
THE CATEGORY OF MODULES OVER A COMMUTATIVE RING
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Definition: Given an R-module M, S ⊂ M is called a submodule of M iff it satisfies
the following axioms:

(SMI) S is subgroup of M under +.
(SMII) ∀r ∈ R, s ∈ S, rs ∈ S.

Examples:

Any ring R is an R-module with module action ϕ : R × R −→ R given by ϕ(r, s) = rs
(multiplication in R). A submodule of R (regarded as an R-module) is then just an ideal
of R. Thus, ideal theory is a part of the much more general module theory.

Given an R-linear map ϕ : M −→ N, kerϕ and imϕ defined in the usual way are sub-
modules of M and N respectively.

Last time we saw that a category C with zero objects has zero morphisms OAB ∈
Hom(A,B), for all A,B ∈ obC which are independent of the zero objects. Zero morphisms
will play an important part in the next definition. From now on we will denote 0AB as just 0.

Definition: Given a category C with zero objects, A,B ∈ obC and f ∈ Hom(A,B), a
kernel (cokernel) of f is an equalizer (coequalizer) of the following diagram

A B

f

$$
A B

0

::

Fig1

Explicitly, a kernel of a morphism f ∈ Hom(A,B) is an object k with a morphism
ϕ : k −→ A such that f ◦ ϕ = 0, satisfying the following universal property: if d is any
other object with morphism φ : d −→ A such that d ◦ φ = 0, then ∃! γ : d −→ k such that
ϕ ◦ γ = φ. One can similarly unravel the definition of a cokernel.
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Since, a kernel (cokernel) is an universal object, hence, it is unique up to unique isomor-
phism. So, it is justified to call it ’the’ kernel (cokernel) of a morphism. Note that kernels
and cokernels of morphisms need not exist in a category in general. However, R-mod is
a very well-behaved category in which every morphism (i.e. every R- linear map) has a
kernel and a cokernel.

Proposition: The category R-mod has kernels and cokernels.

Proof: Let M, N be R-modules, and ϕ : M −→ N be an R-linear map. It can be
shown (easily?) that kerϕ with the inclusion map i : kerϕ ↪→ M is the kernel of ϕ in the
categorical sense. Similarly, N

imϕ with the natural projection map π : N � N
imϕ mapping

n 7−→ n+ imϕ (the left coset of n) is the cokernel of ϕ.
�

Thus, R-mod has zero objects, kernels and cokernels. Keep this in mind as it
will be important when we define an abelian category.

Recall that epimorphisms and monomorphisms are categorical versions of surjection and
injection respectively. In fact, Stephen showed in his lecture that in the category Sets of
sets with morphisms as just regular functions between sets, a function f : S −→ T (where
S, T are sets is):

• an epimorphism ⇔ f is surjective.

• a monomorphism ⇔ f is injective.

In an arbitrary category C whose objects are structured sets (such as groups, abelian
groups, rings, fields, topological spaces etc.) and whose morphisms are structure preserving
functions (here we mean functions in the usual sense), an epimorphism need not be equiv-
alent to a structure preserving surjection, and similarly for a monomorphism. However,
in R-mod epis and monos coincide with surjective and injective R- linear maps respectively.

Proposition: In R-mod, given f ∈ Hom(M,N)
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• f is mono ⇔ f is injective.

• f is epi ⇔ f is surjective.

Proof:
Case 1: ⇐ f is an injective R-linear map ⇒ f is injective as a set function ⇒ f is

an injection in Sets ⇒ f is a monomorphism in Sets ⇒ f is a monomorphism in R-mod.

⇒ If f is a monomorphism in R-mod then let i : kerf ↪→ M be the inclusion
map and 0 : kerf → M be the constant zero map. It is clear that f ◦ i = 0 = f ◦ 0.
Hence, i : kerf ↪→ M = 0 : kerf → M . Thus, im(i) = im(0). But, im(0) = {0M} and
im(i) = kerf . This means that kerf = {0M} .i.e., f is injective.

Case 2: ⇐ f is a surjective R-linear map ⇒ f is a surjection in Sets ⇒ f is an
epimorphism in Sets ⇒ f is an epimorphism in R-mod.

⇒ If f is an epimorphism in R-mod then let π : N � N
imf be the natural projection,

and 0 : N → N
imf the constant zero map. As before, f ◦ π = 0 = f ◦ 0. Thus, π :

N � N
imf = 0 : N → N

imf , which means that im(π) = im(0). But, im(π) = N
imf and

im(0) = {0 N
imf
}. Hence, N

imf = {0 N
imf

.}, and so N = imf . This shows that f is surjective.

�

A special property of R-mod is that the Hom–sets can be given the structure of an
R-module as follows:

Given R-modules M and N, ∀f, g ∈ Hom(M,N) define f + g as f + g(m) =
f(m) + g(m), and ∀a ∈M , define af as (af)(m) = a{f(m)} for all m ∈M .

One can easily verify that gives Hom(M,N) the structure of an R-module. Note that
in particular Hom(M,N) has the structure of an abelian group. This motivates our next
definition.

Definition: A category C is called a pre-additive category iff ∀A,B ∈ ob, Hom(A,B)
has the structure of an abelian group, and composition of morphisms is bilinear ,i.e.,
(f + f ′) ◦ γ = (f ◦ γ) + (f ′ ◦ γ), and β ◦ (f + f ′) = (β ◦ f) + (β ◦ f ′), whenever the
composition is defined.

Note that the + comes from the abelian group structure on the Hom–sets.

Examples: Ab the category of abelian groups, R-mod the category of modules over a
commutative ring R, Vectk the category of vector spaces over a field k.
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Definition: Given a category C, and a collection of object {Pα}α∈A in C, an object D
in C with a collection of projection morphisms {πα : D → Pα}α∈A is called a product of
the collection {Pα}α∈A iff it satifies the following universal property:

Given any S ∈ obC with a collection of morphisms {sα : S → Pα}, ∃! morphism
ϕ : S → D such that ∀α ∈ A, sα = πα ◦ ϕ.

A coproduct of a collection {Pα}α∈A of objects in a category C is just a product of
{Pα}α∈A in Cop.

Note that products and coproducts (if they exist) are universal objects, and hence,
are unique up to unique isomorphism. Thus, it makes sense to talk of ’the’ product or
coproduct of a collection of objects {Pα}α∈A in a category C.

The product of a collection {Pα}α∈A of objects is usually denoted as
∏
α∈A Pα, and the

coproduct is denoted as
∐
α∈A Pα.

Definition: Given a collection {Mα}α∈A of R-modules, the direct product
∏
α∈AMα is

just the product of the underlying sets Mα with R module structure given by component-
wise addition and scalar multiplication, i.e., ∀(mα)α∈A, (nα)α∈A ∈

∏
α∈AMα, r ∈ R:

(mα)α∈A + (nα)α∈A = (mα + nα)α∈A and r(mα)α∈A = (rmα)α∈A.

The direct sum
⊕

α∈AMα is a submodule of the direct product
∏
α∈AMα consisting of

elements (mα)α∈A such that all but a finitely many mα are zero.

The direct product
∏
α∈AMα is equipped with a collection of projection maps {πα :∏

α∈AMα → Mα}α∈A given by πα((mα)α∈A) = mα for all α ∈ A. Note that each πα is
R-linear.

Similarly, the direct sum
⊕

α∈AMα is equipped with a collection of coprojection maps
{pα : Mα →

∏
α∈AMα}α∈A given by pα(m) = (mα)α∈A where for all for β 6= α,mβ = 0

and mα = m, for all m ∈Mα . Note that each pα is an R-linear map.

Exercise: Prove that
⊕

α∈AMα is a submodule of
∏
α∈AMα.

Proposition: R-mod is equipped with products and coproducts.

Sketch of Proof: Given a collection
∏
α∈AMα of R-modules, the direct product∏

α∈AMα with the collection of R-linear projection maps {πα :
∏
α∈AMα → Mα}α∈A

is a product of
∏
α∈AMα (in the categorical sense).

Similarly, the direct sum
⊕

α∈AMα with the collection of R-linear coprojection maps
{pα : Mα →

∏
α∈AMα}α∈A is a coproduct of

∏
α∈AMα (in the categorical sense).

�
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Thus, R-mod is equipped with zero objects, kernels, cokernels, products and
coproducts.

Definition: A category C is called an additive category iff it satisfies the following
axioms:

(AC I) C is a preadditive category.
(AC II) C has zero objects.
(AC III) C has finite products and coproducts.

Notation: Instead of denoting the coproduct of A and B as A
∐

B, in an additive
category we denote it as A

⊕
B.

Proposition: In R-mod :
• every monomorphism is the kernel of its cokernel.
• every epimorphism is the cokernel of its kernel.

Proof: Let ϕ : M −→ N be a monomorphism in R-mod. Then ϕ is injective by a
previous proposition. We know that the cokernel of ϕ is N

imϕ with natural projection map

π : N � N
imϕ . Now, the kernel of π is kerπ = imϕ u M (since ϕ is injective), together

with the inclusion map i : kerπ → N . Hence, there exists an isomorphism φ : kerπ → M
(What is φ?).

If M ′ is any R-module with an R-linear map α : M ′ → N such that π◦ α = 0, then by the
universal property of the kernel, ∃!β : M ′ → kerπ such that i◦ β = α. Then φ◦ β is a map
from M ′ →M and moreover, ϕ◦ (φ◦ β) = (ϕ◦ φ)◦ β = i◦ β = α. Moreover, if γ : M ′ →M
is any other R-linear map such that ϕ◦ γ = α, then i◦ (φ−1◦ γ) = (i◦ φ−1)◦ γ = ϕ◦ γ = α.
Thus, by the uniqueness of β, β = φ−1 ◦ γ. Thus, γ = φ ◦ β, and so ∃! R-linear map
φ ◦ β : M ′ →M such that ϕ ◦ (φ ◦ β) = α.

N
N
imϕπ
//M Nϕ

//

kerπ

N

i

��

kerπ

M
��

M ′

N
��

M ′ kerπ
∃!β //M ′

M

∃!φ◦β

��

α
φ

Fig3

By the universal property of the kernel, M with the R-linear map ϕ : M → N is the
kernel of π : N � N

imϕ , which is the cokernel of ϕ : M → N . Thus, every monomorphism
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is the kernel of its cokernel.

The proof for the epimorphism case is similar and is omitted.
�

Definition: A category C is called an abelian category iff it satisfies the following axioms:
(AB I) C is an additive category.
(AB II) Every morphism in C has a kernel and a cokernel.
(AB III) Every monomorphism in C is the kernel of its cokernel.
(AB IV) Every epimorphism in C is the cokernel of its kernel.

There are some alternate definitions of an abelian category (for example, look at,
www.math.columbia.edu/ lauda/teaching/rankeya.pdf), but in this course, this is the def-
inition that we will use.

The primary example of an abelian category in this course is R-mod. However, another
important example is the category of sheaves of abelian groups on a topological space X.
This example is important for algebraic geometry, which we, unfortunately, will not have
time to read about in this seminar, and so we will not worry about this example.

The following is an excerpt from Prof. Ravi Vakil’s notes on The Foundations of Alge-
braic Geometry Ch.1 :

”The key thing to remember is that if you understand kernel, cokernels, images and so
on in R-mod, you can manipulate objects in any abelian category. This is made precise by
the Freyd–Mitchell Embedding Theorem ... The upshot is that to prove something about
a diagram in some abelian category, we may assume that it is a diagram of modules over
some ring, and we may then ”diagram chase” elements. Moreover, any fact about kernels,
cokernels, and so on that hols in R-mod holds in any abelian category.”


