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Abstract. We investigate the seven exceptional families as defined in [GMT].
Experimental as well as rigorous evidence suggests that to each family corre-
sponds exactly one manifold. A certain two generator subgroup in PSL(2,C)
is specified for each of the seven families in [GMT]. Using Newton’s method for
finding roots of polynomials in several variables we solve the relation equations
specifying the generators to high precision. Then, using the LLL algorithm
[Neum] we find exact entries of the generating matrices and in all cases verify
with exact arithmetic that they satisfy the relations. This procedure allows
us to compute the invariant trace fields [Neum] associated with the conjec-
tured manifolds. In part, our results provide a verification of earlier results of
K. Jones and A. Reid [JR] which were obtained by arithmetic methods. We
carry out a search of the census of hyperbolic manifolds given in SnapPea
and find hyperbolic manifolds with fundamental groups isomorphic to some
of subgroups mentioned above. In addition, we obtain results on X3 and X4

which are not discussed in the K. Jones and A. Reid paper.

1. INTRODUCTION

The following important theorem is proved in [GMT]:

Theorem 1.1: Let N be a closed hyperbolic 3-manifold. Then
i) If f : M → N is a homotopy equivalence, where M is a closed irreducible
3-manifold, then f is homotopic to a homeomorphism.
ii) If f, g : M → N are homotopic homeomorphisms, then f is isotopic to g.
iii) The space of hyperbolic metrics on N is path connected.

The proof of this theorem is based on the following theorem of D. Gabai [7] which
states that Theorem 1.1 is true if some closed geodesic in N has a noncoalescable
insulator family. Thus, the main technical result of [1] is:

Theorem 1.2: If δ is a shortest geodesic in a closed hyperbolic 3-manifold, then δ
has a non-coalescable insulator family.

A lemma of Gabai [Gabai] ensures that if δ is a core of an embedded hyper-
bolic tube of radius ln(2)/3 then δ has a noncoalescable insulator family. Theorem

We wish to sincerely thank the Columbia VIGRE, I. I. Rabi programs and W. Neumann for
his helpful guidance and support.
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1.1 is proved by showing that all closed hyperbolic 3-manifolds, with seven excep-
tional cases, have embedded hyperbolic tubes of radius ln(2)/3 about their shortest
geodesics. Then the authors of [GMT] show that any shortest geodesic in the six
of the seven families satisfies a different condition that ensures that they have a
non-coalescable insulator family. Finally, the seventh family is shown to correspond
to the manifold known as Vol3, which by direct analysis satisfies the insulator con-
dition.

We sketch some of the relevant definitions and the steps of the procedure used
to prove theorem 1.2. A detailed description can be found in [GMT]. If a shortest
geodesic in a hyperbolic manifold does not have the tube of the desired size there is
a subgroup of its fundamental group generated by two elements and does not have
this property. Thus, it is necessary to understand specific two-generator subgroups
of PSL(2,C). This set is parameterized by a subset of C3 as described in [GMT].
Each parameter corresponds to a 2-generator group with two specified generators
called a marked group. Roughly speaking, the parameter space is subdivided into
a billion small regions and it is shown that all but 7 cannot contain such a sub-
group. Having eliminated all but these seven regions the remaining are eliminated
by showing that if in six regions δ is a shortest geodesic with Corona(δ)> 2π then
the fundamental group of the manifold contains a marked subgroup which lies in
the seventh region. As mentioned above the seventh region corresponds to Vol3
which can be handled by geometric techniques. The focus of this paper is the ques-
tion of existence of manifolds associated to these seven regions.

In [GMT] it is conjectured that each family Xi (i from 1 to 6) contains a unique
hyperbolic manifold Ni. K. Jones and A. Reid use arithmetic techniques to prove
existence and uniqueness of the manifold associated to region X0. Their methods
allow them to find manifolds for all the regions with the exception of X3 although
questions of uniqueness remain open. In this paper we take an alternate approach by
utilizing the invariants for the conjectured hyperbolic manifolds and searching the
census of known manifolds to find a match. In addition we provide the calculations
needed to identify X3 in [Lipyan] A more detailed discussion of the invariants is
carried out in Section 3.

2. THE TWO-GENERATOR SUBGROUPS

Here we discuss our methods for finding the marked subgroups of PSL(2,C)
mentioned above. In [GMT] parameter ranges for the seven regions are specified.
Quasirelators - words in the two generators what are close to the identity through-
out each region and experimentally converge to the identity at some point in the
region are specified as well. In [GMT] the allowed values for the two generators are
specified by three complex parameters: L′, D′, R′. Then the generators are defined
as:

(1) f =
( √

L′ 0
0 1/

√
L′

)
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Letting a =
√

L′, b =
√

R′ and c =
√

D′ we get that:

(3) f =
(

a 0
0 1/a

)

(4) w =

(
b∗(c+1/c)
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b∗(c−1/c)

2
(c−1/c)

2b
(c+1/c)

2b

)

Approximate solutions to the relations for the generators are given in [GMT]. In
particular, each of the seven regions corresponds to a range of values of L′, D′, R′.
For example, for region X0 the range is:

Table 1
Parameter Range Re(Parameter) Range Im(Parameter)
L′ -0.84065 to -0.84060 -2.13726 to -2.13722
D′ -0.84064 to -0.84059 -2.13729 to -2.13722
R′ 0.999979 to 1.000022 -0.00006103 to 0.00006103

The corresponding quasi-relations for X0 are:
r1 = fwFwwFwfww
r2 = FwfwfWfwfw

We solve for a, b and c such that the quasirelators are actually relations in the
group. We obtain eight equations in 3 complex variables. From these three are
independent and we use Newton’s method to find high precision solutions for the
parameters satisfying three of the equations. We compute an explicit example to
make the procedure more clear. To obtain high precision numerical solutions the
following version of Newton’s Method was used. Given a smooth f : Cn → Cn we
wish to recursively approach a zero of a polynomial by using linear approximations.
Let xi be the ith approximation where xi ∈ Cn. Then xi+1 is given by:

(5) xi+1 = xi − [Df(xi)]−1f(xi)

Using this relation we calculate the solution to the group relations to say 100
digits of precision using the number theory package PARI-GP [PG]. This allows us
to compute tr(f2), tr(w2) and tr(f2w2) to high precision as well. The parameters
for the seven regions are given in the Appendix.



4 A. CHAMPANERKAR, J. LEWIS, M. LIPYANSKIY, S. MELTZER

3. THE INVARIANT TRACE FIELD

The results of this section can be found in D. Coulson, O.A. Goodman, C.D.
Hodgson, and W.D. Neumann [Neum]. We state them here for convenience. One
arithmetic invariant we can compute using high precision is the invariant trace
field. Two finite volume, orientable, hyperbolic 3-manifolds are said to be commen-
surable if they have a common finite-sheeted cover. Subgroups G, G′ ⊂ PSL(2,C)
are commensurable if there exists g ∈PSL(2,C) such that g−1Gg∩G’ is a finite
index subgroup of both g−1Gg and G′. It follows by Mostow rigidity (see W.D.
Neumann [Neum2]) that finite volume, orientable, hyperbolic 3-manifolds are com-
mensurable if and only if their fundamental groups are commensurable as subgroups
of PSL(2,C). Let G be a group of covering transformations and let G̃ be its preim-
age in SL(2,C). The traces of elements of G̃ generate a number field Q(trG). The
invariant trace field k(G) of G is defined as the intersection of all the fields Q(Gi)
where Gi ranges over all finite index subgroups of G. The definition already makes
clear that the invariant trace field is a commensurability invariant. It can be shown
[Neum] that the invariant trace field in case of a subgroup < f,w|r1, r2 > can be
generated by tr(f2), tr(w2), tr(f2w2). The three generators expressed in terms of
the parameters L′, D′, R′ are:

(6) tr(f2) = L′ +
1
L′

(7) tr(w2) =
(R′ + 1

R′ + 2)(D′ + 1
D′ + 2)− 8

4

(8) tr(f2w2) =
(D′ + 1

D′ + 2)(R′L′ + 1
R′L′ ) + (D′ + 1

D′ − 2)(L′ + 1
L′ )

4

4. GUESSING THE ALGEBRAIC NUMBERS

Once the traces are obtained to high precision we use the algdep() function of
the PARI-GP package [PG] to guess a polynomial over the integers that has the
desired number as root. Although the algdep() function cannot prove that the
guess is in fact correct, one can prove this by using the guess to perform exact
arithmetic and verify the relations (Section 7). PARI-GP computes the guess using
the LLL algorithm [Neum]. From experience, the correct polynomial should have
relatively small coefficients. Thus, although much of the procedure is trial and
error one tends to develop an intuition regarding when the ”correct” polynomial
is produced by the program. For example, let us consider guessing the polynomial
that generates tr(f2) for the region X3. Using the numeric approximation given in
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the first table we look for exact solution for tr(f2). We use the algdep() function
to guess polynomials of degree 5, 11, 12, 14. Here are the results:

Table 3
Degree Polynomial
5 13902205882587996765014337043212762747218362216237124578315018516

68 ∗ x5 − 79045607770298480103648039325134322001453070366074584967
6039537300 ∗ x4 + 111257693769337407863679156957984408268748181520
41900836316688167223 ∗ x3 + 95374771502749036907478259511781475495
07722431424195697422304764401 ∗ x2 − 73424001550318702830605690774
51151327355162144846111309168811375553 ∗ x− 7543658632190836131057

764705802920826183892771397534700697843157502
11 1148914862968528660654119501543125 ∗ x11 − 114495599180480814737

3202001477221 ∗ x10 + 10561753984094433817120918170269565 ∗ x9

+2738076350946846190323938793263589 ∗ x8 + 749582057079332969044
885922591226 ∗ x7 − 2147739419306813929486904469285755 ∗ x6

+2923670786008797213849879867540871 ∗ x5 − 503514865570315070709
111448742338 ∗ x4 − 2784330332827733668751850499524948 ∗ x3

−3895519144742060569408501787984106 ∗ x2 − 643442108082801659380
6785249823332 ∗ x + 5049437741285919151534572904539966

12 x12 + 6 ∗ x11 + 23 ∗ x10 + 91 ∗ x9 + 257 ∗ x8 + 489 ∗ x7 + 823 ∗ x6

+1054 ∗ x5 − 13 ∗ x4 − 2445 ∗ x3 − 3405 ∗ x2 − 1847 ∗ x− 337
14 8 ∗ x14 + 38 ∗ x13 + 201 ∗ x12 + 960 ∗ x11 + 2917 ∗ x10 + 8349 ∗ x9

+21483 ∗ x8 + 37855 ∗ x7 + 52727 ∗ x6 + 61728 ∗ x5 − 3791 ∗ x4

−168991 ∗ x3 − 246411 ∗ x2 − 138849 ∗ x− 25949

As evident from the table the coefficients of the guessed polynomial become
significantly smaller when degree twelve is reached. In fact, raising the degree
beyond twelve does not help in this case since the polynomial of degree fourteen,
for example, contains the one of degree twelve as a factor. Our initial guesses for
the algebraic numbers which represent the roots were verified to be still correct
when Newton’s Method was allowed to compute the roots to 500 digit precision
without recomputing the algebraic number. In this manner one gains confidence
regarding the validity of the guess. Further discussion of the LLL algorithm can be
found in [Neum]. Once we obtain tr(f2), tr(w2) and tr(f2w2) we find a primitive
element which generates the field that contains all three traces by trying several
linear combinations of the three numbers. We summarize our findings in a table:



6 A. CHAMPANERKAR, J. LEWIS, M. LIPYANSKIY, S. MELTZER

Table 4

Region Trace Triple Primitive Element
trf2 Minimal Polynomial
trw2 Numerical Value

trf2w2

X0 x2 + 2x + 4 τ2 + 3
x2 + 2x + 4 1.7320508075688772935i
x2 + 2x + 4

X1 x4 + 6x3 + 19x2 + 30x + 17 τ4 − 2τ3 − τ2 + 2τ − 1
x4 + 6x3 + 19x2 + 30x + 17 0.5000000000000000000+

0.4052327261871812949i
x4 + 2x3 + 25x2 − 114x + 103

X2 x2 + 4x + 8 τ2 + 1
x2 + 4x + 8 i

x2 + 36
X3 x12 + 6x11 + 23x10 + 91x9 + 257x8 τ12 + 6τ11 + 23τ10 + 91τ9

+489x7 + 823x6 + 1054x5 − 13x4 +257τ8 + 489τ7 + 823τ6

−2445x3 − 3405x2 − 1847x− 337 +1054τ5 − 13τ4 − 2445τ3

−3405τ2 − 1847τ − 337
x12 + 6x11 + 23x10 + 91x9 + 257x8 0.63277800030916727240
+489x7 + 823x6 + 1054x5 − 13x4 −3.01917037642286315i
−2445x3 − 3405x2 − 1847x− 337

x12 + 15x11 + 30x10 − 408x9

−793x8 + 6070x7 + 2155x6−
50038x5 + 90738x4 − 45883x3

−27526x2 + 32149x− 6227
X4 x3 + x2 + 8x + 16 τ3 − τ − 2

x3 + x2 + 8x + 16 −0.7606898534022837848+
0.8578736265951786364i

x3 + 14x2 + 36x− 104
X5 x3 + 2x2 + 4x− 8 τ3 − τ2 − τ − 1

x3 + 2x2 + 4x− 8 −0.4196433776070805663
+0.6062907292071993693i

x3 + 2x2 + 12x− 8
X6 x3 − 2x2 + 4x + 8 τ3 − τ2 − τ − 1

x3 − 2x2 + 4x + 8 −0.4196433776070805663
−0.6062907292071993693i

x3 + 2x2 + 12x− 8

5. Searching the Census

In [JR] Jones and Reid give the invariant trace field, approximate volume and
first homology of the exceptional manifolds associated to the regions X1, X2, X4

and X5. We find manifolds from the SnapPea closed census which have the same
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invariants as given in [JR] and find isomorphisms from their fundamental groups to
the groups Gi =< f,w|r1(Xi), r2(Xi) >, where r1(Xi) and r2(Xi) are quasirelators
for the region Xi. The Snap package [Snap] includes a text file, called closed.fields,
which lists the invariant trace field and several other fields for each of the manifolds
in the closed census. Using this file, we were able to find the manifolds that have
the same invariant trace fields as the four regions X1, X2, X4, and X5. Table 5
shows how many manifolds there are in each of these categories.

Table 5
Region Invariant Trace Field Number of Manifolds
X1 t4 − 2t3 + t2 − 2t + 1 13
X2 t2 + 1 37
X4 t3 − t− 2 16
X5 or X6 t3 − t2 + t + 1 36

Remark: The polynomials for the invariant trace fields for the regions X1 and
X5 in Table 5 are different from the ones given in [JR]. It can be checked using
PARI-GP that they give isomorphic fields. We give Snap description of fields as it
is canonical.

Once we have the manifolds with the correct invariant trace fields listed, we
check them against a list of manifolds having the volumes (V), first homologies
(H1), and shortest geodesic lengths (lmin) suggested for each region in [GMT] and
[JR]. Table 6 below gives the approximate volume, first homology, approximate
length of shortest geodesic and the SnapPea descriptions of the manifolds with
those invariants.

Table 6
Region V H1 lmin Manifolds
X1 4.11696874 Z7 ⊕ Z7 1.0930 2678(2,1), v2796(1,2)
X2 3.66386238 Z4 ⊕ Z12 1.061 778(-3,1), v2018(2,1)
X4 7.517689 Z4 ⊕ Z12 1.2046 NA
X5 or X6 3.17729328 Z4 ⊕ Z4 1.0595 479(-3,1), s480(-3,1), s645(1,2),

s781(-1,2), v2018(-2,1)

SnapPea rigorously shows that in each region, the manifolds we found are all
mutually isometric. The above manifolds include the manifolds mentioned in a
remark in [GMT] for the regions X1,X2,X5. It is shown in [JR] that the manifold
associated to X5 is isometric to the manifold associated with X6. Unfortunately,
manifolds with volumes as large as the volume for X4 (or X3 ) are not listed in the
Weeks’ Census. X4 is the subject of Section 7. X3 is discussed in [Lipyan].

6. The Isomorphisms

The manifold associated with each region is expected to have a fundamental
group generated by two generators and satisfying two relations given by the quasire-
lators for that region, which are given in [GMT]. These groups have the form Gi as
given above. The fundamental groups of the manifolds from the SnapPea census
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have a presentation with two generators and two relations. We let the generators
for the manifolds be a and b. Table 7 shows the quasi-relators for each region and
the relations for the fundamental group of each manifold (given by SnapPea).

With the help of the program testisom [Rees] we found isomorphisms between
the fundamental groups of the above manifolds and the groups Gi. Table 7 shows
the groups and Table 8 shows the isomorphisms for the three regions.

Table 7

Region Quasi-Relators Manifold π1 Relators
X1 r1=FFwFWFWfWFWFwFFww v2678(2,1) q1=aabbabAbABAbAbabb

r2=FFwwFwfwfWfwfwFww q2=aBaBABaBabaabbaab
X2 r1=FwfwfWffWfwfwFww s778(-3,1) q1=aBabaabbabbaabaB

r2=FFwFFwwFwfwfwFww q2=abbaabaabbabAbAb
X5 r1=FwFWFwFwfwfWfwfw s479(-3,1) q1=abaabbaabaBBAABB

r2=FwfwfWfWFWfWfwfw q2=aabbabbaabaBaBab

Table 8
Region Isomorphism Inverse
X1 f−→A, w−→b a−→F, b−→w
X2 f−→a, w−→B a−→f, b−→W
X5 f−→ab, w−→b a−→fW, b−→w

This shows that the above manifolds are the exceptional manifolds associated to
the regions X1, X2 and X5.

7. THE MANIFOLD ASSOCIATED TO THE REGION X4

In this section we give a description of the manifold associated to the region X4

as a double cover of an orbifold commensurable to a manifold in SnapPea’s census
of closed manifolds1 .

In Section 5 and 6 using the approximate volumes and other data given by Jones
and Reid in [JR] we found manifolds from the SnapPea’s census of closed man-
ifolds with fundamental groups isomorphic to the groups for the regions X1, X2

and X5. The regions X3 and X4 could not be handled because of their large vol-
umes. However for the region X4 a list of manifolds was found in the closed census
having half the volume of X4 and the same arithmetic invariants. These mani-
folds are: s297(1, 3), s298(5, 1), s594(1, 2), m307(−5, 1), m305(−5, 1), m369(−1, 3),
m371(1, 3), m290(−1, 4), m390(3, 1), m293(−2, 3), m303(1, 3), s594(2, 1), s480(3, 1),
s595(1, 2), s235(−4, 3), and s287(−3, 1).

In a hope for obtaining the manifold for X4 as a double cover of one of these
manifolds we compared index two subgroups of the fundamental groups of each of
these manifolds to G4, the group for X4. The index two subgroups were obtained
using GAP [GAP]. Most of the subgroups were eliminated as they had different
homology from G4. One index two subgroup of the census manifold m369(−1, 3)

1The first author would like to thank Walter Neumann for many helpful conversations and for
showing him the geometry in the following proof.
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had the same homology, the same orthodistances and lengths for its elements as for
X4.

Using the program testisom [Rees] it was checked that this subgroup was not
isomorphic to the G4. However using the similarity of the geometric information
for this subgroup and G4 we obtained an orbifold quotient of this subgroup which
had the G4 as an index two subgroup. The computations and presentations were
obtained using GAP and magnus and the isomorphisms were checked using testisom.

Theorem 7.1 The manifold asociated to the region X4 is commensurable to the
manifold m369(−1, 3) in SnapPea’s census of closed manifolds. This manifold is
obtained as a double cover of a orbifold which is double covered by a double cover
of m369(−1, 3).

Proof. Let M = m369(−1, 3). Using snap we get a presentation of π1(M).

π1(M) =< a, b, c/aBAccbc, abcbbbAC, acbCBcbacb >

Let φ : π1(M) → Z2 be defined by φ(a) = 1, φ(b) = φ(c) = 0. Then φ is a
homomorphism and ker(φ) is an index two subgroup of π1(M) generated by b and
c. Let N denote the double cover of M corresponding to this subgroup so that
π1(N) = ker(φ). Using GAP we obtain a presentation of π1(N).

π1(N) =< b, c/r1, r2 >

where r1 = bcbbbcbCBcbCBcbccbcccbcccbccbcBCbcBC and
r2 = cbCBcbCBcbccbcccbcccbccbcccbcccbcccbccbcccbcccbcccbcBCbcBCb.

Let ψ : π1(N) → π1(N) be defined by ψ(c) = C and ψ(b) = cccb. Then ψ
is an isomorphism of π1(N) of order two. Extending the group π1(N) by this
isomorphism we obtain a group H whose presentation is

H =< b, c, t/r1, r2, tcTc, tbTBCCC, tt >

.
π1(N) is a subgroup of H of index two and the quotient of H3 by H is an orbifold

O ( due to the torsion element t) which is double covered by N . Let µ : H → Z2

be defined by µ(c) = 0, µ(b) = µ(t) = 1. Then µ is a homomorphism and ker(µ) is
an index 2 subgroup of H generated by elements c and bt. Again using GAP we
obtain the presentation ker(µ)= G.

G = ker(µ) =< x, y/s1, s2, s3 >

where s1 = yXYXyXYXyxxyyxxxyxyxYxyxYxyxyxxxyyxx,
s2 = yxYxyxYxyxyxxxyyxxyyxxxyyxxyyxxxyxyxYxyxYxyx and
s3 = YXXXYXYXyXYXyxxyyxxxyxyxxxyyxxyXYXyXYX.

Then G is a torsion free subgroup of H of index 2. Hence it gives a manifold M4

which double covers the orbifold O. The presentation for G4 is

G4 =< f, w/r1(X4), r2(X4) >
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where r1(X4) = FFwfwFwfWfwfWfwFwfwFFwwFWFwFWFww and
r2(X4) = rmFFwfwFwfwFFwwFWFwFWfWFWfWFwFWFww.

Using testisom we find an isomorphism ν : G4 → G given by ν(x) =f and
ν(y) =FW. The inverse of ν is given by ν−1(f) =y and ν−1(w) =YX. We have the
following diagram where every arrow denotes a 2 : 1 covering map.

N M4

↓ ↘ ↓
M O

¤

Remark 1. The double cover N of M = m369(−1, 3) had the same L,D, R coor-
dinates as for the the region X4. Using snap one can see that

snap 1.9
1. : read census 5 369 surgery -1 3
solution type: geometric
1. m369(-1,3): print geodesics
cutoff radius ? 1.3
[0] 0.68306-2.05524*i bAC
[1] 0.95330-1.36689*i ACe
[2] 0.95330+1.77471*i B
[3] 0.95330+1.77471*i ACebb
[4] 1.20475-1.47049*i ACeb

The words are in the unsimplified fundamental group of M . The simplified and
unsimflified groups can be obtained as:

1. m369(-1,3): print group
Fund. group: < a b c | aBAccbc abcbbbAC acbCBcbacb >
M0= CCab L0= cba
Unsimplified: < a b c d e | cadE bceA dbC EaDDb ddEBDBdbbeDDbbeDDbbeDD
>
M0= DbdbeDD L0= bbeDD

The map from the unsimplified to the simplified group is a → ca, b→ BC, c→
C, d→ b, e→ ab.

The geodesic [4] has the same length as parameter L for X4. In order to find a
cover that has geodesic [4] as the shortest we need the first three words to go to 1
in Z2. This gives us the map φ ( with the simplified presentation). snap also finds
ortholines.

1. m369(-1,3): print ortholines
cutoff radius ? 1.1
geodesics to display ? 4
1.09508+1.90390*i 4:-0.13927-2.84396*i 4: 0.46311-0.43761*i BBEca
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The first number is the distance between the geodesic [4] and itself. This number
agrees with parameter D for X4 up to πi. The slide can be computed by subtracting
the 2nd number from the 3rd. This also agrees with parameter R for X4 up to
πi. The word in the generators of unsimplified group is the word which maps the
geodesic onto its conjugate.

Even though the above numbers for N were similar to that of X4, π1(N) is
not isomorpic to G4. Both groups G4 and π1(N) are contained in the group of
symmetries of the standard position for L, D and R for region X4 as given in
[GMT]. So we hoped that some extension of π1(N) should contain G4 and so we
started out by finding isomorphisms of π1(N). From the geometry we figured that
a map of the form c → C and b → cnb should work. This way we arrived at the
isomorphism ψ above.

8. EXACT ARITHMETIC COMPUTATIONS

Once a =
√

L′, b =
√

R′, and c =
√

D′ have been found to high precision,
Pari-GP can be used to guess minimal polynomials for a, b, and c. Then, if a
field extension can be found containing a, b, and c, they can be represented exactly
in PARI-GP. For the regions X0, X5, and X6, a, b, and c are all contained in
Q(a). By expressing the matrix entries as algebraic numbers one can verify the
relations directly. For example, for X0, the minimal polynomial for a and c is
x8 + 2x6 + 6x4 + 2x2 + 1, and b = 1, so we can express a, b, and c as:

a = Mod(x, x^8 + 2*x^6 + 6*x^4 + 2*x^2 + 1),

b = Mod(1, x^8 + 2*x^6 + 6*x^4 + 2*x^2 + 1), and

c = Mod(x, x^8 + 2*x^6 + 6*x^4 + 2*x^2 + 1).

Then, using the formulae of Section 2, GP calculates the quasirelators exactly
as:

[Mod(1, x^8 + 2*x^6 + 6*x^4 + 2*x^2 + 1) 0]

[0 Mod(1, x^8 + 2*x^6 + 6*x^4 + 2*x^2 + 1)].

Thus, exact arithmetic verifies rigorously that the L′, D′, and R′ which were
calculated for X0 using Newton’s method are correct – the quasirelators are in fact
relators for these points.

In general, to perform exact arithmetic it is best to proceed indirectly. We follow
the method described in [Lipyan]: Given that f , w are generic (fw−wf is nonsingu-
lar), if f2, w2 are any matrices in SL(2,C) such that tr(f2) = tr(f), tr(w2) = tr(w)
and tr(f−1

2 w2) = tr(f−1w) then the two pairs are conjugate. Thus, it suffices to
solve the word problem for the group generated by f2, and w2.

Let tr1 = trace(f), tr2 = trace(w), tr3 = trace(f−1w). Furthermore let:

(9) f2 =
(

0 1
−1 tr1

)
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(10) w2 =
(

z 0
tr1 ∗ z − tr3 tr2 − z

)

Where (tr2 − z) ∗ z = 1. Then, according to [Lipyan], the pair (f2, w2) are con-
jugate to (f, w). Observe that in this form the entries of the matrices are in an at
most degree two extension of the trace field. The coefficients of the original f , and
w , may have arbitrary index over the trace field. As f2, w2 give an efficient way
to solve the word problem Table 9 displays the computation of z, tr1, tr2 and tr3

for all regions. In all cases z is the primitive element and tri ∈ (z : Q). One easily
verifies the relations using this table.

Table 9

Region Trace Triple in terms of z Primitive Element
tr(f) = tr1 Minimal Polynomial
tr(w) = tr2 Numerical Value

tr(f−1w) = tr3

X0 −z − 6z3 − 2z5 − z7 τ8 + 2τ6 + 6τ4 + 2τ2 + 1
tr(f) 0.8532306966963658

(−5z2 − 2z4 − z6)/2 −1.2524486580700i
X1 2− 4z + 4z2 − 7z3 + 4z4 − 5z5 + 2z6 − z7 τ8 − 2τ7 + 5τ6 − 4τ5

+7τ4 − 4τ3 + 5τ2 − 2τ + 1
tr(f) 0.90404719571342
tr(f) −1.471654223592238i

X2 2− 3z + 2z2 − z3 τ4 − 2τ3 + 4τ2 − 2τ + 1
tr(f) 0.7429341358783
tr(f) −1.5290855136357i

X3 8− 34z + 107z2 − 261z3 + 538z4 − 972z5 τ24 − 8τ23 + 35τ22 − 107τ21 + 261τ20

+1565z6 − 2282z7 + 3034z8 − 3706z9 −538τ19 + 972τ18 − 1565τ17 + 2282τ16

+4171z10 − 4339z11 + 4171z12 − 3706z13 −3034τ15 + 3706τ14 − 4171τ13 + 4339τ12

+3034z14 − 2282z15 + 1565z16 − 972z17 −4171τ11 + 3706τ10 − 3034τ9 + 2282τ8

538z18 − 261z19 + 107z20 − 35z21 −1565τ7 + 972τ6 − 538τ5 + 261τ4

+8z22 − z23 −107τ3 + 35τ2 − 8τ + 1
tr(f) 1.4042922123248861
tr(f) −1.1792672976569768i

X4 3− 4z + 4z2 − 5z3 + 3z4 − z5 τ6 − 3τ5 + 5τ4 − 4τ3 + 5τ2 − 3τ + 1
tr(f) 1.3546199014688919
tr(f) −1.22512545396285i

X5 −z − 7z3 + 4z5 − 7z7 − 2z9 − z11 τ12 + 2τ10 + 7τ8 − 4τ6 + 7τ4 + 2τ2 + 1
tr(f) 0.868063287033412

(−6z2 + 4z4 − 7z6 − 2z8 − z10)/2 −1.4600236661946i
X6 3z − 7z3 − 4z5 − 7z7 + 2z9 − z11 τ12 − 2τ10 + 7τ8 + 4τ6 + 7τ4 − 2τ2 + 1

tr(f) 1.4600236661946
(4− 6z2 − 4z4 − 7z6 + 2z8 − z10)/2 −0.8680632870334i
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9. RESULTS AND CONJECTURES

Here we compare our results with the results and conjectures mentioned in
[GMT] as well as [JR]. The invariant trace fields for all the regions with the ex-
ception of X3 were computed by arithmetic methods in [JR]. Our approach, which
utilizes a different method, confirms the results of [JR] where there is overlap. In
addition, we were able to determine the invariant trace field corresponding to the
region X3 which is not discussed in [JR] as well prove that in fact there is a two
generator subgroup in this region which satisfies the relations. A search in the
Week’s census of the SnapPea software failed to find a match for a manifold with
the same invariant trace field as X3. Our results imply progress in resolving the
following conjectures stated in [GMT]:

i) Each family Xi (i from 1 to 6) contains a unique hyperbolic manifold Ni

such that Ni has the fundamental group < f, w|r1(Xi), r2(Xi) >.
ii) If (Li, Di, Ri) is the parameter corresponding to the solution in Xi, then
Li, Di, Ri are related as follows:
For X0, X5, X6 : L = D, R = 0.
For X1, X2, X3, X4 : R = L

2 .

Using exact arithmetic we are able to prove ii) for all regions. In the case
i=1,2,5 we are able to find manifolds in the census which have fundamental groups
isomorphic with groups found in the respective regions given by the quasirelators.
For i=3 see [Lipyan].
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10. Appendix

Table 2

Region Coordinates Trace Triple
L′ trf2

D′ trw2

R′ trf2w2

X0 −0.840625019316606640194394244 −1.000000000000000000000000000
03783088897721010254912530311 000000000000000000000000000000
97026326145173773487952343630 000000000000000000000000000000
988949291399753− 2.137255282 000000000000− 1.7320508075688
20314488589933616177400116019 772935274463415058723669428052
98169551319679922415826334194 538103806280558069794519330169
47299799144215455249809406887 08800037081146186757248575i

481i
-0.84062501931660664019439424 -1.000000000000000000000000
40378308889772101025491253031 000000000000000000000000000
19702632614517377348795234363 000000000000000000000000000
0988949291399753 - 2.13725528 000000000000000000000 - 1.7

22031448858993361617740011601 320508075688772935274463415
99816955131967992241582633419 058723669428052538103806280
44729979914421545524980940688 558069794519330169088000370

7481i 81146186757248575i
1.000000000000000000000000000 -1.000000000000000000000000
00000000000000000000000000000 000000000000000000000000000
00000000000000000000000000000 000000000000000000000000000

00000000000000 000000000000000000000 + 1.7
320508075688772935274463415
058723669428052538103806280
558069794519330169088000370

81146186757248575i
X1 -1.348464821739557342623304565 -1.500000000000000000000000

64696365783940360110875351294 000000000000000000000000000
37301216562627897739700962144 000000000000000000000000000
49447994424360 - 2.6608897477 00000000000000000000000 - 2.

96774236266373287312566203984 361869413144213207731349709
32374355106463377782725670301 285394504064256348896521995
92160105101020456774184021835 390218121406170501721821567

86i 653756557623043218i
-0.54321020925009923234501986 -1.500000000000000000000000
07193919842545307352034976295 000000000000000000000000000
08712274853529338419107217596 000000000000000000000000000
2126195437040147 - 2.85860561 00000000000000000000000 -

83948466428506848407557303298 2.3618694131442132077313497
32775005792551120750888205699 092853945040642563488965219
94795125474544729637058276850 953902181214061705017218215

3896i 67653756557623043218i
0.904047195713429435001656033 -2.621320343559642573202533



EXCEPTIONAL REGIONS 15

83352124990349857035064830273 086314547117854507813065422
38189671036750646119111331022 109765019606986098717693160
021004331503957 - 1.471654223 558275581301491462358 + 5.7

59223809867357139175528288855 020571697669423718848038549
58358467087670082529826651043 558112233817248128429504074
38838613392219527651937274091 888401530773390578142164586

746i 75031935986907802i
X2 -1.786151377757423286069558585 -2.000000000000000000000000

84295892952312205783772323766 000000000000000000000000000
49019701011820476223109137119 000000000000000000000000000
12889158508135 - 2.2720196495 000000000000000000000 - 2.0

14068964252422461737491491715 000000000000000000000000000
60804184009624861664038253929 000000000000000000000000000
75755360680118303842149884602 000000000000000000000000000

5i 00000000000000000i
-1.07424789305525832014239854 -2.000000000000000000000000
07438885608329176562587365880 000000000000000000000000000
53353666074501305441937396608 000000000000000000000000000
673776791822732 - 2.718193355 000000000000000000000 - 2.0

29679872617788790608699197265 000000000000000000000000000
99396897250542875450800827600 000000000000000000000000000
69768202191472214042429229697 000000000000000000000000000

416i 00000000000000000i
0.742934135878322839091431937 6.0000000000000000000000000
94726628109624299200118650547 000000000000000000000000000
58692062190577639568785490592 000000000000000000000000000
356629149760614 - 1.529085513 00000000000000000000i

63574612516099052379022521061
93650498389097431407711763202
39811579189462771148552073484

197i
X3 0.5813652582731342395210887072 0.6327780003091672724009596

02614800804661456987585799019 837654241933306448857516275
52114914322104863603355894574 991422517267864216804054247
08092355215268 - 3.3120717646 234983964643697125073 - 3.0

98212217535340448036617234993 191703764228631503951834283
25937416479743633445654199013 708551240017363659414863558
05460855436934264683477958472 889304020214705009880287201

18i 13360583124679246i
1.156593119241280584014135691 0.6327780003091672724009596
11410634267529929916204984632 837654241933306448857516275
53424062623814831333039952133 991422517267864216804054247
44699889178062 - 2.7559663682 234983964643697125073 - 3.0

96925474415993273968257867481 191703764228631503951834283
42331438223002020325212430010 708551240017363659414863558
68006315175180724132555662573 889304020214705009880287201

54i 13360583124679246i
1.404292212324886160678175784 -7.744466638727139302441145
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43832623491436615680388074527 845729635438350823251168612
90713593996343711400085202368 255703877185268038145781611
55861067502040 - 1.1792672976 070254234333302947576 - 2.1

56976882827409344556527525394 771834948638801393892861287
09958631270425861296663394530 791433161509037924969759242
72264460809919376304329438826 845027994368062375541841432

16i 85954707902236518i
X4 0.3340626995079012952900527021 0.3640816006661915787790253

04788190273853189801589774167 122496368027833421422386404
71355111402011103849042612854 473184644666306169461158760
84567149980015 - 3.3191586434 790810794419078859150 - 3.0

68385776052719425984844144820 208987796951012265043323487
73878992934358381526453530631 446451656101452645135847792
87490501611012312883462613011 892792135836265287076542644

47i 42984272813688548i
0.977476989952518785259323585 0.3640816006661915787790253
25074839104173177075584913304 122496368027833421422386404
08777380073255649226554316625 473184644666306169461158760
418370800908351 - 2.825096750 790810794419078859150 - 3.0

99153255247233736034424975446 208987796951012265043323487
48468813498702047199055029524 446451656101452645135847792
28190606881686071780378167407 892792135836265287076542644

444i 42984272813688548i
1.354619901468891950804861034 -7.835975919081319551254191
19131869557406881579696812600 872264041937718485200806430
35557906451683320111217443459 832634565113023235318060012
77655161636381 - 1.2251254539 489985332494274429801 - 0.8

62854059632648277116373043965 945557998191306345004721956
29737182016799518596028322801 296707165752935592018853366
97637707295246145014263412222 921157631089667134604281289

07i 326595393805086758i
X5 -1.378135235553237550044770182 -1.543689012692076361570855

92889699621217231721191367983 971801747986525203297650983
53017052344526122451325952739 935240804037831168673927973
06887667431903 - 2.5347858856 866485157914576059125 - 2.2

47017926021690918641657368400 302850160798747194915292726
86746351675072701684735318314 300281363775561809359092072
25203356187297264749104016300 549360669620818185892710337

30i 14514401374953045i
-1.37813523555323755004477018 -1.543689012692076361570855
29288969962121723172119136798 971801747986525203297650983
35301705234452612245132595273 935240804037831168673927973
906887667431903 - 2.534785885 866485157914576059125 - 2.2

64701792602169091864165736840 302850160798747194915292726
08674635167507270168473531831 300281363775561809359092072
42520335618729726474910401630 549360669620818185892710337

030i 14514401374953045i
1.000000000000000000000000000 -1.295597742522084770980996
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00000000000000000000000000000 592851538613898975448446608
00000000000000000000000000000 311537954601573034548153992

00000000000000 559253277504852247888 + 3.4
428664744942734580102136666
860741422766975177087526316
847354395998183691515623577

77170262133757727i
X6 1.378135235553237550044770182 1.543689012692076361570855

92889699621217231721191367983 971801747986525203297650983
53017052344526122451325952739 935240804037831168673927973
06887667431903 - 2.5347858856 866485157914576059125 - 2.2

47017926021690918641657368400 302850160798747194915292726
86746351675072701684735318314 300281363775561809359092072
25203356187297264749104016300 549360669620818185892710337

30i 14514401374953045i
1.37813523555323755004477018 1.543689012692076361570855

29288969962121723172119136798 971801747986525203297650983
35301705234452612245132595273 935240804037831168673927973
906887667431903 - 2.534785885 866485157914576059125 - 2.2

64701792602169091864165736840 302850160798747194915292726
08674635167507270168473531831 300281363775561809359092072
42520335618729726474910401630 549360669620818185892710337

030i 14514401374953045i
1.000000000000000000000000000 -1.295597742522084770980996
00000000000000000000000000000 592851538613898975448446608
00000000000000000000000000000 311537954601573034548153992

00000000000000 559253277504852247888 - 3.4
428664744942734580102136666
860741422766975177087526316
847354395998183691515623577

77170262133757727i
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