
INTRODUCTION TO PROOFS: SESSION 4

In the sequel, everything happens in R.

1. Limits of Sequences

First, we recall the definition of a sequence.

Definition. (sequence) A sequence (in R) is a function a : N→ R.

More often than not, we will notate a sequence a : N→ R not as a function, but
as a family of real numbers indexed by N. Specifically, we denote a by {an}∞n=1,
where an = a(n) for each n ∈ N. When the entire sequence can be inferred from the
first few terms, sometimes we will even write only the first few terms. For example,
we might write {1, 1, . . . } for the constant sequence an = 1.

Example 1. Here are some examples of sequences in R.

(1) an = n, which yields {0, 1, 2, 3, 4, . . . }.
(2) an = n2, which yields {1, 4, 9, 16, . . . }.
(3) an = 1

n , which yields {1, 12 ,
1
3 , . . . }.

(4) an = [1− (−1)n]/2, which yields {1, 0, 1, 0, 1, . . . }.

We want to know how the sequence behaves in the long run, i.e., as n tends to
∞. After all, a sequence can do any number of things. It might converge to a finite
value, it might tend to one extreme or another, or it might oscillate indefinitely.

Definition (limit of an as n tends to ∞). We say L is the limit of {an}∞n=1 as n
tends to ∞, or equivalently,

lim
n→∞

an = L,

if for any ε > 0, there exists N ∈ N such that |an − L| < ε whenever n ≥ N .

Proving that a real number L is actually the limit of a function is as easy as
1,2,3! Just follow the recipe below.

(1) Let ε > 0 be given.
(2) Conjure up a suitable N . This N should probably depend on ε in some

way.
(3) Verify that |an − L| < ε for all n ≥ N .

Along the way, you might find the following facts useful to keep in mind.

Theorem 1. The following statements are equivalent and true.

(i) If a, b are real numbers and a > 0, then exists n > 0 such that na > b.
(ii) For every x ∈ R, there exists n such that n ≤ x < n+ 1.

(iii) For every x > 0, there exists n > 0 such that 1
n ≤ x.

Exercise 1. Prove that limn→∞ 1 = 1.

Exercise 2. Prove that limn→∞
n−1
n+1 = 1.
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2. Limits of Functions I

Exercise 3. Consider the function

f(x) =


−x2 if x ≤ −2,

x− 1 if − 2 ≤ 1,

log(x) if x > 1.

For which a does the limit limx→a f(x) exist?

3. Characterizing nearness

Definition (open interval). An open interval is a set of the form

(a, b) = {x ∈ R | a < x < b}

for some pair of real numbers a < b.

Open intervals (and more generally open neighborhoods) help us characterize
what it means for two points to be “as close as possible” to one another.

Definition (open ball). The open ball centered at a point x of radius r is the set

Br(x) = {y ∈ R : |x− y| < r}.

Notice that open balls are open intervals.

Exercise 4. For each function f and each pair of real numbers c, r listed below,
draw the graph of f(x) and highlight the set f−1(Br(c)) on the x-axis. Next, write
each set f−1(Br(c)) as the union of open intervals.

(a) f(x) = x, c = 4, r = 1
(b) f(x) = x2, c = 1, r = 1/2
(c) f(x) = 1/x, c = 0, r = 1

4. Limits of Functions II

Definition (limit of f(x) as x tends to a). We say L is the limit of f(x) as x tends
to a, or equivalently,

lim
x→a

f(x) = L,

if for any ε > 0, there exists δ > 0 such that |f(x)−L| < ε whenever 0 < |x−a| < δ.

Proving that a real number L is actually the limit of a function is as easy as
1,2,3! Just follow the recipe below.

(1) Let ε > 0 be given.
(2) Conjure up a suitable δ. This δ should probably depend on ε in some way.
(3) Verify that |f(x)− L| < ε for any x such that 0 < |x− a| < δ.

Exercise 5. Prove that limx→1/2 2x = 1.

Exercise 6. Prove that limx→1/2 2x 6= 2.

Of course, the limit of an arbitrary function f at a point a need not exist (as
Exercise 7 demonstrates), but when it does, it is unique. We may therefore speak
of the limit. You will prove this yourself in Exercise 8 below.
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Exercise 7. Show that the Heaviside step function

H(x) =

{
0 if x < 0

1 if x ≥ 0

has no limit at 0.

Exercise 8. Prove that limits are unique.

Exercise 9. Suppose that both limx→a f(x) and limx→a g(x) exist. Prove that
limx→a[f(x) + g(x)] exists, and that

lim
x→a

[f(x) + g(x)] = lim
x→a

f(x) + lim
x→a

g(x).

Does the converse hold?

Exercise 10. Suppose that both limx→a f(x) and limx→a g(x) exist. Prove that
limx→a f(x)g(x) exists, and that

lim
x→a

f(x)g(x) = lim
x→a

f(x) · lim
x→a

g(x).

Does the converse hold?

5. Continuity of Functions

Definition (continuous function). A function f : R→ R is said to be continuous
at a ∈ R if

lim
x→a

f(x) = f(a).

The same function f is said to be continuous if f is continuous at a for every
a ∈ R.

Exercise 11. Prove that the function f(x) = 2x is continuous.

Exercise 12. Prove that the Heaviside step function is continuous everywhere
except for 0.

Exercise 13. Suppose f : R→ R and g : R→ R are continuous. Prove that f + g
is continuous.

Exercise 14. Suppose f : R→ R and g : R→ R are continuous. Prove that f · g
is continuous.

Remark. The space C(R) of continuous functions on R is a ring.


