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1 Preliminaries

Definition 1 An n-dimension differentiable manifold is a topological space X
with a differentiable structure that is Hausdorff and second countable.

Example 1 Rn, Sn, Tn, etc...

Definition 2 A diffeomorphism between two differentiable manifolds, M and
N is a smooth, bijective map φ : M → N with a smooth inverse.

Definition 3 A topological group G is a topological space such that the product
and inverse operations are continuous maps.

Definition 4 A Lie group G is a topological group such that the product and
inverse operations are smooth maps.

Example 2 R, O(n), SO(n), U(n), SU(n), etc...

Counterexample 1 Q ⊂ R with the subspace topology is a topological group,
but not a Lie group.

2 Fiber Bundles

Definition 5 A Fiber Bundle is defined as the following:

1. Differentiable manifolds B and E, called the Base Space and the Total
Space, respectively.

2. A topological space F, called the Fiber, or Typical Fiber (typically a differ-
entiable manifold).

3. A surjection π : E → B called the Projection.

4. A topological group G called the structure group (typically a Lie group).
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5. A family of diffeomorphisms Ψ = {ψα}α∈I such that given an open cover
{Uα}α∈I of B, for all x ∈ B there exists a Uα 3 x and a ψα ∈ Ψ so that

ψα : Uα × F → π−1(Uα)

called Trivializations of the bundle and

π(ψα(x, y)) = x, for all (x, y) ∈ Uα × F

The set {(Uα, ψα)}α∈I is called a coordinate representation for E. For all
coordinate representations,

ψα,x : F → Fx = {y ∈ E|π(y) = x},

ψα,x(y) = ψα(x, y) is bijective for all y ∈ F and x ∈ Uα

6. A set of maps {tij} such that if x ∈ Uα ∩ Uβ, tαβ = ψ−1
α,x ◦ ψβ,x is given

by an element g ∈ G and ψβ(x, y) = ψα(x, tαβ(x)y). These are called the
Transition functions. We require that

tαα(x) = Idx, x ∈ Uα,

tαβ(x) = t−1
βα(x), x ∈ Uα ∩ Uβ ,

tαβ(x) · tβγ(x) = tαγ(x), x ∈ Uα ∩ Uβ ∩ Uγ .

If all the tij’s are identity maps, then E = B×F is called a trivial bundle.

Often in literature fiber bundles are simply denoted by F − E −B, π : E → B
or E π→ B.

Definition 6 A Section of a fiber bundle π : E → B is a map s : B → E such
that π ◦ s = IdB

Example 3 A cylinder is an example of a trivial bundle. The base space is
given by S1 and the typical fiber is given by some interval of R, say [−1, 1]. The
transition functions are thus given by the identity.

If instead of taking the structure group to be the identity, we realize a structure
with non-trivial topology.

Example 4 A Möbius band is the simplest example of a non-trivial fiber bundle.
Again, the base space is given by S1 and the typical fiber is given by [−1, 1] ⊂ R.
The transition functions are now given by t12 : t 7→ −t It is easy to see that the
structure group is then Z/2.

This is a special example in that rarely if ever do we see a discrete group for a
structure group. An analogous example to the cylinder and Möbius band are
the torus and the Klein bottle. The torus, S1 × S1, is a trivial bundle in which
the base space is a circle and the fiber over each point is a circle. The Klein
bottle is a nontrivial circle bundle.
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Example 5 A vector bundle is a fiber bundle having a vector space V as its
fiber and GL(V ), or one of its subgroups, as a structure group.

Example 6 The tangent bundle is the most common example of a vector bun-
dle.

To see this, lets begin with a definition for the tangent bundle.

Definition 7 Consider a smooth compact submanifold M ⊂ Rn of dimension
m. At each point x ∈ M attach a copy of Rm tangential to M . This is the
tangent space of M at x, denoted TxM . Then the tangent bundle is the disjoint
union of the tangent spaces, i.e.

TM =
∐
x∈M

TxM =
⋃
x∈M
{x} × TxM.

So elements of TM can be defined as (x, v) where x ∈M and v ∈ TxM .

To see that this is indeed a fiber bundle we can first observe that there is a
natural projection π : TM → M defined by (x, v) 7→ x (i.e. π takes TxM
to x). So the fibers are given by the TxM ’s. To each chart Uα on M with
coordinates (x1

α, ..., x
m
α ) there is a corresponding chart Ũα with coordinates

(x1
α, ..., x

m
α , v

1
α, ..., v

m
α ) where v = ẋ is a tangent vector to M along some curve

in M . The transition functions between charts have the form

xiβ = xiβ(xα), vjβ =
∂xjα
∂xiβ

(xα)viα

We can observe that the structure group is given by GL(m,R).

Example 7 A covering space is another example of a fiber bundle. In this case
the fiber is discrete and the structure group is a factor group of π1(B).

Definition 8 A bundle π : E → B in which F = G, where G is a Lie group
that has a smooth right action of E such that

1. The action is free (e · g = e⇔ g = e).

2. The action preserves the fibers.

then π : E → B is a principal G-bundle, often denoted P (B,G).

Example 8 Sn is a 2-fold cover of RPn. The action of O(1) on Sn gives it
the structure of a principal O(1)-bundle over RPn;

O(1)− Sn+1
R − RPn.

Similarly,
U(1)− Sn+1

C − CPn

is a principal U(1) bundle. For the remainder of the talk we will be focusing on
a principal U(1) bundle.
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3 The Hopf Map

The Hopf map shows us that S3 is a principal U(1)-bundle over S2. Recall that,

S3 = {(x1, ..., x4)|
4∑
i=1

x2
i = 1}

and for z1 = x1 + ix2 and z2 = x3 + ix4

S3 ∼= S1
C = {(z1, z2)||z1|2 + |z2|2 = 1}

We define the Hopf map π : S3 → S2 by

ξ1 = 2(x1x3 + x2x4),

ξ2 = 2(x2x3 − x1x4),

ξ3 = (x1)2 + (x2)2 − (x3)2 − (x4)2

To verify that the ξ’s indeed parametrize S2 we can observe that

(ξ1)2 + (ξ2)2 + (ξ3)2 = ((x1)2 + (x2)2 + (x3)2 + (x4)2)2 = 1

Now, take (X,Y ) to be coordinates given by stereographic projection from the
north pole, N , onto US = S2 −N . Then,

(X,Y ) = (
ξ1

1− ξ3
,

ξ2
1− ξ3

).

If we observe the complex plane through the equator, Z = X+ iY is in the unit
circle. With a little algebra, we find that

Z =
ξ1 + iξ2
1− ξ3

=
x1 + ix2

x3 + ix4
=
z1
z2
, ξ ∈ US

We can, of course, proceed similarly for the coordinates (U, V ) of UN = S2−S.
Then,

(U, V ) = (
ξ1

1 + ξ3
,
−ξ2

1 + ξ3
),

and therefore

W = U + iV =
ξ1 − iξ2
1 + ξ3

=
x3 + ix4

x1 + ix2
=
z2
z1
, ξ ∈ UN .

Observe that on UN∩US , Z = 1
W , and that (z1, z2) is invariant under (z1, z2) 7→

(λz1, λz2) for λ ∈ U(1) since |λ| = 1 and (λz1, λz2) ∈ S3 Now, we can observe
the fiber bundle structure as follows. Define local trivializations

ψ−1
S : π−1(US)→ US × U(1)
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by
(z1, z2) 7→ (

z1
z2
,
z2
|z2|

)

and
ψ−1
N : π−1(UN )→ UN × U(1)

by
(z1, z2) 7→ (

z2
z1
,
z1
|z1|

)

Note that these maps are well defined, for instance, on US , z2 6= 0, so both
z1
z2

and z2
|z2| are nonsingular. On the equator, ξ3 = 0, |z1| = |z2| = 1√

2
so the

trivializations on the equator are given by,

ψ−1
S : (z1, z2) 7→ (

z1
z2
,
√

2z2)

and
ψ−1
N : (z1, z2) 7→ (

z2
z1
,
√

2z1)

The transition function on UN ∩ US is then

tNS(ξ) =
√

2z1√
2z2

= ξ1 + iξ2 ∈ U(1)

As we go around the equator, we see that tNS(ξ) makes one lap around the
unit circle in the complex plane. Therefore, this bundle is of homotopy class 1
of π1(U(1)) = Z, which as we will see describes a monopole of unit strength.
Notice that we cannot find a global triviality for S3. To see this observe that
π1(S2 × S1) = π1(S2)⊕ π1(S1) ∼= Z 6= 0 = π1(S3). For a different perspective,
one can similarly define the Hopf map

π : S1
C → CP 1

by
(z1, z2) 7→ [(z1, z2)] = {λ(z1, z2)|λ ∈ C− {0}}.

This map takes points λ(z1, z2) ∈ S3 with |λ| = 1 to single points in CP 1.
Play video 7 on http : //dimensions−math.org/Dim−reg−AM.htm.

4 Magnetic Monopoles

Recall Gauss’ Law for magnetism,

∇ ·B = 0

or in integral form ∮
S

B · dS = 0.
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These equations imply that the magnetic field is given by a solenoidal vector
field. What if we redifine Gauss’ law as

∇ ·B = 4πg (1)

where g is the magnetic charge? This equation then has the solution

B = g
r
r3

= −∇g
r
. (2)

This implies that
B = ∇×A (3)

is no longer valid because,∮
(∇×A) · dS =

∫
∇ · (∇×A) · dr = 0.

But this is a contradiction since (1) implies that∮
B · dS =

∫
∇ ·B · dr = 4πg.

But we know that as we move away from the origin, B has no divergence, so we
must find a vector potential B that obeys (3) almost everywhere. For simplicity,
let us find a vector potential that fails to hold on a line. Following Dirac, we
can take this line to be z > 0. Again, we take advantage of Stokes’ theorem,∮

C

A · dr = −
∫
S

B · dS, (4)

where C is a circle of constant θ on a sphere of constant radius r about the
origin, and S is the lower part of the sphere bounded above by C. Then, the
surface integral (4) easily follows,∫

S

B · dS =
g

r2
2πr2(1 + cos θ).

We can then take as a solution of (4) to be,

A = Aφφ̂,

with

Aφ = −g(1 + cos θ)
r sin θ

.

Now we let θ → 0 and notice that the singularity is only on the z axis and∮
C′

A · dr =
∫
S′

(∇×A) · dS′ = −4πg,
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where C ′ is the infinitesimal circle, and S′ the infinitesimal area. We can observe
from this that the singularity of ∇×A is indeed on the axis and can conclude
that the magnetic field is given by

B = ∇×A + 4πgδ(x)δ(y)θ(z)ẑ,

where

θ(z) =
{

1, z > 0,
0, z < 0.

This seems like a pretty janky way to describe a monopole, but fortunately this
singularity can be avoided if we abandon the use of a single vector potential.
This is where our old friend Hopf gives us a hand. But first, I left out a big
story about connections on principal bundles. An important thing to note is
that a principal bundle is what physicists refer to as a gauge, and that locally
a connection one form is refered to as a gauge potential. The nicest case of this
is given by U(1) gauge potentials which describe electromagnetism. We will
use the following facts about connections, the proofs of which can be found in
“Geometry, Topology and Physics” by M Nakahara.

1. Let P (M,G) be a principal bundle, {Ui} be an open cover of M and σi
be a local section defined on each Ui. Given a Lie(G) valued one form
Ai on Ui and a local section σi : Ui → π−1(Ui), there exists a connection
one form (called an Ehresmann connection) ω ∈ Lie(G)⊗T ∗M such that
Ai = σ∗i ω.

2. The compatability condition for these is given by

Aj = t−1
ij Aitij + t−1

ij dtij .

This is what physicists refer to as a gauge transformation.

The dirac monopole is defined on R3 − {0}, which is homotopy equivalent to
S2, and is described by a principal U(1)-bundle P (S2, U(1)). We can cover S2

by two charts,

UN ≡ {(θ, φ)|0 ≤ θ ≤ 1
2
π + ε} US ≡ {(θ, φ)|1

2
π − ε ≤ θ ≤ π}

with θ and φ polar coordinates. Let ω be an Ehresmann connection on P (S2, U(1))
and σN ,σS to be local sections on UN ,US , respectively. Then we can define local
gauge potentials (Wu-Yang)

AN = σ∗Nω AS = σ∗Sω

by
AN = g(1− cos θ)dφ AN = −g(1 + cos θ)dφ

Now take the transition function tNS defined on the equator UN ∩ US . We can
write

tNS = exp[iϕ(φ)] ϕ : S1 → R.
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Then the gauge potentials are related by the compatability condition

AN = t−1
NSAStNS + t−1

NSdtNS , (5)

which gives us
dϕ = AN −AS = 2gdφ. (6)

Now, as φ goes around the equator, ϕ(φ) has the range

∆φ ≡
∫
dϕ =

∫ 2π

0

2gdφ = 4πg.

So for tNS to be defined uniquely, it must be an integer multiple of 2π,

∆φ
2π

= 2g ∈ Z.

This is the quantization condition for magnetic monopoles. But now let us see
how monopoles give us electric charge quantization. Consider a particle with
mass m and charge e moving in the field of a sufficiently massive magnetic
monopole. We can write Schrödinger’s equation for the particle’s wave function
as

1
2m

(p− e

c
A)2 |ψ(r)〉 = E |ψ(r)〉 .

It can be shown that under the gauge transformation

A→ A +∇Λ,

the wavefunction transforms as

|ψ(r)〉 → exp[
ieΛ
~c

] |ψ(r)〉 , Λ = 2gφ.

We saw by equations (5) and (6) that AN −AS = 2gdφ = ∇2gφ. If ψN and ψS

are wavefunctions defined on UN and US respectively, then they are related by∣∣ψS(r)
〉

= exp[
ieΛ
~c

]
∣∣ψN (r)

〉
Now, if we fix θ and observe the wavefunctions as they go from φ = 0 to φ = 2π
we note that the wavefunction is required to be single valued, therefore

2eg
~c

= n, n ∈ Z

This tells us that if a single monopole exists, then all electric charges are quan-
tized!
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