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(Meta)categories

We begin, for the moment, with rather loose definitions, free from the technicalities of set theory.

Definition 1. A metagraph consists of objects a, b, c, . . ., arrows f, g, h, . . ., and two operations,
as follows. The first is the domain, which assigns to each arrow f an object a = dom f , and
the second is the codomain, which assigns to each arrow f an object b = cod f . This is visually
indicated by f : a→ b.

Definition 2. A metacategory is a metagraph with two additional operations. The first is
the identity, which assigns to each object a an arrow Ida = 1a : a → a. The second is the
composition, which assigns to each pair g, f of arrows with dom g = cod f an arrow g ◦ f called
their composition, with g ◦ f : dom f → cod g. This operation may be pictured as

b

a c

gf

g◦f

We require further that: composition is associative,

k ◦ (g ◦ f) = (k ◦ g) ◦ f,

(whenever this composition makese sense) or diagrammatically that the diagram

a d

b c

k◦(g◦f)=(k◦g)◦f

f
g◦f
k◦g

g

k

commutes, and that for all arrows f : a→ b and g : b→ c, we have

1b ◦ f = f and g ◦ 1b = g,

or diagrammatically that the diagram

a b

b c

f

f
1b

g

g

commutes.
∗This talk follows [1] I.1-4 very closely.
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Recall that a diagram is commutative when, for each pair of vertices c and c′, any two paths
formed from direct edges leading from c to c′ yield, by composition of labels, equal arrows from c
to c′.

Example 1. An example of a metacategory is that which has all sets as objects and all set-
functions as arrows, with composition defined in the usual way. It is easy to check that this does
indeed satisfy the axioms above.

Remark. Note that we could get rid of objects entirely and deal only with arrows, as objects
correspond exactly to identity arrows.

Definition 3. A directed graph is a set O of objects, a set A of arrows (or morphisms), and two
functions dom : A→ O, cod : A→ O. We define the set of composable pairs as

A×O A = {(g, f) | g, f ∈ A and dom g = cod f}.

Definition 4. A category is a directed graph with two additional functions, Id : O → A taking
an object c to an arrow Idc and ◦ : A ×O A → A taking a composable pair of arrows (g, f) to an
arrow g ◦ f , such that dom Ida = a = cod Ida, dom (g ◦ f) = dom f , and cod (g ◦ f) = cod g.
Moreover, we require that the associativity and identity law axioms for the case of metacategories
also hold.

Remark. We tend to write “c ∈ C” and “f in C” instead of c ∈ O and f ∈ A. Furthermore, we
write

hom(b, c) = {f | f in C,dom f = b, cod f = c}.

Example 2. Let us consider some basic examples of categories. The first, denoted 0, is the empty
category with objects and arrows both empty sets. The next simplest category is 1, the category
with one object and one arrow (the identity arrow). Less trivially, we can define 2, the category
with two objects a, b and just one arrow a→ b not the identity. We could also define the category
3, but you get the point.

Example 3. A monoid is a category with one object. Each monoid is thus determined by the set
of all its arrows, by the identity arrow, and by the rule for the composition of arrows. Since any
two arrows have a composition, a monoid may be described as a set M with a binary operation
M ×M → M which is associative and has an identity. Hence a monoid is precisely a semigroup
with identity (e.g. a group without inverses).

In this sense, we see that a group is a category with one object in which every arrow has a
(two-sided) inverse under composition.

In many fields of mathematics, the objects of study are, at the end of the day, sets with extra
structure. We would thus like to think about a category of sets. Unfortunately, as Russell’s paradox
shows, thinking about the set of all sets very quickly becomes troublesome. Of course, we can think
about the metacategory of sets, but we can in fact do better.

Suppose that there is some big enough set U , call it the “universe”. Describe a set as small if it
is a member of the universe. Now we can define the category Set with objects the set of small sets
and arrows all functions between them. Note that here we do not run into set-theoretic problems,
and this construction suffices for most purposes, as we can always choose our universe to be big
enough. This definition leads to the definition of a number of familiar categories, where the objects
are all taken to be small.
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Example 4. We can consider categories of familiar algebraic objects, such as Mon, Grp, Ab,
Rng, and CRng with objects monoids, groups, abelian groups, rings, and commutative rings,
respectively and morphisms the appropriate homomorphisms.

Similarly, we can define categories of geometric spaces such as Top, Toph, Manp, and Var
with objects topological spaces, topological spaces, manifolds of class Cp, and algebraic varieties
respectively and morphisms continuous maps, homotopy classes of continuous maps, Cp maps, and
regular maps, respectively.

Functors and natural transformations

A functor is a morphism of categories, more or less.

Definition 5. Let C and B be categories. A functor T : C → B with domain C and codomain B
consists of two functions: an object function which assigns to each object c ∈ C an object Tc ∈ B
and an arrow function which assigns to each morphism f : c → c′ of C an arrow Tf : Tc → Tc′

of B in such a way that T (Idc) = IdTc and T (g ◦ f) = Tg ◦ Tf whenever the composition g ◦ f is
defined in C.

Example 5. A simple example is the power set functor P from Set to Set, which takes each set
X to its power set PX and each map f : X → Y to a map Pf : PX → PY which sends each
S ⊂ X to its image fS ⊂ Y .

Example 6. Functors arise frequently in algebra. Recall, for example, the commutator subgroup
[G,G] ⊂ G of a group, which captures the non-abelian behavior of G as it is the smallest normal
subgroup of G such that the quotient of G by the subgroup yields an abelian group. Note that given
a morphism of groups f : G → H, f [G,G] 6 [H,H], and so we can define a functor G 7→ [G,G]
from Grp to Grp. Moreover, we have a functor from Grp to Ab taking G 7→ G/[G,G].

As another example, take any two commutative rings K and K ′. We can consider the set of all
non-singular n× n matrices with entries in K as the general linear group GLn(K). In fact, given
any morphism f : K → K ′, we obtain a morphism of groups GLnf : GLn(K) → GLn(K ′), and
hence we can think of GLn as a functor from CRng to Grp.

A functor which “forgets” some or all of the structure of an algebraic object is commonly called
a forgetful functor. Thus the forgetful functor from Grp to Set assigns to each group G the set
of its elements and assigns to each morphism f : G → G′ the same function f , regarded just as a
function between sets. Similarly the forgetful functor from Rng to Ab assigns to each ring R the
additive abelian group of R and to each morphism f : R→ R′ of rings the same function, regarded
just as a morphism of addition.

Remark. Functors may be composed in the obvious manner. This composition is associative, and
there is clearly an identity functor. This allows us to make precise the manner in which functors are
morphisms between categories: we may consider the metacategory of all categories or the category
Cat of all small categories.

The following definitions will be useful later.

Definition 6. An isomorphism of categories is a functor which has a two-sided inverse, or equiv-
alently, is a bijection both on objects and arrows.

Remark. As we will see, the concept of an isomorphism of categories is usually stronger than we
need. Much more useful will be the weaker concept of an equivalence of categories.
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Definition 7. A functor T : C → B is full when to every pait c, c′ ∈ C and to every arrow
g : Tc→ Tc′ of B, there is an arrow f : c→ c′ with g = Tf . One can check that the composition
of two full functors is a full functor.

A functor T : C → B is faithful when to every pair c, c′ of objects of C and to every pair
f1, f2 : c → c′ of arrows of C, the equality Tf1 = Tf2 : Tc → Tc′ implies f1 = f2. One can check
that the composition of faithful functors is faithful.

These two properties may be visualized in terms of hom-sets; given a pair of objects c, c′ ∈ C,
the arrow function of T : C → B assigns to each f : c→ c′ an arrow Tf : Tc→ Tc′ and so defines
a function

Tc,c′ : hom(c, c′)→ hom(Tc, Tc′)

taking f 7→ Tf . T is full when every such function is surjective and faithful when every such
unction is injective.

Example 7. The forgetful functor Grp→Set is faithful but not full.

Definition 8. A subcategory S of a category C is a collection of some of the objects and some
of the arrows of C, which includes with each arrow f both the domain and the codomain and with
each object, its identity arrow and with each pair of composable arrows, their composition. These
conditions ensure that these collections of objects and arrows themselves consitute a category S.
The inclusion functor S → C is automatically faithful. We say that S is a full subcategory of C
when the inclusion functor is full.

Remark. A full subcategory, given C, is thus determined by giving just the set of its objects, since
the arrows between any two of these objects s, s′ are all morphisms s→ s′ in C. For example, the
category Setf of all finite sets is a full subcategory of Set.

Definition 9. Given two functors S, T : C → B, a natural transformation τ : S → T is a
function which assigns to each object c of C an arrow τC = τc : Sc→ Tc of B in such a way that
every arrow f : c→ c′ in C yields a diagram

Sc Tc

Sc′ Tc′

τc

Sf Tf

τc′

which is commutative. When this holds, we also say that τc : Sc → Tc is natural in c For
any objects a, b, c, . . ., we call τa, τb, τc the components of the natural transformation τ . A
natural transformation with every component τc invertible in B is called a natural isomorphism
τ : S ∼= T .

Definition 10. We say that two categories C and D are equivalent (or that there is an equiva-
lence of categories between C and D) if there exists a pair of functors S : C → D, T : D → C
together with natural isomorphisms IC ∼= T ◦ S, ID ∼= S ◦ T .

Example 8. For each group G the projection pG : G → G/[G,G] to the abelianization defines a
transformation p from the identity functor on Grp to the functor Grp→Ab→Grp. Moreover, p
is natural because each group homomorphism f : G→ H defines the evident homomorphism f ′ for
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which the following diagram commutes:

G G/[G,G]

H H/[H,H]

pG

f f ′

pH

Example 9. Given a group G one can construct the so-called “opposite group” Gop where the
underlying set is the same but the group operation a · b is changed to a ·op b = b · a. It is clear that
Gop should be G in some obvious way. We claim that the functor op (check that this is a functor)
from Grp to Grp is naturally isomorphic to the identity functor IdGrp from Grp to Grp.

To prove this we need isomorphisms τG : G→ Gop for each group G such that the diagram

G Gop

H Hop

τG

f fop

τH

commutes for each f : G → H. Define τG(g) = g−1, the inversion, which is clearly a group
isomorphism as it reverses the order of operation and is its own inverse. Let us check that the
diagram commutes. Note first that the induced homomorphism fop is simply f . We need to show
that τH ◦ f = fop ◦ τG. But this is true by definition of group homomorphisms: f(g)−1 = f(g−1)!

This makes precise the statement that any group is “naturally” or “obviously” isomorphic to
its opposite group.

Example 10. Every finite-dimensional vector space V is isomorphic to its dual space V ∗, but the
isomorphism requires a choice of basis. It turns out that there is no natural isomorphism between V
and V ∗ in the sense of a natural transformation between the identity functor and the dual functor.
There is, however, a natural isomorphism between the identity functor and the double-dual functor,
and hence V ∼= V ∗∗ is a “natural” isomorphism.
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