F/Qp a finite Galois and
unramified extension of Qp over which G is split. Then (B/F , T/F ) defines
a Borel pair of G/F . We denote by N the unipotent radical of B and B−

(resp. N−) the opposite Borel subgroup (resp. opposite unipotent radical).
We will use gothic letters to denote the corresponding Lie algebra over Qp,
g, t, b, b−, n, n−.

We set the lattice of algebraic weights X∗(T ) := Homgp(T/F ,Gm/F ) ↪→
HomF (t/F , F ) and algebraic co-weights X∗(T ) := Hom(Gm/F , T/F ) and we
denote by (., .) the canonical pairing on X∗(T )⊗X∗(T ). We let R+ ⊂ X∗(T )
be the set of positive roots with respect to (B, T )/F . For each root α ∈ R,
we denote Hα (resp. α∨) the corresponding coroot in t/F (resp. in X∗(T );
recall that (α, α∨) = α(Hα) = 2. For each root α, we also choose a basis Xα

of gα = {X ∈ g/F | ad(t).X = α(t)X ∀t ∈ T} such that [Xα, X−α] = Hα.
A weight λ ∈ X∗(T ) is called dominant with respect to B if λ(Hα) ≥ 0 for
all positive root α and we write X∗(T )+ for the cone of dominant weights.

We denote by W the Weyl group of the pair (G/F , T/F ) acting on T/F
and therefore on the lattices X∗(T ) and X∗(T ). It is generated by elements
of order two called simple reflexions sα for α running among the simple
roots of R. The action on the weights is given by the well-known formula
sα(λ) = λ−λ(Hα)α for any α ∈ R. We will also need the notion of length of
an element of W. It can be defined as the smallest integer l such that there

14This terminology is non standard. It is used as a reminiscence of the notion of
overconvergent modular forms.

15Not an action of G in fact but of some sub semi-group of it containing an Iwahori
subgroup.

16These assumptions are certainly unnecessary if one wants to use the language of
Bruhat-Tits’ buildings.
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is a decomposition w = sα1 . . . sαl where the αi’s are simple roots. Such a
decomposition is called a reduced decomposition.

3.1.2. Iwahori subgroups and semi-groups. We fix I ⊂ G(Qp) an Iwahori
subgroup in good position with respect to B. By this, we mean that we
have fixed compatible integral models for G,B, T,N,N− over Zp such that
I = I1 where we have put for every integer m ≥ 1:

Im := {g ∈ G(Zp) |g mod pm ∈ B(Z/pmZ)}
I ′m := {g ∈ G(Zp)) |g mod pm ∈ N(Z/pmZ)}

We have Im/I ′m ∼= T (Z/pmZ). Recall that we have the Iwahori decomposi-
tion:

Im = I−m.T (Zp).N(Zp)

with I−m := Im ∩ N−(Qp). We consider T+ the set of elements t ∈ T (Qp)
such that

t−1.N(Zp).t ⊂ N(Zp)

and T++ ⊂ T+ the set of elements t such that⋂
i≥1

t−i.N(Zp).ti = {1}

and we put ∆+
m = ImT

+Im and ∆++
m = ImT

++Im. We will drop the index
m from the notation, when it is equal to 1. Using the Iwahori decompo-
sition, it is straightforward to see that any element g ∈ ∆+

m has a unique
decomposition:

(10) g = n−g tgn
+
g with n−g ∈ I−m, tg ∈ T+ and n+

g ∈ N(Zp)

The set T+ and T++ are sub semi-groups of T (Qp) and we clearly have
T (Zp) ⊂ T+. Since T (Qp)/T (Zp) is isomorphic to a sum of copies of Z, we
may choose a splitting17 ξ of the canonical projection T (Qp)→ T (Qp)/T (Zp)
which induces an isomorphism of groups:

T (Qp) ∼= T (Zp)× T (Qp)/T (Zp)

We will also write ξ for the composite T (Qp) → T (Qp)/T (Zp) → T (Qp).
Notice that ξ(T+) ⊂ T+ since ξ(t)t−1 ∈ T (Zp) for all t ∈ T (Qp). If T is
split over an unramified extension of Zp, we can (and do) choose ξ so that
for any algebraic character λalg ∈ X∗(T ), we have

(11) λalg(ξ(t)) = |λalg(t)|−1
p

for all t ∈ T (Qp).

17This choice is similar to the choice of uniformizing elements in the definition of Hecke
operators at places dividing p in [Hi88].
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3.1.3. The left ∗-action of I and ∆+ on some p-adic spaces. We consider
the following p-adic cells:

Ω0 := I−1 T (Zp)\I ⊂ B−(Qp)\G(Qp)

Ω1 := I−1 \I ⊂ N
−(Qp)\G(Qp)

By the Iwahori decomposition, we have Ω0
∼= N(Zp) and Ω1

∼= B(Zp). For
any element x ∈ G(Qp), let us denote by [x] its class in B−(Qp)\G(Qp).
Then the right translation by I defines an action on Ω0 by [x] ∗ g = [xg].
We can extend this action into an action of ∆+. For this it is convenient to
introduce the p-adic spaces:

Ω+
0 := I−1 T (Zp)\∆+ ⊂ B−(Qp)\G(Qp)

Ω+
1 := I−1 \∆

+ ⊂ N−(Qp)\G(Qp)

We have a retraction s : Ω+
0 → Ω0 for the natural inclusion Ω0 ⊂ Ω+

0

defined by [g] 7→ s([g]) := [ξ(tg)−1g] where the element tg is defined via the
decomposition (10) and ξ is the section defined in the previous paragraph.
Since ξ(tg) = 1 when g ∈ I, this is a well-defined retraction of the inclusion
Ω0 ⊂ Ω+

0 . Then the action18 of g ∈ ∆+ on Ω0 is defined by:

[x] ∗ g := s([xg]) = [ξ(tg)−1xg]

We define the action of I and ∆+ on Ω1 using the same retraction of Ω1 ⊂
Ω+

1 .

Lemma 3.1.4. The above formula gives a well defined left action of the
semi-group ∆+ on Ωi that extends the natural action of I.

Proof. On needs to show that [x] ∗ gg′ = ([x] ∗ g) ∗ g′ for any g, g′ ∈ ∆+.
This follows from the fact that tgg′ = tgtg′ which is easily checked using
the Iwahori decomposition. Indeed we have: [x] ∗ gg′ = [ξ(tg′tg)−1xgg′] =
[ξ(t−1

g )xg] ∗ g′ = ([x] ∗ g) ∗ g′. Moreover, if g ∈ I, ξ(tg) = 1. Therefore the
action of ∆+ restricted to I is the same as the right translation by I.

3.2. Local analytic induction.

3.2.1. Analytic functions. We now recall some definitions and some fact on
locally analytic functions. We will call p-adic space any topological space X
which is isomorphic19 to an open subset of Qr

p for some r. We will always
identify such a space with an open subset of Qr

p and the definitions below
will not depend of this identification. In the examples we will consider later
X will be either a compact open subset of G(Qp) or Ω0 that we will identify
with N(Zp)(⊂ G(Qp)) via the Iwahori decomposition.

18The reader should keep in mind now and in all this paper that the ∗-action depends
of the splitting character ξ.

19defined up to a (locally) Qp-algebraic isomorphism
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Let L be a finite extension of Qp. A continuous function on such a space,
f : X → L, is said L-analytic if it can be expressed as a converging power
series:

(12) f(x1, . . . , xr) =
∑

n1,...,nr

αn1,...,nr(x1 − a1)n1 . . . (xr − ar)nr

for all (x1, . . . , xr) ∈ X where αn1,...,nr ∈ L for some a = (a1, . . . , ar) ∈ X.
Of course, it is algebraic if almost all the αn1,...,nr ’s are zero. Basic examples
of analytic functions are given by the logarithm or exponential functions
respectively defined on p-adic Lie groups and Lie algebras.

For any integer n ∈ Z, we will say that f : X → L is n-locally L-analytic
if X can be covered by disks of radius p−n over which f is L-analytic. It is
said locally L analytic if it is n-locally L-analytic for some n. We usually
denote by A(X,L) the space of locally L-analytic functions on X and by
An(X,L) ⊂ A(X,L) those that are n-locally analytic. Of course, we have:

A(X,L) =
⋃
n≥0

An(X,L)

If X is compact, each An(X,L) is a p-adic Banach space equipped with sup
norm:

‖f‖n := Supa|αn1,...,nr(a)|pp−n
Pr
i=1 ni

where the a = (a1, . . . , ar)’s run into the set of centers of disks of radius
p−n inside X and where the αn1,...,nr(a)’a are the coefficients of the Taylor
expansion at the point a described as in the expression (12). The L-vector
space A(X,L) is then naturally equipped with the inductive limit topology
of the An(X,L)’s. We have the well-known elementary lemma.

Lemma 3.2.2. Assume X is compact, then the inclusions An(X,L) ⊂
An+1(X,L) are completely continuous.

Proof. Since X is compact, it easy to reduce this statement to the compact-
ness of the restriction map: An(pnZrp) → An+1(pn+1Zrp). This fact is an
elementary exercise left to the reader.

Let D(X,L) (resp. Dn(X,L)) be the continuous L-dual of A(X,L) (resp.
An(X,L)). The space D(X,L) is called the space of L-valued distribution
on X. Then D(X,L) is the projective limit over n of the Dn(X,L). An
immediate corollary of the previous lemma is:

Corollary 3.2.3. If X is compact, D(X,L) is a compact Frechet space.

3.2.4. Weights. A(p-adic) weight is a continuous (for the p-adic topology)
group homomorphism

λ : T (Zp)→ Q×p .
A weight is called algebraic if it can be obtained as the composite

T (Zp) ↪→ T (F ) λ
alg

→ F× ⊂ Q×p
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for some λalg ∈ X∗(T ). In fact, we can see that any weight is locally analytic:

Lemma 3.2.5. Let L ⊂ Qp be a finite extension of F . Any continuous
p-adic character λ ∈ Homcont(T (Zp), L×) is n-locally L-analytic for some
n ≥ 0. We sometimes denote by nλ the smallest n for which this is the case.

Proof. This is a special case of Lemma 3.4.6. Let t := Lie T/Zp . Then
H 7→ log(λ(exp(H)) is well defined if H is sufficiently closed to 0 in t. It is
Zp-linear and so defines an element λan ∈ Hom(t, L) = X∗(T ) ⊗ L. Then
we have λ(t) = exp(λan(log(t)) if t is sufficiently closed to 1 in T (Zp). In
particular, λ is analytic on a neighborhood of 1 and it is therefore locally
analytic.

Notice that λ is n-locally algebraic for some n if and only if λan ∈ X∗(T ).
In that case, we write λalg for the corresponding algebraic character and we
have a decomposition

λ = λalg.ε

with ε a finite order character factorizing through T (Zp/pnZ). We will say
in that case that ε of λ is of level pn. We wil say that λ is arithmetic if it is
locally algebraic and if λalg is dominant (i.e. λalg ∈ X∗(T )+).

3.2.6. Locally analytic induction spaces. Let L ⊂ Qp be a finite extension of
Qp and λ be an L-valued weight (i.e. λ ∈ Homcont(T (Zp), L×)). Then we
denote Aλ(L) ⊂ A(I, L) the space of locally L-analytic function on I such
that:

f(n−tg) = λ(t)f(g)

for all n− ∈ I−1 , t ∈ T (Zp) and g ∈ I. This space is a closed subspace of
the topological space Aλ(I, L) and is therefore a compact inductive limit
of L-Banach spaces. By the Iwahori decomposition, we see that we have
a canonical linear homeomorphism ψλ : Aλ(L) ∼= A(Ω0, L) via the map
f 7→ ψλ(f) where ψλ(f) is defined by

ψλ(f)([g]) := f(ng), ∀g ∈ I.

Therefore, we see that Aλ(L) satisfies the topological properties of A(Ω0, L).
In particular, its L-dual, that we denote Dλ(L) is a compact Frechet space.
Our space Aλ(L) is equipped with a continuous left action of I defined by
(g.f)(h) := f(hg) for all g, h ∈ I. It is easy to check that this action is
continuous. We therefore inherit of a (dual) continuous right action of I on
Dλ(L).

Since elements of f are left invariant by I−, we have also a natural inclusion
Aλ(L) ⊂ A(Ω1, L). If f ∈ Aλ(L), let us write f̃ the corresponding element
in A(Ω1, L). Then we have f̃([g]) := f(g). We have a natural action of
T (Zp) on A(Ω1, L). If φ ∈ A(Ω1, L) and t ∈ T (Zp), we set

(t.φ)([g]) := φ([tg])
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It is easy to check that it is well defined and that φ = f̃ for some f ∈ Aλ(L)
if and only if t.φ = λ(t)φ. In other words we have an identification

Aλ(L) = A(Ω1, L)[λ] := {φ ∈ A(Ω1, L)| t.φ = λ(t)φ}
We now consider the ∗-action of ∆+ on these spaces. For any g ∈ ∆+ and
φ ∈ A(Ω1, L), we defined g ∗ φ by:

(g ∗ φ)([x]) := φ([x] ∗ g)

for all [x] ∈ Ω1.

Lemma 3.2.7. The ∗-action of ∆+ commutes with the natural action of
T (Zp) on A(Ω1, L). In particular, Aλ(L) is stable by the ∗-action of ∆+.
Moreover, for any g ∈ I, the ∗-action of I on Aλ(L) coincides with the
natural left action:

(g ∗ f̃)([h]) = f(hg)
for all g, h ∈ I

Proof. let x ∈ I, t ∈ T (Zp) and g ∈ ∆+, then we have (t.(g ∗ φ))([x]) =
(g ∗ φ)([tx] = φ([ξ(tg)−1txg]) = φ([tξ(tg)−1xg]) = (t.φ)(ξ(tg)−1xg]) = (g ∗
(t.φ))([x)). This obviously implies that Aλ(L) is stable by the ∗-action. Let
us check the last point now. Indeed we have [h] ∗ g = [hg] if g ∈ I, therefore
(g ∗ f̃)([h]) = f̃([h] ∗ g) = f̃([hg]).

We consider the dual right action of ∆+ on Dλ(L). This ∗-action is a very
important ingredient of the theory developed in this paper. In particular,
the following lemma (although easy) is crucial20.

Lemma 3.2.8. If δ ∈ ∆++, then the right ∗-action of δ defines a compact
operator of the compact Frechet space Dλ(L).

Proof. We may suppose that δ ∈ T++ since the action of I is continuous.
Let us put Am,λ(L) := ψ−1

λ (Am(Ω0, L)). To prove the lemma, we check
that the ∗-action of δ on Am,λ(L) factorizes through the natural inclusion
Am−1,λ(L) ⊂ Am,λ(L). Since this one is completely continuous by Lemma
3.2.2, this will prove our claim. If f ∈ Am,λ(L), then

(13) ψλ(δ ∗ f)([n]) = ψλ(f)([ξ(δ̄)−1nδ]) = λ(ξ(δ̄)−1δ)ψλ(f)([δ−1nδ])

for all n ∈ N(Zp). We make a choice of a basis of n which gives a system
of coordinates of N(Zp) that we denote by x1(n), . . . , xr(n) ∈ Zp for all
n ∈ N(Zp). Let Tδ be the matrix of the action of Ad(δ−1) on N(Zp). Since
δ ∈ T++, the p-adic limit of (Tδ)k is 0 when k → ∞. Therefore the entries
of the matrix Tδ are divisible by p. Now if f(x1, . . . , xr) is an analytic
function of radius of convergence p−m this implies that f((x1, . . . , xr)tTδ)
has a radius of convergence at least p−m+1. In view of the identity (13)
above, this implies that our claim follows.

20In other words, this lemma is saying that the action of δ improves the local analyticity.
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3.2.9. Locally algebraic induction. Let λ be an arithmetic weight with the
decomposition λ = λalg.ε with ε a finite order character of T (Zp) of conduc-
tor pm and λalg ∈ X∗(T )+. We then denote by Vλ(L) the subset of functions
f ∈ Aλ(L) which are locally L-algebraic.

Let us assume that L contains F . Recall that B−/L is the Borel subgroup

opposite to B/L. Then we write (Ind
G/L

B−
/L

λ)alg for the set of L-algebraic

functions f : G/L :→ A1
/L such that

f(bg) = λalg(b)f(g)

for all b ∈ B−(L) and g ∈ G(L) and where λalg is seen as a character of B−/L
via the canonical projection B−/L → T/L. One defines an action of G(L) on
this induction by right translation: (g.f)(h) := f(gh). As we have recalled
in the first section of this paper, we have

Vλalg(L) = (Ind
G/L

B−
/L

λ)alg

is the irreducible algebraic representation of G(L) of highest weight λalg

with respect to the Borel pair (B/L, T/L).

Let L(ε) be the one dimensional representation of Im given by the character

Im 7→ B(Z/pmZ)→ T (Z/pmZ) ε→ L×

Then we have a canonical injection of Im-left module

Vλalg(ε, L) := Vλalg(L)⊗L L(ε)↪→Vλ(L)

given by f ⊗ 1 7→ fε with

(14) fε(g) := ε(tg)f(n−g tgng).

We have Vλalg(ε, L) = Vλ(L)∩Am(I, L) (i.e. the elements of Vλalg(ε, L) are
those that are m-locally L-algebraic).

For a later use, let us record here that the ∗-action of ∆+
m and the twisted

algebraic action on Vλ(L) are related by the relation:

(15) δ ∗ f = λ(ξ(tδ))−1(δ · f)

We will see below how to check that an element of Aλ(L) belongs actually
to Vλalg(L). We first need to define an action ofWG on the locally algebraic
character. For any λ = λalg.ε and any w ∈ WG, we write w ∗ λ for the
character given by

t 7→ tw(λalg+ρ)−ρε(t)
We consider now the left l-action of I on A(I, L) defined by:

l(h).f(g) := f(h−1g) ∀h, g ∈ I
This action is L-analytic and therefore induces an action of the Lie algebra
g/F . We have the following proposition.
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Proposition 3.2.11. Let λ be a weight and α be a simple root. Assume that
λan(Hα) = N ∈ Z≥−1. Then there exists an intertwining (for the ∗-action
of I) map Θα

Aλ(L)→ Asα∗λ(L)
defined by

Θα(f) = l(Xα)N+1.f

Moreover we have

Θα(g ∗ f) = ξ(tg)sα∗λ−λt ∗Θα(f)

for all g ∈ ∆+.

Proof. The fact that Θα commutes with the action of I is clear form its
definition. We will need to prove that it lands in Aλα−N−1(L). Let f ∈
Aλ(L). First notice that

(16) l(Hα).f = −λan(Hα)f

since l(t).f = λ(t)−1f for any t ∈ T (Zp). Now put f1 := Θα(f) =
l(Xα)N+1.f . One first sees that f1(n−g) = f1(g) for any n− ∈ I− and
any g ∈ I. In order to prove this claim, we first check that l(X−β).f1 = 0
for any simple root β. If β 6= −α, this is due to the fact that in this case
we have [X−β, Xα] = 0. If β = −α, we use the relation in the enveloping
algebra of g:

[X−α, Xi+1
α ] = −(i+ 1)Xi

α(Hα + i)
valid for any integer i ≥ 0. Now l(X−α).f = 0 since f(n−.g) = f(g) for any
n− ∈ I−. Therefore

l(X−α).f1 = l(X−α.XN+1
α ).f = l([X−α, XN+1

α ]).f

Therefore l(X−α).f1 = 0 by the relation above for i = N = λan(Hα) and
the relation (16). This implies that l(X).f1 = 0 for all X ∈ Lie (N−/L) since
the X−α’s generate Lie (N−/L) as a Lie algebra. This easily implies that
f1(n−g) = f1(g) for all n− ∈ I− and g ∈ I (for instance one can use the log
and exponential map). Now, for any t ∈ T (Zp), we have

l(t.XN+1
α ).f = α(t)N+1l(XN+1

α .t).f = αN+1(t)λ−1(t)l(XN+1
α ).f

Therefore l(t).f1 = λ−1αN+1(t)f1 and f1 ∈ Aλα−N−1(L). We conclude by
noticing that sα ∗ λ = λα−N−1.

We have the following proposition:

Proposition 3.2.12. Let λ be a locally algebraic dominant weight. Then
we have a canonical isomorphism:

Vλ(L) ∼= Aλ(L) ∩
⋂
α∈Φ

Ker(Θα)

where Φ stands for the set of simple roots for the Borel pair (B/F , T/F ).
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Proof. We give an elementary proof here. Notice that this proposition is
a refinement21 of the exactness in degree 1 of the locally analytic BGG
complex (see next paragraph).

We first prove Vλ(L) ⊂
⋂
α∈ΦKer(Θα). Let f ∈ Vλ(L). We may assume

without loss of generality that f is actually algebraic. Then, for each simple
root α, Θα(f) belongs to the algebraic induction from B− to G of the alge-
braic character sα ∗λ. Therefore Θα(f) = 0 since the weight sα(λalg +ρ)−ρ
is no longer dominant. So the first inclusion is proved.

We now prove the opposite inclusion. Take f ∈
⋂
α∈ΦKer(Θα). Since f is

locally L-analytic, the restriction of f to a neighborhood U of the identity
is an analytic function which is invariant by left translation by elements in
U ∩N−(F ). Now since f ∈ Ker(Θα), for all g ∈ U , the function n 7→ f(ng)
is a locally polynomial function on Nα for Nα the image by the exponential
map (which is an algebraic map on n) of a neighborhood of 0 in F.Xα ⊂ n/F .
Now since the Nα’s for α ∈ Φ generate a neighborhood of the identity in
N(F ), the restriction of f to this neighborhood will be algebraic. Because
λ is locally algebraic by assumption, we deduce that f is algebraic on a
neighborhood of the identity in B(F ). This implies that f is locally algebraic
as claimed since N−.B is Zariski dense in G.

3.2.13. Integral structure. Recall that OL is the ring of integers of L. We
put A(I,OL) ⊂ A(I, L) the OL-submodule of functions f taking values in
OL. For any weight λ ∈ X(OL), we consider the topological OL-module
Aλ(OL) := Aλ(L) ∩ A(I,OL) and its OL-dual Dλ(OL). If λ is arithmetic,
we can also define Vλ(OL) := Vλ(L) ∩ A(I,OL). From the definition of the
∗-action, it is clear that these OL-submodules are stable under the action of
∆+. With regard to the formula (15), this gives an important information
about the p-divisibility of the usual left action. The ∗-action can then be
viewed as the optimal normalization of the usual left action on Vλalg(L) that
preserves the integrality.

3.3. The locally analytic BGG-resolution. The fact that there should
be a locally analytic version of the BGG-resolution is an outcome of a con-
versation with M. Harris.

3.3.1. Let L be a finite extension of F and let λ be an L-valued arithmetic
weight. The purpose of this paragraph is to define a bounded complex of
Frechet spaces C•λ(L) in terms of the spaces of distributions we have defined
previously which gives a resolution of V ∨λ (L) := Homcont(Vλ(L), L). Such a
resolution is nowadays well-known as the Berstein-Gelfand-Gelfand complex
when one replaces respectively distributions by Verma modules and V ∨λ (L)

21Since it gives a precise form of the differential maps in degree 1 of the BGG complex
that could be explicitly described as it was done in [BGG].
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by V∨λ(L). We just have to adapt the usual theory to the locally L-analytic
context.

3.3.2. Let X be a p-adic space as in the section 3.2.1. We have defined
the space A(X,L) of locally L-analytic functions on X. More generally, we
denote by Ai(X,L) the space of locally L-analytic differential i-forms on
X. Then, A0(X,L) = A(X,L). We also denote by LC(X,L) the space
of locally constant L-valued functions on X. We have exterior differential
maps di from Ai(X,L) to Ai+1(X,L). Clearly, LC(X,L) is the kernel of d0.
More generally, it is easy to check that we have a locally L-analytic version
of the Poincaré lemma:

Lemma 3.3.3. Let d be the dimension of X. Then the following sequence
is exact:

0→ LC(X,L)→ A(X,L) d0→ A1(X,L) d1→ A2(X,L) d2→ · · · → Ad(X,L)→ 0

Proof. The corresponding Poincaré lemma for sheaf of locally analytic dif-
ferential forms can be proved in the same way as in the classical case of real
analytic differential forms. The local analyticity condition is important here
since integration may decrease the radius of convergence (on closed disks)
of p-adic power series. The exact sequence now follows from the Poincaré
lemma since a p-adic space is completely discontinuous. The details are left
to the reader and can probably be found in the literature.

3.3.4. We will apply this lemma when X = Ω0 = B−(Zp) ∩ I\I. In that
case, we have a natural action of I on Ai(Ω0, L). If ω ∈ Ai(Ω0, L), g ∈ I
and X1, . . . , Xi belongs to the tangent space of Ω0 at x ∈ Ω0, then:

(g.ω)(x)(X1, . . . , Xi) := ω(x ∗ g)(Xi ∗ g, . . . , Xi ∗ g)

where X 7→ X ∗ x is the map between the tangent spaces TΩ0,x and TΩ0,x∗g
of Ω0 at respectively x and x ∗ g induced by the map x 7→ x ∗ g. It is then
straightforward to check that the differential maps di are equivariant for the
action of I

3.3.5. Analytic induction of B−-representations. For any finite dimensional
analytic L-representation V of B−(Zp) ∩ I, we denote by A(V ) the space
of locally analytic functions f from I to V such that f(b−g) = b−.f(g)
for any g ∈ B−(Zp) ∩ I. Let g and b− be the F -Lie algebras of G and
B− respectively. They are respectively equipped with the adjoint action of
G(F ) and B−(F ). We can therefore consider g/b− as a representation of
B−(Zp) ∩ I. This action is F -algebraic.
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Lemma 3.3.6. For any integer i between 0 and d, we have a canonical
I-equivariant isomorphism

Ai(Ω0, L) ∼= A(
i∧

(g/b−)∗ ⊗F L)

where ∗ stands for F -dual.

Proof. Let ω ∈ Ai(Ω0, L). We consider the function fω on I taking values
in
∧i(g/b−)∗ ⊗F L defined by:

fω(g)(X1 ∧ · · · ∧Xi) = ω([g])(X1 ∗ g, . . . , Xi ∗ g)

where we have identified TΩ0,[id] with g/b−. It is now easy to check that the
map ω 7→ fω is I-equivariant and that it defines an isomorphism.

3.3.7. For simplicity, we now assume λ is an algebraic dominant weight. Let
Aiλ := Ai(Ω0, F ) ⊗F Vλ(L). Tensoring the exact sequence of lemma 3.3.3
for X = Ω0 by Vλ(L) gives the I-equivariant exact sequence:

0→ Vλalg(L)→ A0
λ
d0→ A1

λ
d1→ A2

λ
d2→ · · · → Adλ → 0(17)

On the other hand, we have the I-equivariant isomorphism

Aiλ = Ai(Ω0, L)⊗F Vλ(L) ∼=(18)

A(∧i(g/b−)∗)⊗ Vλ
∼= A(∧i(g/b−)∗ ⊗ Vλ(L))

Now, we remark that as an algebraic representation of B−, we have a stable
filtration of (g/b−)∗ ⊗F Vλ(L):

0 = F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fr = (g/b−)∗ ⊗F Vλ(L)

such that for all j ≥ 1, Fj/Fj−1 is one dimensional over L with action of B−

given by some algebraic character ξj . We denote by Si(λ) the set of these
characters. By the isomorphism (18), the above filtration induces a stable
filtration on Aiλ with graded pieces isomorphic to Aξj (L) for ξj ∈ Si(λ).

3.3.8. Infinitesimal characters. Recall that t := Lie T . Harish-Chandra has
defined a homomorphism ϑ from Z(g), the center of the universal algebra
of g, into U(t), the universal algebra of t. Recall that the natural action
of the Weyl group WG on t induces an automorphism of U(t). Then, the
Harish-Chandra homomorphism ϑ induces an isomorphism

Z(g) ∼= U(t)WG

For a given algebraic character ξ of T , let dξ be the corresponding character
of U(t). We set χξ := ϑ ◦ dξ. For any irreducible algebraic representation
W of U(g), the induced action of Z(g) on W is given by a character χW ,
called the infinitesimal character of W . For any representation space W
of U(g) and any character χ of Z(g), we denote by Wχ, the χ-generalized
eigenspace of W . Similarly, if now W is a locally analytic representation of
I, differentiation yields an action of U(g) on W . It can be easily seen that
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Wχ is stable under the I-action and that the functor W 7→ Wχ is exact. It
is well known that we have χVλ = χλ. Similarly, one can remark that for
any character λ ∈ X∗(T ), the infinitesimal character of Aλ(L) is given by
χλ.

3.3.9. Construction of the locally analytic BGG resolution. Let us write for
short Aiλ,χλ := (Aiλ)χλ . By applying the exact functor W 7→ Wχ to the
exact sequence (17), we have the exact sequence:

0→ Vλ(L)→ A0
λ,χλ

d0→ A1
λ,χλ

d1→ A2
λ,χλ

d2→ · · · → Adλ,χλ → 0(19)

Now we recall the following well-known fact, for example see [BGG]. Let
ξ ∈ X∗(T ). Then ξ ∈ Si(λ) with χξ = χλ if and only if there exist w ∈ W
of length i such that ξ = w ∗ λ. Moreover this character appears with
multiplicity one. Using the filtration of Aiλ and the fact recalled above,
we deduce that we have a filtration of I-modules on Aiλ,χλ such that the
corresponding graded object is isomorphic to

(20) (Aiλ,χλ)gr ∼=
⊕

w|l(w)=i

Aw∗λ(L)

Now, we remark that since g is reductive, we have an isomorphism of g-
modules Aiλ,χλ

∼= (Aiλ,χλ)gr. Since these space are locally analytic represen-
tation, this isomorphism is left equivariant for the action of a neighborhood
of the identity in I. Since such a subgroup is finite index in I and that L is
characteristic zero, this isomorphism holds as an isomorphism of I-modules.

We write Ciλ(L) for the continuous L-dual of Aiλ,χλ . Then we have proved
the following theorem:

Theorem 3.3.10. Let λ be an arithmetic weight of level pm. There exists
a long exact sequence of right Im-modules:

(21) · · · → Ci+1
λ (L) di→ Ciλ(L)→ · · · → C0

λ(L)→ V ∨λ (L)→ 0

where for each q we have:

Ciλ(L) =
⊕
w∈WG,
l(w)=i

Dw∗λ(L)

Proof. For algebraic dominant weight, this follows from dualizing the exact
sequence (19) and the isomorphisms (20). In the general case, it suffices to
remark that for any locally algebraic weight µ = µalgε, f 7→ fε where fε is
defined as in formula (14) induces an isomorphism between Aµalg(L) and
Aµ(L) and between Wµalg(L) and Wµ(L) when µalg is dominant.
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3.3.11. Remark. It could be proved that the maps dq are defined as fol-
lows. Let i ≥ 1 and w ∈ WG of length i. Let α be a simple root. As-
sume that l(sαw) = i + 1. Then w−1(α) > 0 and therefore w(λalg)(Hα) =
λalg(Hw−1(α)) ≥ 0 since λalg is dominant. We deduce

w ∗ λalg(Hα) = w(λalg)(Hα) + (w(ρ)− ρ)(Hα) ≥ −1

and we therefore have a map Θα : Aw∗λ(L) → Asαw∗λ(L) defined by the
Proposition 3.2.11. Summing over the simple roots α satisfying l(sαw) =
i+ 1 and then over the w of length i, we get after dualizing the map

di : Ci+1
λ (L)→ Ciλ(L).

The proof of this description of these differential maps is left to the reader
since it is not going to be used anywhere in this paper although it would
imply the following proposition for which we have a shorter and more con-
ceptual proof. Let us introduce some notations first. For each q, we have
a decomposition dq =

∑
w,w′ dw,w′ where dw,w′ is the map from Dw∗λ(L) to

Dw′∗λ(L) induced by dq with l(w) = q + 1 and l(w′) = q.

Proposition 3.3.12. Let w,w′ ∈ WG such that l(w) = l(w′) + 1,then we
have

dw,w′(v ∗ t) = (ξ(t)w
′∗λalg−w∗λalg).dw,w′(v) ∗ t

for each t ∈ T+ and v ∈ Dw∗λ(L)

Proof. For any arithmetic weight λ, let us denote by DGλ (L) the continuous
dual of the locally analytic induction AGλ (L) := (indG(Qp)

B−(Qp)
L(λ))an defined

as the space of locally analytic L-valued function of G(Qp) such that

f(n−tg) = λ(t)f(g) ∀g ∈ G(Qp), t ∈ T (Qp), n− ∈ N−(Qp).

Here we have extended λ = λalgε to a character of T (Qp) by putting:

λ(t) := λalg(t)ε(tξ(t)−1) ∀t ∈ T (Qp)

Rewriting the construction of the locally analytic BGG complex withB−(Qp)\G(Qp)
in place of B−(Zp) ∩ I\I provides a resolution of Vλ(L)∨ as a G(Qp)-
representation in which we replace the Dw∗λ(L)’s by the DGw∗λ(L)’s. The
maps of the complex are then G(Qp)-equivariant for the action induced by
the usual right translation in the argument of the locally analytic functions
in AGw∗λ(L). Now the restriction maps AGw∗λ(L) → Aw∗λ(L) induce a ∆+-
equivariant (for the ∗-action) inclusion of complexes:

CG,qλ (L) =
⊕
w∈WG,
lg(w)=q

DGw∗λ(L) ↪→ Cqλ(L) =
⊕
w∈WG,
lg(w)=q

Dw∗λ(L)

compatible with the G(Qp)-equivariant maps dw,w′ . Since we have the fol-
lowing relation between the ∗-action and the usual right translation action
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on AGw∗λ(L)

t ∗ f = ξ(t)−w∗λt · f ∀t ∈ T+ and ∀f ∈ AGw∗λ(L)

we deduce that we have the relation of the proposition from the fact that
the maps dw,w′ are G(Qp)-equivariant for the usual right translation action.

3.4. Analytic variation and weight spaces. We explain in this section
how the spaces Aλ(L) can be interpolated when λ varies in the space of
continuous Q×p -valued characters of T (Zp). We first recall the rigid analytic
structure of this space.

3.4.1. Open and closed disks. Let a ∈ Qp and r a rational power of p. We
denote by B◦a,r (resp. Ba,r ) the open unit disk (resp. the closed unit disk)
of Qp of center a and radius r. These spaces are rigid analytic spaces defined
over Qp in the sense of Tate. These closed disks are in fact affinoid domains:
The ring of analytic function on Ba,r is given by the Tate algebra:

O(Ba,r) := {
∞∑
n=0

an(z − a)n| lim
n→∞

|an|rn = 0}.

The rigid analytic structure of B◦a,r is obtained by taking the following ad-
missible covering of it by closed disks

Ba,r =
⋃
rn<r

Ba,rn

where rn is any sequence of rational powers of p converging to r.

3.4.2. Weight spaces. For any finitely generated Zp-module S, we can give
a rigid analytic structure to Homcont(S,Q

×
p ). For any algebraic extension L

of Qp, let us write XS(L) := Homcont(S,L×). We write Stor for the torsion
part of S and we fix a decomposition S ∼= Stor × Sfree with Sfree a free Zp-
submodule of S. Let r the rank of Sfree over Zp. The choice of a Zp-basis
of Sfree gives therefore an isomorphism

(22) XS(Qp) ∼= S∗tor × (B1,1(Qp)
◦)r

with S∗tor := Homgp(Stor,Q
∗
p). We will fix such a basis once and for all.

Let K be a finite extension of Qp containing the values of all the characters
in S∗tor. Then for any finite extension L of K, we have XS(L) = S∗tor ×
(B1,1(L)◦)r. This gives XS(Qp) a rigid analytic structure over Qp. Moreover
XS is isomorphic over K to a disjoint union of finitely many open unit disks
of dimension r.

3.4.3. Remark. Notice that if S′ is a Zp-submodule of S, then XS/S′ can be
identified to the Zariski closure of the characters of XS(Qp) which are trivial
on S′. This observation will be useful in the next section.
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3.4.4. Rigid analytic neighborhoods of S. Let x1, . . . xr be the system of co-
ordinates of Sfree attached to the chosen basis giving the identification (22).
For each integer n, consider the affinoid

(23) Srign := Stor × t(a1,...,ar)Ba1,p−n × · · · ×Bar,p−n

where (a1, . . . , ar) runs in a set of representatives of (Z/pnZ)r. By the system
of coordinates x1, . . . , xr, we can embed S into Srign (Qp) via the identification
S = Srign (Qp) for all non negative integer n. So Sn can be seen as a rigid
analytic neighborhood of S and the ring of rigid analytic functions on Sn is
isomorphic to the set of n-locally analytic functions on S. In other words,
for any finite extension L of Qp we have

An(S,L) = O(Srign /L)

The construction above can be made for any p-adic space X in the sense of
our definition of §3.2.1. We have considered here the compact case in which
our rigid analytic neighborhoods are actually affinoid neighborhoods.

3.4.5. Let U ⊂ XS be a rigid analytic subspace. For any s ∈ S, we denote
〈s〉U the function on U(Qp) defined by 〈s〉U(λ) = λ(s) for any λ ∈ U(Qp) ⊂
Homcont(S,Q

×
p ). Then 〈s〉U is an analytic function on S and the map s 7→

〈s〉U defines continuous injective homomorphism from S into O(U)×.
The following lemma is the essential ingredient for the construction of

analytic families of locally analytic induction spaces.

Lemma 3.4.6. For any affinoid subdomain U ⊂ XS defined over L, there
exists a smallest integer n(U), such that any element λ ∈ U(Qp) defined
over a finite extension L/Qp is n(U)-locally L-analytic. Moreover the map
(λ, s) 7→ λ(s) induces a rigid analytic map U×Sn(U) → B1,1 defined over L.

Proof. Since it is possible to cover U with a finite number of closed disks,
we may assume that U is a closed disk. So let U = Bλ0,R for some R < 1.
We can even assume λ0 is the trivial character. Let u1, . . . , ud be a Zp-basis
of Sfree defining the identification (22) and for any λ ∈ XS(Qp). Let us put
λi = λ(ui). Then we have λ ∈ U(Qp) if and only if |λi − 1| ≤ R < 1. Now
fix some integer n = nR depending only on R such that |λp

n

i − 1| ≤ p−1 for
all i = 1. . . . , r. Now if s ∈ pnSfree, we have λ(s) =

∏
i λ

si
i =

∏
i(λ

pn

i )si/p
n

where the si’s belong to pnZp and are the coordinates of s with respect to
the chosen basis (u1, . . . , ud). Therefore for all s ∈ pnSfree and λ ∈ U(Qp),
we have:

(24) λ(s) =
∏
i

(
∞∑
ni=1

(
si/p

n

ni

)
(λp

n

i − 1)ni
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where we have denoted y 7→
(
y
n

)
for the well-known function on Zp defined

by
y(y − 1)(y − 2) . . . (y − n+ 1)

n!
∀y ∈ Zp

The series (24) is convergent for (s1, . . . , sr) × (λ1, . . . , λr) ∈ B0,p−n × B1,R

by our choice of n and thanks to the well-known lemma 3.4.7 below. The
claims of our lemma follow from this observation.

Lemma 3.4.7. The series (1 + z)s =
∑

n

(
s
n

)
zn converges for z, s ∈ Cp

such that |z| ≤ p−1 and |s|p ≤ 1.

Proof. This follows from an elementary evaluation of the p-adic valuation of
the binomial coefficients and this is well known.

3.4.8. Analytic families of analytic inductions. We will consider now the
case S = T (Zp) and denote by XT the corresponding weight space.

Let U ⊂ XT be an affinoid subdomain defined over a finite extension L/Qp

and choose an integer n ≥ 0. We define AU,n as the set of rigid analytic
functions f on U× (Ω1)rign /L such that

(25) f(λ, [tn]) = λ(t)f(λ, [n])

for all λ ∈ U(Qp), t ∈ T (Zp)rign (Qp) and n ∈ N(Zp)rign (Qp). This space might
be trivial. However we have the following lemma.

Lemma 3.4.9. Let U ⊂ XT be an affinoid subdomain and n an integer such
that n ≥ n(U). Then we have a canonical bicontinuous isomorphism:

AU,n
∼= O(U)⊗̂LAn(N(Zp), L).

In particular AU,n is a non trivial O(U)-orthonormalizable Banach space.

Proof. The inclusion U×N(Zp)rign ↪→ U× (Ω1)rign , induces a continuous map

(26) AU,n → O(U×N(Zp)rign ) ∼= O(U)⊗̂KAn(N(Zp),K)

By the relation (25), it is straightforward to see that this map is injective.
To prove the surjectivity, it suffices to show that any pure tensor φ⊗ f is in
the image. So consider the function

ψ(λ, [tn]) := φ(λ)λ(t)f(n)

defined for any (λ, t, n) ∈ (U×T (Zp)rign ×N(Zp)rign )(Qp). By our assumption
n ≥ n(U) and Lemma 3.4.6, this function is clearly rigid analytic and its
image by the restriction map (26) is φ⊗f . Therefore (26) is an isomorphism
and since it is a surjective continuous between Banach spaces its inverse is
also continuous by the open mapping theorem. This proves our claim.
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Corollary 3.4.10. For any n ≥ n(U), the inclusion map AU,n ⊂ AU,n+1 is
completely continuous.

Proof. These inclusion maps are induced by the inclusions

An(N(Zp),K) ⊂ An+1(N(Zp),K)

which are completely continuous, thus our claim.

We put now
AU :=

⋃
n≥n(U)

AU,n

and define the continuous O(U)-duals

Dn,U := HomO(U)(An,U,O(U)) and DU := HomO(U)(AU,O(U)).

It follows from the previous lemma and corollary that Dn,U is an orthonor-
malizable O(U)-module and that DU is a O(U)-projective compact Frechet
space.

3.4.11. ∗-Action of ∆+. We can define the ∗-action on the spaces AU,n as
in the case U is reduced to a singleton. For this, we remark that the right
∗-action of ∆+ on Ω1 being algebraic extends into an action of ∆+ on (Ω1)rign
for all n ≥ 0. Similarly we remark also that the left action of T (Zp) on Ω1

defined in §3.2.6 can be extended into a left action of T (Zp)rign on (Ω1)rign .
If t ∈ T (Zp)rign and f ∈ O((Ω1)rign ), we write t.f for the action of f obtained
by left translation on the argument of f . Now as in §3.2.6, we have the
identification:

An,U ∼= {f ∈ O((Ω1)rign ))⊗̂O(U)| t.f ⊗ 1 = f ⊗ 〈t〉U∀t ∈ T (Zp)rign }

Since the ∗-action of ∆+ commutes with the left action of T (Zp)rign , it follows
that we have a left action of ∆+ on An,U. We deduce that we have a left
action of ∆+ on AU and a right action on DU.

3.4.12. Remark. Notice that if we consider 〈·〉U the O(U)-valued character
of T (Zp) given by t 7→ 〈t〉U where 〈t〉U ∈ O(U)× is the analytic function on U
defined by λ 7→ λ(t) then AU,n can therefore be seen as the n-locally O(U)-
analytic induction of 〈·〉U. When U is reduced to a single point U = {λ}, we
recover the definition of Aλ,n(L) for a n-locally analytic character λ ∈ X(L).
In particular, we have the following lemma.

Lemma 3.4.13. Let L be a finite extension of K and λ ∈ U(L), then we
have the canonical isomorphisms of ∆+-modules

AU ⊗λ L ∼= Aλ(L) and DU ⊗λ L ∼= Dλ(L)

Proof. This follows from the definitions and Lemma 3.4.9.
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We also have the very important lemma:

Lemma 3.4.14. If δ ∈ ∆++, then the ∗-action of δ defines a compact
operator of the O(U)-projective compact Frechet space DU.

Proof. Assume K is the field of definition of U. By Lemma 3.4.9, we have
the bi-continuous isomorphism

DU
∼= O(U)⊗̂KD(N(Zp),K)

From this remark, it is easy to see that the proof of our claim follows exactly
the same lines as the proof of Lemma 3.2.8. The details are left to the
reader.

4. Overconvergent Finite Slope Cohomology

In this section, G/Q is a reductive group as in the first section. We fix a
prime p and we assume that G/Qp is quasi-split as in the previous section.

4.1. Hecke algebras and finite slope representations. In this subsec-
tion, we define the notion of finite slope representation for the group G. We
start by defining some Hecke algebras.

4.1.1. The Hida-Hecke algebra. We will use freely the notations of section
3. For all positive integer m, let ∆−m := (∆+

m)−1 and ∆−−m := (∆++
m )−1. As

usual we will drop m from the notation when it is equal to 1. We define
similarly T− and T−−. The spaces of distributions Dλ(L) and their quotient
V∨
λalg

(L) we have defined in section 3 are equipped with the right ∗-action of
∆+. We will consider them now as left ∆−-modules since we have made the
choice to consider the adelic action on the left to define Hecke operators.

Let m be a positive integer and let C∞c (∆−m//Im,Zp) be the subspace of
Zp-valued locally constant functions with compact support in ∆−m which are
bi-invariant by Im. This is an algebra for the convolution product defined
with the Haar measure on G(Qp) such that Im is of measure 1. For t ∈ T−,
we write ut = ut,m = ImtIm ∈ C∞c (∆−m//Im,Zp) for the characteristic
function of the double class ImtIm ⊂ ∆−m. Then it is well known and it can
be easily checked that

ut.ut′ = utt′

for any t, t′ ∈ T−. Therefore, the map t 7→ ut defines an algebra homomor-
phism Zp[T−/T (Zp)]

∼−→ C∞c (∆−m//Im,Zp). Then we put Up = Up(G) :=
Zp[T−/T (Zp)] and we will identify its elements as Zp-valued functions with
compact support on ∆−m which are bi-invariant by Im for m chosen according
to the space on which we will let Up act.
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4.1.2. Slope of a character of T− or of Up. The notion of slope we introduce
here is equivalent to a notion introduced by Emerton in [Em06]. Recall that

X∗(T/F ) := Homalg−gp(T/F ,Gm/F )

and
X∗(T/F ) := Homalg−gp(Gm/F , T )

where F is the smallest Galois extension of Qp that splits G. Since T
is defined over Qp, we have an action of the Galois group Gal(F/Qp) on
X∗(T/F ) and X∗(T/F ). Recall also that we have a Galois equivariant duality
pairing

(−,−) : X∗(T/F )⊗X∗(T/F )→ Z

such that µ◦µ∨(t) = t(µ,µ
∨) for any µ ∈ X∗(T/F ), µ∨ ∈ X∗(T/F ) and t ∈ Gm.

Let X∗(T/F )+ be the dual cone of the cone generated by the positive roots
of X∗(T ). Then by definition, for any µ∨ ∈ (X∗(T/F )+)Gal(F/Qp), we have
µ∨(p) ∈ T−−.

Let θ be now a Qp-valued character of Up . If θ(ut) = 0 for some t ∈ T−
we say that the slope of θ is infinite and we write µθ = ∞. Otherwise θ
induces a homomorphism of monoids from T−/T (Zp) into Q×p and can be
easily extended to T (Qp)/T (Zp). Such a character is said of finite slope.
Equivalently θ is finite slope if θ(ut) 6= 0 for at least one t ∈ T−−. This can
be checked easily since for any t′ ∈ T−−, there exists a positive integer N
such that tN = t′t′′ with t′′ ∈ T−−.

When θ is of finite slope, the slope of θ is the element µθ of

X∗(T/F )Gal(F/Qp)
Q := X∗(T/F )Gal(F/Qp) ⊗Q

defined by
(µθ, µ∨) = vp(θ(uµ∨(p)))

for all µ∨ ∈ (X∗(T/F )+)Gal(F/Qp) and where vp denotes the p-adic valuation
of Qp normalized by vp(p) = 1. In particular, we have

|(a.µθ)(t)|p = |θ(uta)|p

for any integer a such that a.µθ ∈ X∗(T/F ) and t ∈ T−−. Notice that
if θ is integrally valued, µθ belongs to the obtuse positive cone X∗(T )+,Q
generated over Q+ by the simple roots relative to the pair (B, T ). Of course
X∗(T )+,Q ⊃ X∗(T )+

Q and the inclusion is strict in general. If µ, µ′ ∈ X∗(T )Q,
we write µ ≥ µ′ if and only if µ− µ′ ∈ X∗(T )+,Q.

Definition 4.1.3. Let λalg be an algebraic character of T/F and µ = µθ.
This slope will be said non critical with respect to λalg if µθ−λalg+w∗λalg /∈
X∗(T )+,Q for each w 6= id. When λalg is implicit in the context we will just
say that θ or µθ is non critical.
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4.1.4. Finite slope part of a Up-module. Let L ⊂ Qp be a finite extension of
Qp and let V be a (possibly non Hausdorff) quotient of Banach (or compact
Frechet) as in chapter 2 L-vector topological spaces equipped with an action
of Up such that the action of ut is completely continuous for any t ∈ T−−.
For any character θ of T− in Q×p , we denote by VQp [θ] the subspace of

V ⊗L Qp of vectors v such that for all t ∈ T−, (ut − θ(ut))q.v = 0 for some
integer q. Since the operators ut commute and their action is completely
continuous on V , the VQp [θ]’s are finite dimensional if θ is of finite slope.

Let µ ∈ X∗(T )Gal(F/Qp)
Q and V as above. We put

V ≤µQp
:=
⊕
θ |

µθ≤µ

VQp [θ] ⊂ VQp

then this space is finite dimensional over Qp. We have V ≤µQp
= V ≤µ⊗LQp for

V ≤µ := V ≤µQp
∩V . For any t ∈ T−− and h ∈ Q, we can define as in chapter 2,

V ≤h and set Vfs the inductive limit over h of the V ≤h when h→∞. Since
Up is commutative, this space is clearly stable by the action of Up and we
have

V ≤h =
⊕
θ

vp(θ(ut)≤h

VQp [θ]

It implies that the inductive limit of the V ≤µ for µ ∈ X∗(T )Q,+ is equal to
Vfs.

4.1.5. Global Hecke algebras. We define the Hecke algebra Hp by

Hp = Hp(G) := C∞c (G(Ap
f ),Qp) ⊗ Up ⊂ C∞c (G(Af ),Qp).

To define the algebra structure on Hp, we choose that the product is given
by the convolution product for the Haar measure dg on G(Af ) such that
Meas(Kp

max.I, dg) = 1 with Kp
max be the prime to p part of Kmax which we

defined in 1.1.2.
We denote by H′p the ideal of Hp generated by f = fp ⊗ ut with fp ∈

C∞c (G(Ap
f ),Qp) and t ∈ T−−. For any open compact subgroup Kp ⊂ G(Ap

f ),
we write

Hp(Kp) := C∞c (Kp\G(Ap
f )/Kp,Qp) ⊗ Up

for the subalgebra of Hp of functions which are bi-invariant by Kp.
If S is a finite set of primes not containing p, we also consider the Hecke

algebra RS,p defined by

RS,p := C∞c (KS∪{p}
m \G(AS∪{p}

f ,Zp)/KS∪{p}
m )⊗ Up

where KS∪{p}
m stands for a maximal compact of G(AS∪{p}

f ) which is hyper-
special at every prime ` /∈ S ∪ {p}. It is well known that this algebra is
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commutative. Moreover, if Kp ⊂ Km is hyperspecial away from S, RS,p can
be seen as a subalgebra of the center of Hp(Kp) via the map f 7→ 1KS ⊗ f
where KS stands for the open compact subgroup of

∏
l∈S G(Ql) such that

Kp = KS .K
S∪{p}
m . Here we have denoted 1KS the characteristic function of

KS .

Definition 4.1.6. A Qp-valued character θ of RS,p will be said of finite
slope if its restriction to Up is (i.e. θ(ut) 6= 0 for all t ∈ T−).

We further generalize the above definition to admissible representations of
Hp.

4.1.7. Finite slope admissible representations of Hp. Let (σ, V ) be an ad-
missible representation of Hp defined over a p-adic field E. Recall that this
means that for any open compact subgroup Kp ⊂ G(Af ), the action of an
element of Hp(Kp) on V defines an endomorphism of finite rank. Since Hp is
the inductive limit of the Hp(Kp)’s, the character map f 7→ tr(σ(f)) is well
defined and will be denoted by Jσ. It is a classical fact that Jσ determines
σ up to semi-simplification. Assume now that σ is absolutely irreducible.
Since Up is included in the center of Hp, the action of Up on V is then
given by a character of degree one. We then say that σ is of finite slope if
this character is and if σK

p
contains an OE-lattice stable by the action of

Zp-valued Hecke operators in Hp(Kp).
We will say that this representation is of level Kp if the action of Hp(Kp)

is non trivial. In that case, we write V Kp
or σK

p
for the image of σ(1Kp)

and we have an action of Hp(Kp) on this subspace. It is well-known that
this representation determines σ entirely. Let S be a finite set of primes
such that Kp is maximal hyperspecial away from S. Since RS,p is included
in that center of Hp(Kp), RS,p acts on σK

p
by a character we denote θσ.

Then we say that σ is of finite slope if and only θσ is. A general admissible
representation of Hp will be said of finite slope if all its absolutely irreducible
sub-quotients are.

4.1.8. p-regularized constant terms and parabolic induction. Let P ⊂ G be
a standard parabolic subgroup (i.e. P containts the fixed minimal parabolic
subgroup P0). In particular P/Qp contains the Borel subgroup B. We fix a
Levi decomposition P = MN such that M/Qp contains T . Such an M will
be called a standard Levi subgroup of G. Then we can consider the Hecke
algebras Hp(M) and Up(M) and admissible finite slope representations or
characters of them.

For any standard Levi subgroup M ∈ LG recall thatWM are the elements
w of the Weyl group of G such that w−1(α) > 0 for all positive root α for
the pair (B ∩M,T ). Let w ∈ WM , we are going to define a linear map
from Hp(G) into Hp(M) f 7→ f regM,w. To do so, we first define the image of
an element f ∈ H′p of the form f = fp ⊗ ut. Notice first that for w ∈ WM
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and t ∈ T−, then wtw−1 belongs to T−M where T−M is defined as the set of
t ∈ T (Qp) such that tN(Zp) ∩M(Zp)t−1 ⊂ N(Zp). This follows from the
very definition of WM which tells us that B ∩M = wBw−1 ∩M for all
w ∈ WM .

For any t ∈ T (Qp) and w ∈ WG/F ,T/F , we also write

εξ,w(t) := ξ(t)w(ρP )+ρP |tw−1(ρP )+ρP |p
It is easily checked that εξ,w induces a character of T (Qp)/T (Zp) taking
values in O×F . If ξ satisfies the condition (11), then this character is trivial
since w−1(ρP ) + ρP =

∑
α∈RP∩w−1(RP ) α. The reason of introducing this

normalization factor will become clear in the proof of Proposition 4.6.3.
We then define f regM,w by

f regM,w = εξ,w(t)fpM ⊗ uwtw−1,M

where fpM stands for the (non unitary) constant term defined as in section
1.4.1. By the remark above, uwtw−1,M is a well-defined element of Up(M).
For general f , we extend the definition by linearity. Now if σpf is an ir-
reducible admissible representation of M(Ap

f ) and if IGM (σpf ) is the (non
unitary) parabolic induction then we have recalled in section 1.4.1 that

tr(fp; IGM (σpf )) = tr(fpM ;σpf )

If σ is an irreducible finite slope representation of Hp(M) then we denote
by IGM,w the admissible finite slope representation defined by:

IGM,w(σ) = IGM (σpf )⊗ θσ,M,w

where θσ,M,w is the character of Up(G) defined by

ut 7→ θσ(uwtw−1,M )

Then it follows from the definitions and what we have recalled that we have
the character identity:

JIGM,w(σ)(f) = Jσ(f regM,w)

4.1.9. p-stabilization of automorphic representations. The main examples
of finite slope representations are obtained as follows. Let π = πf ⊗ π∞ be
an irreducible cohomological automorphic representation of G(A) of weight
λalg. It is defined over a number field and we can therefore extends the scalar
to a p-adic number field L. Then Hp has a non trivial action on πI

′
m
f for some

integer m sufficiently large and there exists some character ε of Im/I ′m such
that πI

′
m
f ⊗ L(ε−1) contains a non trivial subspace invariant by Im and over

which we therefore have an action of Hp. An irreducible constituent of this
space for the action of Hp is called a p-stabilization of π. It is a standard
fact that can be checked using the theory of Jacquet modules that a given
representation π has only finitely many p-stabilizations. Notice also that
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this notion is purely local at p. If such a p-stabilization is of finite slope,
it will be called a finite slope automorphic representation of G of weight
λ = λalgε. It is then straightforward to see that it will also appear in the
cohomology of Vλalg(L) with λ = ε.λalg.

4.1.10. Finite slope character distributions. Let L be a finite extension of
Qp. We call an L-valued virtual finite slope character distribution J a Qp-
linear map J : H′p → L such that there exists a collection of finite slope
(absolutely) irreducible representations {σi; i ∈ Z>0} and integers mi ∈ Z
such that

(i) For all t ∈ T−−, h ∈ Q and Kp, there are finitely many indexes i
such that mi 6= 0 and vp(θσi(ut)) ≤ h and σK

p

i 6= 0.
(ii) For all f ∈ H′p, we have

J(f) =
∞∑
i=1

miJσi(f)

Notice that the sum in (ii) is convergent thanks to the condition (i). If the
mi are non negative, J is called a finite slope character distribution. We also
say that J is an effective finite slope character distribution. In that case, for
each open compact Kp, we can consider the space VJ(Kp) as the completion
of ⊕i(V Kp

σi )⊕
m
i for the norm defined by ‖

∑
i vi‖ = Supi‖vi‖. This defines a

p-adic Banach space over Cp over which Hp(Kp) acts continuously and such
that the action of the elements of H′p is completely continuous. Moreover,
for each f ∈ H′p(Kp), we have

tr(f ;VJ(Kp)) = J(f).

If J is a virtual finite slope character distribution, for a given irreducible
finite slope representation σ, we write mJ(σ) the integer such that

J(f) =
∑
σ

mJ(σ)Jσ(f)

If t ∈ T−−, h ∈ Q and an open compact subgroupKp ⊂ G(Ap
f ), we denote by

ΣJ(Kp, t, h) the (finite) set of classes of irreducible σ such that mJ(σ) 6= 0,
vp(θσ(ut)) ≤ h and σK

p 6= 0.

4.1.11. Fredholm determinants attached to a virtual finite slope character
distribution. Let J be a virtual finite slope character distribution and f ∈
Hp(Kp) of the form f = fp ⊗ ut with t ∈ T−−. Then we put

PJ,f (T ) :=
∞∏
i=1

det(1− Tσi(f))mi

This is clearly a ratio of Fredholm series.
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If α ∈ Q×p and σ is an irreducible finite slope representation, we denote
by mσ(f, α) the multiplicity of the eigenvalue α for the Hecke operator f .
Then

mJ(f, α) :=
∑
σ

mJ(σ).mσ(f, α)

is a well defined finite sum by the condition (i) and mJ(f, α) is the order
of the zero T = α−1 for the meromorphic function PJ(f, T ) on Arig

1 . This
integer is called the multiplicity of the eigenvalue α in J for the operator f .

Lemma 4.1.12. If for all f ∈ H′p, PJ(f, T ) is an entire power series then
J is an effective finite slope character distribution.

Proof. Let σ0 such that mJ(σ0) 6= 0. We want to prove that mJ(σ0) > 0.
Let Kp such that σK

p

0 6= 0. Fix t ∈ T−− and let h = vp(θσ0(ut)). Put also

h′ := Min{vp(θσ(ut)), ∀σ 6∈ ΣJ(Kp, t, h) such that mJ(σ) 6= 0 and σK
p 6= 0}

From the condition (i), it is easy to see that h′ > h. Since ΣJ(Kp, t, h) is
finite, we know by Jacobson’s lemma that there exists f1 ∈ Hp(Kp) such
that for all σ ∈ ΣJ(Kp, t, h), we have σ(f1) = idσKp if σ ∼= σ0 and σ(f1) = 0
otherwise. Now consider f = (1Kp ⊗ utN )f1 with N > v1/(h′ − h) with v1

the valuation of the denominator of f1. Then we have:

PJ(f, T ) = det(1− T.σ0(1Kp ⊗ utN ))mJ (σ0)S(T )

where S(T ) =
∏
σ|vp(θσ(ut))>h) det(1 − Tσ((1Kp ⊗ utN ).f1))mJ (σ) is a mero-

morphic function with the set of zeroes and poles of p-adic norm greater or
equal to ph

′N−v1 . Since by assumption PJ(f, T ) is an entire function of T
and the set of zeroes of det(1−T.σ0(1Kp ⊗ utN )) are of p-adic norm smaller
or equal to phN , this implies that mJ(σ0) > 0.

4.1.13. Assume now that J is effective, we have PJ,f (T ) = det(1−T.f ;VJ(Kp)).
Let t ∈ T−− and suppose that we have a factorization PJ,ut(T ) = Q(T )S(T )
with Q a polynomial such that Q(0) = 1 and Q and S relatively prime.
Then we know that by Theorem 2.3.8, that we have a decomposition stable
by ut

VJ(Kp) = NJ(Q)⊕ FJ(Q)

such that Q∗(ut) acts trivially on NJ(Q) and is invertible on FJ(Q). More-
over there is a power series RQ,S such that RQ,S(ut) is the projector of
VJ(Kp) onto NJ(Q).

Since ut is in the center of Hp(Kp), this decomposition is stable by the
action of Hp(Kp) and we have for all f ∈ Hp(Kp)

(27) JQ,t(f) := J(f ◦RQ,S(ut)) = tr(f ◦RQ,S(ut);VJ(Kp)) = tr(f ;NJ(Q))

therefore JQ,t is a character of Hp(Kp) of degree deg Q.
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4.2. Automorphic finite slope representations. We would like now to
define the cohomology of arithmetic subgroup with coefficient in the p-adic
topological ∆−-modules we have defined in chapter 3 and study the action
of Hp on them. Because the standard resolution of group cohomology by
inhomogeneous cochains is not of finite type, it is however not suitable for
topological properties. We will therefore use projective resolution of finite
type that exist thanks to the work of Borel-Serre. Ideally, we would like the
cohomology of DU to be projective over O(U). In general, this is not quite
true because of the possible presence of torsion in the cohomology and also
because the cohomology might not be Hausdorff. To bypass these difficulties,
we will work in the derived category of perfect complexes in the sense of the
chapter 2. We will also construct finite slope character distributions for each
p-adic weight and show these are analytic functions of the weight. We will
use some of the notations and definitions of the section 1.1.2.

4.2.1. Resolution for arithmetic subgroups. Let Γ ⊂ G(Q)/ZG(Q) ⊂ Gad(Q)
be a subgroup containing no non trivial elements of finite order. Therefore
it acts freely and continuously from the left on the symmetric space HG :=
G∞/Z∞K∞ so that Γ\HG is a C∞ manifold. Let d be its dimension. Unless
G is anisotropic this quotient is not compact and by the work of Borel-Serre,
there exists a canonical compactification Γ\H̄G where H̄G is a contractile
real manifold with corners [BS73]. This fact will be useful to prove the
following lemma.

Lemma 4.2.2. Let Γ as above, then there exist length d finite free resolu-
tions of the trivial Γ-module Z. In other words, there exit exact sequences
of Γ-modules of the form:

0→ Cd(Γ)→ · · · → C1(Γ)→ C0(Γ)→ Z→ 0

where the Ci(Γ)’s are free Z[Γ]-modules of finite rank.

Proof. Since Γ\H̄G is compact, we may choose a finite triangulation of
Γ\H̄G. We pull it back to H̄G by the canonical projection H̄G → Γ\H̄G
and denote by Cq(Γ) the free Z-module over the set of q-dimensional sim-
plexes of the triangulation obtained by pull-back of H̄G. This is the module
of q-chains obtained form this triangulation. Since the action of Γ on H̄G
is free, the Cq(Γ) are free Z[Γ]-module and they are of finite type since the
chosen triangulation of Γ\H̄G is finite. We therefore obtain a complex of
free Z[Γ]-modules of finite rank:

0→ Cd(Γ)
∂d−1→ · · · ∂1→ C1(Γ) ∂0→ C0(Γ)→ 0

computing the homology of H̄G. Since H̄G is contractile, this complex is
exact except in degree zero. In degree zero, we have

C0(Γ)/∂0(C1(Γ)) = H0(H̄G,Z) = Z
which implies our claim.
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4.2.3. These resolutions are obviously not unique but two such resolutions
are Z[Γ]-homotopy equivalent. This is a standard fact true for any pro-
jective resolutions in abelian categories. We will use this fact in the fol-
lowing situation. Consider Γ′ ⊂ Γ a finite index subgroup, then the re-
striction to Γ′ of any such resolution C•(Γ) for Γ is Z[Γ′]-homotopy equiv-
alent to any resolution C•(Γ′) for Γ′. We will use these resolution to study
the cohomology of these arithmetic groups. If M is a Γ-module, then
we can compute H i(Γ,M) = ExtiΓ(Z,M) by taking the cohomology of
C•(Γ,M) := HomΓ(C•(Γ),M). This complex is particularly nice because of
the following corollary.

Corollary 4.2.4. For any Γ and M as above, each term of the complex
C•(Γ,M) is isomorphic to finitely many copies of M .

Proof. This follows from the fact that the Cq(Γ)’s are free of finite rank over
Z[Γ].

It is well known that we can define an action of Hecke operators on
H•(Γ,M). We will be explaining how we can directly define an action of
them on C•(Γ,M).

4.2.5. Fonctoriality. We first consider a somehow general situation. Assume
that we have two groups Γ and ∆ together with a group homomorphism φ :
Γ→ ∆. Assume also that we have a right Γ-module N and a right ∆-module
M with a map of abelian groups f : M → N , such that f(m.φ(γ)) = f(m).γ
for all m ∈M and γ ∈ Γ. If we consider M as a Γ-module via φ, saying that
f is compatible is equivalent to saying it is Γ-equivariant. A pair (φ, f) like
this is called compatible. It is trivial that f induces a map from M∆ into
NΓ.

Let C•(Γ) and C•(∆) be respectively two finite free resolutions of Z by
Z[Γ] and Z[∆]-modules of finite rank. By considering C•(∆) as a Γ-module
by φ, it is a Γ-resolution of Z. Since C•(Γ) is a Γ-projective resolution of Z,
it follows from the universal property of projective modules that we have a
map, unique up to homotopy, C•(Γ)→ C•(∆) and compatible with φ.

We deduce we have a map compatible with φ:

HomZ(C•(∆),M)
(φ•)∗⊗f−−−−−→ HomZ(C•(Γ), N)

By taking respectively Γ and ∆ invariants, it induces a map C•(∆,M)
f•−→

C•(Γ, N). Again this is uniquely defined up to homotopy.
If Γ ⊂ ∆, M = N and φ is the identity map, we obtain the restriction map

Res∆
Γ : C•(Γ,M)→ C•(Γ′,M)

that induces the usual restriction map on the cohomology.
Assume now Γ′ ⊂ Γ of finite index. Let us fix a system of representatives
{γi}i of Γ′\Γ (i.e. Γ = tΓ′γi). The corestriction map is obtained as follows.
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Again we choose free and finitely generated resolutions C•(Γ′) and C•(Γ).
Then C•(Γ) is also a free and finitely generated resolution of the trivial
Z[Γ′]-module Z since Z[Γ] is free of finite rank over Z[Γ′]. Therefore we have
a Γ′-equivariant homotopy τΓ,Γ′ : C•(Γ)→ C•(Γ′). So we have maps

HomΓ′(C•(Γ′),M)
Hom(τΓ,Γ′ ,idM )
−−−−−−−−−−→ HomΓ′(C•(Γ),M)

P
i γi−−−→ HomΓ(C•(Γ),M)

where the second map is the usual average sum m 7→
∑

im.γi that sends
Γ′-invariant to Γ-invariants. We call this composite the corestriction map

CorΓ
Γ′ : C•(Γ′,M)→ C•(Γ,M).

It induces the usual corestriction map in cohomology. Again, this is uniquely
defined up to homotopy.

4.2.6. Hecke operators. We refer to [Sh71] for the abstract definition and
properties of Hecke operators. Let ∆ be a semi-group containing Γ and Γ′

and such that δΓδ−1 ∩ Γ′ is of finite index in Γ′ for all δ ∈ ∆. Then we
can consider the abstract Hecke operators Γ′δΓ ∈ Z[Γ′\∆/Γ]. We say that
Γ and Γ′ are commensurable. Assume M is a right ∆-module, then we can
define the map [Γ′δΓ] : C•(Γ′,M)→ C•(Γ,M) as the composition:

[Γ′δΓ] = CorΓ
δ−1Γ′δ∩Γ ◦ [δ] ◦ResΓ′

Γ′∩δΓδ−1

and where [δ] is defined by the pair of compatible maps (x 7→ δxδ−1,m 7→
m.δ) respectively from Γ ∩ δ−1Γ′δ onto δΓδ−1 ∩ Γ′ and from M into M .
Again the action of Γ′δΓ is well defined up to homotopy.

Consider now a third subgroup Γ′′ ⊂ ∆ which is commensurable with Γ′

and Γ. Then we can compose the double classes Γ′δΓ and Γ′′δ′Γ′ and get an
element Γ′′δ′Γ′◦Γ′δΓ ∈ Z[Γ′′\∆/Γ] (see the chapter 3 of [Sh71] for example).
Then we have

Lemma 4.2.7. The maps [Γ′′δ′Γ′]◦ [Γ′δΓ] and [Γ′′δ′Γ′ ◦Γ′δΓ] are equivalent
up to homotopy.

Proof. This follows easily from the definitions and the fact that this is true
when we define the maps on the level of the Φ-invariants for Φ = Γ,Γ′,Γ′′.
We leave the details to the reader.

4.2.8. The adelic point of view. Let K be a neat open compact subgroup
of G(Af ) and let M be a left K-module acting through its projection on
Kp the image of K in G(Qp). We fix a decomposition as (1) so that the
p-part of each gi is trivial. Recall that Γ(gi,K) is defined as the image of
gi.Kg

−1
i ∩G(Q)+ in G(Q)/ZG(Q). We put

RΓ•(K,M) := ⊕iC•(Γ(gi,K),M)

We can make another description. Consider the space SG := G(Q)\G(Af )×
HG. Then SG(K) = SG/K is the Borel-Serre compactification of SG(K).
Let πK be the canonical projection SG → SG(K). Then choose a finite
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triangulation of SG(K) and its pullback by πK . Let us denote Cq(K) the
corresponding chain complex. It is equipped with a right action of K. It is
an easy exercise to check that if we consider the decomposition of SG(K)
in connected components determined by the gi’s and the triangulation on
each connected component HG/Γ(gi,K) associated to the chain complex
C•(Γ(gi,K) (in the proof of Lemma 4.2.2), then we have the isomorphism

RΓ•(K,M) ∼= HomK(Cq(K),M)

where the right action of K on M is given as usual by m.k := k−1.m. In
particular, this implies that if we had chosen another system of representa-
tives g′i, we would have obtained another complex homotopical to the first
one. Therefore it defines an object in the homotopy category of abelian
groups whose cohomology computes the cohomology of the local system M̃
on SG(K).

Moreover, the map M 7→ RΓ•(K,M) is functorial with respect to left
K-module and there is an isomorphism:

H•(RΓ•(K,M)) ∼= H•(SG(K),M)

Suppose more generally that we have a pair (φ, f) where φ : K ′ → K is a
continuous and open group homomorphism and f : M → M ′ is a map of
abelian groups where M (resp. M ′) is equipped with a left K-action (resp.
with a left K ′-action) such that f(φ(k′).m) = k′.f(m) for all k′ ∈ K and
m ∈M . Using the description RΓ• = HomK(C•(K),M) and the arguments
of §4.2.5, we can define a map

RΓ•(K,M)
(φ∗,f)−−−−→ RΓ•(K ′,M ′)

uniquely defined up to homotopy.
We now make a description using the decomposition in connected compo-

nents associated to the gi’s and g′i’s respectively for K and K ′. For simplity,
we assume that φ extends to a map from G(Af ) to itself since it will be the
case for all the examples that will be considered. For each i, let ji such that
φ(g′i) = γigjiki ∈ G(Q)gjiK. We can define maps φi : Γ(g′i,K

′)→ Γ(gji ,K)
and fi by :

φi(x) := γ−1
i φ(x)γi fi(m) := f(γi.m)

Since the p-component of gji is trivial, the p-component of γi belongs to the
p-component of K and therefore γi acts on M which justifies the definition of
fi. It is easy to check that the pairs (φi, fi) satisfy the assumption of §4.2.5.
We therefore have a map from C•(Γ(gji ,K),M)→ C•(Γ(g′i,K

′),M ′). Sum-
ming up over the i’s, we get the map

RΓ•(K,M)
(φ∗,f)−−−−→ RΓ•(K ′,M ′)

which is defined up to a homotopy.
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4.2.9. Completely continuous action. It is useful and important for our ap-
plication to notice that if f satisfies certain properties then so does the map
(φ∗, f) between the complexes. For example if M and M ′ are Banach spaces
or compact Frechet spaces equipped with continuous actions of K and K ′

and if f is completely continuous, then so is the map induced by (φ∗, f)
at the level of the complexes. This follows from the very definition of our
map, the fact that composition between continuous and compact maps is
compact and that each term of the complex RΓ•(K ′,M ′) is isomorphic to a
finite number of copies of M ′.

4.2.10. Special cases. Of course, if f is the identity map and K ′ is an open
subgroup of K we get the restriction map that we denote by ResKK′ .

An other special case arises also if ∆f ⊂ G(Af ) is a semi-group acting such
that there is a left action of ∆f on M via the projection of ∆f into G(Qp).
For any x ∈ ∆f , we consider φ = Int−1

x : K ′ = xKx−1 → K given by
Int−1

x (k) = x−1kx and the map M → M given by m 7→ x.m. We therefore
get a map:

RΓ•(K,M)
RΓ(K,x)−−−−−→ RΓ•(xKx−1,M)

which depends only of the coset x.K modulo homotopy.
Consider now two open subgroups K,K ′ of ∆f and x ∈ ∆f . Then we have

the decompositions:

K ′xK = tjxjK and K ′ = tjkj .(K ′ ∩ xKx−1)

with xj = kjx for j running in a finite set of indexes. Notice that xjKx−1
j =

xKx−1 is independent of j. Therefore it makes sense to define the action of
the double coset K ′xK from RΓ•(K,M) into RΓ•(K ′,M) by

[K ′xK] :=
∑
j

RΓ(K,xj) =
∑
j

RΓ(K ′ ∩ xKx−1, kj) ◦ResxKx
−1

K′∩xKx−1 ◦RΓ(x,K)

Again this action is defined up to homotopy and depends (up to homotopy)
uniquely of the coset decomposition of K ′xK above. One can see also it is
homotopic to∑

j

RΓ(K ′ ∩ xKx−1, kj) ◦RΓ(x, x−1K ′x ∩K) ◦ResKx−1K′x∩K .

When K ′ ⊃ K and x = 1, we recover the corestriction map.
We now compare this action with the one defined by arithmetic subgroups.

For this purpose, it is convenient to make M a right ∆−1
f -module by the

action m.δ−1 := δ.m for all δ ∈ ∆f and m ∈ M . For each i, we write
gix = γx,igjihg∞ with h ∈ K as in §1.2.5. Then γx,i ∈ ∆f ∩G(Q). Then we
have the equality in the homotopy category:

[KxK] = ⊕i[Γiγ−1
x,iΓji ].
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where [Γiγ−1
x,iΓji ] is the map from C•(Γi,M) into C•(Γji ,M) defined pre-

viously. Of course, this equality is up to homotopy. The reader should
compare with the relation (6) which was seen at the level of cohomology.

4.2.11. Action of an automorphism on the resolutions. We fix ι an auto-
morphism of G such that Kι = K and an automorphism ιM of M such
that:

g.ιM (m) = αM (gι.m)
for all g ∈ K and m ∈ M . Therefore (ι, ιM ) induces an automorphism
of RΓ•(K,M) in the homotopy category. We can also describe this map
using the decomposition in connected components. For any arithmetic
subgroup Γ, we have a canonical isomorphism from HomΓ(C•(Γ),M) onto
HomΓα(C•(Γι),M) induced by φ 7→ φι for all φ ∈ HomΓ(Cq(Γ),M) with
φι(n) := ιM (φ(n)). Now note that since Kι = K, we should have Γ(x,K)ι =
Γ(xι,K). Since for any representative systems {gi}, {gιi} is another system
of representatives, we can see that the map induced by (ι, ιM ) is obtained
from the maps above for Γ = Γ(gi,K) for each i up to homotopy.

4.3. Finite slope cohomology.

4.3.1. We will use freely the notations and assumptions of Chapter 2. Let A
be a Qp-Banach algebra. Let Kp be a neat open compact subgroup of G(Ap

f ).
For such Kp, we choose representatives gi for the cosets G(Q)\G(Af ) ×
HG)/Kp.I that are trivial at p. Then, it follows from the previous discussion
that the map M 7→ RΓ•(Kp.Im,M) defines a functor from the category of
left A[∆−m/Zp]-Frechet modules in the homotopy category of Fre(A). We
let the algebra Up act on the cohomology of SG(Kp.Im) with coefficients M̃
or on a complex RΓ(Kp.Im,M) through the projection on C∞c (∆−m//Im,Zp)
and the canonical action of the latter on the cohomology or the complex.
Moreover, RΓ•(Kp.Im,M) is equipped with an action of the Hecke operators
Hp(Kp) that defines an algebra homomorphism

Hp(Kp)→ EndDbpf (Fre(A))(RΓ•(Kp.Im,M)).

4.3.2. Weight space revisited. Let Z(Kp) := ZG(Q) ∩Kp.I. Then the nat-
ural map of Z(Kp) inside Γ(gi,KpI) is trivial for each i. Therefore Dλ and
V ∨λ (L) are Γ(gi,KpI)-modules only if λ is trivial on Z(Kp). This is the con-
dition (2). We set X = XKp ⊂ XT to be the Zariski closure of the weights
λ which are trivial on Z(Kp) for sufficiently small Kp. Let Zp(Kp) be the
p-adic closure of Z(Kp) inside T (Zp). Then we have

XKp(L) := Homcont(T (Zp)/Zp(Kp), L)

for any finite extension L of Qp. Moreover XKp is of dimension rkZpT (Zp)−
rkZpZp(K

p). Notice that if G is Q-split or semi-simple Zp(Kp) is trivial
since Kp is neat by assumption. Otherwise, its rank depends of the rank
of some global units together with some Leopold defect. For instance, if
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G = GSp(2n, F ) for a totally real field F then XG is of dimension (n+1)[F :
Q]− ([F : Q]− 1− δF,p) = n[F : Q] + 1 + δF,p where δF,p designs the defect
of the Leopoldt conjecture for (F, p).

If S is a finite set of prime and Kp is maximal hyperspecial away from S,
then Zp(Kp) does not depend of Kp if it is sufficiently small. In general,
when Kp decreases XKp can get more connected components. However its
dimension will stay the same.

4.3.3. Finite slope cohomology. Let M be any left L[∆−/Zp(Kp)]-module.
We assume that M is a L-Banach or a compact L-Frechet for which the
elements in ∆−− act completely continuously. Let t ∈ T−−. We equip the
complex RΓ•(KpIm,M) with an action of the Hecke operators ut (defined
up to homotopy). By the definition of this action and the assumption on
M , this operator is completely continuous on this complex and the latter
has finite slope decomposition with respect to ut. By the results of Chapter
2, this induces a slope decomposition for its cohomology. We then write
H•fs(SG(KpIm),M) ⊂ H•(SG(KpIm),M) for the finite slope part of its co-
homology. Since for any t, t′ ∈ T−− there exits an N such that tN = t′t′′

for t′′ ∈ T− and ut commutes with ut′ , it is easy to see that the finite slope
part does not depend of the choice of t. We also put

Hq
fs(S̃G,M) := lim

−→
Kp

Hq
fs(SG(Kp.I),M)

The spaces M that we will mainly consider are Dλ(L) and V ∨λ (L) for λ ∈
XKp(L).

4.3.4. Finite slope p-adic automorphic representations. Let λ ∈ XKp(Qp).
An irreducible finite slope representation σ of Hp will be called p-adic auto-
morphic of weight λ if it appears as a subquotient of the representation of
Hp on Hq

fs(S̃G,Dλ(L)) for some integer q and some p-adic field L. It will be
further called (M,w)-ordinary Eisenstein if there exist M ∈ LG, w ∈ WM

and a finite slope p-adic automorphic character σM of M of weight λ such
that Jσ is a direct factor of the character f 7→ Jτ (f regM,w) for all f ∈ Hp
and Jτ the character of an automorphic finite slope representation for M .
Moreover M is supposed to be minimal for this property.

Proposition 4.3.5. Let λ ∈ XKp(L). For any irreducible finite slope repre-
sentation σ of G, there is an integer mq(σ, λ) ∈ Z such that for all f ∈ H′p,
we have

tr(f ;Hq
fs(S̃G,Dλ(L))) =

∑
σ

mq(σ, λ)Jσ(f)

In particular, σ is automorphic of weight λ if mq(σ, λ) 6= 0 for some q.

Proof. Let t ∈ T−− and any h ∈ Q. Then the ≤ h-slope part for ut of
Hq

fs(S̃G,Dλ(L)) is Hq
fs(S̃G,Dλ(L))≤h := lim

−→
Kp

Hq
fs(SG(Kp.I),Dλ(L))≤h. It is
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equipped with an action of Hp since ut is in the center of Hp and this rep-
resentation of Hp is clearly admissible. Therefore we have a decomposition

tr(f ;Hq
fs(S̃G,Dλ(L))≤h) =

∑
σ

vp(θσ(ut))≤h

mq(σ, λ)Jσ(f)

for all f ∈ Hp. The proposition then follows easily by considering this
equality with f ∈ H′p and letting h go to infinity.

One defines the overconvergent Euler-Poincaré multiplicity by

m†G(σ, λ) :=
∑
q

(−1)qmq(σ, λ)(28)

In the sequel of this section, we want to relate the action of the Hecke
operators on the finite slope cohomology of Dλ(L) to the one of Vλ(L). We
start by the following important lemma which goes back to Hida.

Lemma 4.3.6. Let M be a left ∆−/Zp-module. Let t ∈ T−− and m a
positive integer. Then the following commutative diagram is commutative
in the homotopy category of complexes of abelian groups.

RΓ(Kp.Im,M)
[Im+1.t.Im]

))SSSSSSSSSSSSSS

umt // RΓ(Kp.Im,M)

RΓ(Kp.Im+1,M)

OO

um+1
t // RΓ(Kp.Im+1,M)

OO

In particular, if M is a Frechet L[∆−/Zp(Kp)-vector space over which the
elements of ∆−− act completely continuously, the restriction map induces
an isomorphism on the finite slope parts:

H•fs(SG(KpI),M) ∼−→ H•fs(SG(KpIm),M).

Proof. The first part is a consequence of the definition of the action of double
cosets and of the fact that the decomposition in right coset of the double
cosets ImtIm and Im+1tIm are the same. This last fact follows from Im+1 ∩
t−1Imt = Im ∩ t−1Imt for t ∈ T−−. To prove the second part of our lemma,
we apply Lemma 2.3.4 to the following commutative diagram that follows
from the first part of our lemma.

H•(Kp.Im,M)
[Im+1.t.Im]

))SSSSSSSSSSSSSS

umt // H•(Kp.Im,M)

H•(Kp.Im+1,M)

OO

um+1
t // H•(Kp.Im+1,M)

OO
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4.3.7. Let λ be an algebraic dominant character of T . The next lemma
shows that the finite slope part of the cohomology of V∨λ(L) can be replaced
by finite slope part of the cohomology of V ∨λ (L).

Lemma 4.3.8. Let λ = λalgε be an arithmetic weight of conductor pnλ.
Then for any m ≥ nλ, we have

H•fs(SG(Kp.I), V ∨λ (L)) ∼= H•fs(SG(Kp.Im),V∨λ(ε, L))

Proof. Let Vλ,n(L) be the subspace of locally algebraic functions on I which
are n-locally analytic on I ′nλ . Then Vλ(L) = lim

−→
n

Vλ,n(L). By Lemma 2.3.13,

the canonical map

H̃•(SG(Kp.Im), V ∨λ (L))→ H•(SG(Kp.Im), V ∨λ,n(L))

induces an isomorphism on the finite slope part. The previous Proposition
applied to the M = V ∨λ,0(L) together with the case n = 0 of the isomorphism
above imply our claim since Vλ(ε, L) = Vλ,0(L).

Definition 4.3.9. For any t ∈ T− and any λ ∈ X∗(T )+, we put

N(λ, t) := Infw 6=id|tw∗λ−λ|p.

We are now ready to compare the cohomology of Dλ(L) and of Vλalg(ε, L).

Proposition 4.3.10. Let λ = λalgε ∈ X(L) be an arithmetic weight of
conductor pnλ and µ be a non critical slope with respect to λalg. Then for
any positive integer m ≥ nλ, we have the canonical isomorphisms:

H•(SG(Kp.I),Dλ(L))≤µ ∼= H•(SG(Kp.Im),V∨λ(ε, L))≤µ.

Similarly, for any rational h < vp(N(λ, t)) and any Hecke operator f =
fp ⊗ ut with t ∈ T−−, we have:

H•(SG(Kp.I),Dλ(L))≤h ∼= H•(SG(Kp.Im),V∨λalg(ε, L))≤h

for the ≤ h-slope decomposition with respect to the action of f .

Proof. We just prove the first part. The second part can be proved similarly.
By the previous lemmas, it suffices to show that

H•(SG(Kp.I),Dλ(L))≤µ ∼= H•(SG(Kp.I), V ∨λ (L))≤µ

For any simple root α, recall that we have defined in Proposition 3.2.11 a
homomorphism of left I-module

Θα : Aλ(L)→ Asα∗λ(L)



62 ERIC URBAN

Let us write Θ∗α for the dual homomorphism. Then by Proposition 3.2.12,
we have a canonical exact sequence:⊕

α∈∆

Dsα∗λ(L)→ Dλ(L)→ V ∨λ (L)→ 0

Let us fix an ordering α1, . . . , αr of the simple roots in ∆ and for each integer
i between 1 and r, Θ∗i = Θ∗α1

+ · · ·+ Θ∗αi . For i = 0, we define Θ∗0 = 0. Then
Coker Θ∗0 = Dλ(L), Coker Θ∗r ∼= V ∨λ (L) and for each integer i ∈ {1, . . . , r},
we have an exact sequence:

0→ Qi
Θ∗αi→ Coker Θ∗i → Coker Θ∗i−1 → 0

where Qi is the exact quotient of Dsαi∗λ(L) making the short sequence exact.
This induces the long exact sequence

Hq(SG(Kp.I), Qi)≤µ−(λalg(Hαi )+1)αi → Hq(SG(Kp.I), Coker Θ∗i−1)≤µ →

Hq(SG(Kp.I), Coker Θ∗i )
≤µ → Hq+1(SG(Kp.I), Qi)≤µ−(λalg(Hαi )+1)αi

There is a shift in the slope truncation because the operator Θ∗αi is not
exactly equivariant for the action of Up. In fact, we have the following
formula for any eigenvector v in H•(SG(Kp.Im), Qi)[θ]

ut(Θ∗αi(v)) = αi(t)λ
alg(Hαi )+1Θαi(ut.v) = θ(t)αi(t)λ

alg(Hαi )+1.Θ∗αi(v)

which implies our claim since the character of Θ∗αi(v) is therefore of slope
µθ − (λalg(Hαi) + 1)αi.

Now since Qi contains a stable OL-lattice under the left action of ∆−,
the slope of any character occurring in H•(SG(Kp.I), Qi) must belong to
X∗(T )Q,+. Since µ is not critical with respect to λ, µθ − (λalg(Hαi) +
1)αi /∈ X∗(T )Q,+ which implies H•(SG(Kp.I), Qi)<µθ−(λalg(Hαi )+1)αi = 0.
Therefore Hq(Kp.I, CokerΘ∗i−1)≤µ is independant of i. This fact for i = r
and i = 0 means that

H•(SG(Kp.I),Dλ(L))≤µ ∼= H•(SG(Kp.I), V ∨λ (L))≤µ.

4.3.11. More multiplicities. Let θ be a finite slope L-valued character of the
Hecke algebra RS,p. For any λ ∈ X(L) and any Kp which is maximal outside
S, let us consider

m†(θ, λ,Kp) :=
∑
q

(−1)qdimLH
q(SG(Kp.I),Dλ(L))[θ]

We also define when λ is arithmetic:

mcl(θ, λ,Kp) :=
∑
q

(−1)qdimLH
q(SG(Kp.I), V ∨λ (L))[θ]

An immediate consequence of the previous proposition is the following
classicity result on multiplicities:



EIGENVARIETIES FOR REDUCTIVE GROUPS 63

Corollary 4.3.12. Let λ be an arithmetic weight. Then for any θ such that
µθ is non critical with respect to λalg, we have

mcl(θ, λ,Kp) = m†(θ, λ,Kp)

4.4. A spectral sequence. Fix λ an arithmetic weight of level pm. We
can refine the classicity result explained above by using the BGG complex.
For this purpose, we consider the following double complex

Ci,jλ := RΓi(KpIm, C
j
λ(L)) =

⊕
w|l(w)=j

RΓi(KpIm,Dw∗λ(L))

Since the BGG complex is exact except in degree 0 where its cohomolgy is
isomorphic to V ∨λ (L), the spectral sequence that one obtains by taking coho-
mology with respect to j first degenerates and converges toH i+j(SG(KpI), V ∨λ (L)).
On the other hand, the spectral sequence obtained by taking cohomology
with respect to i first has a Ei,j1 term given by⊕w|l(w)=jH

i(SG(KpI),Dw∗λ(L)).
Then Proposition 4.3.10 is a corollary of the following theorem.

Theorem 4.4.1. Let λ = λalgε be an arithmetic weight of level pm and a
slope µ ∈ X∗(T )Q. Then we have the following spectral sequence:⊕
w|l(w)=j

H i
fs(K

pIm,Dw∗λ(L))≤µ+w∗λ−λ ⇒ H i+j
fs (SG(KpIm),V∨λalg(ε, L))≤µ.

Proof. This follows from the fact that the two spectral sequences attached
to the double complex Ci,j converge to the same limit. The slope trun-
cation follows from the fact due to Proposition 3.3.12 that the differential
map Ei,j1 → Ei,j+1

1 is equivariant with respect to the action of Up if one
renormalizes the ∗-action of ut on H i

fs(K
pIm,Dw∗λ(L)) by multiplying by

the factor ξ(t)w∗λ
alg

.

4.5. The p-adic automorphic character distributions. In the begin-
ning of this chapter, we have defined finite slope p-adic character distribu-
tions as certain p-adic linear functionals on H′p. In this section, we define
the finite slope p-adic (virtual) character distributions of the p-adic auto-
morphic spectrum that we will decompose as alternating sums of cuspidal
and Eisenstein parts.

4.5.1. Definition of I†G and IclG . Let L be a finite extension of Qp and fix
λ ∈ X(L). For f ∈ H′p we put

I†G(f, λ) := tr(f ;H•fs(S̃G,Dλ(L)))
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If f ∈ H′p(Kp), we easily see that

I†G(f, λ) = Meas(Kp, dg)× tr(f ;H•fs(SG(Kp.I),Dλ(L)))
= Meas(Kp, dg)× tr(f ;RΓ•(Kp.I,Dλ(L)))

This second equality comes from Corollary 2.3.11. If λ ∈ X(L) is algebraic
dominant, one also defines IclG(f, λ) by:

IclG(f, λ) := tr∗(f ;H•(S̃G,V∨λalg(L))

where the superscript “ ∗” is here to remind the reader that V∨
λalg

(L) is
considered as a left ∆−-module for the ∗-action. If f = fp⊗ut with t ∈ T−−,
it follows from the comments of §1.2.5, the relation (15) and Lemma 4.3.8
that we have the following formula:

IclG(f, λ) = ξ(t)λ.trst(f ;H•(S̃G,V∨λ(C))(29)

where the superscript “st” means that we have considered the standard
action of the Hecke operators on H•(S̃G,V∨λ(C)) as defined in §1.2.5.

Lemma 4.5.2. Let λ be an algebraic dominant weight and let f = fp⊗ut ∈
H′p(Kp). Then the following congruence holds.

I†G(f, λ) ≡ IclG(f, λ) mod N(λ, t)Meas(Kp, dg)

with N(λ, t) the power of p defined in definition 4.3.9

Proof. Let Kp such that fp is bi-Kp-invariant. Let h the largest slope
(strictly) less than vp(N(λ, t)) and ocuring in the cohomology of Dλ(L) or
Vλ(L). Then one has

tr(f,H•fs(SG(Kp.I),Dλ(L))≤h ≡ I†G(f, λ) mod N(λ, t)Meas(Kp, dg)

tr(f,H•(SG(Kp.Im), V ∨λ (L))≤h ≡ IclG(f, λ) mod N(λ, t)Meas(Kp, dg)

By Proposition 4.3.10, the left hand-side of both congruences are equal and
the lemma is proved.

4.5.3. Twist with respect to a pair (w, λ). For any pair (w, λ) with w ∈ W
and λ a locally algebraic weight, one defines a Qp-linear automorphism of
the Hecke algebra Hp

f 7→ fw,λ

defined by:

fw,λ := ξ(t)w∗λ
alg−λalgfp ⊗ ut

if f = fp⊗ut with t ∈ T− and fp ∈ C∞c (G(Ap
f ),Qp) and extended to Hp by

linearity. For any character θ of RS,p, we then consider the twisted character
θw,λw defined by:

θw,λ(f) := θ(fw,λ)
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for all f ∈ RS,p. Similarly, for any irreducible finite slope representation σ,
we denote by σw,λ the twisted finite slope representation defined by

σw,λ(f) := σ(fw,λ).

It is straightforward to verify that we have

µθw,λ = µθ + λalg − w ∗ λalg(30)

In particular, when µθ is not critical with respect to λalg, µθw,λ /∈ X∗(T )Q,+
and therefore m†(θw,λw, λ,Kp) = 0 as long as w 6= id since the cohomology
as an integral structure (if the multiplicity is not zero, that means θw,λ

must be integrally valued and its slope must belong to X∗(T )Q,+). In view
of Corollary 4.5.5 below, this gives another proof of Corollary 4.3.12.

Theorem 4.5.4. Let f ∈ H′p, then for any locally algebraic character λ, we
have

IclG(f, λ) =
∑
w

(−1)l(w)I†G(fw,λ, w ∗ λ)

Proof. One applies the finite slope spectral sequence of Theorem 4.4.1. One
needs again to pay attention to the fact that the action on the BGG reso-
lution is the standard action (i.e. the action of t on Dw∗λ(L) is the ∗-action
multiplied by ξ(t)w∗λ

alg
), it is why the twists of the Hecke operators appear

here since the distribution I†G is the trace with respect to the ∗-action. The
details are left to the reader.

Recall that for any irreducible finite slope representation σ, we have defined
in (28) the Euler-Poincaré multiplicity m†G(σ, λ). It satisfies

I†G(f, λ) =
∑
σ

m†G(σ, λ)Jσ(f)

where the sum runs over (absolutely) irreducible finite slope representations.
If moreover λ is locally algebraic, we can also define mcl(σ, λ) in a similar
way by replacing I†G(f, λ) by IclG(f, λ). Then we have the following straight-
forward corollary.

Corollary 4.5.5. Let λ be an arithmetic weight. Then for any finite slope
irreducible representation σ, we have

mcl
G(σ, λ) =

∑
w∈W

(−1)l(w)m†G(σw,λ, w ∗ λ)

There is a similar formula for the multiplicitiesm†(θ, λ,Kp) andmcl(θ, λ,Kp).

4.6. The Eisenstein and Cuspidal finite slope p-adic character dis-
tributions. Like in the classical case, the p-adic automorphic distribution
(which is not in general effective) can be decomposed as a sum indexed on
Levi M and elements of WM of Eisenstein and a cuspidal p-adic character
distributions.
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4.6.1. Definitions of I†G,M,w and I†G,0. For any standard Levi M ∈ LG and
w ∈ WM , recall that we have defined linear maps from Hp(G) into Hp(M)
f 7→ f regM,w to relate the character of the parabolic induction of an admissible
finite slope to the character of the representation which is induced. We define
character distributions I†G,0 and I†G,M,w for any M ∈ LG and w ∈ WM

Eis, by
induction on the rk(G). If rk(G) = 0, we put:

I†G,0(f, λ) = I†G,G(f, λ) := I†G(f, λ)

Assume now that rk(G) = r and that these distribution are defined for
groups of rank less than r. Then, for any proper Levi M ∈ LG and f =
fp ⊗ ut, we put

I†G,M,w(f, λ) := I†M,0(f regM,w, w ∗ λ+ 2ρP )

where 2ρP stands for the sum of positive roots of the unipotent radical of
the standard parabolic subgroup of Levi M and

I†G,M (f, λ) :=
∑

w∈WM
Eis

(−1)l(w)+dimnM I†G,M,w(f, λ)

where nM stands for the Lie algebra of the standard parabolic of Levi M .
We define:

I†G,0(f, λ) := I†G(f, λ)−
∑
M∈LG
M 6=G

I†G,M (f, λ)

Let λ = λalgε be an arithmetic weight of level pm. In view of the formula
(29), we define for f ∈ Hp(Kp):

IclG,0(f, λ) := Meas(Kp).ξ(t)λ.trst(f ;H•cusp(SG(Kp.Im),V∨λ(C)(ε)))

Lemma 4.6.2. For any f = fp ⊗ ut ∈ Hp and regular arithmetic weight λ,
we have:

IclG(f, λ) =
∑
M∈LcG

∑
w0∈WM

Eis

∑
w∈WM

(−1)l(w)+dim nM ξ(t)λ−w
−1w0∗λ.IclM,0(f regM,w, w0 ∗ λ+ 2ρPM )

Proof. This is a consequence of the trace formula of Franke and a standard
computation that we explain now. In order to have lighter notations, we
write the proof only when λ is algebraic (i.e. ε = 1) and f = 1Kp ⊗ ut since
the proof is strictly the same in the general case. We first fix a standard
parabolic P of Levi subgroup M . For any algebraic dominant character
µ , let us write σµ := H•cusp(S̃M , V

∨
µ (C))K

p
viewed as a representation of

M(Qp). Let P be the standard parabolic subgroup with Levi M and let N
be its unipotent radical. Then by the relation (8), we have

trst(fM , σµ) = trst(ut : IndG(Qp)
P (Qp)σµ).



EIGENVARIETIES FOR REDUCTIVE GROUPS 67

Here again, the subscript “st” stands as usual for “standard action” and
the parabolic induction is the smooth non-unitary parabolic induction. If
φ ∈ (IndG(Qp)

P (Qp)σµ)I and w ∈ WM then φ(w) is invariant by wIw−1∩M(Qp) =
I ∩M(Qp) = IM since w ∈ WM . Therefore from the decomposition

G(Qp) =
⊔

w∈WM

P (Qp)wI

we see that the map φ 7→ (φ(w))w∈WM defines an isomorphism:(
Ind

G(Qp)
P (Qp)σµ

)I ∼= (σIMµ )W
M

Then a classical computation gives:

trst(ut :
(
Ind

G(Qp)
P (Qp)σµ

)I
) =∑

w∈WM

[Nw(Zp) : tNw(Zp)t−1].trst(IMwtw−1IM : σIMµ ) =

∑
w∈WM

[Nw(Zp) : tNw(Zp)t−1]
Meas(Kp)

ξ(t)−w
−1µIclM,0(1Kp ⊗ uwtw−1,M , µ)

Here we have considered IMwtw
−1IM as the element uwtw−1,M ∈ Up(M)

thanks to the remarks of §4.1.8 and Nw := N ∩ w−1Nw. Notice that

[Nw(Zp) : tNw(Zp)t−1] =
∏

α∈RP∩w−1(RP )

|α(t)|−1
p = |tw−1(ρP )+ρP |−1

p

If µ = w0 ∗ λ + 2ρP = w0(λ + ρP ) + ρP for some w0 ∈ WM
Eis, we therefore

have

ξ(t)λ[Nw(Zp) : tNw(Zp)t−1]ξ(t)−µ = ξ(t)λ−w
−1(w0(λ+ρP )+ρP )|tw−1(ρP )+ρP |−1

p

= ξ(t)λ−w
−1(w0(λ+ρP )+ρP )+w−1(ρP )+ρP εξ,w(t) = ξ(t)λ−w

−1w0∗λεξ,w(t)

Recall also that we have

εξ,w(t)−1(1Kp)M ⊗ uwtw−1,M = Meas(Kp)−1f regM,w.

Combining all the previous identity, we get:

ξ(t)λ.trst(fM , H•cusp(S̃,VM
w0∗λ+2ρP

(C)∨) =(31) ∑
w∈WM

ξ(t)λ−w
−1w0∗λIclM,0(f regM,w, w0 ∗ λ+ 2ρP )

Recall that by Theorem 1.4.2 due to J. Franke, since λ is regular, we have:

trst(f : H•(S̃G,V∨λ(C))) =
∑
M∈LG

∑
w0∈WM

Eis

(−1)l(w0)+dimnM trst(fM : H•cusp(S̃M ,VM
w0∗λ+2ρPM

))
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therefore after multiplying by ξ(t)λ we get:

IclG(f, λ) =
∑
M∈LG

∑
w0∈WM

Eis

(−1)l(w0)+dimnM ξ(t)λtrst(fM : H•cusp(S̃M ,VM
w0∗λ+2ρPM

))

The statement we have claimed now results from the combination of this
formula and (31).

Corollary 4.6.3. Let f = fp ⊗ ut ∈ Hp(Kp) be Zp-valued and let λ be a
regular arithmetic weight. Then we have the congruence

I†G,0(f, λ) ≡ IclG,0(f, λ) (mod Meas(Kp, dg).N(λ, t))

Proof. Notice first that since f = fp⊗ut ∈ Hp(Kp) is Zp-valued, the images
of f by all the character distributions we have defined are Meas(Kp).Zp-
valued. We prove this proposition by induction on the rank of G. The
case of rank 0 follows from the previous paragraph (see Lemma 4.5.2). We
now assume the proposition is satisfied for all proper Levi subgroups M
of LG. If w0 6= w, then N(λ, t) divides ξ(t)λ−w

−1w0∗λ therefore it follows
from the previous lemma that we have the following congruence modulo
Meas(Kp)N(λ, t):

IclG,0 ≡ IclG(f, λ)−
∑

w∈WM
Eis

(−1)l(w)+dim nM IclM,0(f regM,w, w ∗ λ+ 2ρPM )

By Lemma 4.5.2, we also have

IclG(f, λ) ≡ I†G(f, λ) (mod Meas(Kp, dg).N(λ, t))

We can now conclude using the induction hypotheses and the definition of
I†G,0.

4.6.4. For any λ ∈ X(Qp), By Proposition 4.3.5, we have

I†G(f, λ) =
∑
σ

m†(σ, λ)Jσ(f)

with m†(σ, λ) =
∑

g(−1)qmq(σ, λ) ∈ Z and where the set of σ of bounded
slope and such that m†(σ, λ) 6= 0 is finite. By induction on the rank of
G, we see easily that I†G,0(f, λ) and I†G,M,w(f, λ) are finite slope character
distributions and we have spectral decompositions:

I†G,0(f, λ) =
∑
σ

m†0(σ, λ)Jσ(f)

and
I†G,M,w(f, λ) =

∑
σ

m†G,M,w(σ, λ)Jσ(f)
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where m†G,M,w and m†G,0(σ, λ) ∈ Z denote the corresponding multiplicities. If
λ is a dominant algebraic weight, we denote also mcl

G,0(σ, λ) the multiplicity
of σ with respect to the finite slope character distributions f 7→ IclG,0(f, λ).

Corollary 4.6.5. Let λ be a regular arithmetic weight. If σ is not critical
with respect to λalg, then we have:

mcl
G,0(σ, λ) = m†G,0(σ, λ)

Proof. This is an easy consequence of Corollary 4.6.3 using an appropriate
t ∈ T−−. The details are left to the reader.

Definition 4.6.6. Let (λn)n be a sequence of algebraic dominant weight in
X(Qp) such that (λn)n is converging p-adically to a weight λ in X(Qp). We
say that this sequence is highly regular if for all positive simple root α, we
have

lim
n→∞

λn(Hα) = +∞

This notion is used in the following situation. If t ∈ T−−, then

(32) lim
n→∞

N(λn, t) = 0

where the limit is understood for the p-adic topology.

Corollary 4.6.8. Let (λn)n be a highly regular sequence of dominant weight
converging p-adically to a weight λ ∈ X(L). Then for any Hecke operator
f = fp ⊗ ut ∈ H′p, we have

lim
n→∞

IclG,?(f, λn) = I†G,?(f, λ)

for ? = ∅,0.

Proof. This is a direct consequence of the congruences of Lemma 4.5.2 and
Corollary 4.6.3.

4.7. Automorphic Fredholm Series.

4.7.1. Definition. We consider automorphic Fredholm series only whenG(R)
has discrete series. Under this hypothesis, dG stands for half the dimen-
sion of the corresponding locally symmetric space. For any f ∈ H′p and
λ ∈ X(Qp) and ? = ∅, 0, let us denote P †G,?(f, λ,X) the Fredholm power
series associated to the finite slope character distribution:

h 7→ (−1)dGMeas(Kp)−1.I†G,?(h, λ)

for Kp the maximal open compact subgroup of G(Ap
f ) such that f is Kp

bi-invariant. If moreover λ is an arithmetic weight, we set:

P clG (f, λ,X) := det(1−X.f ;H•(SG(Kp, I),V∨λalg(L)))(−1)dG
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Lemma 4.7.2. Assume λ is a regular arithmetic weight. Then, the power
series

Pn−clG,0 (f, λ,X) :=
P †G,0(f, λ,X)

P clG,0(f, λ,X)

is a meromorphic function of X on Cp (i.e. the ratio of two Fredholm series
in X) with coefficients in OL and its set of zeroes and poles lies in

{x ∈ C×p , s.t. |x|p ≥ N(λ, t)}

Proof. This follows from the definition of the Freedholm power series and
Corollary 4.6.5.

Let ΛX := Zp[[T (Zp)/Zp]] ⊂ O(X) and ΛX,Qp = ΛX ⊗ Qp. We have the
following theorem.

Theorem 4.7.3. Let f ∈ H′p(Kp) and X = XKp then the following proper-
ties hold.

(i) The functions of λ defined by I†G(f, λ), I†G,M,w(f, λ) and I†G,0(f, λ)
belongs to ΛX,Qp. In particular, they are analytic on X.

(ii) If G∞ has no discrete series, then I†G,0(f, λ) ≡ 0.
(ii)’ If M∞ has no discrete series or if dim(XKp∩M ) < dim(XKp) then

I†G,M,w(f, λ) ≡ 0.

(iii) Assume f = fp ⊗ ut with t ∈ T−−, then we have P †G,0(f, λ,X) ∈
ΛX{{X}}. In other words, it defines an analytic function on X ×
A1
rig.

Proof. Again from the definitions, it suffices to prove (i) for I†G(f, λ) since
the other cases will follow from an induction argument on the rank of G.
Let U ⊂ X be a an open affinoid subdomain and let n ≥ nU. Then we have

RΓ•(Kp.I,DU,n)⊗λ L ∼= RΓ•(Kp.I,Dλ,n(L))

for any λ ∈ U(L). Therefore FU := Meas(Kp)tr(f,RΓ•(Kp.I,DU,n)) is
function inside O(U) satisfying FU(λ) = I†G(f, λ) for any λ ∈ U(Qp). Let
O0(U) the ring of analytic functions on U which are bounded by 1. If f
is Meas(Kp)−1.Zp-valued, FU ∈ O0(U) since f preserves the O0(U)-lattice
RΓ•(Kp.I, (DU,n)0). Here (DU,n)0 is the O0(U)-dual of the lattice of func-
tions f of AU,n bounded by 1 on U× I. Since this can be done for any such
U ⊂ X, we deduce that I†G(f, λ) ∈ lim

←
U

O0(U) = ΛX. Therefore (i) follows.

For the proof of (ii), we see from the point (i) that it suffices to prove the
vanishing for algebraic dominant weight since those are Zariski dense in X.
Let λ be such a weight and let (λn)n be a highly regular sequence converging
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p-adically to λ. For each n, IclG,0(f, λn) = 0 since G∞ has no discrete series
and λn is dominant regular. By Corollary 4.6.8, this implies that

I†G,0(f, λ) = lim
n→∞

IclG,0(f, λn) = 0

which concludes the proof of (ii). The first part of assertion (ii)’ follows
from the assertion (ii) for the group M . The second assertion follows from
the fact that for any algebraic dominant λ ∈ XKp(L) such that w ∗ λ+ 2ρP
is non trivial on ZM (Q) ∩Kp.I we have

IclM,0(f regM,w, w ∗ λ+ 2ρP ) ≡ 0 (mod Meas(Kp)NM (wtw−1, w ∗ λ+ 2ρP )).

Since those λ’s are Zariski dense by our hypothesis on the dimensions of the
weight spaces for G and M , this implies using a highly regular sequence that
I†M,0(f regM,w, w ∗ λ + 2ρP ) = 0. Using again the Zariski density of those λ’s,
one can conclude since this is an analytic function of λ by (i).

We now prove the point (iii) for which we may assume that G∞ has discrete
series by the point (ii). Let U ⊂ X as above in the proof of (i). We may
and furthermore assume that it contains algebraic weights. This implies that
algebraic weights are dense in U. We will also assume O(U) is factorial which
is the case for instance if U is a closed disc. Since X can be covered by a union
of such discs, we may assume that. We need to prove that P †G,0(f, λ,X) ∈
O0(U){{X}}. From the construction and the description above in the proof
of (i), this series is the ratio of two series in O0(U){{X}}. Since O(U)
is factorial, by Theorem 1.3.11 of [CM], we have a prime factorization of
P †G,0(f, λ,X) as:

P †G,0(f, λ,X) =
∏
i∈IT

Pmii (X)

with mi ∈ Z\{0} and {Pi(X)}i a set of distinct prime Fredholm series in
O0(U){{X}}. We can therefore write P †G,0(f, λ,X) = N(λ,X)

D(λ,X) with N(λ,X)
and D(λ,X) relatively prime Fredholm series.

Before continuing the proof, we refer the reader to §5.1.4 for the definition
and basic properties of the hypersurface Z(F ) ⊂ U × A1

rig defined for any
Fredholm series F (λ,X) ∈ O(U){{X}}.

Assume now that D(λ,X) 6= 1. Since (N,D) = 1, Y := Z(D) − Z(D) ∩
Z(N) is a non empty open rigid subvariety of the hypersurface Z(D). Since
the projection of π : Z(D)→ U is flat, for any affinoid subdomain W ⊂ Y ,
π(W) is an open affinoid subdomain of U and it therefore contains a Zariski
dense set of algebraic weights.

Let us fix such a W and let w = (λ, x) ∈ W(Qp) such that λ ∈ U(Qp) is
an algebraic character. Since x 6= 0, we can easily choose an element w′ =
(λ′, x′), p-adically close to w inside W(Qp) so that λ′ is regular dominant and
|x′|p < N(λ′, t). Since (λ′, x′) is a pole of P †G,0(f, λ,X), it therefore follows
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from Lemma 4.7.2, that x′ is a pole of the rational fraction P clG,0(f, λ′, X).
But since λ′ is regular dominant,

P clG,0(f, λ′, X) = det(1−X.f |Hd(G)
! (SG(Kp.I,V∨λalg(L))

and is therefore a polynomial and has no pole. This contradiction implies
D(λ,X) = 1 and therefore P †G,0(f, λ,X) ∈ O0(U){{X}} as claimed.

Corollary 4.7.4. For any finite slope representation σ, w ∈ WM
Eis and

λ ∈ X(Qp), we have
(−1)dMm†G,M,w(σ, λ) ≥ 0

and m†G,M,w(σ, λ) is always 0 unless M ∈ LcG. In particular, for each λ ∈
X(Qp), the map f 7→ (−1)dmI†G,M,w(f, λ) is an effective finite slope character
distribution.

Proof. Since I†G,M,w(f, λ) = I†M,0(f regM,w), it is sufficient to prove the result
for G = M . This is a consequence of Lemma 4.1.12 together with the parts
(iii) and (ii) of Theorem 4.7.3.

4.7.5. A twisted version. Let ι be a finite order automorphism of G preserv-
ing the pair (B/F , T/F ) for F the finite extension of Qp that splits G and
the center of G. Especially it preserves the Iwahori subgroups Im and the
subgroup T (Zp). It therefore acts on X by λι(t) := λ(tι

−1
) and this action

preserve the cone of dominant weights. We denote by Xι ⊂ X the subva-
riety of weights λ fixed by ι. Since ι preserves I, it acts on f ∈ A(I, L)
by (ι.f)(g) := f(gι

−1
). Moreover if λ ∈ Xι(L), this action leaves Aλ stable.

The Frechet spaces Dλ inherits an action of ι compatible with the action of
ι on the groups I in the sense of §4.2.11. For any f ∈ Hp, we can there-
fore study the traces of ι × f (a notation for ι composed with f) on the
Frechet spaces or Frechet complexes we have defined. Especially, we can
define the distributions I∗G(ι × f, λ), I∗G,0(ι × f, λ) and of I∗G,M (ι × f, λ) as
well as a twisted multiplicity m∗(σ × ι, λ) with ∗ = † or cl. We can also
define the corresponding power series P ∗G(ι×f, λ,X), P ∗G,0(ι×f, λ,X) and of
P ∗G,M (ι× f, λ,X). The following definition will be relevant in the Theorem
below which is the twisted version of Theorem 4.7.3.

Definition 4.7.6. We say that ι is of Cartan type if there exists g∞ ∈ G∞
such that Int(g∞)◦ ι is a Cartan involution of G∞. For instance, if G∞ has
discrete series, one can show that ι = id is of Cartan type.

Let ΛXι := Zp[[T ι/Zp]] ⊂ O(Xι) and ΛXι,Qp = ΛXι ⊗ Qp. In the twisted
situation, a variant of Theorem 4.7.3 is the following.

Theorem 4.7.7. For any f ∈ H′p, the following properties hold.

(i) The functions of λ defined by I†G(ι×f, λ) , I†G,M (ι×f, λ) and I†G,0(ι×
f, λ) belongs to ΛXι,Qp. In particular, they are analytic on Xι.
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(ii) If ι is not of Cartan type, then I†G,0(ι× f, λ) = 0 for all λ ∈ Xι(Qp).

(iii) Assume f = fp ⊗ ut with t ∈ T−−, then we have P †G,0(ι× f, λ,X) ∈
ΛX{{X}}. Especially, it defines an analytic function on Xι × A1

rig.

Proof. It is similar to the proof of Theorem 4.7.3. A detailed construction
and proof will appear in Zhengyu Xiang’s thesis. In particular, he needs
to write the decomposition of the twisted finite slope character distribution
attached to rational parabolic subgroups which are stable by the involution
ι. It can be done exactly in the same way. On has to replace the trace
formula of Franke by the associated twisted trace formula which can be in
turn obtained from Franke’s spectral sequence expressing the cohomology
of V ∨λ (C) as a limit of the spectral sequence constructed out of the cuspidal
cohomology of the standard Levi subgroups when λ is regular.

4.7.8. The next two sections will be devoted to some applications of the
important analyticity property of the distributions I†G,?(f, λ) we have defined
in the previous paragraphs. The first application is the construction of
Eigenvarieties à la Coleman-Mazur. The second is the proof of a formula
for these distribution in geometric terms à la Arthur-Selberg.

5. Construction of Eigenvarieties

5.1. Spectral Varieties.

5.1.1. Analytic families of finite slope character distributions. Let X be a
rigid analaytic space defined over an extension of Qp. A Qp-linear map

J = JX : H′p → ΛX,Qp ⊂ O(X)

is called a X-family of character distribution if for all λ ∈ X(Qp), the com-
posite Jλ of this map with the evaluation map at λ is an effective finite slope
character distribution. For any irreducible finite slope representation σ, we
write mJ(σ, λ) ∈ Z≥0 for the multiplicity of Jσ in Jλ. Let Kp be an open
compact subgroup of G(Ap

f ), the goal of this section is to attach to the pair
(JX,K

p) an Eigenvariety over X parametrizing the spherical Hecke eigensys-
tems of the irreducible finite slope representations σ for which mJ(σ, λ) > 0
and σK

p 6= 0. We will then apply our construction to the analytic families
of finite slope distributions we have studied in the previous chapter. Let
S be the smallest finite set of primes such that Kp is hyperspecial away
from S. In our main application, X will be the weight space XKp (which is
actually only depending upon S) introduced in the previous chapter and J

will be I†G,0. One can also construct Eisenstein components attached to the

distributions I†G,M,w’s.
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5.1.2. Remark. Before starting up the task that we propose to perform in
this chapter, we would like to mention that our construction extends a con-
struction of K. Buzzard in [Bu07] who did such a construction with the
weaker hypothesis that for each affinoid U ⊂ X, there is a U-family of or-
thonormalizable O(U)-Banach spaces equipped with an action of the Hecke
algebra and such that certain Hecke operators at p are completely continuous
on them.

5.1.3. Let f ∈ H′p. Then for each λ ∈ X(Qp), let us write PJ(f, λ,X)
the Fredholm power series (in X) attached to f and Jλ. Then we can
write PJ(f, λ,X) = 1 − Jλ(f)X + . . . . Thus we see that the first term
of the X-expansion for PJ(f, λ,X) is an analytic function of λ. A similar
statement is also true for all the coefficients of PJ(f, λ,X) since the coef-
ficient of Xn can be expressed as a homogenous polynomial of degree n in
Jλ(f), Jλ(f2), . . . , Jλ(fn). Therefore there exists PJ(f,X) ∈ ΛX,Qp{{T}}
such that PJ(f,X)(λ) = PJ(f, λ,X) for all λ ∈ X(Qp).

5.1.4. Fredholm hypersurfaces. We recall some of the definitions due to Cole-
man and Mazur of Fredholm hypersurfaces. We refer the reader to [CM] and
[Bu07] for the notions and properties recalled here. One says that an element
P ∈ ΛW{{X}} is a Fredholm series if P (0) = 1. For such a P , we denote
by Z(P ) the rigid subvariety of X × A1

rig cut out by P . It is called a Fred-
holm hypersurface and its projection onto X is flat. Z(P )(Qp) is equipped
with the natural topology such that the inclusion Z(P )(Qp) ⊂ Qp × X(Qp)
is continuous. An admissible affinoid subdomain of Z(P ) can be obtained
as follows. Let U ⊂ X be an affinoid subdomain and assume we have a
fatorization P |U = Q · R with Q,R ∈ O(U){{X}} with Q a polynomial
of degre d relatively prime to R such that Q(0) = 1. Then WQ,U :=
Sp(O(U)[X]/(XdQ(X−1))(Qp) imbeds naturally in Z(P )(Qp) where for any
Tate algebra A, we denote by Sp(A) the corresponding rigid affinoid variety
as in [BGR]. Moreover WQ,U is open if and only if U is. Any such sub-
set will be called admissible. It is not difficult to check that it defines a
Grothendieck topology on the ring space Z(P ) by taking finite covering by
admissible open subsets. This gives Z(P ) the structure of a rigid analytic
variety. Of course, this ringed space is not necessarily reduced. Its reduction
Z(P )red is a union of irreducible components that are themselves of the form
Z(P ) for irreducible Fredholm series P .

5.1.5. Spectral varieties attached to J . For any f = fp ⊗ ut ∈ H′p(Kp) with
t ∈ T−−, we denote by ZJ(f) := Z(PJ(f)) ⊂ X× A1

rig the Fredholm hyper-
surface cut out by the Fredholm series PJ(f, λ,X).

Proposition 5.1.6. Let x = (λx, αx) ∈ X(Qp)×Q×p . Then x ∈ ZJ(f)(Qp)
if and only if α−1

x appears as an eigenvalue of VJλx (Kp) with a non trivial
multiplicity.
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Proof. This is obvious from the definition.

5.2. First Construction of the Eigenvarieties.

5.2.1. We fix Kp ⊂ G(Ap
f ). Let S be the smallest finite set of primes

away from which Kp is hypersepcial. Let R̃S,p be the p-adic completion
of RS,p[u−1

t , t ∈ T−]. For any subfield L ⊂ Qp, we define

RS,p(L) = Homct.alg.(R̃S,p, L).

By construction, the characters of RS,p contained in RS,p(L) are those of
finite slope. The canonical p-adic topology of RS,p(L) is the topology in-
duced by the metric |θ−θ′| = Supf∈RS,p |θ(f)−θ′(f)|p. In particular, for all
f ∈ R̃S,p, the map from RS,p(L) into L defined by θ 7→ θ(f) is continuous.
We consider Y = YS,p := X × RS,p. A point y of Y(Qp) is a pair (λy, θy)
where λy is a weight and θy is a homomorphism RS,p → Qp of finite slope.

5.2.2. Construction of EKp,J . Let R̂S be the p-adic completion of the Zp-
valued smooth function on G(AS∪{p}

f ) which are bi-invariant by KS∪{p}
m . A

Hecke operator f ∈ H′p will be said Kp-admissible if it is of the form f =
1KS ⊗ f ′ ⊗ ut with f ′ ∈ R̂×S and t ∈ T−−. For any such f , one define a map
of ringed spaces Rf from YS,p into X×A1

rig by y = (λy, θy) 7→ (λy, θy(f)−1)
on the set of L-points and on the ring of functions R∗f : O(X){{X}} →
O(X)⊗̂R̃S,p defined by

∞∑
n=0

an ·Xn 7→
∞∑
n=0

an · (f)−n

We define EKp,J as the following infinite fiber product over YS,p:

EKp,J :=
∏
f

R−1
f (ZJ(f))

where the fiber product is indexed on the set of Kp-admissible Hecke oper-
ators f . For each admissible f , we will denote by rf the restriction of Rf to
the Eigenvariety.

From the definition, EKp,J is clearly a ringed space whose underlying topo-
logical space is the set of Qp-points EKp,J(Qp) with the topology induced
by the canonical p-adic topology of RS,p × X(Qp). Of course, we have:

EKp,J(Qp) =
⋂
f

R−1
f (ZG,J(f)(Qp))

By definition of the canonical topology of RS,p(Qp), the maps rf are there-
fore continuous. We also need to define a G-topology of EKp,J . We say that
an open subset of EKp,J is an admissible open subset if it is union or inter-
sections of open subset of the form (rf1×· · ·×rfr)−1(W) where f1, . . . fr are
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Kp-admissible operators and W is an open admissible affinoid subdomain
(for the strong G-topology) of ZJ(f1) × · · · × ZJ(fr). Similarly, we defined
the admissible coverings as the inverse images by the projection rf ’s of the
admissible coverings of the corresponding spectral varieties. Naturally EKp,J

is also a ringed space for its G-topology. Notice also that by construction,
for any Kp-admissible f , we have a map of ringed spaces rf : EKp,J → ZJ(f)
fitting in a canonical diagram:

EKp,J

w

��

rf

$$JJJJJJJJJ

X ZG,J(f)oo

In the next subsections, we will prove the desired expected properties of
the Eigenvarities we have defined from those of the spectral varieties. We
first give a description of the points of the Eigenvariety EKp,J . Let us denote
by mJ(λ, θ,Kp) the multiplicity of θ in VJλ(Kp). Then we have the following

Proposition 5.2.3. Let Kp be an open compact subgroup of G(Ap
f ) and

let y = (λy, θy) ∈ (X × RS,p)(Qp). Then mJ(λy, θy,Kp) > 0 if and only if
y ∈ EKp,J(Qp). Moreover if y = (λy, θy) ∈ EKp,J(Qp), then there exists a
Kp-admissible f such that

r−1
f (rf (y)) = {y}.

Proof. The argument of this lemma is essentially due to Coleman and Mazur.
For any f ∈ H′p(Kp) and β ∈ Qp, let us denote by mJ(λy, f, β,Kp) the
multiplicity of the eigenvalue β for f acting on VJλy (Kp). Then we have

mJ(λy, f, θy(f),Kp) =
∑
θ

θ(f)=θy(f)

mJ(λy, θ,Kp)

Assume now that mJ(λy, θy,Kp) > 0. Then for any Kp-admissible f , we
deduce from the formula above that mJ(λy, f, θy(f),Kp) > 0 and therefore
rf (y) = (λy, θy(f)−1) ∈ ZJ(f)(Qp) by Proposition 5.1.6. Since this is true
for all Kp-admissible f , we deduce that y ∈ EKp,J(Qp).

Let now L be the finite extension of Qp such that y ∈ EKp,J(L). Let
t ∈ T−− and h = vp(θy(ut)). Let us consider the action of RS,p on the
L-Banach space VJλy (Kp) and let V := VJλy (Kp)≤h its ≤ h-slope part of
VJλy (Kp) for the action of the operator 1Kp ⊗ ut. Let A be the image of
RS,p inside EndL(V ) and consider f1, f2, . . . fr be a subset of RS,p whose
images in A form a system of generators of A over L. Let R ∈ Zp of positive
p-adic valuation such that two distinct eigenvalues α and α′ of the operators
1Kp ⊗ ut, f1, . . . fr acting on V must satisfy vp(α − α′) < vp(R). Then
we consider the operators h1, . . . hr defined by h1 = f1 and the induction
formula hi+1 = fi+1·(1+R.hi) and we take f = (1Kp⊗ut)(1+R.hq). Let now
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θ be a character of RS,p occurring in the representation Vλy(K
p) and such

that θ(f) = θy(f). In particular, this implies that vp(θ(ut)) = vp(θy(ut))
and therefore θ occurs in V . Moreover this implies that vp(θ(ut)− θy(ut)) ≥
vp(R) and therefore θ(uu) = θy(ut) by our assumption on R. We deduce
that θ(hq) = θy(hq). Repeating the previous argument we deduce that
θ(fq) = θy(fq) and then by a descending induction that θ(fi) = θy(fi) for
i = q, q − 1, . . . , 1 and therefore θ = θy since θ and θy agree on a system of
generators of the Hecke algebra acting on V .

For this f , we therefore have mJ(λy, f, θy(f),Kp) = mJ(λy, θy,Kp) and
since rf (y) ∈ ZJ(f)(Qp) this implies that mJ(λy, θy,Kp) > 0 by Proposition
5.1.6 and we have r−1

f (rf (y)) ∩ EKp,J(Qp) = {y}.

5.3. Second Construction. We now give a construction of a rigid analytic
variety whose set of points is in bijection with EJ,Kp(Qp). We first construct
the local pieces and we show how we can glue them together to construct a
rigid analytic space over X.

5.3.1. Construction of local pieces. We fix t ∈ T−− and write f0 for the Kp-
admissible Hecke operator f0 := 1Kp⊗ut. Let U ⊂ X be an affinoid subset of
X and let WQ,U be the admissible affinoid subset of ZJ(f0) over U attached
to an admissible factorization PJ(f,X)|U = Q(X)S(X) ∈ O(U){{X}}. For
any λ ∈ U(Qp), let us write Qλ(X) for the evaluation of Q(X) at λ. Then
recall that there is a unique Hp(Kp)-stable decomposition (see §4.1.13)

VJλ(Kp) = NJλ(Qλ)⊕ FJλ(Qλ)

such that NJλ(Qλ) is finite dimensional of dimension deg(Q), Qλ(X) is the
characteristic polynomial of f acting on NJλ(Qλ) and Q∗λ(f) is invertible on
FJλ(Qλ). Let RQ,S(X) ∈ XO(U){{X}} be the entire power series attached
to Q and S by Theorem 2.3.8. Then for any λ ∈ U(Qp), RQ,S(f0)(λ) acts
on VJλ(Kp) as the projector on NJλ(Qλ) with respect to the above decom-
position. In particular, for any f ∈ Hp(Kp) the trace JQλ,t(f) of f acting
on NJλ(Q) is equal to J(f.RQ(f0)(λ)) (see §4.1.13). This implies that the
map TQ,U : f 7→ J(f.RQ(f0)) ∈ O(U) is a pseudo-representation of Hp(Kp)
of dimension the degree of Q (see for instance [Ta91] for the definitions and
basic properties of pseudo-representations). Then we put RU := RS,p⊗O(U)
and hJ,Q,U := RU/Ker(TQ,U) ∩RU with

Ker(TQ,U) := {f ∈ Hp(Kp)⊗O(U)|TQ,U(ff ′) = 0, ∀f ′ ∈ Hp(Kp)}

By the basic properties of pseudo-representations, we see that hJ,Q,U is a
finite algebra over O(U) and is therefore an affinoid algebra. Let us as-
sume that U is reduced. By the theory of pseudo-representations, a the-
orem of Taylor [Ta91] implies that hJ,Q,U is the image of RU by a semi-
simple representation ρJ,Q,U of Hp(Kp) of dimension deg(Q) defined over
a finite extension of the total ring of fractions of O(U). Moreover for all
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f ∈ Hp(Kp), ChJ,Q,U(f,X) := det(1−XρJ,Q,U(f)) has coefficients in O(U)
since tr(ρJ,Q,U(f)) = TQ,U(f) ∈ O(U) for all f ∈ Hp(Kp).

We then write YJ,Q,U := Sp(hJ,Q,U) for the corresponding affinoid variety.
There is a canonical map YJ,Q,U → U which fits in a canonical diagram

YJ,Q,U

��

⊂ YS,p = X×RS,p

��
U ⊂ X

Moreover the map Rf0 induces a canonical surjective map

rf0 : YJ,Q,U →WQ,U ⊂ ZJ(f0)

above U which is finite since both the source and the target are finite over
U.

In this construction, U is not necessarily supposed to be open. In the
particular case U is reduced to a point U = {λ}, then YJ,Q,{λ} = Sp(hJ,Q,{λ})
and this is the set of finite slope characters θ of RS,p such that Qλ(θ(ut)−1) =
0 and mJ(λ, θ,Kp) > 0. Moreover hJ,Q,{λ} is the unique quotient of RS,p
having these characters.

Lemma 5.3.2. Let U′ ⊂ U be an affinoid subdomain (not necessarily open)
then the kernel of the canonical surjective map hJ,Q,U⊗O(U)O(U′)→ hJ,Q,U′

is contained in the nilradical of hJ,Q,U ⊗O(U) O(U′). In particular,

YJ,Q,U(Qp) = r−1
f0

(WQ,U(Qp)) = {(λ, θ) ∈ (EJ,Kp×XU)(Qp)|Qλ(θ(f0)−1) = 0}

Proof. We may clearly assume that U is reduced as this case will imply
trivially the general case. Let f be in the kernel of this map. Then the
coefficients of the characteristic polynomial ChJ,Q,U(f,X) must belong to
the kernel of b := ker(O(U) → O(U′)). By Cayley-Hamilton’s theorem
ChJ,Q,U(f, ρJ,Q,U(f)) = 0 and therefore fdeg(Q) can be expressed as a poly-
nomial in f with coefficients in b. This implies that f is nilpotent in
hJ,Q,U ⊗O(U) O(U)/b = hJ,Q,U ⊗O(U) O(U′) which proves the first part of
the proposition. The second part follows from the case U′ = {λ} for any
λ ∈ U(Qp) and the description of YJ,Q,{λ} which was done before.

5.3.3. Gluing of the local pieces. We need to show that the pieces YJ,Q,U’s
glue together when the WQ,U do in the spectral variety ZJ(f0).

Lemma 5.3.4. Let U′ ⊂ U be an inclusion of open affinoid subdomains
of X then the canonical surjective map hJ,Q,U ⊗O(U) O(U′) → hJ,Q,U′ is an
isomorphism.

Proof. Since U′ ⊂ U is an inclusion of open affinoid subdomains of X, the map
O(U) 7→ O(U′) is flat. Let RU := RS,p ⊗O(U), then hJ,Q,U = RU/ker(TQ,U).
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Now sinceO(U)→ O(U′) is flat, we have ker(TQ,U′) ∼= ker(TQ,U)⊗O(U)O(U′).
Therefore

hJ,Q,U′ = RU′/ker(TQ,U′)
= (RU ⊗O(U) O(U′))/(ker(TQ,U)⊗O(U) O(U′))

= (RU/ker(TQ,U))⊗O(U) O(U′)

= hJ,Q,U ⊗O(U) O(U′).

Proposition 5.3.5. Assume that we have a factorization Q = Q′Q′′ with
(Q′, Q′′) = 1 in O(U)[X]. Then the canonical inclusion map WQ′,U ↪→WQ,U

induces the following canonical isomorphism

YJ,Q′,U

rf0 **UUUUUUUUUUUUUUUUUUUU
∼= YJ,Q,U ×WQ,U

WQ′,U //

��

YJ,Q,U

rf0
��

WQ′,U // WQ,U

Proof. Since (Q′, Q′′) = 1, we have NJλ(Q) = NJλ(Q′)⊕NJλ(Q′′) for all λ ∈
U(Qp). Moreover if we write 1 = Q′(X)R′(X) + Q′′(X)R′′(X) in O(U)[X],
the evaluation at λ of e′0 := Q′′(f0)R′′(f0) (resp. e′′0 := Q′(f0)R′(f0)) acting
on NJλ(Q) is the projector onto NJλ(Q′) (resp. onto NJλ(Q′′) ). We deduce
that

(33) ker(TQ,U) = ker(TQ′,U) ∩ ker(TQ′′,U)

Indeed notice first that the splitting above shows that TQ,U = TQ′,U + TQ′′,U
and therefore the intersection is included inside the left hand side of the
equality (33). Now if g ∈ ker(TQ,U), then TQ′,U(gf) = TQ,U(gfe′0) = 0 for all
f ∈ RU which implies that ker(TQ,U) ⊂ ker(TQ′,U). Similarly ker(TQ,U) ⊂
ker(TQ′′,U) which finishes the proof of (33). On the other hand, RU =
ker(TQ′,U)+ker(TQ′′,U) since any f ∈ RU can be written as fe′′0 +fe′0. By the
chinese remainder theorem, this implies we have a canonical isomorphism:

hJ,Q,U ∼= hJ,Q′,U × hJ,Q′′,U
compatible with the canonical maps from RS,p in the algebras hJ,Q,U, hJ,Q′,U
and hJ,Q′′,U respectively. This implies easily the claim of the proposition.

5.3.6. From the previous proposition and lemma, we can deduce as it was
done by other authors (for example see section 5 of [Bu07]) from Propositions
9.3.2/1 and 9.3.3/1 of [BGR] that the YJ,Q,U glue together into a reduced
rigid analytic variety E′J,Kp with a finite map rf0 over ZJ(f0) such that for
each pair (Q,U), we have

E′J,Kp ×ZJ (f0) WQ,U = YJ,Q,U
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The cocycle conditions defining the descent data are satisfied since they
are satisfied for the spectral variety ZJ(f0). Moreover by Lemma 5.3.2,
E′J,Kp(Qp) = EJ,Kp(Qp). This implies that EJ,Kp is a rigid analytic space
whose corresponding reduced closed subspace is E′J,Kp . We will therefore
denote the later by EredJ,Kp . We may summarize our results by the following
theorem:

Theorem 5.3.7. Let J and Kp as before. Then EJ,Kp ⊂ YS,p is a rigid
analytic equidimensional space over Qp satisfying the following properties.

(i) For any y = (λy, θy) ∈ YS,p(Qp), then y ∈ EJ,Kp(Qp) if and only if
mJ(λ, θ,Kp) > 0.

(ii) For any Kp-admissible Hecke operator f , the projection map

rf : EJ,Kp → ZJ(f)

is a finite surjective morphism.
(iii) EJ,Kp is equi-dimensional of dimension dim X.

Proof. The point (i) is Proposition 5.2.3. The point (iii) follows from the
fact that EJ,Kp = ∪Q,USp(hJ,Q,U) where (Q,U) runs over the open affinoid
subdomain of U and Q over the polynomial of O(U)[X] inducing a prime
factorization of PJ(f0, X) ∈ O(U){{X}} and the fact that hJ,Q,U is a finite
torsion free O(U)-algebra. We are left with the point (ii). The surjectivity
follows from the fact that for any Kp-admissible f , we have

mJ(λy, f, θy(f),Kp) =
∑
θ

θ(f)=θy(f)

mJ(λy, θ,Kp)

and the caracterization of the points of EJ,Kp and ZJ(f) given by Proposi-
tions 5.1.6 and 5.2.3. Now let (Q,U) as before and letQ∗f (X) := ChJ,Q,U(f,X).
Then the map r∗f is induced by the O(U)-algebra homomorphism

O(U)[X]/(Q∗f (X))→ hJ,Q,U

induced by X 7→ f . Since hJ,Q,U is finite over O(U) and the image of YJ,Q,U
by rf is clearly Sp(O(U)[X]/(Q∗f (X))), we deduce that rf is finite on EredJ,Kp .
Since it factorizes through EJ,Kp , it is also finite on the latter. This finishes
the proof of our theorem.

Corollary 5.3.8. Every irreducible component of EJ,Kp projects surjectively
onto a Zariski dense subset of X.

Proof. Let V be an irreducible component of EJ,Kp and let y ∈ V(Qp)
lying on only one irreducible component of EKp . By Proposition 5.2.3, we
can choose a Kp-admissible f such that r−1

f (rf (y)) is reduced to {y}. Let
W be an irreducible component of ZJ(f) containing rf (y). Because rf is
finite and surjective, there is one irreducible component V′ of r−1

f (W) such
that rf (V′) = W. In particular, V′(Qp) ∩ r−1

f (rf (y)) 6= ∅ and therefore



EIGENVARIETIES FOR REDUCTIVE GROUPS 81

y ∈ V′(Qp). Since V is the irreducible component of EJ,Kp containing y, we
must have V′ = V. Note that we also have rf (V) = W which implies there
is also only one irreducible component of ZJ(f) containing rf (y). Since the
statement of our corollary is true for the projection ZJ(f)→ X, we deduce
that the projection of V onto X has a Zariski dense image.

5.3.9. Families of irreducible finite slope representations of Hp(Kp). An irre-
ducible component of EKp,J can be seen as a family of finite slope characters
of RS,p. We now want to generalize this to representations of Hp(Kp) having
positive multiplicity with respect to J . We have the following proposition.

Proposition 5.3.10. Let λ0 ∈ X(Qp) and σ0 be an irreducible finite slope
representation such that mJ(λ0, σ0) > 0. Let y0 = (λ0, θσ0) be the corre-
sponding point of the Eigenvariety EJ,Kp. Then there exist

(i) a finite flat covering V over an affinoid open subdomain W of EJ,Kp

containing y0 which is finite and generically flat over its projection
U ⊂ X in to weight space.

(ii) a point x0 ∈ V(Qp) above y0,
(iii) For all x ∈ V(Qp), a (non empty) finite set Πx of irreducible finite

slope representations σ of Hp(Kp) such that θσ = θx is the character
of RS,p attached to the projection of x into W(Qp) ⊂ EJ,Kp(Qp),

(iv) a non trivial linear map IV : Hp(Kp)→ O(V)

such that if for any x ∈ V(Qp), we write Ix for the composite of IV with the
evaluation map at x from O(V) into Qp and λx for the image of x in X(Qp)
then

(a) For all x ∈ V(Qp), Ix =
∑

σ∈Πx
mx(σ)Jσ with mx(σ) > 0 only if

mJ(λx, σ) > 0,
(b) There exists a Zariski dense subset V(Qp)generic ∈ V(Qp) such that

Πx is a singleton {σx} and mx(σ) = mJ(λx, σx) is constant for all
x ∈ V(Qp)generic.

(c) σ0 ∈ Πx0.
(d) Let θW be the canonical character of RS,p corresponding to W, then

IV(ff ′) = θW(f)IW(f ′) for all f ∈ RS,p and f ′ ∈ Hp(Kp).

Proof. Let y0 = (λ0, θ0) with θ0 = θσ0 . Then y0 ∈ EJ,Kp(Qp). Let W be an
affinoid neighborhood of y0 inside EredJ,Kp . We may assume that Y = YJ,Q,U
for some admissible pair (Q,U) with U an open affinoid neighborhood of
λ0 inside X. Then we consider the character TJ,Q,U representation ρJ,Q,U.
Because the image of Hp(Kp) ⊗ O(U) by ρJ,Q,U is finite over O(U), after
extending the scalar to a finite extension of O(Y ) or which is the same after
taking a finite cover Y ′ of Y , it decomposes as a sum of isotypical com-
ponents TJ,Q,U = T1 + · · · + Tm where the Ti’s are characters of isotypical
representations of Hp(Kp) defined on the fraction ring of O(Y ′). Since there
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are isotypical, the action of RS,p on the semi-simple representation of each Ti
is given by characters taking values in the ring of analytic functions of some
irreducible components of Y . Moreover there exists a point x0 of Y ′(Qp)
above y0 = (λ0, θ0) ∈ Y (Qp) such that the specialization of TJ,Q,U at x0 con-
tains Jσ0 as a summand. A fortiori it exists i0 such that the specialization at
x0 at Ti0 contains Jσ0 as a summand. Let V be the irreducible component of
Y ′ containing x0 such that the character Ti0 is defined over the fraction field
of O(V) and let W be the image of V via the finite projection Y ′ → Y . Let
us call IV the composite of Ti0 with the projection O(Y ′) → O(V). Then
we must have IV(ff ′) = θW(f)IV(f ′). From the definitions and construc-
tion, it is clear that (a), (c) and (d) are satisfied. The point (c) is a direct
consequence of the following easy fact: If a character IV from an algebra
A into an affinoid algebra O(V) is generically irreducible, then the set of
y ∈ V(Qp) such that the specialization at y of IV is reducible is a proper
closed affinoid subspace of V.

5.4. Application to finite slope automorphic character distribu-
tions. We can apply the formal result of the previous section to the families
of finite slope character distributions we have constructed in the previous
chapter. Let LcG ⊂ LG be the subset of standard Levi subgroups of G having
discrete series. For each J = (−1)dM I†G,M,w when M ∈ LcG and w ∈ WM

Eis,
we obtain an Eigenvariety EKp,M,w. If G(R) has discrete series, we denote
EKp,0 the previous Eigenvariety when M = G. We also write

EKp :=
⋃

M∈LcG

⋃
w∈WM

Eis

EKp,M,w

EKp,M :=
⋃

w∈WM
Eis

EKp,M,w EKp,Eis :=
⋃

M∈Lc
G

M 6=G

EKp,M

From the previous section and the construction and properties of the au-
tomorphic p-adic finite slope distributions of the previous chapter, these
Eigenvarieties are equidimensional. It is also useful to notice the following
proposition:

Proposition 5.4.1. Let M,M ′ ∈ LcG with M 6= M ′, then the intersec-
tion of the subvarieties EKp,M and EKp,M ′ is of dimension smaller than the
dimension of XKp.

Proof. By an easy reduction step, we can reduce to the case M ′ = G and
M any proper Levi of G in LcG. Assume the statement of this proposition is
wrong. That means that we have an irreducible component in the intersec-
tion of dimension dimX. By the corollary above, we can find a non critical
point y such that λy is very regular point (as regular as we want in fact) in
this intersection. It would be classical and associated to cuspidal representa-
tion and an Eisenstein series at the same time. This cuspidal representation
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would be CAP in the sense of Piatetski-Shapiro. By a result of M. Harris
[Ha84], this is not possible if λy is chosen sufficiently regular.

5.4.2. Non critical and classical points. A point y = (λy, θy) ∈ EKp(Qp) is
called classical if λy is arithmetic and if θy is attached to an automorphic
classical finite slope representation of weight λalgy . A point y = (λy, θy) is
said non critical if λy is an arithmetic weight and if θy is non critical with
respect to λalgy . Finally y is said regular if λy is arithmetic regular. By
the discussion of the previous chapter (in particular Corollary 4.6.5), we
know that any non critical regular point of the Eigenvariety is classical. In
particular, these points in any open affinoid subdomain of the Eigenvariety
are Zariski dense.

5.4.3. Families of finite slope automorphic representations. Let π be an au-
tomorphic representation of G(A) occurring in the cohomology with the
system of coefficient W∨λ0

(C). It is defined over a Qp after we have fixed

embeddings of Q in C and Qp. We assume that πI
′
m.K

p

f is non zero for some
m > 0 and some open compact subgroup Kp. We further fix a Qp-valued
finite order character ε of T (Z/pmZ) and θ0 a finite slope character of RS,p
occurring in π

I′m.K
p

f ⊗ Qp(ε−1). This determine what we have called a p-
stabilization of π and we suppose that it is of finite slope. Let σ0 be the
irreducible constituent of the restriction of πI

′
m.K

p

f ⊗Qp(ε−1) to Hp(Kp) such
that Jσ0(fg) = θ0(f)Jσ0(g) for any f ∈ RS,p and any g ∈ Hp(Kp). Then σ0

is a finite slope automorphic representation. Then the following theorem is
perhaps the most striking result of this paper. Since non critical points are
Zariski dense in any open affinoid subdomain of EKp so are classical points.

Theorem 5.4.4. Assume that m†0(σ0, λ0) 6= 0. Then, there exists

(1) an affinoid open neighborhood U ⊂ X of λ0,
(2) a finite cover V of U with structural morphism w,
(3) a homomorphism θV : RS,p → O(V),
(4) a character distribution IV : Hp(Kp)→ O(V),
(5) a point y0 ∈ V(Qp) above λ0,
(6) A Zariski dense subset Σ ⊂ V(Qp) such that λy = w(y) is an arith-

metic weight ∀y ∈ Σ,
(7) For each y ∈ Σ, a finite set Πy of irreducible finite slope cohomolog-

ical cuspidal representations of weight λy = w(y).

satisfying the following:

(i) The specialization of θV at y0 is equal to θ0,
(ii) The character distribution Iσ0 is an irreducible component of the

specialization Iy0 of IV at y0.
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(iii) For any y ∈ Σ, the specialization θy of θV at y is a character occur-
ring in the representation of RS,p in πK

p
for all π ∈ Πy.

(iv) For each y ∈ Σ the specialization Iy of IV at y satisfies:

Iy(f) =
∑
σ∈Πy

mcl(σ, λy)tr(πy(f))

where mcl(σ, λy) is the Euler-Poincaré characteristic of σ defined as:

mcl(σ, λy) :=
∑
i

(−1)idimCHomHp(σ, lim−→
Kp

H i(SG(Kp.Im),V∨
λalgy

(εy,C)))

with λy = λalgy εy.

Moreover Πy contains only one representation for y in a Zariski dense subset
of Σ.

Proof. We just apply Proposition 5.3.10 to J = (−1)dGI†G,0. Then we con-
sider Σ as the subset of points y = (λ, θ) of V(Qp) such that λ is arithmetic
regular and θ is of non critical slope with respect to λ. This set is easily seen
to be Zariski dense in V(Qp) since the projection of V onto X contains the
arithmetic point λ0. Moreover these points are classical and correspond to
cuspidal representations by Corollary 4.6.5. More precisely for y ∈ Σ, and
σ ∈ Πy, we have m†G,0(σ, λy) = mcl(σ, λy). This conclude the proof of this
Theorem.

5.5. Examples.

5.5.1. About the hypothesis. We explain now that the hypothesis of the
previous theorem are satisfied for a very large class of automorphic rep-
resentations. We assume G(R) has discrete series. For πf an irreducible
representation of Gf and λ a dominant algebraic weight, let us define the
Euler-Poincaré multiplicity of πf with respect to λ by:

mEP (πf , λ) =
∑
i

(−1)idimCHomGf (πf , H i(S̃G,V∨λ(C)))

when the weight is regular let us also define

m(πf , λ) := (−1)dG
∑

π∞∈Πλ

m(πf ⊗ π∞)

By the results recalled in the first chapter, we then have

m(πf , λ) = mEP (πf , λ)

If σ is a p-stabilization of πf , we therefore have

mcl(σ, λ) = m(πf , λ)× dim HomHp(σ, (πf |Hp)ss)
where (πf |Hp)ss stands for the semi-simplification of the restriction of πf to
Hp. So if this p-stabilization is non critical with respect to λ then m†(σ, λ) is
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non zero if and only if m(πf , λ) 6= 0 which is the case for example when πf is
attached to a cuspidal representation of weight λ. This applies in particular
for all cuspidal forms of regular weight for symplectic or unitary groups over
totally real fields. In those cases, the previous theorem applies and there
exist families passing through σ.

However if m(πf , λ) 6= 0 but σ is critical, it is not clear in general that
m†(σ, λ) 6= 0. In what follows, we look at some examples of this situation.

5.5.2. An example in the GL(2)-case. Let G = GL(2)/Q. Assume πf = triv
is the trivial one dimensional representation and λ0 = 1 is the trivial weight.
There is only one p-stabilization σ since πf is one dimensional and this is the
trivial representation itself. The Up operator attached to the double class of
diag (1, p−1) has eigenvalue p and the eigenvalue of T` for ` 6= p is 1+`. It is
easy to check that πf shows up only in degree 0 since the Eisenstein series E2

is not holomorphic. Therefore in that case mcl(σ, λ) = 1. However m†0(σ, λ)
must vanish since otherwise one would have a p-adic family of slope 1 passing
through the p-adic form E2(q)−E2(qp) and we know that this is impossible
by a theorem of Coleman-Gouvea-Jochnowitz (see also [SU02]). We could
in fact show that m†0(σ, λ) = 0 in that case using the multiplicity formula of
Corollary 4.5.5. Notice that m†Eis(σ, λ) = 0 since σ is not ordinary.

5.5.3. An example in the GSp(4)-case. In this example, we will use the
standard notations without defining all of them in detail. In particular,
we refer the reader to [TU99] or [SU06a] for the definitions on the group
G = GSp(4) and its corresponding automorphic forms. Let (B, T ) be the
Borel pair with T the diagonal torus and B the Borel subgroup stabilizing
the standard flag of the symplectic space attached to G. Let s1 and s2

the symmetries of X∗(T ) attached respectively to the small and long simple
roots attached to the pair (B, T ). An algebraic weight λ is a triple (a, b; c)
with a, b, c ∈ Z and a+ b ≡ c (mod 2) it maps T to the multiplicative group
by the rule diag (t1, t2, t−1

1 ν, t−1
2 ν) 7→ ta1t

b
2ν

(c−a−b)/2. A weight is dominant
if a ≥ b ≥ 0. The simple short and long roots are respectively (1,−1; 0) and
(0, 2; 0) and the corresponding simple reflexion s1 and s2 act on X∗(T ) by
s1(a, b; c) = (b, a; c) and s2(a, b; c) = (a,−b; c). Since ρ = (2, 1; 0), we have
s1 ∗ (a, b; c) = (b− 1, a+ 1; c) and s2 ∗ (a, b; c) = (a,−b− 2; c).

We denote respectively by MS
∼= GL2 × Gm and MK

∼= GL2 × Gm the
standard Levi of the Siegel and Klingen parabolic subgroup of G. The
corresponding isomorphisms are given in the Siegel case by

(g, ν) 7→ diag (g, tg−1ν)



86 ERIC URBAN

and in the Klingen case by

(
(
a

c

b

d

)
, x) 7→


x 0 0 0
0 a 0 b
0 0 (ad− bc)x−1

0 c 0 d


One can easily check that WMS

Eis = {id, s2} and WMK
Eis = {id, s1}.

Let π be a unitary cuspidal representation of PGL(2)/Q whose correspond-
ing classical Hecke newform f is of weight 2k − 2 with k an integer greater
than 2. We make the following assumption:

L(f, k − 1) = L(π, 1/2) = 0

Under this hypothesis, there exists a unique cuspidal non-tempered repre-
sentation SK(π) on GSp(4)/Q such that its degree 4 L-function is given
by

L(SK(π), s) = L(π, s)ζ(s− 1/2)ζ(s+ 1/2)
and such that each local component of SK(π) at a finite place is the non
tempered Langlands quotient of the unitary parabolic induction from the
Siegel parabolic IndGMS

(πf ⊗ ‖ · ‖1/2 × ‖ · ‖−1/2, (i.e. πf ⊗ ‖ · ‖1/2 o ‖ · ‖−1/2

with notations of Sally-Tadic̀ [ST]).
The corresponding p-adic Galois representation is up to twist given by

ρSK(π) = ρf ⊕Qp(1− k)⊕Qp(2− k)

where we have denoted by ρf the p-adic Galois representation attached to f
having determinant the cyclotomic character to the (3− 2k)-th power. This
automorphic representation is called a Saito-Kurokawa lifting of f . When
k > 2, SK(π)⊗ |ν|3−k is cohomological of weight λk = (k− 3, k− 3; 2k− 6).
Here we have denote by |ν| the adelic norm of the multiplier of G.

Let ε = ε(π, 1/2) = ±1. This sign determines the nature of the archimedean
component of SK(π). When ε = 1 then SK(π)∞ and its dual are non tem-
pered and cohomological in degree 2 and 4. Therefore SK(π)f shows up in
the cuspidal cohomology in degree 2 and 4 with multiplicity one. If ε = −1
then SK(π)∞ and its conjugate are the holomorphic and antiholomorphic
discrete series. Therefore SK(πf ) appears in the cuspidal cohomology of
degree 3 with multiplicity two. As remarked by Harder, in both cases there
are also Eisenstein classes attached to SK(πf ) providing a multiplicity one
subspace in the Eisenstein cohomology in degree 2 and 3 isomorphic to
SK(π)f . All together, we deduce that mEP (SK(π)f ) = −2 if ε = −1 and
mEP (SK(π)f ) = 2 if ε = +1. In other words mEP (SK(π)f ) = 2ε(π, 1/2).
For an account of these facts recalled here and their credits the reader can
consult [H93, Sc03, SU06a, Wa1, Wa2].

Let us assume that π is unramified at p and that we can fix a root α of the
Hecke polynomial of f at p such that 0 < v = vp(α) < k− 2 (the case v = 0
can be done but it requires a bit more work and the corresponding result is
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already known by the work [SU06a]). An element t = diag (t1, t2, t−1
1 ν, t−1

2 ν)
belongs to T− if 2vp(t1) ≥ 2vp(t2) ≥ vp(ν). The slope of a p-stabilization is
therefore determined by the eigenvalues of the two Hecke operators U1,p =
Idiag (1, 1, p, p)−1I and U2,p = Idiag (1, p, p2, p)−1I. In [SU06a], it is ex-
plained that there exists a p-stabilization σα of SK(π)⊗|ν|3−k such that the
eigenvalue of U1,p is α and the one of U2,p is αpk−2. After renormalization,
the eigenvalues are therefore respectively α and αp.

This implies that the slope of this p-stabilization is given by µσα = (v +
1, v − 1; 0) with v = vp(αp). We want to compare µσα to w ∗ λk − λk for
w = s1, s2. We have s1∗λk−λk = (−1, 1; 0) and s2∗λk−λk = (0,−2k+4; 0).
Therefore µσα + s1 ∗ λk − λk = (v, v; 0) belongs to the boundary of the
obtuse cone and therefore µσ is critical. Notice also that µσ + s2 ∗λk−λk =
(1 + v, v − 2k + 3; 0) does not belong to the obtuse cone by our assumption
on v. From these remarks we can deduce that

(34) mcl(σα, λk) = m†(σα, λk)−m†(σs1,λkα , s1 ∗ λk)

We will show the following

Proposition 5.5.4. With the above hypothesis and notations, we have:

m†0(σα, λk) = 2(ε(π, 1/2)− 1)

In particular it is non zero if and only if ε = −1.

Proof. First we notice that mcl(σ, λk) = mEP (SK(π)f ). To show the Propo-
sition, we now need to make use of the formula (34). To relate m†(σα, λk)
to m†0(σα, λk) and also to compute m†(σs1,λkα , s1 ∗λk), we now have to study
the Eisenstein multiplicities.

If m†G,MK ,w
(σα, λk) 6= 0 then there exist σw for w = id or s1 a finite slope

representation of GL(2)/Q and a Dirichlet character χw such that if w = id
then σw is of weight (k− 3; 6− 2k) with θσw(Up) = α and χw(p)θσid(p.id) =
θσ(U2,p) = pα or if w = s1 then σw is of weight (k−2, 6−2k) with θσw(Up) =
ap and χid(p)θσw(p.id) = θσ(U2,p) = pα. Since we know that α is a Weil
number of weight 2k−3, we see that these situations cannot occur. Therefore
m†G,MK ,id

(σα, λk) = m†G,MK ,s1
(σα, λk) = 0. Similarly, we could show that

m†G,MK ,w
(σs1,λkα , s1 ∗ λk) = 0 for w ∈ {id, s1}. We also have the same

vanishing results if we replace MK by T by similar but simpler arguments.
We therefore deduce that

m†(σα, λk) = m†0(σα, λk)−m†G,MS ,id
(σα, λk) +m†G,MS ,s2

(σα, s2 ∗ λk)

If m†G,MS ,id
(σα, λk) 6= 0, we have α = θσα(U1,p) = χ(p) for some Dirichlet

character χ. This is impossible since α is a Weil number of weight 2k − 3.
If m†G,MS ,s2

(σα, λk) 6= 0, there exists a finite slope (cuspidal) representation
σ2 of GL(2) of weight 2k − 2 and Dirichlet characters χ2 and χ′2 such that
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α = θσα(U1,p) = θσ2(Up)χ2(p) and p.α = θσα(U2,p) = θσ2(Up)χ′2(p). This is
impossible, we therefore have

m†(σα, λk) = m†0(σα, λk).

We now need to compute and m†G,MS ,w
(σs1,λkα , s1∗λk) for w = {id, s2}. Write

σ′α = σs1,λkα and λ′k = s1 ∗λk = (k− 4, k− 2; 6− 2k). We have θσ′α(U1,p) = α

and θσ′α(U2,p) = p−1θσα(U2,p) = α. If m†G,MS ,id
(σs1,λkα , s1 ∗ λk) 6= 0 then α =

θσ′α(U1,p) = χ(p) for some Dirichlet character χ which is again impossible
since α is a Weil number. Now from the formula defining the distribution
IG,MS ,s2 we see that m†G,MS ,s2

(σs1,λkα , s1∗λk) = m†GL(2),0(πα, (0; 2k−4)) = −2
where π is the p-stabilization of π such that θπα(Up) = α. Therefore we
deduce that

m†(σ′α, λ
′
k) = m†0(σ′α, λ

′
k)− 2

Combining all the previous considerations, we therefore get:

m†0(σα, λk) = 2ε− 2 +m†0(σ′α, λ
′
k)

Since m†0(σ′α, λ
′
k) ≤ 0, this in particular implies that m†0(σα, λk) < 0 if

ε = −1. In fact, one can show that m†0(σ′α, λ
′
k) = 0 otherwise one would get

a 3-dimensional family of generically big Galois representations specializing
to ρSK(π) and that would have a stable line by inertia and corresponding to
the line Qp(2 − k) when specialized at the point corresponding to ρSK(π).
Then by arguments similar to those of [SU06a, SU06b], one would get in-
finitely many elements in the Selmer groups corresponding to the Galois
representations Qp(−1) or ρf (k − 2). But the former can’t exist by Class
Field Theory and the latter is known to be impossible by a theorem of Kato
[K]. This finishes the proof of our proposition. It shows that, the use of
non-tempered cuspidal representation does not lead to results like the one
of [SU06a] when the sign of the functional equation is +1. This is why it is
better to use Eisenstein series as it is explained in [SU06b]. This result also
implies that the main theorem of [SU06a] is also true in the non ordinary
case. We leave the verification of details of this fact to the conscientious
reader.

5.6. The twisted Eigenvarieties for GLn. In this section, we assume
(for simplicity)22 that G = GLn/F over a totally real number field or a CM
fields F . We denote by F+ its maximal totally real subfield and by c the
complex conjugation automorphism of F .

Let T and B be respectively the diagonal torus of G and the group of
upper triangular matrices in G. Let J be the anti-diagonal matrix defined
by

J = (δi,n−j)1≤i,j≤n

22One could extend this to a more general situation.
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We consider the involution ι defined by ι(g) = gι := J tg−1J−1 if F is totally
real and by ι(g) = gι := J tg−cJ−1 if F is CM. This is clearly an involution
of Cartan type.

It is easy to check that T and B are stable under the action of ι. A weight
λ ∈ Xι(Qp) is such that

λ(diag (t1, . . . , tn)) = χ1(t1) . . . χn(tn)

with χj = χn−j if F is totally real and χj = χn−j◦c if F is CM and where the
χi’s are characters of (OF⊗Zp)×. So dim Xι = ([n/2]−1).[F+ : Q]+1+δF+,p.
This is the subvariety of essentially self-dual weights.

For any f ∈ C∞v (G(Af ),Qp), we set f ι defined by:

f ι(g) := f(gι)

and for any character θ of RS,p we denote by θι the character defined by

θι(f) = θ(f ι).

Then it is possible to construct rigid analytic spaces EιKp,0 by applying the
construction we have made in the beginning of this section for the finite
slope character distributions I†GLn,0(f × ι, f, λ) and we have the following
theorem.

Theorem 5.6.1. Let Kp be an open compact subgroup of GLn(Ap
f⊗F ). The

ringed spaces EιKp,0 are rigid analytic varieties and the following properties
hold.

(i) For any y = (λy, θy) ∈ EιKp(Qp), then θy = θιy and λy = λιy. In
particular EιKp sits over Xι.

(ii) Let y = (λy, θy) ∈ (X×Y∗S)(Qp). Then y ∈ EιKp,0(Qp) if and only if
m†(λ, θ × ι,Kp) 6= 0.

(iii) For any Kp-admissible Hecke operator f , the projection map EιKp,0(Qp)→
ZG(f) is a finite surjective morphism.

(iv) The restriction of the map EιKp → Xι to any irreducible component
is generically flat. In particular, EιKp is equidimensional and have
the same dimension as dim Xι.

5.7. Some more Eigenvarieties. We would like to end this section by dis-
cussing some conjectures on p-adic families. What we have constructed here
is the Zariski closure of all the points y = (θ, λ) for which m†(θ, λ,Kp) does
not vanish and we have proved that they form a nice rigid analytic variety
EKp which is generically flat over weight space X. But what about the other
cohomological systems of Hecke eigenvalues for which the Euler-Poincaré
multiplicity vanishes? Can we still construct an Eigenvariety containing all
the points (θ, λ) such that H̄∗(SG(KpIm),Dλ)[θ] 6= 0 ? What is the di-
mension of the irreducible components passing through such a point when
m†(θ, λ,Kp) = 0. We would like to give some speculative answers to these
questions.



90 ERIC URBAN

5.7.1. The full Eigenvariety. A point y = (θ, λ) ∈ YS,p(Qp) is said cohomo-
logical of level Kp if H̄∗(SG(KpIm),Dλ)[θ] 6= 0.

We want to give a construction of a variety that contains all the cohomo-
logical points. This construction is mainly due to Ash-Stevens23 but our
construction is a variant. I will only sketch it. We fix f = ut with t ∈ T−−.
We consider the action of f on the Banach spaces RΓq(Kp.Im,DU,n)’s. For
each degree q, let RqU(f, λ,X) ∈ O0(U){{X}} the Fredholm determinant of
f acting on RΓq(Kp.Im,DU,n) and let RU(f, λ,X) :=

∏
q R

q
U(λ,X) (we don’t

take alternating product here). Since we can make this construction for any
U, we can easily see that there exists RU(f, λ,X) ∈ ΛX{{X}} that special-
izes to RU(f, λ,X) by the canonical map ΛX → O(U). We then denote Z′(f)
the spectral variety24 associated to RX(f, λ,X). We now choose W ⊂ Z(f)
an admissible affinoid subdomain of Z(f). We denote by U its image by
the projection onto weight space X. Let eW the idempotent attached to W
by the associated factorization of the Fredholm series of f . Consider the
complex eW.RΓ(KpIm,DU). Each term is of finite rank over O(U) and we
consider the action of RS,p on it modulo homotopy. Let BW be the O(U)
algebra generated by the image of RS,p in EndDb(eW.RΓ(KpIm,DU) which
is of finite type over O(U). Then put E(W) := Sp(BW). It is a finite affi-
noid domain over U. We define the Eigenvariety EKp by gluing the E(W). A
detail of the gluing of similar pieces has been written up by Zhengyu Xiang
[Xi10]

5.7.2. Conjectures. It would not be difficult to check that the Eigenvariety
EKp we have constructed in this paper is the union of the components of
EKp of dimension d. We would like to formulate two conjectures on the
dimension of the other components.

Conjecture 5.7.3. Let x = (λ, θ) be a point of the Eigenvariety contained
in only one irreducible component C of EKp. Then the projection of C onto
X is codimension d in weight space if and only if there exist two non negative
integers p, q and a positive integer m(θ, λ,Kp) such that

(a) The θ-generalized eigenspace of Hr(SG(KpIm),Dλ(L)) is non zero
only if p ≤ r ≤ q and its dimension is m(θ, λ,Kp)×

(
q−p
r−p

)
.

(b) d = q − p

We now give a few examples to support this conjecture.
Example 1: G = SL(2, F ) with F a totally real field of degree d over Q.
In that case, weight space is dimension d. Consider x = (θ, k) with θ the
system of Hecke eigenvalue associated to an Eisenstein series of weight k. It

23They proved basically that the Eigenvariety is locally (for its canonical p-adic topol-
ogy) rigid analytic which is actually all we need for the conjectures that we state here.

24It is not hard to see that Z(f) ⊂ Z′(f) but the latter might be much bigger as it
depends of the resolution we have chosen unlike Z(f).
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is determined by a Hecke character ψ of the idele class group of F . If the p-
stabilization is chosen ordinary, then it is known that there is a p-adic family
of Eisenstein series of dimension 1 + δ where δ is the defect of the Leopold
conjecture for F and p. The study of the Eisenstein cohomology, see [H87],
shows that the Eisenstein classes occur in degree q only if d ≤ q ≤ 2d − 1
with multiplicity

(
d−1
q−d

)
since the rank of the group of units is d−1. We see

that in that case, our conjecture is satisfied if and only if Leopold conjecture
is true for (F, p).

Example 2: G = D× with D a quaternion algebra over a number field
having exactly one complex place and which is ramified at all the real places.
In that situation, the cuspidal cohomology is non trivial only in degree 1 and
2 so in this situation q = 2 and p = 1 and it is expected by the conjecture
that the projection onto weight space of the irreducible components are
codimension 1. In fact, in the ordinary case this is a theorem of Hida [Hi94].

Example 3: G = GL(n,Q). We write n = 2m or n = 2m+ 1 according to
the parity of n. In this situation, the cuspidal cohomology H∗cusp(SG(K),V∨λ)
with regular λ vanishes except in degree i with m2 ≤ i ≤ m2 + m − 1 if
n even and m(m + 1) ≤ i ≤ m(m + 1) + m if m odd. Notice also that
the cohomology vanishes if λ is not essentially selfdual (See [Cl90] for these
assertions). The prediction of our conjectures then says that the dimension
of the Eigenvariety should be 2m − (m − 1) = m + 1 in the even case
and 2m + 1 − m = m + 1 in the odd case (compare to a conjecture of
Hida in [Hi98]). One can remark that m+ 1 is actually the dimension of the
subvariety of essentially self-dual weights denoted Xι in the previous section.
For n = 3, the arguments of Hida in [Hi94] implies that our conjecture is
true in the GL(3)-case.

The following proposition that has been proved independently by G. Stevens
and by the author gives some more evidence for the conjecture above. Its
proof will be published in an other paper in which we hope to give more
evidences of the Conjecture 5.7.3.

Proposition 5.7.4. Let x = (λ, θ) be a point of the Eigenvariety EKp.
Assume that Hr(SG(KpIm),Dλ(L))[θ] 6= 0 for exactly q consecutive degrees
r. Then there is a component of the Eigenvariety containing x of dimension
at least dim X− d.

This especially means that our conjecture states the opposite inequalities.
It should be therefore seen as a non abelian generalization of Leopoldt con-
jecture. We end this section by a giving a refined conjecture when there are
several irreducible components (of possibly different dimensions).

Conjecture 5.7.5. Let x = (λ, θ) be a point of the Eigenvariety EKp and
let C1, . . . , Cs the irreducible components containing x.

For each i = 1, . . . , s, there exists pi, qi,mi such that:
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(a) θ-generalized eigenspace of Hr(SG(KpIm),Dλ(L)) has rank
∑s

i=1mi×(
qi−pi
r−pi

)
.

(b) The component Ci has dimension dim X− di with di = qi − pi.

6. A p-adic trace formula

6.1. Spectral side of the p-adic trace formula. Let λ ∈ X(Qp). By
section §4, we know that we can write the p-adic finite slope character dis-
tribution f 7→ I†G(f, λ) defined over H′p as a sum :

I†G(f, λ) =
∑
σ

m†G(λ, σ).Iσ(f)(35)

where σ runs in the set of irreducible finite slope representations of Hp. This
sum is infinite but we know it is p-adically convergent.

The aim of this section is to apply the p-adic analyticity with respect to the
weight of the map λ 7→ I†G(f, λ) to establish a formula for (35) in geometric
terms similar to Arthur-Selber type trace formulas. Inspired by Franke’s
trace formula for the Lefschetz numbers, we introduce an overconvergent
version of it and show that it equals the corresponding p-adic automorphic
distribution I†G(f, λ). It is possible to obtain a similar result for the distri-
bution I†G,0 but we have decided to do this in a future paper to keep this
article under a reasonable length.

6.2. Franke’s trace formula for Lefschetz numbers. The purpose of
this paragraph is to recall Franke’s formula. We start by recalling the main
terms involved in it.

6.2.1. Tamagawa numbers. Let H/Q be a connected reductive group. As-
sume H(R) contains a compact Cartan subgroup and let H̄(R) the com-
pact modulo center inner form of H(R). We denote by AH the maximal
split-torus of the center of H and KH(R) one of its maximal compact sub-
group. Let dh be a Haar measure on H. Then the Tamagawa number
χ(H) = χ(H, dh) associated to H is defined by

χ(H, dh) := (−1)dH
vol(H(Q)\H(A)/AH(R)0)

vol(H̄(R)/AH(R)0)
·
wH(R)

wKH(R)

where dh denotes an Haar measure on H(Af ) and where the Haar measures
used for H̄(R) and H(R) correspond by the (inner) isomorphism between
H/C and H̄/C. The cardinality of the Weyl group of H(R) and KH(R) are
respectively denoted by wH(R) and wKH(R). The factor wH(R)

wKH (R)
is then equal

to the number of representations in a discrete series L-packet of H(R).
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6.2.2. Semi-simple elements. We write G(Q)ss for the set of semi-simple
elements of G(Q). For all γ ∈ G(Q)ss, we write Gγ for the centralizor of
γ in G, G0

γ for its connected component and we put i(γ) := [Gγ : G0
γ ].

To define the integral orbitals intervening in the trace formula, we use the
fixed Haar measure on G we have taken at the beginning of this paper. Let
h ∈ C∞c (G(Af ),Q), then we define the orbital integral:

Oγ(h, dmγ) :=
∫
G(Af )/Gγ(Af )

h(gγg−1)dḡ

where dm̄ is the quotient of the Haar measure dg by the Haar measure dgγ
on Gγ . If γ ∈ G(Q)ss, following Franke, we define ε(γ) ∈ {−1, 0, 1} by
putting ε(γ) = 0 is Gγ(R) does not contain a Cartan subgroup which is
compact modulo A0

Gγ
(R). Otherwise we put, ε(γ) = (−1)dim AG(R)/AGγ (R).

Theorem 6.2.3 (Franke). Let f be any Hecke operators and λ be an alge-
braic dominant weight, then we have:

tr(f ;H•(S̃G,V∨λ(C)) =

(−1)dG
∑

γ∈G(Q)ss/∼

ε(γ)
χ(G0

γ , dgγ)
i(γ)

Oγ(f, dgγ)tr(γ,V∨λ(C))

Proof. This is formula (24) of [Fr98] built on the formula of Theorem 1.4.2
and Arthur’s trace formula on L2-Lefschetz numbers.

6.3. A formula for I†G(f, λ). Before establishing our p-adic trace formula,
we introduce a certain p-adic function on ∆−−

Lemma 6.3.1. For any g ∈ ∆−− as above, the map λ 7→ Φ†G(g, λ) :=
tr(g,Dλ(L)) is analytic on XT (Qp).

Proof. For any affinoid subdomain U ⊂ XT and λ ∈ U(L), we have

(36) DU,n ⊗λ L ∼= Dλ,n(L)

for any n ≥ nU. Now DU,n is O(U)-orthonormalizable and therefore φU :=
tr(γ,DU,n) ∈ O(U) is analytic on U and by (36) satisfies φU(λ) = tr(g;Dλ,n) =
Φ†G(g, λ) for all λ ∈ U(Qp).

The following lemma is analogue to Corollary 4.6.8.

Lemma 6.3.2. Let λ be an algebraic dominant weight and (λn)n be a very
regular sequence converging to λ. Then for any g ∈ ∆−−, we have:

lim
n→∞

λn(ξ(tg))tr(g,V∨λn(L)) = Φ†G(g, λ)
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Proof. Let g ∈ ∆−−. Then it follows form Theorem 3.3.10 and Proposition
3.3.12 that we have the congruence:

tr(g;Dλ(L)) ≡ λ(ξ(tg))tr(g;V ∨λ (L)) = λ(ξ(tg))tr(g; V∨λ(L)) mod N(λ, tg)

We deduce now the result from (32) and the analyticity of the map λ 7→
Φ†G(γ, λ).

We are now ready to state and prove a formula for the distribution I†G. It
is given by the following theorem. We consider a Haar measure dg of G(Af )
such that the p-component gives the measure 1 to the Iwahori subgroup I.
Then we have the following:

Theorem 6.3.3. Let f = fp ⊗ fp ∈ H′p and λ ∈ X(Qp), then we have:

I†G(f, λ) = (−1)dG
∑

γ∈G(Q)ss/'

χ(G0
γ , dgγ)

iG(γ)
Oγ(fp, dgγ)I†G,γ(f, λ)

where the sum is taken over the conjugacy classes of R-elliptic semi-simple
elements of G(Q) and with

I†G,γ(f, λ) =
∫
G(Qp)/Gγ(Qp)

fp(xγx−1)Φ†G(xγx−1, λ)dx̄

Proof. It is sufficient to prove the formula for f = fp ⊗ ut. It is clear that
both right and left hand side of the formula are analytic functions of λ. To
prove the equality, it is therefore sufficient to prove it for λ algebraic and
dominant. For such a λ, consider a highly regular sequence (λn)n converging
p-adically to λ. We multiply both sides of the trace formula of Theorem
6.2.3 for each λn by ξ(t)λn and consider the term corresponding to some
semi-simple element γ:

ξ(t)λn
χ(G0

γ , dgγ)
iG(γ)

Oγ(f, dgγ)tr(γ,V∨λ) =

χ(G0
γ , dgγ)

iG(γ)
ξ(t)λnOγ(fp, dgγ)

∫
G(Qp)/Gγ(Qp)

fp(xγx−1)tr(γ,V∨λn(L))dx =

χ(G0
γ , dgγ)

iG(γ)
Oγ(fp, dgγ)

∫
G(Qp)/Gγ(Qp)

fp(xγx−1)ξ(t)λntr(x−1γx,V∨λn(L))dx

Then pass to the limit when n goes to infinity. Then we get from Lemma
6.3.2:

χ(G0
γ , dgγ)

iG(γ)
Oγ(fp, dgγ)

∫
G(Qp)/Gγ(Qp)

fp(xγx−1)Φ†G(x−1γx, λ)dx

Therefore the limit of the right hand side of the trace formula of Franke for
λn multiplied by ξ(t)λn has limit the right hand side of the formula stated
in the theorem. The fact that the limit of the left hand side is I†G(f, λ) was
known by Corollary 4.6.8.
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