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Introduction

The Abel-Plana formula provides a simple expression for the difference between a sum over discrete values
and an integral of a function. Here I give a step-by-step derivation of the formula, following [1] and filling
in the details.

Proof of the Formula

Lemma 1 Let f be entire, and suppose limj,_, fabj:: [9(2) £ f(2)] dz = 0. Then we have
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Proof: By the residue theorem,
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where the zj are the poles of g contained in C},. Let C}, be the rectangle with vertices at a + ih,
b+ ih, and let C’,T and C} be the upper and lower halves of C,. Then
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Now let D,:_L denote the path C’,:_L closed by =%[a,b]. Since f is analytic, Cauchy’s integral theorem
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or more compactly,
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Combining (1), (2), (3), and (4) gives
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In the limit A — oo, the last two terms on the RHS vanish by hypothesis, so we have the desired

equation. [ |

Theorem 1 (Generalized Abel-Plana Formula) Suppose that in addition to the hypothesis of the lemma,
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Then
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Proof: Follows immediately from the lemma, if we write
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Corollary 1 (Abel-Plana Formula) With the same hypotheses as in the GAPF and for 0 < a < 1,
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Proof: Let b=n+a and g(z) = —if(z)cot mz. Then the GAPF reads
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Now cot mz has simple poles at the positive real integers s = 1,2,3,..., so if f is analytic,
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and the LHS of (7) matches that of the APF (6), up to a minus sign. Write the RHS of (7) as
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which, again up to a minus sign, matches the RHS of the APF. [ ]
To put the formula in its usual form, let a go to zero and substitute ¢ = —iz. Note that in the limit

a — 0 we pick up a half-residue, since g(= —if cotwz) has a pole at zero. Therefore the LHS of (6) reads
f(o) + >0, fln)— fﬂ (z) dz. Under the substitution z = it, dz = i dt, the RHS becomes
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Adding @ to both sides, we get
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This form is useful for manipulating the values taken by f in the sum on the LHS, since the dependence on
the poles of the cotangent is explicit. For evaluation, however, it may be convenient to use the identity
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Conclusion: Application to the Casimir Effect

The expression given by the APF for the difference between a sum and an integral is particularly useful in
calculations related to the Casimir effect [1, 2]. In determining Casimir energies, one is interested in the
difference between an observable with a discrete spectrum (representing a field in the presence of boundary
conditions: metal plates, curled dimensions, etc.), and an observable with a continuous spectrum (represent-
ing the free field). This amounts to subtracting an integral from a sum. The APF has the advantage of
not introducing an explicit cutoff function, a technique often used to tame the infinities that plague direct
summation calculations. This is a useful feature in cases where the introduction of such a cutoff is not
necessarily justified, as in those involving boundary conditions imposed by the shape of the space.
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