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1 Day 3: Induction and Algebraic Thinking

1.1 Mathematical Induction

The last basic proof technique is mathematical induction. It is designed for proving
statements about the natural numbers.

Suppose we want to show some property P is true for all natural numbers 0,1,2,. . ..
We can’t check that all of these numbers individually satisfy the property since there
are infinitely many of them. However, what we can show is that if n satisfies P , then
n + 1 also satisfies P . Then, if we show that 0 satisfies P , then it follows so does
0 + 1 = 1, and so does 1 + 1 = 2, and so on until all the natural numbers satisfy P .

Therefore, to prove a statement of the form ∀n ∈ N, P (n),

1. Prove P (0). This is called the base case.

2. Prove that ∀n ∈ N, P (n) =⇒ P (n+ 1). This is called the induction step, and
the assumption that P (n) is true is called the induction hypothesis.

We often signify we will use induction by saying "we will proceed by induction on n"
or something similar. It helps to explicitly label "base case" or "induction step."

Example 1.1. Prove that for every natural number n, 20 + 21 + · · ·+ 2n = 2n+1 − 1.
We proceed by induction on n.
Base case: We have 20 = 21 − 1 = 1.
Induction Step: Suppose

∑n
i=0 2

i = 2n+1 − 1. We will show
∑n+1

i=0 2i = 2n+2 − 1.
Adding 2n+1 to

∑n
i=0 2

i, we get

n+1∑
i=1

2i = 2n+1 + 2n+1 − 1 = 2(2n+1)− 1 = 2n+2 − 1.
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Example 1.2. For every natural number n ≥ 5, 2n > n2.
We proceed by induction on n.
Base Case: For n = 5, we have 2n = 32 > 25 = n2.
Induction Step: Let n ≥ 5 be arbitrary, and assume 2n > n2. Then

2n+1 = 2 · 2n

> 2n2

= n2 + n2

≥ n2 + 5n since n ≥ 5

= n2 + 2n+ 3n

> n2 + 2n+ 1 = (n+ 1)2

Example 1.3. For every real number x > −1 and every natural number n, (1 + x)n >
nx.

Let x > −1 be arbitrary. We will show by induction that (1 + x)n ≥ 1 + nx. It
clearly follows that (1 + x)n > nx.

Base case: if n = 0, then (1 + x)n = (1 + x)0 = 1 = 1 + nx.
Induction step: suppose (1 + x)n ≥ 1 + nx. Then

(1 + x)n+1 = (1 + x)(1 + x)n

≥ (1 + x)(1 + nx)

= 1 + x+ nx+ nx2

= 1 + (n+ 1)x

since nx2 ≥ 0.

Strong Induction. Sometimes, it’s not enough to prove that a natural number has
a certain property only assuming the previous one does. We need something stronger,
and need to assume all smaller natural numbers have this property. This is called
strong induction.

To prove a statement of the form ∀n ∈ N, P (n):
Prove that ∀ ∈ N, [(∀k < n,P (k)) =⇒ P (n)]. This means that we let n be a

natural number, assume P (k) for all k < n, and then prove P (n).
Note that you don’t need to prove a base case for the statement. This is because

for n = 0, there are no k < n; so the assumptions are vacuous and we prove P (0)
independently.

The two forms of induction are actually equivalent; see https://en.wikipedia.
org/wiki/Mathematical_induction#Complete_(strong)_induction for a quick dis-
cussion of this. Every proof by ordinary induction can be converted into one by strong
induction, and vice versa, so you can’t actually prove anything stronger ; it is just
easier.

Example 1.4. Every integer n > 1 is either prime or a product of primes.
We will show this by strong induction. Suppose n > 1 and suppose every integer

1 < k < n is either prime or a product of primes. If n is prime there is nothing to
prove, so suppose n is not prime. By the definition of primeness, this means there are
numbers a, b < n such that ab = n. Note that since a < n = ab, it follows b > 1 and
similarly a > 1. Then, by the inductive hypothesis, a and b are each either prime or a
product of primes. Since n = ab, n is a product of primes.
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1.1.1 Exercises

1. ⋆ Show that
n∑

k=1

k = 1 + 2 + 3 + · · ·+ n =
n(n+ 1)

2

2. Show that
n∑

k=1

k2 = 12 + 22 + 32 + · · ·+ n2 =
n(n+ 1)(2n+ 1)

6

3. ⋆ Recall the binomial coefficients are defined as(
n

k

)
=

n!

k!(n− k)!
.

Now assume Pascal’s identity:(
n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
.

Prove the binomial theorem: for all integers n ≥ 0,

(x+y)n =

(
n

0

)
x2y0+

(
n

1

)
xn−1y1+

(
n

2

)
xn−2y2+· · ·+

(
n

n− 1

)
x1yn−1 =

n∑
k=0

(
n

k

)
xkyn−k.

where these are polynomials in the variables x, y.

4. Show that
∑n

k=1

(
n
k

)
= 2n. (Hint: use induction and Pascal’s identity).

5. Show that 1 + 3 + 5 + 7 + · · · + (2n − 1) =
∑n

k=1(2k − 1) = n2 (Hint: if you
assume problem 1, you don’t need induction).

6. Show that 5n − 1 is divisible by 4 for every positive integer n.

7. ⋆ Show that 2 divides n2 + n for all positive integers n.

8. Show that for all positive integers, n! ≤ nn.

9. Show that n! > 2n for all integers n ≥ 4.

1.2 The Peano Axioms

We follow the presentation of Terence Tao’s Analysi s I
So far, we have been taking as a given the definitions of the natural numbers N, the

integers Z, the rationals Q, the reals R, and the various operations +, ·,−, /. But why
do these rules work at all? What do we really mean when we say that 2 + 2 = 4? How
are addition, multiplication, and exponentiation defined? Today, we will answer the
question: how does one actually define the natural numbers?

The answer is actually quite hard. One problem is that, while we are working with
the basic rules, we must not assume the things that we are already familiar with, but
have not proved. We cannot assume that a+ b = b+ a, for example. We will begin
by defining the natural numbers (for us, they include 0). From this, we may define
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addition. Repeated addition gives us multiplication. Then, repeated multiplication
gives exponentiation.

What is addition? It is just the repeated process of incrementing, or counting forward.
Incrementing seems to be the fundamental operation; we learn to count starting from
0, and then adding a number each to count up.

Thus, to define the natural numbers we start with two things: the zero number 0,
and the increment operation. We will use n++ to denote the successor of n (some
denote it succ(n)).

Axioms 1.5. The Peano Axioms

1. 0 is a natural number.

2. If n is a natural number, then n++ is also a natural number.

3. 0 is not the successor of any natural number, i.e. we have n++ ̸= 0 for every
natural number n

4. Different natural numbers must have different successors, i.e. if n,m are natural
numbers and n ̸= m, then n++ ̸= m++. Equivalently, if n++ = m++ then
we must have n = m.

5. (Principle of mathematical induction) Let P (n) be any property depending on a
natural number n. Suppose that P (0) is true, and suppose that whenever P (n)
is true, P (n++) is also true. Then P (n) is true for every natural number n.

Axioms 1− 5 are called the Peano axioms for the natural numbers.
There is an additional axiom, more properly belonging to set theory:
Axiom 7. (Infinity).
There exists a set N, whose elements are called natural numbers, as well as an object

0 in N, and an object n++ assigned to every natural number n ∈ N, such that the
Peano axioms hold.

Thus we take it as an axiom of sets that there is an object that satisfies the Peano
axioms. Elements of the natural numbers are of the form 0 + +, (0 + +) + +, ((0 +
+)++)++, etc. As a matter of notation, we define 1 to be the number 0 ++, 2 to be
(0 + +) + +, and so on.

Proposition 1.6. 3 is a natural number.
By axiom 1, 0 is a natural number. Then by axiom 2, 0 + + = 1 is also a natural

number. By axiom 2 again, 1++ = 2 is a natural number. By axiom 2 again, 2++ = 3
is a natural number.

Proposition 1.7. 4 is not equal to 0.
By definition, 4 = 3++. By axioms 1 and 2, 3 is a natural number. Thus, by axiom

3, 3 + + ̸= 0 i.e. 4 ̸= 0.

Proposition 1.8. 6 is not equal to 2.
Suppose for the sake of contradiction 6 = 2. Then 5 ++ = 1++ and so by axiom 4,

we have 5 = 1, so that 4 + + = 0 + +. By axiom 4 again, this means 4 = 0, which
contradicts our previous statement.
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Definition 1.9. (Addition of natural numbers). Let m be a natural number. We
define 0 +m := m. Now suppose, inductively, that we know how to add n to m. Then
we can add n++ to m by defining (n++) +m := (n+m) + +.

Remark 1. Don’t confuse the successor function ++ with addition +!

Proposition 1.10. For any natural number n, n+ 0 = n.
We use induction. The base case 0 + 0 = 0 follows since we know 0 +m = m for

every natural number m, and 0 is a natural number. Now suppose inductively that
0 + n = n. We want to show (n + +) + 0 = n + +. By the definition of addition ,
(n++)+ 0 is equal to (n+ 0) ++, which is equal to n++ since n+ 0 = n, as desired.

Proposition 1.11. For all natural numbers n and m, n+ (m++) = (n+m) + +.
Induct on n. For n = 0, we want to show 0 + (m++) = (0 +m) + +. By definition,

0 + (m++) = m++ and 0 +m = m, so both sides equal m++.
Now assume inductively that n + (m + +) = (n + m) + +. We have to show

(n + +) + (m + +) = ((n + +) + m) + +. By definition, the left hand side is
(n+ (m++)) + + = ((n+m) + +) + + by the inductive hypothesis.

We have (n++)+m = (n+m) ++ by the definition of addition, so the right hand
side ((n++) +m) + + = ((n+m) + +) ++. Thus both sides are equal to each other.

We will treat some more properties of addition in the exercises.
Now we will define multiplication. We’ll assume all the basic algebraic properties of

addition have already been proven, for simplicity.

Definition 1.12. (Multiplication of natural numbers). Let m be a natural number.
To multiply zero to m, we define 0 × m := 0. Now suppose inductively that we
have defined how to multiply n to m. Then we can multiply n++ to m by defining
(n++)×m := (n×m) +m.

For example, 0×m = 0, 1×m = 0 +m, 2×m = 0 +m+m, and so on.

Definition 1.13. (Exponentiation for natural numbers). Let m be a natural number.
To raise m to the power 0, define m0 := 1. Suppose recursively that mn has been
defined for some natural number n; we define mn++ := mn ×m.

For example, x1 = x0×x = 1×x = x. x2 = x1×x = x×x. x3 = x2×x = x×x×x,
etc. By induction, this recursively defines xn for all natural numbers n.

Remark 2. If you are interested in learning more about the foundations of mathematics
and formal proofs, we highly recommend the Natural Numbers Game, hosted at https:
//www.ma.imperial.ac.uk/~buzzard/xena/natural_number_game/. In a game-like
environment you will prove many properties of the natural numbers and functions in
Lean, a formal theorem proving system.

1.2.1 Exercises

1. ⋆ Show that 2 + 2 = 4.

2. Show that for all natural numbers n and m, n+m = m+n. (Hint: induct on n).

3. ⋆ Let a, b, c be natural numbers such that a+ b = a+ c. Show that b = c.
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4. (Harder, skip this on first passing). Prove associativity: For all natural numbers
a, b, c, we have (a+ b) + c = a+ (b+ c).

5. Show that 2× 2× 3 = 6.

6. Let m,n be natural numbers. Then n×m = m× n.

7. For all natural numbers a, b, c, show that a(b+ c) = ab+ ac.

8. Show that 22 = 4.

9. Show that for any natural numbers a, b, c, we have (a× b)× c = a× (b× c).
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