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Abstract

Using the Abel-Plana formula, we calculate the Casimir energy of a massless scalar field on a one-
dimensional twisted manifold of periodicity p.

Introduction

In the years since the first calculation of the Casimir effect [1], much effort has been put into studying this
phenomenon [2, 3, 4, 5, 6]. The best-known macroscopic result of the vacuum fluctuations predicted by
quantum field theory, the Casimir effect is the response of the vacuum state to external fields or constraints.
Typically, one finds a finite difference between the non-renormalized (infinite) energy of the vacuum state
and that of the altered configuration, and this observable energy difference is termed the Casimir energy.
The constraints may take the form of physical objects imposing boundary conditions, as in the classic case
of parallel, uncharged conducting plates; or, as has more recently been studied, a Casimir energy may result
from boundary conditions imposed on the vacuum field by the topology of different spaces. Calculations
have been done for the topologies of the circle and the Mobius strip, represented with periodic and anti-
periodic boundary conditions, respectively [6]. In the present paper, we generalize these results, calculating
the Casimir effect on a one-dimensional manifold of periodicity p.

The Twisted Manifold

To represent the massless scalar field ¢ on S, we define the periodic boundary condition

p(z +a) = p(z);

on the Mdbius strip S3, we have the anti-periodic condition

p(z+a)=—p(z),

where a is the length of the dimension. On these two manifolds the Casimir energies are found to be _6111

and respectively [6].
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Generally, then, on a p-periodic manifold S;, we write
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The allowed frequencies wy, on this manifold are given by
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Calculation of the Casimir energy &, on S; clearly requires modification of the usual renormalization proce-
dure to include a sum over non-integer values (h=c¢ =1):
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We can use a modified form of the Abel-Plana formula (A-2) to evaluate the difference on the RHS (see

Appendix). Then, putting in f(z) = 2Z%, we obtain
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Letting v = 27t, y = e~ 2™/ and z = €™/?, (3) becomes
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The integrals can be transformed into known functions by noting that
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If we let @ = ze™P*, the RHS of (5) becomes
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This is just the integral definition of the dilogarithm function Lis(x), so (4) becomes
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Now using the sum definition of the dilogarithm, we write
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Finally, using Zzozl —5 = = % - %:U + i.’L’z [7], we have
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Figure 1: Energy X length of dimension vs. Periodicity

or more suggestively,

g_l[” M] (9)
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With the expression for the Casimir energy in this form, we can easily check the limiting cases p = 1 and

P — oo:
T
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The p = 1 case agrees with the result given in [6], and the energy for p — oo is as expected, since in this
limit the boundary condition (1) approaches

81=goo=

p(z+a) = p(z).

Conclusions

In this paper we have given the Casimir energy of a massless scalar field on a one-dimensional generalized
Mobius strip Szl, as a fucntion of its periodicity p. The behavior of this function is shown in figure 1. It is
interesting to note the sign changes: the Casimir energy is only postive for 2 < p < 4.

One may note that, as these topologies occur naturally in string theory, this type of calculation may
have applications therein. For example, the closed string is topologically Si, while the closed string with



fermionic modes corresponds to the Si topology [6]. Similarly, one may expect that the closed string with
anyonic modes corresponds to the S; topology. In considering the behavior and stability of closed strings
with bosonic, fermionic, and anyonic modes, then, one may employ calculations of the type done in the
present paper.
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Appendix: The Abel-Plana formula

The usual Abel-Plana formula (APF) reads [3, 6]
g}f(n) - /Ooo f(z)dz = @ - %/OOO f(it) [cot (wit) + ] dt — %/OOO f(—=it) [cot (—mit) — i] dt,

if f(z) is analytic for R(z) > 0. The sum on the LHS is the function f evaluated at the poles of the auxillary
function cot(mz). We want to look at the function f(z) = 222
poles of the cotangent:

gf(”‘l‘%) - /Ooof(m)dm = —%/ﬂmf(it) [cot <m’t - g) +i] dt

- %/0 f(=it) [cot (—m’t - %) - z:| dt. (A-1)

Notice that the @ term disappears, since now there is no pole at the origin. Using the identity
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summed over integers plus %, so we shift the
P

we can write (A-1) as
E R dr = _— _dt — —————dt. A-2
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