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Introduction

In this paper we enhance upon a result obtained by Dixmier and Malliavin in
their paper [1]. There they prove the following result (with notation modified
from the original for better clarity in what follows):

Theorem 1 (Factorization) Let G be a Lie group, V a neighbourhood of the
identity in G, and u ∈ D(G). Then u is a finite sum of functions of the form
v1 ? v2, where v1, v2 ∈ D(G), supp(v1) ⊂ V , supp(v2) ⊂ supp(u).

The theorem we prove is

Theorem 2 (Continuous Factorization) Let G be a Lie group, V a neigh-
bourhood of the identity in G, and u ∈ D(G). Then u is a finite sum of functions
of the form v1 ? v2, where v1, v2 ∈ D(G), supp(v1) ⊂ V , supp(v2) ⊂ supp(u), and
where v1 and v2 depend continuously on u in the space D(G).

This result can be translated to a useful result concerning a continuous rep-
resentation of G on a complete metrizable space (see [1]). A different, weaker
statement with a similar purpose has been recently used in [2]. For the origins
of the related Theorem1 the reader can also consult [3] and [4]. A reference
for notation and standard facts from functional analysis is [5]. I wish to thank
Prof. Jacquet who suggested the problem and whose remarks and advice I greatly
appreciate.

To recall, the space D(R) consists of the infinitely differentiable functions with
compact support and with bounded derivatives of all orders. We note that con-
vergence in D(R) means the following: the sequence of functions φ1, φ2, . . . , φl, . . .
converges to a function φ iff all the φi have support inside a fixed compact set and
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for any k, given ε > 0, there exits L, such that for l > L we have |Dkφl−Dkφ| < ε
(here Dk denotes the k-th derrivative). Thus continuous dependence D(R) can
be determined by this concept for convergence. More generally one considers the
space D(G) for any differentiable manifold G.

The construction in [1] is such that the number of terms in the factorization
is bounded by a constant depending only on the dimension of G.

Preliminary construction

As in [1] consider a real function φ(x) where

φ(x) =
+∞∏
k=0

(
1 +

x2

λ2
k

)
, (1)

and λ0, λ1, . . . are a subsequence of (1, 2, . . . , 2k, . . .). This function can be ex-
tended to an entire function on C, and if we denote 1/φ by χ(x), then χ is a
meromorphic function with simple poles which decreases faster than 1 over any
polynomial. Calculations in [1] show that the Fourier transform

ψ =

∫ +∞

−∞
e−iπxyχdx (2)

is a Schwartz function, ψ ∈ S(R), and thus χ ∈ S(R). Furthermore the following
estimate is obtained for ε > 0 independently of the sequence λ

supy>ε|
dnψ

dyn
| < (2π)n

+∞∑
j=0

2(n+1)je−2π2j

= Pn. (3)

Now we give a new, stronger, version of the key Lemma 1 used in [1]:

Lemma 1 Let (β0, β1, . . . , ) be a sequence of positive numbers. Then there exists
a sequence of positive numbers (γ0, γ1, . . .) and functions g ∈ D(R), h ∈ D(R) of
support inside [ε,−ε] for any given ε > 0 such that:

(i) γn ≤ βn for n ≥ 1
(ii)

∑p
n=0(−1)nγnδ

2n ? g −→ δ + h in E ′(R) as p −→ +∞
(iii) The sequences γ so produced satisfy the following additional condition.

Say that for the sequence β = (β0, β1, . . .) we have a sequence of sequences βl:(
β1 = (β1

0 , β
1
1 , . . .), β

2 = (β2
0 , β

2
1 , . . .), . . .

)
which converge pointwise to β, i.e. given N ∈ Z and given ε > 0 there exists L
such that for l > L we have

|βl
i − βi| < ε for all i ≤ N and all l ≥ L.
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Then if we denote by γl the sequence corresponding to βl produced by (i) and (ii)
the sequences γl converge pointwise to γ in the above sense.

(iv) If the sequences βl converge to β as in (iii) and hl, gl correspond to βl

while g, h correspond to β, then the sequences hl and gl converge to h and g
respectively in D(R).

Proof of Lemma This is modelled after the proof in [1]; however a number
of additional constructions have been made in order to achieve the last two con-
ditions. Fix a function ω ∈ D(R) which is even, equal to 1 on [−2, 2], and with
support contained in [−3, 3], and denote g = ψω where ψ is as in (2). (Note that
for any ε > 0 by an appropriate alternative choice of ω we can assure that g has
support in [−ε, ε]; the choice of support will not affect further statements.) From
(3) there exists a sequence (P0, P1, . . .) of positive numbers such that indepen-
dently of the sequence λ (as in (1)) we have

supy≥1|
dnω

dyn
| ≤ Pn. (4)

We will inductively and explicitly construct numbers γj
i in the following man-

ner. Let γi
0 = 1. Then consider the finite product

(1 +
x2

λ2
0

) . . . (1 +
x2

λ2
k−1

) =
∑
n≥0

γk−1
n x2n

Denote

Cn = inf(βn,
1

n2P2n

,
1

n2P2n+1

, . . . ,
1

n2P2n+n

, 1) (5)

Suppose that a choice of (λ0, λ1, . . . , λk−1) has been made such that for all n ≤
k − 1 we have in the above finite sum

γk−1
n < Cn for all n ≤ k − 1.

At the next kth step we want to choose λk so that for the new finite sum we
similarly have

γk
n < Cn for all n ≤ k. (6)

Since we have

γk
n =

1

λ2
k

γk−1
n−1 + γk−1

n ,

the above requirement means

1

λ2
k

γk−1
n−1 < Cn − γk−1

n , or since by induction Cn > γk−1
n ,

λ2
k >

γk−1
n−1

Cn − γk−1
n

for all n ≤ k. (7)
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Make the following explicit choice for λk: it is the smallest number in the se-
quence (1, 2, . . . , 2i, . . .) which satisfies (7) and is greater than λk−1. This choice
can clearly can be made and it constitutes our explicit inductive construction.
Visually we obtain the following diagram.

1
↘

1 γ1
1

↘ ↓ ↘
1 γ2

1 γ2
2

↘ ↓ ↘ ↓ ↘
1 γ3

1 γ3
2 γ3

3

. . .
If we now consider the limit

φ(x) =
∞∑

n=0

γnx
2n = lim

k→∞

k∏
i=0

(1 +
x2

λ2
i

) (8)

from the uniform convergence of the left hand and the Taylor expansion we
conclude that the numbers in the nth column of the diagram tend to a limit and
this limit is precisely the coefficient γn on the left hand side of (8). So our diagram
has the form:

1
↘

1 γ1
1

↘ ↓ ↘
1 γ2

1 γ2
2

↘ ↓ ↘ ↓ ↘
1 γ3

1 γ3
2 γ3

3

. . .

. . .

. . .
↓ ↓ ↓
1 γ1 γ2 . . .

fig. 1

(i) The condition is satisfied by construction because (5) and taking limit in
(6) imply that

γn < inf(βn,
1

n2P2n

,
1

n2P2n+1

, . . . ,
1

n2P2n+n

, 1) (9)

(ii) To construct the function h we consider the functions

θp =

p∑
n=0

(−1)nγn
δ(2n)

(2π)2n
? g, (10)
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with support in [−3, 3]. We show these functions converge in E ′(R) to a distri-
bution δ + h where h ∈ D(R). It is sufficient to look at the restrictions of θp on
(−2, 2), (1, 4), (3,+∞). First θp = 0 in (3,+∞).

We show that in (−2, 2)

θp|(−2,2) = (

p∑
n=0

(−1)nγn
δ(2n)

(2π)2n
? ψ)|(−2,2),

converges to δ in D′(R). This is because in (−2, 2) g = ψ and by construction in
(1) for all x ∈ R one has

0 ≤ (

p∑
n=0

γnx
2n)χ(x) ≤ 1, and

(
∞∑

n=0

γnx
2n)χ(x) = 1.

Therefore (
∑p

n=0 γnx
2n)χ(x) → 1 in S ′(R) for p→∞, so

(

p∑
n=0

(−1)nγnx
2n)

δ(2n)

(2π)2n
? ψ → δ in S ′(R) when p→ +∞.

Finally considering (1, 4) we see that for y ≥ 1 due to (9), (4), and (3)

|γn
δ(2n+k)

(2π)2n
? g| ≤ γnP2n+k <

1

n2
for n ≥ k, (11)

so the sum
∞∑

n=0

(−1)nγn
δ(2n)

(2π)2n
? g

converges to the desired limit h in E((1, 4)) because (11) ensures that termwise
differentiation preserves absolute convergence.

Before we proceed note that by this construction the support of h will be
included in that of g (so it will also be arbitrarily small).

(iii) Consider the sequences βl from the condition: for each of these our con-
struction produces an inductive diagram as the one in fig.1 in which we denote
the dependence on l by an upper left index:
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1
↘

1 lγ1
1

↘ ↓ ↘
1 lγ2

1
lγ2

2

↘ ↓ ↘ ↓ ↘
1 lγ3

1
lγ3

2
lγ3

3

. . .

. . .

. . .
↓ ↓ ↓
1 lγ1

lγ2 . . .
We will now need two facts: first the table stabilizes as l increases (Claim 1),

and second the columns converge uniformly in l (Claim 2).

Claim 1 With the above notation for a fixed n and a given K we can choose L
such that for l > L we have

lγk
n = γk

n for all k ≤ K.

Proof We proceed inductively. Suppose we achieved this for K-1 with some L′

for n = 0, 1, . . . , K−1. Then the tables for β and βL′ coincide up to the (K−1)st

row. But then notice that choosing the Kth row is equivalent to choosing λK ,
and that choice will be different for β and βl (l > L′) only due to the difference
between Cn and lCn which is in turn either zero or equal to difference between
βn and lβn. That last difference by our assumption can be made arbitrarily small
if we choose L big enough, so clearly since our choice of λK is discrete we can
arrange L big enough so that λK =l λK for l ≥ L. This proves the claim. �

Claim 2 With the above notation for a given n and given ε > 0 we can choose
K, so that for all l we have

|lγn − lγi
n| < ε for i > K.

Proof Notice that by construction

lγk
n =

1
lλ2

k

l

γk−1
n−1 +l γk−1

n <
1

22k
lCn−1 + lγk−1

n <
1

22k
+ lγk−1

n

since lCn−1 < 1. So at each step going down a column the next term is bigger
at most by 1

22k (and notice that the sequence in the column is increasing). Then
choose K so that

∞∑
i=K

1

22i
< ε.
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This guarantees that
|lγn −l γi

n| < ε for i > K,

which is proves the calim. �
Suppose now that as in the condition (iii) we are given a positive N ∈ Z, and

a real ε > 0. We combine the results of Claim 1 and Claim 2. From Claim 2 it
follows that for a fixed l we can choose K large enough so that

|lγn − lγi
n| < ε/2 for i > K and for all n ≤ N.

Now with this choice of K, from Claim 1 we can choose L large enough so that
for l > L we have

lγk
n = γk

n for all k ≤ K.

This implies that now we have a statement independent of l, i.e.

|lγn − lγi
n| < ε/2 for i > K, n ≤ N, and all l > L

and so

|lγn − γn| = |lγn − lγK
n + lγK

n − γn| < ε/2 + ε/2 = ε for n ≤ N, and all l > L,

which completes the proof of (iii).
(iv) Consider first the function g. By construction g = ωψ where ω is a

fixed function. So the problem is reduced to showing that the sequence {ψl}
corresponding to {βl} converges to ψ (which corresponds to β). As in (1) and
(2) we also have corresponding sequences {φl} and {χl} which are needed in the
construction of the {ψl}.

Say we are given a number a > 0, and a number ε > 0. On the interval [−a, a]
we consider the difference

|φ(x)− φl(x)| = |
∞∑

n=0

γnx
2n −

∞∑
n=0

lγnx
2n|.

Since it is bounded independently of l by an uniformly convergent sequence on
[-a,a] we can choose N so that

|
∞∑

n>N

(γnx
2n − lγnx

2n)| < ε/2 for x ∈ [−a, a] and all l.

Because the {γl} satisfy condition (iii) of the Lemma we can also choose L such
that

|
N∑

n=0

(γnx
2n − lγnx

2n)| < ε/2 for x ∈ [−a, a] and all l > L.

7



These two observations imply that for l > L we have

|φ(x)− φl(x)| < ε when x ∈ [−a, a].

Now we observe that

|χ(x)− χl(x)| = | 1

φ(x)
− 1

φl(x)
| = |φ(x)− φl(x)

φ(x)φl(x)
| < |φ(x)− φl(x)|

since for all x φ(x) > 1 and φl(x) > 1. This allows us to conclude that with the
same choice of L we get

|χ(x)− χl(x)| < ε for l > L and x ∈ [−a, a]. (12)

Now fix k and given ε > 0 consider the difference ( here Dk is the kth deriva-
tive)

|Dkψ(y)−Dkψl(y)| = |Dk

∫ +∞

−∞
e2πixy(χ(x)− χl(x))dx|

= |
∫ +∞

−∞
(2πx)ke2πixy(χ(x)− χl(x))dx| <

∫ +∞

−∞
|(2πx)k(χ(x)− χl(x))|dx.

Notice that for x > 1

χ(x) =
1

1 + γ1x2 + . . . γk+1x2k+2 + . . .
<

1

γk+1x2k+2
and

χl(x) =
1

1 + lγ1x2 + . . . lγk+1x2k+2 + . . .
<

1
lγk+1x2k+2

.

Then

|χ(x)− χl(x)| <
1

x2k+2
(| 1

γk+1

|+ | 1
lγk+1

|) < 1

x2k+2
(2| 1

γk+1

|+ | 1

γk+1

− 1
lγk+1

|).

But now by the Lemma we can choose L1 so that | 1
γk+1

− 1
lγk+1

| < 1 for l > L1

(because γk+1 > 0 is fixed and the function 1/y is continuous for y > 0). This
implies that because of absolute convergence of the integral we can choose a > 0
such that for l > L1 (with C independent of l)

|
∫
|x|>a

(2πx)ke2πixy(χ(x)− χl(x))dx| <
∫
|x|>a

|(2π)kxk C

x2k+2
|dx = (13)

=

∫
|x|>a

|(2π)
k C

xk+2
|dx < ε/2
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Now making use of (12) we can choose L2 such that for l > L2 and x ∈ [−a, a]
we have |χ(x)− χl(x)| < ε1 where ε1 <

ε/2
2a(2πa)k which will imply that

|
∫ +a

−a

(2πx)ke2πixy(χ(x)− χl(x))dx| < ε/2 for l > L2. (14)

Thus (13) and (14) imply that for l > max(L1, L2)

|Dkψ(y)−Dkψl(y)| = |
∫ +∞

−∞
(2πx)ke2πixy(χ(x)− χl(x))dx| < ε/2 + ε/2 = ε,

which is what we wanted to prove.
Lastly we consider the function h. From the results obtained for (10) we have

that by construction h is

h(x) =
∞∑

n=0

(−1)nγn
1

(2π)2n
D2ng(x)

and the sum can be differentiated any number of times by (11). So if we fix k,
and let ε > 0 then we will have

|Dkh−Dkhl| = |Dk

∞∑
n=0

(−1)n 1

(2π)2n
γnD

2ng −Dk

∞∑
n=0

(−1)n 1

(2π)2n
lγnD

2ngl| =

= |
∞∑

n=0

1

(2π)2n
(γnD

2n+kg − lγnD
2n+kgl)|

1) Since by (11) the above sum is bounded by an absolutely convergent series
uniformly in l, we can choose N such that for all l

|
∞∑

n>N

1

(2π)2n
(γnD

2n+kg − lγnD
2n+kgl)| < ε/2

2) We now need to consider the front end of the series which is less than:

|
N∑

n=0

(γnD
2n+kg − lγnD

2n+kgl)|.

Choose a number ε1 <
ε

6N
. Because (iii) is satisfied we can choose L1 such that

|lγn − γn| =< ε/2 for n ≤ N, and all l > L1.

Also choose ε2 <
ε

6sup|D2n+kg| for n ≤ N ; from the just proved convergence of the

{gl} it follows that we can choose L > L1 such that for n ≤ N

|D2n+kg −D2n+kgl| < ε2 for l > L.
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With these choices we have

lγn = γn + δ1 where |δ1| < ε1,

D2n+kg = D2n+kgl + δ2 where |δ2| < ε2.

This then means that for l > L

|
N∑

n=0

(γnD
2n+kg − lγnD

2n+kgl)|

= |
N∑

n=0

(γnD
2n+kg − γnD

2n+kg − δ1D
2n+kg − δ2γn − δ1δ2)| ≤

≤ |
N∑

n=0

δ1D
2n+kg|+ |

N∑
n=0

δ2γn|+ |
N∑

n=0

δ1δ2| ≤

≤ N
ε

6N
+N

ε

6N
+N

ε

6N
≤ ε

2

From 1) and 2) it follows that for l > L

|Dkh−Dkhl| =
∞∑

n=0

1

(2π)2n
(γnD

2n+kg − lγnD
2n+kgl)| < ε/2 + ε/2 = ε,

which is what we wanted to prove.
This completes the proof of the Lemma 2. �

Proof of Continuous Factorization

For convenience we restate the result:

Theorem 3 (Continuous Factorization) Let G be a Lie group, V a neigh-
bourhood of the identity in G, and u ∈ D(G). Then u is a finite sum of functions
of the form v1 ? v2, where v1, v2 ∈ D(G), supp(v1) ⊂ V , supp(v2) ⊂ supp(u), and
where v1 and v2 depend continuously on u in the space D(G).

Proof We first consider the special case when G = R. The desired choice is
achieved by choosing a sequence β = (β0, β1, . . . , βn, . . .) in the following manner:

βn = inf
( 1

2n
,

1

2nM2n

,
1

2nM2n+1

, . . . ,
1

2nM2n+n

, 1
)

(15)

where Mk denotes supR|Dku| (and Dk is the kth derivative). From the Lemma we
get a corresponding choice of a sequence γ the members of which satisfy γn ≤ βn,
and

p∑
n=0

(−1)nγnδ
(2n) ? g → δ + h in E ′(R) when p→∞, or
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g ?

p∑
n=0

(−1)nγnδ
(2n) ? u→ u+ h ? u in E ′(R) when p→∞. (16)

Now notice that by the choice (15)

|f | = |Dk(
∞∑

n=0

(−1)nγnD
2nu)| <

∞∑
n=0

|γnD
2n+ku| <

∞∑
n=0

| 1

2nM2n+k

M2n+k| <
∞∑

n=0

1

2n
<∞.

Therefore f ∈ D(R), and from (16) we obtain the decomposition

u = g ? f − h ? u.

Now suppose that ul are a sequnce of functions converging to u. With the
choice (15) it is easy to see that the sequences βl converge pointwise to the
sequence β (in the sense of (iii) in the Lemma). In turn (iii) of the Lemma
implies pointwise convergence of the corresponding sequences γl. Finally, (iv)
implies that g and h depend continuously on u in D(R).

So it remains to consider f . But from the expression for f it follows that the
argument which we used for g in the proof of the Lemma can be used in this case,
too. Namely:

1) Using (15) we see that independently of l

|
∑∞

2n+k<3n (γnD
2n+ku− lγnD

2n+kul)| <

<
∞∑

2n+k<3n

|γnD
2n+ku|+

∞∑
2n+k<3n

|lγnD
2n+kul| <

<
∞∑

2n+k<3n

1

2n
+

∞∑
2n+k<3n

1

2n
;

so we can choose N such that

|
∞∑

n>N

(γnD
2n+ku− lγnD

2n+kul)| < ε/2.

2) We now need to consider the front end

|
N∑

n=0

(γnD
2n+ku− lγnD

2n+kul)|.

Here exactly as for g we get that for l > L

|
N∑

n=0

(γnD
2n+ku− lγnD

2n+kul)| < ε/2.
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Combining 1) and 2) we get the desired result, i.e. that f depends continu-
ously on u.

This completes the argument for G = R.

Now consider the case of any lie group G. The construction generalizes the
one for G = R. If x1, x2, . . . , xm is a basis for the Lie algebra of G then the map
ζ

(t1, t2, . . . , tm) → (exp t1x1)(exp t2x2) . . . (exp tmxm)

when restriced to (−1, 1)m in Rm is a diffeomorphism to an open neighbourhood
Ω of G. Let σ be a left Haar measure on G and σΩ its restriction to Ω. If
(w1, w2, . . .) is a basis for the enveloping algebra W of the Lie algebra of G then
if w ∈ W , w ? u defines a differential operator Dw(u). Now denote

sups∈G|wi ? x
2n
1 ? u(s)| = M2n,i.

As before choose positive (β0, β1, . . .) such that

βn = inf
( 1

2n
,

1

2nM2n,1

,
1

2nM2n,2

, . . . ,
1

2nM2n,n

, 1
)

(17)

Then the Lemma as before produces a corresponding sequence (β0, β1, . . .).
As for R we obtain functions g and h such that

p∑
n=0

(−1)nγnδ
(2n) ? g → δ + h in E ′(R) when p→∞.

The map t1 → expt1x1 transforms the measures g(t1)dt1, h(t1)dt1 on R into
measures µ, ν on G and

µ ?

p∑
n=0

(−1)nγnx
2n
1 =

p∑
n=0

(−1)nγnx
2n
1 ? µ→ δe + ν

in E ′(G) when p→ +∞. Therefore

µ ?

p∑
n=0

(−1)nγnx
2n
1 ? u→ u+ ν ? u

in E ′(G) when p→ +∞. But due to (17)

∞∑
n=0

(−1)nγnx
2n
1 ? u = f (18)

where f is in D(G). Thus
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u = µ ? f − ν ? u (19)

Now let ul be a sequence converging to u in D(G). Then the sequences βl

converge to β pointwise and by the Lemma as before the fucntions gl and hl

converge to g and h in D(R) or g and h depend continuously on u. We also
notice that exactly as in the case G = R for any ε > 0 for l large enough

|Dwk
f −Dwk

fl| = |
∞∑

n=0

((−1)nγnwk ? x
2n
1 ? u)− (−1)nγnwk ? x

2n
1 ? ul)| < ε.

This establishes that f depends continuously on u in D(G). Now from
(19) it follows that u is a sum of two functions of the form ξ ? η where η ∈
D(G) with supp(η) ∈ supp(u) and ξ is the image of a measure s(t1)dt1 on R
with s ∈ D(R) and supp(s) ∈ [−ε, ε] where the functions s(t) and η depend
continuously on u.

Applying iteratively this argument for all the m elements of the Lie algebra
we obtain that u is a finite sum of functions of the form ξ1 ? ξ2 ? . . . ? ξm ? η where
η ∈ D(G) with supp(η) ∈ supp(u) and ξi is the image of a measure si(t1)dt1 on
R with si ∈ D(R) and supp(si) ∈ [−ε, ε]. Also si and η depend continuously on
u.

Now ξ1 ? ξ2 ? . . . ? ξm is the image of ξ1⊗ ξ2⊗ . . .⊗ ξm under the product map
G × G × G . . . × G → G and therefore ξ1 ? ξ2 ? . . . ? ξm is the image under ζ of
the measure

s1(t1)s2(t2) . . . sm(tm)dt1dt2 . . . dtm

on Rm. The function s1(t1)s2(t2) . . . sm(tm) is in D(R) with support in [−ε, ε] and
depends continuously on u as a product of functions which depend continuously
on u. Since the image of the restriction dt1dt2 . . . dtm|(1,1)m is the product of σΩ

and a function in E(Ω) ξ1 ? ξ2 ? . . . ? ξm is the product of σ and function in D(G)
continuously depending on u. For ε sufficiently small this finction has support in
V .
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