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ABSTRACT

Bordered Sutured Floer Homology

Rumen Zarev

We investigate the relationship between two versions of Heegaard Floer homology for 3–

manifolds with boundary—the sutured Floer homology of Juhasz, and the bordered Heegaard

Floer homology of Lipshitz, Ozsváth, and Thurston.

We define a new invariant called Bordered sutured Floer homology which encompasses

these two invariants as special cases. Using the properties of this new invariant we prove a

correspondence between the original bordered and sutured homologies.

In one direction we prove that for a 3–manifold Y with connected boundary F = ∂Y , and

sutures Γ ∈ ∂Y , we can compute the sutured Floer homology SFH(Y ) from the bordered

invariant ĈFA(Y )A(F ). The chain complex SFC(Y,Γ) defining SFH is quasi-isomorphic to

the derived tensor product ĈFA(Y )� ĈFD(Γ) where A(F )ĈFD(Γ) is a module associated to

Γ.

In the other direction we give a description of the bordered invariants in terms of sutured

Floer homology. If F is a closed connected surface, then the boredered algebra A(F ) is a

direct sum of certain sutured Floer complexes. These correspond to the 3–manifold (F \

D2) × [0, 1], where the sutures vary in a finite collection. Similarly, if Y is a connected 3–

manifold with boundary ∂Y = F , the module ĈFA(Y )A(F ) is a direct sum of sutured Floer

complexes for Y where the sutures on ∂Y vary over a finite collection. The multiplication

structure on A(F ) and the action of A(F ) on ĈFA(Y ) correspond to a natural gluing map

on sutured Floer homology. (Further work of the author shows that this map coincides

with the one defined by Honda, Kazez, and Matić, using contact topology and open book

decompositions).
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Chapter 1

Introduction

In the 1980s Freedman’s work on topological 4–manifolds [Fre82] and Donaldson’s work on

smooth 4–manifolds [Don83] showed that there is a huge gap between these two categories.

The primary tool for distinguishing these categories are certain invariants which can distin-

guish different smooth structures on the same topological manifold.

Two such numerical invariants were developed based on gauge theory—Donaldson theory

[DK90] and Seiberg-Witten theory [Wit94]. In addition to their success in the study of

4–manifolds, these invariants fit into a more general framework, suited to the study of 3–

manifold topology—that of a topological quantum field theory or TQFT. The philosophy of a

TQFT is that there is a functor from the category with objects smooth closed n–manifolds,

and morphisms smooth (n+ 1)–dimensional cobordisms, i.e. (n+ 1)–dimensional manifolds

with boundary, to an appropriate algebraic category. In the gauge theory case, this means

that to a closed 3–manifold one associates a graded abelian group, and to a 4–dimensional

cobordism one associates a morphism between such groups.

For the gauge theoretic invariants described above, the corresponding 3–dimensional the-

ories are instanton Floer homology, or HI, first developed by Floer [Flo88], and monopole

Floer homology, or HM, developed by Kronheimer and Mrowka [KM07]. In a different but

related direction, Ozsváth and Szabó developed Heegaard Floer homology, or HF [OS04d,

OS04c, OS06]—another TQFT-like invariant of 3 and 4–manifolds, with a more topological

flavor—instead of gauge theory it is defined using Heegaard splittings of 3–manifolds, and
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holomorphic curves. Despite their different origins, the monopole and Heegaard Floer the-

ories were recently shown to be the same for 3–manifolds—by Kutluhan, Lee, and Taubes

[KLT10], and independently by Colin, Ghiggini, and Honda [CGH11] (for one version—the

“hat” theory). They are also conjectured to be the same for 4–manifolds.

A TQFT can sometimes be expanded to a so-called extended TQFT —a functor from the

2–category of closed n–manifolds, (n + 1)–manifolds with boundary, and (n + 2)–manifolds

with codimension–2 corners, to a suitable algebraic 2–category. (One can go even further,

working with k–categories, and manifolds with corners of codimension k). It is then natural

to ask if the Floer theories can be extended in this fashion to invariants of surfaces, 3–

manifolds with boundary, and 4–manifolds with corners. In the case of Heegaard Floer

homology there has been progress toward this goal in two different directions.

In one direction, knot Floer homology, or HFK was developed by Ozsváth and Szabó

[OS04b, OS08a], and independently by Rasmussen [Ras03], as a version of HF for knots in a

3–manifold. This theory is powerful enough to detect the Seifert genus of a knot [OS04a], the

Thurston norm of its complement [OS08b], and whether the knot is fibered [Ghi08, Ni07].

While not strictly an invariant of 3–manifolds with boundary, HFK can be regarded as

associated to the complement of a knot. Further in this direction Juhász introduced sutured

Floer homology, or SFH [Juh06].

Sutured manifolds were first introduced by Gabai in his study of foliations on 3–manifolds

[Gab83]. A sutured manifold is a 3–dimensional manifold-with-boundary Y , equipped with

a collection of decorations Γ on its boundary, called sutures (the collection of sutures is also

sometimes called a dividing set). Juhász defined the sutured Floer homology SFH, as an

invariant of (Y,Γ), and showed it generalizes both ĤF and ĤFK (specific versions of the HF

and HFK theories). It has some elements of the desired TQFT-like structure. For example,

for a sutured manifold (Y,Γ) and a properly embedded surface F in Y , there is a sutured

decomposition of Y along F into a new, possibly disconnected sutured manifold (Y ′,Γ′).

Juhász showed that, under certain assumptions on F , the homology SFH(Y ′,Γ′) is a direct

summand of SFH(Y,Γ) [Juh08]. He used this fact to give new proofs and generalizations of

some of the earlier properties of HF and HFK described above.
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Sutured Floer homology is also well suited to the study of contact topology—Honda,

Kazez, and Matić used it to define an invariant of contact 3–manifolds manifolds with convex

boundary [HKM09]. They also constructed a contact cobordism map for SFH [HKM08],

which can alternatively be interpreted as follows. Suppose SFH(Y1,Γ1) and SFH(Y2,Γ2) are

two sutured manifolds, and a surface with boundary F can be identified with subsets of ∂Y1

and ∂Y2, with opposite orientations, such that the sutures Γ1∩F and Γ2∩F are appropriately

matched. One can construct a sutured manifold (Y1 ∪F Y2,Γ
′) by gluing. Then there is a

homomorphism

SFH(Y1,Γ1)⊗ SFH(Y2,Γ2)→ SFH(Y1 ∪F Y2,Γ
′).

However, it is generally neither injective, nor surjective. It is also hard to relate the source

and target groups. Thus SFH has limitations from the point of view of extended TQFT

structure on HF.

In a different direction, Lipshitz, Ozsváth, and Thurston introduced bordered Heegaard

Floer homology [LOT09, LOT10a]. At its current stage, it is a TQFT-like invariant for

surfaces and 3–manifolds with boundary. To a closed connected surface F , equipped with

a handle decomposition, it associates a differential graded, or DG, algebra A(F ). In the

most basic form, to a 3–manifold Y with boundary ∂Y = F , one associates (a homotopy

equivalence class of) an A∞–module ĈFA(Y ) over A(F ), or alternatively (a homotopy equiv-

alence class of) a DG-module ĈFD(Y ) over A(−F ). If Y1 and Y2 are two 3–manifolds with

boundaries ∂Y1 = F , and ∂Y2 = −F , then there is a pairing theorem:

H∗

(
ĈFA(Y1) ⊗̃A (F )ĈFD(Y2)

)
∼= ĤF(Y1 ∪F Y2).

More generally, to a connected cobordism Y between two closed connected surfaces F1

and F2 (equipped with a framed arc connecting the two boundary components), one can

associate a bimodule ĈFDA(Y ) over the two algebras A(F1) and A(F2). This construction

is functorial, in the sense that if Y1 and Y2 are two cobordisms, from F1 to F2, and from F2

to F3, respectively, the associated bimodules are related in the following way:

ĈFDA(Y1 ∪F Y2) ' ĈFDA(Y1) ⊗̃ ĈFDA(Y2).
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Thus, there are currently two separate constructions that generalize ĤF to 3–manifolds

with boundary—bordered Floer homology, and sutured Floer homology. At first glance, they

are defined very differently, using different types of auxiliary data, and behave differently. It

is natural to ask if they are related to each, and how. Do they contain the same information,

or not? The goal of this thesis is to give a conclusive answer to this question.

1.1 Results about SFH and bordered Floer homology

Our main results concern the relationship between bordered Floer homology, and sutured

Floer homology. In short, if we include some gluing homomorphisms for SFH, of the type

Honda, Kazez, and Matić define, the two theories become essentially equivalent. This can

be broken up into two parts.

The first part concerns the way to get SFH from the bordered invariants, and is expressed

in the following theorem:

Theorem 1. Suppose Y is a connected 3–manifold with connected boundary. With any set

of sutures Γ on ∂Y we can associate modules ĈFA(Γ) and ĈFD(Γ) over A(±∂Y ), of the

appropriate form, such that the following formula holds.

SFH(Y,Γ) ∼= H∗(ĈFA(Y ) ⊗̃ ĈFD(Γ)) ∼= H∗(ĈFA(Γ) ⊗̃ ĈFD(Y )). (1.1)

The second part concerns the way we can express the bordered theory in terms of SFH.

This takes a little more effort to describe. A main ingredient in the construction is a gluing

map Ψ on sutured Floer homology, not unlike the one defined by Honda, Kazez, and Matić

and discussed above. We will say more about this map in Section 1.3.

Fix a parametrized closed surface F , with bordered algebra A = A(F ). Let F ′ be F

with a disc removed, and let p, q ∈ ∂F ′ be two points. We can find 22g(F ) distinguished

dividing sets on F , which we denote ΓI for I ⊂ {1, . . . , 2g}, and corresponding dividing sets

Γ′I = ΓI ∩F ′ on F ′. Let ΓI→J be a dividing set on F ′× [0, 1] which is Γ′I along F ′×{0}, Γ′J

along F ′ × {1}, and half of a negative Dehn twist of {p, q} × [0, 1] along ∂F ′ × [0, 1].
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Theorem 2. Suppose the surfaces F and F ′, the algebra A, and the dividing sets ΓI , Γ′I ,

and ΓI→J are as described above. Then there is an isomorphism

H∗(A) ∼=
⊕

I,J⊂{1,...,2g}

SFH(F ′ × [0, 1],ΓI→J),

and the multiplication map µ2 on H∗(A) can be identified with the gluing map ΨF ′, cor-

responding to gluing two product manifolds F ′ × [0, 1] and F ′ × [1, 2] along F ′ × {1}. It

maps SFH(F ′× [0, 1],ΓI→J)⊗SFH(F ′× [1, 2],ΓJ→K) to SFH(F ′× [0, 2],ΓI→K) ∼= SFH(F ′×

[0, 1],ΓI→K), and sends all other summands to 0.

The module ĈFA can be similarly described.

Theorem 3. Suppose Y is a 3–manifold with boundary ∂Y ∼= F . There is an isomorphism

H∗(ĈFA(Y )A) ∼=
⊕

I⊂{1,...,2g}

SFH(Y,ΓI),

and the action m2 of H∗(A) on H∗(ĈFA(Y )) can be identified with the gluing map ΨF ′,

corresponding to gluing Y and F ′ × [0, 1] along F ′ × {0} ⊂ F = ∂Y . It maps SFH(Y,ΓI)⊗

SFH(F ′ × [0, 1],ΓI→J) to SFH(Y,ΓJ), and sends all other summands to 0.

1.2 Bordered sutured Floer homology

The proofs of Theorems 1, 2, and 3 use the machinery of bordered sutured Floer homology

which we develop in the thesis. It is essentially a hybrid of the sutured and bordered Floer

homology theories. In the basis of the theory lie the topological notions of a sutured surface,

and bordered sutured manifold. We give a brief outline below, while the precise and in-depth

definitions are left for Chapter 3.

For context we give the full definition of a sutured manifold.

Definition 1.2.1. A sutured 3–manifold (Y,Γ) is a 3–manifold Y , with a multi-curve Γ on

its boundary, dividing the boundary into a positive and negative region, denoted R+ and R−,

respectively. We usually impose the conditions that Y has no closed components, and that Γ

intersects every component of ∂Y .
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We can introduce analogous notions one dimension lower.

Definition 1.2.2. A sutured surface (F,Λ) is a surface F , with a 0–manifold Λ ⊂ ∂F ,

dividing the boundary ∂F into a positive and negative region, denoted S+ and S−, respectively.

Again, we impose the condition that F has no closed components, and that Λ intersects every

component of ∂F .

Definition 1.2.3. A sutured cobordism (Y,Γ) between two sutured surfaces (F1,Λ1) and

(F2,Λ2) is a cobordism Y between F1 and F2, together with a collection of properly embedded

arcs and circles

Γ ⊂ ∂Y \ (F1 ∪ F2),

dividing ∂Y \ (F1∪F2) into a positive and negative region, denoted R+ and R−, respectively,

such that R±∩Fi = S±(Fi), for i = 1, 2. Again, we require that Y has no closed components,

and that Γ intersects every component of ∂Y \ (F1 ∪ F2).

There is a sutured category S whose objects are sutured surfaces, and whose morphisms

are sutured cobordisms. The identity morphisms are cobordisms of the form (F × [0, 1],Λ×

[0, 1]), where (F,Λ) is a sutured surface. As a special case, sutured manifolds are the mor-

phisms from the empty surface (∅,∅) to itself.

We cannot directly define invariants for the sutured category, and we need impose a little

extra structure.

Definition 1.2.4. An arc diagram is a relative handle diagram for a 2–manifold with cor-

ners, where the bottom and top boundaries are both 1–manifolds with no closed components.

Definition 1.2.5. A parametrized or decorated sutured surface is a sutured surface (F,Λ)

with a handle decomposition given by an arc diagram Z, expressing F as a cobordism from

S+ to S−.

A parametrized or decorated sutured cobordism is a sutured cobordism (Y,Γ) from

(F1,Λ1) to (F2,Λ2), such that (Fi,Λi) is parametrized by an arc diagram Zi, for i = 1, 2.

Examples of a sutured surface and its decorated version are given in Figure 1. A su-

tured cobordism and its decorated version are given in Figure 2. We visualize the handle

decomposition coming from an arc diagram by drawing the cores of the 1–handles.
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S+

S+

S+

(a) Unparametrized. (b) Parametrized by an arc diagram.

Figure 1: A sutured surface (F,Λ). The sutures Λ are denoted by dots, while the positive

region S+ ⊂ ∂F is colored in orange.

−F1 F2

R+

R+

R−

(a) Unparametrized.

−F1 F2

(b) Parametrized (and with smoothed corners).

Figure 2: A sutured cobordism (Y,Γ) from a once punctured torus to a disc. The sutures Γ

are colored in green, while the positive region R+ ⊂ ∂Y is shaded.
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The decorated sutured category SD is a category whose objects are decorated sutured

surfaces—or alternatively their arc diagrams—and whose morphisms are decorated sutured

cobordisms. Note that all decorations on the sutured identity (F × [0, 1],Λ × [0, 1]) are

isomorphisms, while the ones where the two parametrizations on F ×{0} and F ×{1} agree

are the identity morphisms in SD. In particular, any two parametrizations of the same

sutured surface are isomorphic, and the forgetful functor Z 7→ F (Z) is an equivalence of

categories.

Sutured cobordisms have another, slightly different topological interpretation. For a

sutured cobordism (Y,Γ) from (F1,Λ1) to (F2,Λ2), we can smooth its corners, and set Γ′ =

Γ ∪ S+(F1) ∪ S+(F2). This turns (Y,Γ′) into a regular sutured manifold. Therefore, we can

think of a sutured cobordism as a sutured manifold, with two distinguished subsets F1 and

F2 of its boundary.

Applying the same procedure to the decorated versions of sutured cobordisms, we come

up with the notion of bordered sutured manifolds, defined more precisely in Chapter 3.

Definition 1.2.6. A bordered sutured manifold (Y,Γ,Z) is a sutured manifold (Y,Γ), with

a distinguished subset F ⊂ ∂Y , such that (F, ∂F ∩ Γ) is a sutured surface, parametrized by

the arc diagram Z.

Any bordered sutured manifold (Y,Γ,Z1∪Z2), where Zi parametrizes (Fi, ∂Fi∩Γ) gives

a decorated sutured cobordism (Y,Γ \ (F1 ∪ F2)) from −F1 to F2, and vice versa.

The power of the theory comes from the existence of several invariants. To any arc

diagram Z—or alternatively decorated sutured surface parametrized by Z—we associate a

differential graded algebra A(Z), which is a subalgebra of some strand algebra, as defined

in [LOT09].

These algebras behave nicely under disjoint union. If Z1 and Z2 are arc diagrams, then

A(Z1 ∪ Z2) ∼= A(Z1)⊗A(Z2).

To a bordered sutured manifold (Y,Γ,Z) we associate a right A∞–module B̂SA(Y,Γ)

over A(Z), and a left differential graded module B̂SDM(Y,Γ) over A(−Z).

Generalizing this construction, let (F1,Λ1) and (F2,Λ2) be two sutured surfaces, which

are parametrized by the arc diagrams Z1 and Z2, respectively. To any sutured cobordism
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(Y,Γ) between them we associate (a homotopy equivalence class of) an A∞ A(Z1),A(Z2)–

bimodule, denoted B̂SDAM(Y,Γ). This specializes to B̂SA(Y,Γ), respectively B̂SDM(Y,Γ),

when F1, respectively F2 is empty, or to the sutured chain complex SFC(Y,Γ), when both

are empty.

Definition 1.2.7. Let D be the category whose objects are differential graded algebras, and

whose morphisms are the graded homotopy equivalence classes of A∞–bimodules over any

two such algebras. Composition is given by the derived tensor product ⊗̃. The identity is the

homotopy equivalence class of the algebra considered as a bimodule over itself.

Theorem 4. The invariant B̂SDAM respects compositions of decorated sutured cobordisms.

Explicitly, let (Y1,Γ1,−Z1 ∪ Z2) and (Y2,Γ2,−Z2 ∪ Z3) be two bordered sutured manifolds,

representing decorated sutured cobordisms from Z1 to Z2, and from Z2 to Z3, respectively.

Then there are graded homotopy equivalences

B̂SDAM(Y1,Γ1) ⊗̃A(Z2) B̂SDAM(Y2,Γ2) ' B̂SDAM(Y1 ∪ Y2,Γ1 ∪ Γ2). (1.2)

Specializing to Z1 = Z3 = ∅, we get

B̂SA(Y1,Γ1) ⊗̃A(Z2) B̂SDD(Y2,Γ2) ' SFC(Y1 ∪ Y2,Γ1 ∪ Γ2). (1.3)

Theorem 5. The invariant B̂SDAM respects the identity. In other words, if (Y,Γ,−Z ∪Z)

is the identity cobordism from Z to itself, then B̂SDAM(Y,Γ) is graded homotopy equivalent

to A(Z) as an A∞–bimodule over itself.

Together, Theorems 4 and 5 imply that A and B̂SDAM form a functor.

Corollary 6. The invariants A and B̂SDAM give a functor from SD to D, inducing a (non-

unique) functor from the equivalent category S to D. In particular, if Z1 and Z2 parametrize

the same sutured surface, then A(Z1) and A(Z2) are isomorphic in D. In other words,

there is an A(Z1),A(Z2) A∞–bimodule providing an equivalence of the derived categories of

A∞–modules over A(Z1) and A(Z2).
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⋃
−→

Y1 Y2 Y1 ∪Fi Y2

F1 F2

Figure 3: Gluing two solid balls along F = D2 ∪D2, to obtain a solid torus. The R+ regions

have been shaded.

1.3 Gluing and joining

After defining the bordered sutured invariants in Part I, we use them in Part II to define the

gluing map Ψ mentioned above.

Suppose (Y1,Γ1) and (Y2,Γ2) are two sutured manifolds. We say that we can glue them

if there are subsets F1 and F2 of their boundaries, where F1 can be identified with the mirror

of F2, such that the multicurve Γ1 ∩F1 is identified with Γ2 ∩F2, preserving the orientations

on Γi. This means that the regions R+ and R− on the two boundaries are interchanged. We

will only talk of gluing in the case when Fi have no closed components, and all components

of ∂Fi intersect the dividing sets Γi.

Definition 1.3.1. Suppose (Y1,Γ1), (Y2,Γ2), F1 and F2 are as above. The gluing of (Y1,Γ1)

and (Y2,Γ2) along Fi is the sutured manifold (Y1 ∪Fi Y2,Γ1+2). The dividing set Γ1+2 is ob-

tained from (Γ1\F1)∪∂Fi (Γ2\F2) as follows. Along each component f of ∂Fi the orientations

of Γ1 and Γ2 disagree. We apply the minimal possible positive fractional Dehn twist along f

that gives a consistent orientation.

An illustration of gluing is given in Figure 3. We define a gluing map Ψ on SFH corre-

sponding to this topological construction.

Theorem 7. Let (Y1,Γ1) and (Y2,Γ2) be two balanced sutured manifolds, that can be glued

along F . Then there is a well defined map

ΨF : SFH(Y1,Γ1)⊗ SFH(Y2,Γ2)→ SFH((Y1,Γ1) ∪F (Y2,Γ2)),



11

satisfying the following properties:

1. Symmetry: The map ΨF for gluing Y1 to Y2 is equal to that for gluing Y2 to Y1.

2. Associativity: Suppose that we can glue Y1 to Y2 along F1, and Y2 to Y3 along F2, such

that F1 and F2 are disjoint in ∂Y2. Then the order of gluing is irrelevant:

ΨF2 ◦ΨF1 = ΨF1 ◦ΨF2 = ΨF1∪F2 .

3. Identity: Given a dividing set Γ on F , there is a dividing set Γ′ on F × [0, 1], and an

element ∆Γ ∈ SFH(F × [0, 1],Γ′), satisfying the following. For any sutured manifold

(Y,Γ′′) with F ⊂ ∂Y and Γ′′ ∩ F = Γ, there is a diffeomorphism (Y,Γ′′) ∪F (F ×

[0, 1],Γ′) ∼= (Y,Γ′′). Moreover, the map ΨF (·,∆Γ) is the identity of SFH(Y,Γ′′).

The gluing construction and the gluing map readily generalize to a more general join

construction, and join map, which are 3–dimensional analogs. Suppose that (Y1,Γ1) and

(Y2,Γ2) are two sutured manifolds, and F1 and F2 are subsets of their boundaries, satisfying

the conditions for gluing. Suppose further that the diffeomorphism F1 → F2 extends to

W1 → W2, where Wi is a compact codimension–0 submanifold of Yi, and ∂Wi ∩ ∂Yi = Fi.

Instead of gluing Y1 and Y2 along Fi, we can join them along Wi.

Definition 1.3.2. The join of (Y1,Γ1) and (Y2,Γ2) along Wi is the sutured manifold

((Y1 \W1) ∪∂Wi\Fi (Y2 \W2),Γ1+2),

where the dividing set Γ1+2 is constructed exactly as in Definition 1.3.1. We denote the join

by (Y1,Γ1) dWi
(Y2,Γ2).

An example of a join is shown in Figure 4. Notice that if Wi is a collar neighborhood

of Fi, then the notions of join and gluing coincide. That is, the join operation is indeed

a generalization of gluing. In fact, throughout the thesis we work almost exclusively with

joins, while only regarding gluing as a special case.

Theorem 8. There is a well-defined join map

ΨW : SFH(Y1,Γ1)⊗ SFH(Y2,Γ2)→ SFH((Y1,Γ1) dW (Y2,Γ2)),
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⋃

Y1 Y2

Y1 dWi
Y2

W1 W2

Figure 4: Join of two solid tori along D2× [0, 1], to obtain another solid torus. The R+ regions

have been shaded.

satisfying properties of symmetry, associativity, and identity, analogous to those listed in

Theorem 7.

The join map is constructed as follows. We cut out W1 and W2 from Y1 and Y2, re-

spectively, and regard the complements as bordered sutured manifolds. The join operation

corresponds to replacing W1 and W2 by an interpolating piece T WF,+. We define a map

between the bordered sutured invariants, from the product B̂SA(W1) ⊗ B̂SA(W2) to the

bimodule B̂SAA(T WF,+). We show that for an appropriate choice of parametrizations, the

modules B̂SA(W1) and B̂SA(W2) are duals, while B̂SAA(T WF,+) is the dual of the bordered

algebra for F . The map is then an A∞–version of the natural pairing between a module

and its dual. The proof of invariance and the properties from Theorems 7 and 8 is purely

algebraic. Most of the arguments involve A∞–versions of standard facts in commutative

algebra.

The proofs of Theorems 2 and 3 involve several steps. First, we find a manifold whose
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bordered sutured invariant is the bordered algebra, as a bimodule over itself. Second, we

find manifolds whose bordered sutured invariants are all possible simple modules over the

algebra. Finally, we compute the gluing map Ψ explicitly in several cases.

1.4 Further applications

Besides the results described in the current thesis, bordered sutured Floer homology has a

number of further applications.

One of these applications is to define a functorial Heegaard Floer invariant for tangles,

which reduces to knot Floer homology in the case of a closed knot or link [Zar11a]. This is

analogous to the situation in Khovanov homology, where such tangle invariants have existed

for some time [Kho02]. This may give new insights into the structure of HFK.

Another application involves the relation of bordered Floer homology, and the category

of contact structures on a thickened surface. In [Zar11b] we prove that the gluing map

Ψ defined here is actually equivalent to the contact cobordism maps from [HKM08]. This

allows us prove yet one more correspondence—that of the bordered algebra A(F ) and certain

isotopy classes of tight contact structures on (F \D2)× [0, 1].

A third application involves computing direct limits of sutured Floer homology groups.

In [EVVZ11], John Etnyre, Shea Vela-Vick, and the author prove that the minus version of

knot Floer homology, HFK−(Y,K) for a knot K in a three-manifold Y is the direct limit of

certain sutured Floer homology groups (which normally only see the hat version of Heegaard

Floer homology). This is related to the study of Legendrian and transverse knots.

There are other speculative applications, that we hope will materialize in the future.

In contrast to the gluing map, there is no analog of the join map in the setting of Honda,

Kazez, and Matić. However, there is a natural pair-of-pants cobordism

ZW : (Y1,Γ1) t (Y2,Γ2)→ (Y1,Γ1) dW (Y2,Γ2).

Juhász defines a cobordism map FZW in that situation using counts of holomorphic triangles

[Juh10]. We conjecture that the join map ΨW is equivalent to FZW .
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One potential application is to use bordered sutured Floer homology to express Heegaard

Floer homology in an axiomatic way, by breaking manifolds into simple enough building

blocks. This could provide another more conceptual approach to the equivalence between

the different Floer theories (HF, HM, and embedded contact homology, or ECH).

In another direction, Theorems 2 and 3 suggest an approach towards defining a bordered

theory that corresponds to the plus or minus versions of Heegaard Floer homology—so far

that has been elusive. The two theorems proved here tell us that current, or hat, version

of bordered Floer homology is really about surfaces with boundary. We conjecture that a

similar construction involving SFH(F × [0, 1]), where F is a closed surface would in fact

provide the desired theory, which can be used to compute HF±(Y ) for a closed manifold Y .

1.5 Organization

The thesis is separated into two parts.

Part I defines bordered sutured manifolds and their invariants. The first few chapters

are devoted to the topological constructions. First, in Chapter 2 we define arc diagrams,

and how they parametrize sutured surfaces, as well as the A∞–algebra associated to an arc

diagram. In Chapter 3 we define bordered sutured manifolds, and in Chapter 4 we define

the Heegaard diagrams associated to them.

The next few chapters define the invariants and give their properties. In Chapter 5 we

talk about the moduli spaces of curves necessary for the definitions of the invariants. In

Chapter 7 we give the definitions of the bordered sutured invariants B̂SDD and B̂SA, and

prove Eq. (1.3) from Theorem 4. In Chapter 8 we extend the definitions and properties to

the bimodules B̂SDAM , and sketch the proof of the rest of Theorem 4, as well as Theorem 5.

The gradings are defined together for all three invariants on the diagram level in Chapter 6.

A lot of the material in these chapters is a reiteration of analogous constructions and

definitions from [LOT09], with the differences emphasized. The reader who is encountering

bordered Floer homology for the first time can skip most of that discussion on the first

reading, and use Theorems 7.5.1, 7.5.2 and 8.5.2 as definitions.
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Chapter 10 gives some examples of bordered sutured manifolds and computations of

their invariants. The reader is encouraged to read this section first, or immediately after

Chapter 4. The examples can be more enlightening than the definitions, which are rather

involved.

Finally, Chapter 9 gives several applications of the new invariants, in particular proving

Theorem 1, and giving a new proof of the surface decomposition theorem of Juhász.

Part II defines the gluing a join maps and derives some of their properties. We start

by introducing in more detail the topological constructions of the gluing join operations in

Chapter 11. In Chapter 12 we also discuss how definitions of B̂SA and B̂SD involving only

α–arcs can be extended to diagrams using β–arcs. Chapter 12.4 contains computations of

several B̂SA invariants needed later.

We define the join map in Chapter 13, on the level of chain complexes. The same section

contains the proof that it descends to a unique map on homology. In the following Chapter 14

we prove the properties from Theorems 7 and 8. Finally, Chapter 15 contains the statement

and the proof of a slightly more general version of Theorems 2 and 3.

Throughout the thesis make use of a diagrammatic calculus to compute A∞–morphisms,

which greatly simplifies the arguments. Appendix A contains a brief description of this

calculus, and the necessary algebraic assumptions. Appendix B gives an overview of A∞–

bimodules in terms of the diagrammatic calculus, as they are used in the paper.
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Part I

Bordered sutured invariants
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Chapter 2

The algebra associated to a

parametrized surface

The invariants defined by Lipshitz, Ozsváth and Thurston in [LOT09] work only for con-

nected manifolds with one closed boundary component. These were extended in [LOT10a]

to manifolds with two or more closed boundary components.

In our construction we parametrize surfaces with boundary, and possibly many connected

components. This class of surfaces and of their allowed parametrizations is much wider,

so we need to expand the algebraic constructions describing them. We discuss below the

generalized definitions and discuss the differences from the purely bordered setting.

2.1 Arc diagrams and sutured surfaces

We start by generalizing the definition of a pointed matched circle in [LOT09].

Definition 2.1.1. An arc diagram Z = (Z, a,M) is a triple consisting of a collection

Z = {Z1, . . . , Zl} of oriented line segments, a collection a = {a1, . . . , a2k} of distinct points

in Z, and a matching of a, i.e. a 2–to–1 function M : a → {1, . . . , k}. Write |Zi| for

#(Zi ∩ a). We will assume a is ordered by the order on Z and the orientations of the

individual segments. We allow l or k to be 0.
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We impose the following condition, called non-degeneracy. After performing oriented

surgery on the 1–manifold Z at each 0–sphere M−1(i), the resulting 1–manifold should have

no closed components.

Definition 2.1.2. We can sometimes consider degenerate arc diagrams which do not satisfy

the non-degeneracy condition. However, we will tacitly assume all arc diagrams are non-

degenerate, unless we specifically say otherwise.

Remark. The pointed matched circles of Lipshitz, Ozsváth and Thurston correspond to arc

diagrams where Z has only one component. The arc diagram is obtained by cutting the

matched circle at the basepoint.

We can interpret Z as an upside-down handlebody diagram for a sutured surface F (Z),

or just F . It will often be convenient to think of F as a surface with corners, and we will

use these descriptions interchangeably.

To construct F we start with a collection of rectangles Zi × [0, 1] for i = 1, . . . , l. Then

attach 1–handles at M−1(i)× {0} for i = 1, . . . , k. Thus χ(F ) = l − k, and F has no closed

components. Set Λ = ∂Z × {1/2}, and S+ = Z × {1} ∪ ∂Z × [1/2, 1]. Such a description

uniquely specifies F up to isotopy fixing the boundary.

Remark. The non-degeneracy condition on Z, is equivalent to the condition that any com-

ponent of ∂F intersects Λ. Indeed, the effect on the boundary of adding the 1–handles is

surgery on Z×{0}. If Z is non-degenerate, this surgery produces no new closed components,

and F is indeed a sutured surface.

Alternatively, instead of a handle decomposition we can consider a Morse function on F .

Whenever we talk about Morse functions, a (fixed) choice of Riemannian metric is implicit.

Definition 2.1.3. A Z–compatible Morse function on F is a self-indexing Morse function

f : F → [−1, 4], such that the following conditions hold. There are no index–0 or index–2

critical points. There are exactly k index–1 critical points and they are all interior. The

gradient of f is tangent to ∂F \ f−1({−1, 4}). The preimage f−1([−1,−1/2]) is isotopic to

a collection of rectangles [0, 1] × [−1,−1/2] such that f is projection on the second factor.
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(a) Arc diagram Z for an annulus. (b) Handle decomposition associated with Z.

(c) Annulus parametrized by Z.

4

3/2

1

−1

(d) Morse function compatible with Z.

Figure 5: Arc diagram for an annulus, and three different views of parametrization.

Similarly, f−1([3/2, 4]) is isotopic to a collection of rectangles [0, 1]× [3/2, 4] such that f is

projection on the second factor.

Furthermore, we can identify f−1({3/2}) with Z such that the unstable manifolds of the

i–th index–1 critical point intersect Z at M−1(i). We require that the orientation of Z and

∇f form a positive basis everywhere.

Clearly, a compatible Morse function and a handle decomposition as above are equivalent.

Examples of an arc diagram, and the different ways we can interpret its parametrization of

a sutured surface, are given in Figure 5. A slightly more complicated example of an arc

diagram, corresponding to the parametrization in Figure 1b, is given in Figure 6.

There is one more way to describe the above parametrization. Recall that a ribbon graph

is a graph with a cyclic ordering of the edges incident to any vertex. An embedding of a

ribbon graph into a surface will be considered orientation preserving if the ordering of the

edges agrees with the positive direction on the unit tangent circle of the vertex in the surface.

Definition 2.1.4. Let F be a sutured surface obtained from an arc diagram Z as above.

The ribbon graph associated to Z is the ribbon graph G(Z) with vertices ∂Z ∪ a, and edges

the components of Z \ a and the cores of the 1–handles, which we denote ei for i = 1, . . . , k.
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a1

a2

a3

a4

a5

a6

a7

a8

a9

a10

Z1

Z2

Z3

e1

e2

e3

e4

e5

Figure 6: An arc diagram Z for a twice punctured torus, and its graph G(Z).

The cyclic ordering is induced from the orientation of F .

In these terms, F is parametrized by Z if we specify an orientation preserving proper

embedding G(Z) ↪→ F , such that F deformation retracts onto the image.

Remark. When we draw an arc diagram Z we are in fact drawing its graph G(Z). An

example, with all elements of the graph denoted, is given in Figure 6.

2.2 The algebra associated to an arc diagram

Recall the definition of the strands algebra from [LOT09].

Definition 2.2.1. The strands algebra A(n, k) is a free Z/2–module with generators of the

form µ = (T, S, φ), where S and T are k–element subsets of {1, . . . , n}, and φ : S → T is a

non–decreasing bijection. (We think of φ as a collection of strands from S to T .) Denote by

inv(µ) = inv(φ) the number of inversions of φ, i.e. the elements of Inv(µ) = {(i, j) : i, j ∈

S, i < j, φ(i) > φ(j)}.

Multiplication is given by

(S, T, φ) · (U, V, ψ) =

(S, V, ψ ◦ φ) if T = U and inv(φ) + inv(ψ) = inv(ψ ◦ φ),

0 otherwise.

The differential on (S, T, φ) is given by the sum of all possible ways to “resolve” an inversion,

i.e. switch φ(i) and φ(j) for some inversion (i, j) ∈ Inv(µ).



21

Next, we consider the larger extended strands algebra

A(n1, . . . , nl; k) =
⊕

k1+···+kl=k

A(n1, k1)⊗ · · · ⊗ A(nl, kl).

We will slightly abuse notation and think of elements of A(ni, ki) as functions acting on

subsets of {(n1 + · · ·+ni−1)+1, . . . , (n1 + · · ·+ni−1)+ni} instead of {1, . . . , ni}. This allows

us to identify A(n1, . . . , nl; k) with a subalgebra of A(n1 + · · ·+ nl, k).

We will sometimes talk about the direct sums A(n) = A(n, 0) ⊕ · · · ⊕ A(n, n), and

A(n1, . . . , nl) = A(n1, . . . , nl; 0)⊕ · · · ⊕ A(n1, . . . , nl;n1 + · · ·+ nl).

The definition of A(Z, i) as a subalgebra of A(|Z1|, . . . , |Zl|; i) below is a straightfor-

ward generalization of the definition of the algebra associated to a pointed matched circle

in [LOT09]. There is, however, a difference in notation. In [LOT09] A(Z, 0) denotes the

middle summand and negative summand indices are allowed. Here, A(Z, 0) is the bottom

summand, and we only allow non-negative indices.

For any i–element subset S ⊂ {1, . . . , 2k}, there is an idempotent I(S) = (S, S, idS) ∈

A(|Z1|, . . . , |Zl|, i). For an i–element subset s ⊂ {1, . . . , k}, a section S of s is an i–element

set S ⊂M−1(s), such that M |S is injective. To each s there is an associated idempotent

I(s) =
∑

S is a section of s

I(S).

Consider triples of the form (S, T, ψ), where S, T ⊂ {1, . . . , 2k}, ψ : S → T is a strictly

increasing bijection. Consider all possible sets U ⊂ {1, . . . , 2k} disjoint from S and T , and

such that S ∪ U has i elements. Let

ai(S, T, ψ) =
∑

U as above

(S ∪ U, T ∪ U, ψU) ∈ A(|Z1|, . . . , |Zl|; i),

where ψU |T = ψ, and ψU |U = idU . In the language of strands, this means “to a set of moving

strands add all possible consistent collections of stationary (or horizontal) strands”.

Let I(Z, i) be the subalgebra generated by I(s) for all i–element sets s, and let I =∑
s I(s) be their sum. Let A(Z, i) be the subalgebra generated by I(Z, i) and all elements

of the form I · ai(S, T, ψ) · I. The latter form a basis over Z/2.

All elements (S, T, φ) considered have the property that M |S and M |T are injective.
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Definition 2.2.2. The algebra associated with the arc diagram Z is

A(Z) =
k⊕
i=0

A(Z, i),

which is a module over

I(Z) =
k⊕
i=0

I(Z, i).

To any element of µ = (S, T, φ) ∈ A(|Z1|, . . . , |Zl|) we can associate its homology class

[µ] ∈ H1(Z, a), by setting

[µ] =
∑
i∈S

[li],

where li is the positively oriented segment [ai, aφ(i)] ⊂ Z. For any two homogeneous elements

µ, µ′ ∈ A(|Z1|, . . . , |Zl|) we have [µ · µ′] = [µ] + [µ′], unless µ · µ′ = 0. Similarly, [∂µ] = [µ],

unless ∂µ = 0. Since the homology class of (S, T, φ) only depends on the moving strands,

any element of the form I · ai(S, T, ψ) · I ∈ A(Z, i) is homogeneous. Thus we can talk about

the homology classes of basis elements in A(Z).

Remark. With a collection Z1, . . . ,Zp of arc diagrams we can associate their union Z =

Z1 ∪ · · · ∪ Zp, where Z = Z1 t · · · t Zp, preserving the matching on each piece.

There are natural identifications, of algebras

A(Z) =

p⊗
i=1

A(Zi),

and of surfaces

F (Z) =

p⊔
i=1

F (Zi).

2.3 Reeb chord description

We give an alternative interpretation of the strands algebra A(Z).

Given an arc diagram Z with k arcs, there is a unique positively oriented contact structure

on the 1–manifold Z, while the 0–manifold a ⊂ Z is Legendrian. There is a family of

Reeb chords in Z, starting and ending at a and positively oriented. For a Reeb chord ρ

we will denote its starting and ending point by ρ− and ρ+, respectively. Moreover, for a
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collection ρ = {ρ1, . . . , ρn} of Reeb chords as above, we will write ρ− = {ρ−1 , . . . , ρ−n }, and

ρ+ = {ρ+
1 , . . . , ρ

+
n }.

Definition 2.3.1. A collection ρ = {ρ1, . . . , ρn} of Reeb chords is p–completable if the

following conditions hold:

1. ρ−i 6= ρ+
i for all i = 1, . . . , n.

2. M(ρ−1 ), . . . ,M(ρ−n ) are all distinct.

3. M(ρ+
1 ), . . . ,M (ρ+

n ) are all distinct.

4. #(M(ρ−) ∪M(ρ+)) ≤ k − (p− n).

Condition (4) guarantees that there is at least one choice of a (p − n)–element set s ⊂

{1, . . . , k}, disjoint from M(ρ−) and M(ρ+). Such a set is called a p–completion or just

completion of ρ. Every completion of ρ defines an element of A(Z, p):

Definition 2.3.2. For a p–completable collection ρ and a completion s, their associated

element in A(Z, p) is

a(ρ, s) =
∑

S is a section of s

(ρ− ∪ S,ρ+ ∪ S, φS),

where φS(ρ−i ) = ρ+
i , for i = 1, . . . , n, and φ|S = idS.

Definition 2.3.3. The associated element of ρ in A(Z, p) is the sum over all p–completions:

ap(ρ) =
∑

s is a p-completion of ρ

a(ρ, s).

If ρ is not p–completable, we will just set ap(ρ) = 0. We will also sometimes use the

complete sum

a(ρ) =
k∑
p=0

ap(ρ).

The algebra A(Z, p) is generated over I(Z, p) by the elements ap(ρ) for all possible p–

completable ρ. Algebra multiplication of such associated elements corresponds to certain

concatenations of Reeb chords.
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We can define the homology class [ρ] ∈ H1(Z, a) in the obvious way, and extend to a set

of Reeb chords ρ = {ρ1, . . . , ρn}, by taking the sum [ρ] = [ρ1] + · · · + [ρn]. It is easy to see

that [a(ρ, s)] = [ρ], and in particular it doesn’t depend on the completion s.

2.4 Grading

There are two ways to grade the algebra A(Z). The simpler is to grade it by a nonabelian

group Gr(Z), which is a 1
2
Z–extension of H1(Z, a). This group turns out to be too big, and

does not allow for a graded version of the pairing theorems. For this a subgroup Gr(Z) of

Gr(Z) is necessary, that can be identified with a 1
2
Z–extension of H1(F (Z)). Unfortunately,

there is no canonical way to get a Gr(Z)–grading on A(Z).

Remark. Our notation differs from that in [LOT09]. In particular, our grading group Gr(Z)

is analogous to the group G′(Z) used by Lipshitz, Ozsváth and Thurston, while Gr(Z)

corresponds to their G(Z). Moreover, our grading function gr corresponds to their gr′, while

gr corresponds to gr.

We start with the Gr(Z)–grading. Suppose Z = {Z1, . . . , Zl}. We will define a grading

on the bigger algebra A(|Z1|, . . . , |Zl|) that descends to a grading on A(Z).

First, we define some auxiliary maps.

Definition 2.4.1. Let m : H0(a) × H1(Z, a) → 1
2
Z be the map defined by counting local

multiplicities. More precisely, given the positively oriented line segment l = [ai, ai+1] ⊂ Zp,

set

m([aj], [l]) =


1
2

if j = i, i+ 1,

0 otherwise,

and extend linearly to all of H0(a)×H1(Z, a).

Definition 2.4.2. Let L : H1(Z, a)×H1(Z, a)→ 1
2
Z, be

L(α1, α2) = m(∂(α1), α2),

where ∂ is the connecting homomorphism in homology.
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The group Gr(Z) is defined as a central extension of H1(Z, a) by 1
2
Z in the following way.

Definition 2.4.3. Let Gr(Z) be the set 1
2
Z×H1(Z, a), with multiplication

(a1, α1) · (a2, α2) = (a1 + a2 + L(α1, α2), α1 + α2).

For an element g = (a, α) ∈ Gr(Z) we call a the Maslov component, and α the homo-

logical component of g.

Note that if Z has just one component Z1 and |Z1| = n, then this grading group is the

same as the group G′(n) defined in [LOT09, Section 3]. In general, if Z = {Z1, . . . , Zl}, as a

set

G′(|Z1|)× · · · ×G′(|Zl|) ∼=
(

1

2
Z
)l
×H1(Z, a),

since H1(Z1, a ∩ Z1) ⊕ · · · ⊕ H1(Zl, a ∩ Zl) ∼= H1(Z, a). Adding the Maslov components

together induces a surjective homomorphism

σ : G′(|Z1|)× · · · ×G′(|Zl|)→ Gr(Z).

We can now define the grading gr : A(|Z1|, . . . , |Zl|)→ Gr(Z).

Definition 2.4.4. For an element a = (S, T, φ) of A(|Z1|, . . . , |Zl|), set

ι(a) = inv(φ)−m(S, [a]),

gr(a) = (ι(a), [a]).

Breaking up a into its components a = (a1, . . . , al) ∈ A(|Z1|)⊕ · · · ⊕A(|Zl|), we see that

gr(a) = σ(gr′(a1), . . . , gr′(al)).

Therefore, we can apply the results about G′ and gr′ from [LOT09] to deduce the following

proposition.

Proposition 2.4.5. The function gr is indeed a grading on A(|Z1|, . . . , |Zl|), with the same

properties as G′ on A(n). Namely, the following statements hold.

1. Under gr, A(|Z1|, . . . , |Zl|) is a differential graded algebra, where the differential drops

the grading by the central element λ = (1, 0).
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2. For any completable collection of Reeb chords ρ, the grading of a(ρ, s) as an element

of A(|Z1|, . . . , |Zl|) does not depend on the completion s.

3. For any completable collection ρ, the element a(ρ) is homogeneous.

4. The grading gr descends to A(Z).

Proof. The proof of (1) follows from the corresponding statement for gr′, after noticing that

the differential on A(|Z1|, . . . , |Zl|) is defined via the Leibniz rule, and the differentials on

the individual components drop one Maslov component by 1, while keeping all the rest fixed.

The rest of the statements then follow analogously to those for gr′ in [LOT09].

2.5 Reduced grading

We can now define the refined grading group Gr(Z). Recall that the surface F(Z) retracts

to the graph G(Z), consisting of the segments Z, and the arcs E = {e1, . . . , ek}, such that

Z ∩ E = a. From the long exact sequence for the pair (G,E) we know that the following

piece is exact.

0→ H1(G)→ H1(G,E)→ H0(E)

The differential ∂ : H1(G,E) → H0(E) can be identified with the composition M∗ ◦

∂ : H1(Z, a) → H0(E), and H1(F ) = H1(G) can be identified with ker ∂ ⊂ H1(Z, a). The

identification can also be seen by adding the arcs ei to cycles in (Z, a) to obtain cycles in

G = Z ∪E. This induces a map ∂′ : Gr(Z)→ H0(E), and the kernel Gr(Z) = ker ∂′ is just

the subgroup of Gr(Z), consisting of elements with homological component in ker ∂ ∼= H1(F ).

Proposition 2.5.1. Under the identification ker ∂ = H1(F ), the group Gr(Z) can be explic-

itly described as a central extension of H1(F ) by 1
2
Z, with multiplication law

(a1, [α1]) · (a2, [α2]) = (a1 + a2 + #(α1 ∩ α2), [α1] + [α2]),

where a1, a2 ∈ 1
2
Z, and α1 and α2 are curves in F , and #(α1 ∩α2) is the signed intersection

number, according to the orientation of F .



27

Proof. First, notice that the intersection pairing is well-defined, as it is, via Poincáre duality,

just the pairing 〈· ∪ ·, [F, ∂F ]〉 on H1(F, ∂F ). The remaining step is to show that under the

identification ker ∂ = H1(F ), this agrees with the pairing L on H1(Z, a). This can be seen

by starting with line segments on Z and arcs in E, pushing the arcs on E away from each

other in the 2#E possible ways. One can then count that ±1 contributions to L always give

rise to an intersection point, while ±1/2 contributions create an intersection point exactly

half of the time.

In fact, for any generator a ∈ A(Z) with starting and ending idempotents Is and Ie,

respectively, ∂′(gr(a)) = Ie− Is, if we think of the idempotents as linear combinations of the

ei. Therefore, for any a with Ie = Is, gr(a) is already in Gr, and in general it is “almost”

there. At this point we would like to find a retraction Gr → Gr and use this to define the

refined grading. However this fails even in simple cases. For instance, when Z is an arc

diagram for a disc with several sutures, Gr(Z) = 1
2
Z is abelian, as H1(F ) vanishes, while

the commutator of Gr(Z) is Z ⊂ Gr(Z), and there can be no retraction, even if we pass to

D–coefficients.

The solution is to assign a grading to A(Z) with values in Gr(Z), depending on the

starting and ending idempotents. First, note that the generating idempotents come in sets

of connected components, where I is connected to J if and only if I −J is in the image of ∂′,

or equivalently in the kernel of H0(E) → H0(F ). These connected components correspond

to the possible choices of how many arcs are occupied in each connected component of F (Z).

Definition 2.5.2. A grading reduction r for Z is a choice of a base idempotent I0 in each

connected component, and a choice r(I) ∈ ∂′−1(I − I0) for any I ∈ [I0].

Definition 2.5.3. Given a grading reduction r, define the reduced grading

gr
r
(a) = r(Is) · gr(a) · r(Ie)−1 ∈ Gr(Z),

for any generator a ∈ A(Z) with starting and ending idempotents Is and Ie, respectively.

When unambiguous, we write simply gr(a).
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For any elements a and b, such that a · b, or even a ⊗ b is nonzero, the r–terms in gr

cancel, and gr(a ⊗ b) = gr(a · b) = gr(a) · gr(b). Since
〈

1
2
Z, 0

〉
is in the center, there is still

a well-defined Z–action by λ = 〈1, 0〉, and gr(∂a) = λ−1gr(a). Therefore, gr is indeed a

grading.

Notice that for any a with Is = Ie, gr(a) is the conjugate of gr(a) ∈ Gr by r(Is). In

particular, the homological part of the grading is unchanged, and whenever it vanishes, the

Maslov component is also unchanged.

Remark. Given a set of Reeb chords ρ, the element a(ρ) ∈ A(Z) is no longer homogeneous

under gr. Indeed, gr(a(ρ, s)) depends on the completion s.

2.6 Orientation reversals

It is sometimes useful to compare the arc diagrams Z and −Z and the corresponding grad-

ings. Recall that −Z and Z differ only by the orientation of Z. Consequently, the homology

components H1(±Z, a) in Gr(±Z) can be identified, while their canonical bases are opposite

in order and sign. In particular, the pairings L±Z are opposite from each other. Therefore

Gr(Z) and Gr(−Z) are anti-isomorphic, via the map fixing both the Maslov and homological

components.

Similarly, F (±Z) differ only in orientation, the homological components H1(F ) can be

naturally identified while the intersection pairings are opposite from each other. Thus Gr(Z)

and Gr(−Z) are also anti-homomorphic, via the map that fixes both components, which

agrees with the restriction of the corresponding map on Gr(Z).

Thus, left actions by Gr(Z) or Gr(Z) naturally correspond to right actions by Gr(−Z)

or Gr(−Z), respectively, and vice versa.
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Chapter 3

Bordered sutured 3–manifolds

In this section—and for most of the rest of the thesis—we will be working from the point

of view of bordered sutured manifolds, as sutured manifolds with extra structure. We will

largely avoid the alternative description of decorated sutured cobordisms.

3.1 Sutured manifolds

Definition 3.1.1. A divided surface (S,Γ) is a closed surface F , together with a collection

Γ = {γ1, . . . , γn} of pairwise disjoint oriented simple closed curves on F , called sutures,

satisfying the following conditions.

Every component B of F \ Γ has nonempty boundary (which is the union of sutures).

Moreover, the boundary orientation and the suture orientation of ∂B either agree on all

components, in which case we call B a positive region, or they disagree on all components,

in which case we call B a negative region. We denote by R+(Γ) or R+ (respectively R−(Γ)

or R−) the closure of the union of all positive (negative) regions.

Notice that the definition doesn’t require F to be connected, but it requires that each

component contain a suture.

Definition 3.1.2. A divided surface (F,Γ) is called balanced if χ(R+) = χ(R−).

It is called k–unbalanced if χ(R+) = χ(R−) + 2k, where k could be positive, negative or

0. In particular 0–unbalanced is the same as balanced.
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Notice that since F is closed, and χ(S) = χ(R+) +χ(R−), it follows that χ(R+)−χ(R−)

is always even.

Now we can express the balanced sutured manifolds of [Juh06] in terms of divided sur-

faces.

Definition 3.1.3. A balanced sutured manifold (Y,Γ) is a 3–manifold Y with no closed

components, such that (∂Y,Γ) is a balanced divided surface.

We can extend this definition to the following.

Definition 3.1.4. A k–unbalanced sutured manifold (Y,Γ) is a 3–manifold Y with no closed

components, such that (∂Y,Γ) is a k–unbalanced divided surface.

Although our unbalanced sutured manifolds are more general than the balanced ones

of Juhász, they are still strictly a subclass of Gabai’s general definition in [Gab83]. For

example, he allows toric sutures, while we do not.

3.2 Bordered sutured manifolds

In this section we describe how to obtain a bordered sutured manifold from a sutured man-

ifold, by parametrizing part of its boundary.

Definition 3.2.1. A bordered sutured manifold (Y,Γ,Z, φ) consists of the following.

1. A sutured manifold (Y,Γ).

2. An arc diagram Z.

3. An orientation preserving embedding φ : G(Z) ↪→ ∂Y , such that φ|Z is an orientation

preserving embedding into Γ, and φ(G(Z) \ Z) ∩ Γ = ∅. It follows that each arc ei

embeds in R−.

Note that a closed neighborhood ν(G(Z)) ⊂ ∂Y can be identified with the parametrized

surface F (Z). We will make this identification from now on.
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An equivalent way to give a bordered sutured manifold would be to specify an embedding

F (Z) ↪→ ∂Y , such that the following conditions hold. Each 0–handle of F intersects Γ in a

single arc, while each 1–handle is embedded in Int(R−(Γ)).

Proposition 3.2.2. Any bordered sutured manifold (Y,Γ,Z, φ) satisfies the following con-

dition, called homological linear independence.

π0(Γ \ φ(Z))→ π0(∂Y \ F (Z)) is surjective. (3.1)

Proof. Indeed, Eq. (3.1) is equivalent to Γ intersecting any component of ∂Y \ F . But Γ

already intersects any component of ∂Y . Any component of ∂Y \ F is either a component

of ∂Y , or has common boundary with F . The non-degeneracy condition on Z guarantees

that any component of ∂F hits Γ.

Remark. If we want to work with degenerate arc diagrams (which give rise to degenerate

sutured surfaces) we can still get well-defined invariants, as long as we impose homological

linear independence on the manifolds. However, in that case there is no category, since the

identity cobordism from a degenerate sutured surface to itself does not satisfy homological

linear independence.

3.3 Gluing

We can glue two bordered sutured manifolds to obtain a sutured manifold in the following

way.

Let (Y1,Γ1,Z, φ1), and (Y2,Γ2,−Z, φ2) be two bordered sutured manifolds. Since φ1

and φ2 are embeddings, and G(−Z) is naturally isomorphic to G(Z) with its orientation

reversed, there is a diffeomorphism φ1(G(Z)) → φ2(G(−Z)) that can be extended to an

orientation reversing diffeomorphism ψ : F (Z)→ F (−Z) of their neighborhoods. Moreover,

ψ|Γ1 : Γ1 ∩ F (Z)→ Γ2 ∩ F (−Z) is orientation reversing.

Set Y = Y1∪ψY2, and Γ = (Γ1\F (Z))∪(Γ2\F (−Z)). By homological linear independence

on Y1 and Y2, the sutures Γ on Y intersect all components of ∂Y , and (Y,Γ) is a sutured

manifold.



32

More generally, we can do partial gluing. Suppose (Y1,Γ1,Z0∪Z1, φ1) and (Y2,Γ2,−Z0∪

Z2, φ2) are bordered sutured. Then

(Y1 ∪F (Z0) Y2, (Γ1 \ F (Z0)) ∪ (Γ2 \ F (−Z0)),Z1 ∪ Z2, φ1|G(Z1) ∪ φ2|G(Z2))

is also bordered sutured.
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Chapter 4

Heegaard diagrams

4.1 Diagrams and compatibility with manifolds

Definition 4.1.1. A bordered sutured Heegaard diagram H = (Σ,α,β,Z, ψ) consists of

the following data:

1. A surface with boundary Σ.

2. An arc diagram Z.

3. An orientation reversing embedding ψ : G(Z) ↪→ Σ, such that ψ|Z is an orientation

preserving embedding into ∂Σ, while ψ|G(Z)\Z is an embedding into Int(Σ).

4. The collection αa = {αa1, . . . , αak} of arcs αai = ψ(ei).

5. A collection of simple closed curves αc = {αc1, . . . , αcn} in Int(Σ), which are disjoint

from each other and from αa.

6. A collection of simple closed curves β = {β1, . . . , βm} in Int(Σ), which are pairwise

disjoint and transverse to α = αa ∪αc.

We also require that π0(∂Σ \ Z)→ π0(Σ \α) and π0(∂Σ \ Z)→ π0(Σ \ β) be surjective.

We call this condition homological linear independence since it is equivalent to each of α

and β being linearly independent in H1(Σ,Z).
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Homological linear independence on diagrams is the key condition required for admissi-

bility and avoiding boundary degenerations.

Definition 4.1.2. A boundary compatible Morse function on a bordered sutured manifold

(Y,Γ,Z, φ) is a self-indexing Morse function f : Y → [−1, 4] (with an implicit choice of

Riemannian metric g) with the following properties.

1. The parametrized surface F (Z) = ν(G(Z)) is totally geodesic, ∇f is parallel to F , and

f |F is a Z–compatible Morse function.

2. A closed neighborhood N = ν(Γ \ Z) is isotopic to (Γ \ Z) × [−1, 4], such that f is

projection on the second factor (and f(Γ) = 3/2).

3. f−1(−1) = R−(Γ) \ (N ∪ F ), and f−1(4) = R+(Γ) \ (N ∪ F ).

4. f has no index–0 or index–3 critical points.

5. The are no critical points in ∂Y \ F , and the index–1 critical points for F are also

index–1 critical points for Y .

See Figure 8a for a schematic illustration.

From a boundary compatible Morse function f we can get a bordered sutured Heegaard

diagram by setting Σ = f−1(3/2), and letting α be the intersection of the stable manifolds

of the index–1 critical points with Σ, and β be the intersection of the unstable manifolds

of the index–2 critical points with Σ. Note that the internal critical points give αc and β,

while the ones in F ⊂ ∂Y give αa. We notice that Z ⊂ F ∩ Σ and αa form an embedding

ψ : G(Z) → Σ. Homological linear independence for the diagram follows from that of

manifold.

Definition 4.1.3. A diagram as above is called a compatible bordered sutured Heegaard

diagram to f .

Proposition 4.1.4. Compatible diagrams and boundary compatible Morse functions are in

a one-to-one correspondence.
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Figure 7: Half of a 2–handle attached along an arc. Its critical point and two incoming gradient

flow lines are in the boundary.

Proof. We need to give an inverse construction. Start with a bordered sutured diagram

H, and construct a bordered sutured manifold in the following way. To Σ × [1, 2] attach

2–handles at αc
i × {1}, and at βi × {2}. Finally, at αa

i × {1} attach “halves of 2–handles”.

These are thickened discs D2 × [0, 1] attached along an arc a× {1/2} ⊂ ∂D2 × {1/2}. (See

Figure 7.) Then Γ is ∂Σ×{3/2}, and F (Z) is Z× [1, 2], together with the “middles” of the

partial handles, i.e. (∂D2 \ a)× [0, 1]. To such a handle decomposition on the new manifold

Y corresponds a canonical boundary compatible Morse function f . Note that attaching the

half-handles has no effect topologically, but adds boundary critical points.

Proposition 4.1.5. Any sutured bordered manifold has a compatible diagram in the above

sense. Moreover, any two compatible diagrams can be connected by a sequence of moves of

the following types:

1. Isotopy of the circles in αc and β, and isotopy, relative to the endpoints, of the arcs

in αa.

2. Handleslide of a circle in β over another circle in β.

3. Handleslide of any curve in α over a circle in αc.

4. Stabilization.
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Proof. For the proof of this proposition we will modify our definition of a compatible Morse

function, to temporarily “forget” about F .

A pseudo boundary compatible Morse function f for the bordered sutured manifold

(Y,Γ,Z, φ) is a boundary compatible Morse function for the manifold (Y,Γ,∅,∅ ↪→ ∂Y )

(which is just a standard Morse function for the sutured manifold (Y,Γ), in the sense

of [Juh06]), with some additional conditions. Namely, we require that f−1([−1, 3/2])∩ φ(ei)

consist of two arcs (at the endpoints of φ(ei)), tangent to ∇f . We also require that φ(G(Z))

be disjoint from the unstable manifolds of index–1 critical points.

Such Morse functions are in 1–to–1 correspondence with compatible diagrams by the

following construction. As usual, Σ = f−1(3/2), while αc and β are the intersections of Σ

with stable, respectively unstable, manifolds for index–1 and index–2 critical points. On the

other hand, αa
i is the intersection of Σ with the gradient flow from ei. Since the flow avoids

index–1 critical points, αa is disjoint from αc. See Figure 8 for a comparison between the

two types of Morse functions.

The backwards construction is the same as for true boundary-compatible Morse functions,

except we do not attach the half 2–handles at αa×{1}, and instead just set ei = αai ×{1}∪

∂αai × [1, 3/2].

This alternative construction allows us to use standard results about sutured manifolds.

In particular, [Juh06, Propositions 2.13—2.15] imply that (Y,Γ) has a compatible Morse

function, and hence Heegaard diagram, and any two compatible diagrams are connected

by Heegaard moves. Namely, there is a family ft of Morse functions, which for generic t

corresponds to an isotopy, and for a finite number of critical points corresponds to a index–

1, index–2 critical point creation, (i.e. stabilization of the diagram), or a flowline between

critical points of the same index (handleslides between circles in αc or between circles in β).

Since the stable manifold of any index–1 critical point intersects R− at a pair of points,

we can always perturb f to get a pseudo-compatible diagram for (Y,Γ,Z, φ). Any two such

diagrams are connected by a sequence of sutured Heegaard moves (ignoring αa). For generic

t, a sutured compatible ft is also pseudo bordered sutured compatible. At non-generic t,

there is a flow from some point on ei to an index–1 critical point. This corresponds to sliding
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(a) A true boundary compatible Morse function. There is one boundary critical point

giving rise to αa.
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(b) A pseudo boundary compatible Morse function. There is one arc in f−1(−1) giving

rise to αa.

Figure 8: Comparison of a boundary compatible and pseudo boundary compatible Morse

functions. Several internal critical points are given in each, with gradient flowlines, giving

rise to αc and β.
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αi over the corresponding circle in αc, so we must add those to the list of allowed Heegaard

moves.

4.2 Generators

Definition 4.2.1. A generator for a bordered sutured diagram H = (Σ,α,β) is a collection

x = (x1, . . . , xg) of intersection points in α∩β, such that there is exactly one point on each

αc circle, exactly one point on each β circle, and at most one point on each αa arc.

The set of all generators for H is denoted G(H) or G.

As a degenerate case, when #β = #αc = 0, we will let G contain a single element, which

is the empty collection x = ().

Notice that if G is nonempty, then necessarily g = #β ≥ #αc. We call g the genus of

H. Moreover, exactly p = g−#αc many of the αa arcs are occupied by each generator. Let

o(x) ⊂ {1, . . . , k} denote the set of occupied αa arcs, and o(x) = {1, . . . , k} \ o(x) denote

the set of unoccupied arcs.

Remark. If H = (Σ,α,β) is a bordered sutured diagram compatible with a p–unbalanced

bordered sutured manifold, then exactly p many αa arcs are occupied by each generator for

H.

Indeed, let g = #β, and h = #α. By the construction of a compatible manifold, R−(Γ)

is diffeomorphic to Σ after surgery at each αc circle, while R+(Γ) is diffeomorphic to Σ

after surgery at each β circle. But surgery on a surface at a closed curve increases its Euler

characteristic by 2. Therefore, the manifold is (g − h)–unbalanced.

4.3 Homology classes

Later we will look at pseudoholomorphic curves that go “between” two generators. We can

classify such curves into homology classes as follows.
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Definition 4.3.1. For given generators x and y, the homology classes from x to y, denoted

by π2(x,y), are the elements of

H2(Σ× [0, 1]× [0, 1], (α× {1} × [0, 1]) ∪ (β × {0} × [0, 1])

∪ (Z× [0, 1]× [0, 1]) ∪ (x× [0, 1]× {0}) ∪ (y × [0, 1]× {1})),

which map to the relative fundamental class of x × [0, 1] ∪ y × [0, 1] under the boundary

homomorphism, and collapsing the rest of the boundary.

There is a product map ∗ : π2(x,y) × π2(y, z) → π2(x, z) given by concatenation at

y× [0, 1]. This product turns π2(x,x) into a group, called the group of periodic classes at x.

Definition 4.3.2. The domain of a homology class B ∈ π2(x,y) is the image

[B] = πΣ∗(B) ∈ H2(Σ,Z ∪α ∪ β).

We interpret it as a linear combination of regions in Σ \ (α ∪ β). We call the coefficient of

such a region in a domain D its multiplicity.

The domain of a periodic class is a periodic domain.

We can split the boundary ∂[B] into pieces ∂∂B ⊂ Z, ∂αB ⊂ α, and ∂βB ⊂ β. We can

interpret ∂∂B as an element of H1(Z, a).

Definition 4.3.3. The set of provincial homology classes from x to y is the kernel π∂2 (x,y)

of ∂∂ : π2(x,y)→ H1(Z, a).

The periodic classes in π∂2 (x,x) are provincial periodic class and their domains are

provincial periodic domains.

The groups of periodic classes reduce to the much simpler forms

π2(x,x) ∼= H2(Σ× [0, 1],Z× [0, 1] ∪α× {0} ∪ β × {1}),

π∂2 (x,x) ∼= H2(Σ× [0, 1],αc × {0} ∪ β × {1}).

Since 2–handles and half-handles are contractible, these two groups are isomorphic to

H2(Y, F ) and H2(Y ), respectively, by attaching the cores of the handles.
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4.4 Admissibility

As usual in Heegaard Floer homology, in order to get well defined invariants, we need to

impose certain admissibility conditions on the Heegaard diagrams. Like in [LOT09], there

are two different notions of admissibility.

Definition 4.4.1. A bordered sutured Heegaard diagram is called admissible if every nonzero

periodic domain has both positive and negative multiplicities.

A diagram is called provincially admissible if every nonzero provincial periodic domain

has both positive and negative multiplicities.

Proposition 4.4.2. Any bordered sutured Heegaard diagram can be made admissible by

performing isotopy on β.

Corollary 4.4.3. Any bordered sutured 3–manifold has an admissible diagram, and any two

admissible diagrams are connected, using Heegaard moves, through admissible diagrams.

The analogous statement holds for provincially admissible diagrams.

Since admissible diagrams are also provincially admissible, the second part of the ar-

gument trivially follows from the first. The first part, on the other hand, follows from

Proposition 4.4.2, by taking any sequence of diagrams connected by Heegaard moves, and

making all of them admissible, through a consistent set of isotopies.

Proof of Proposition 4.4.2. The proof is analogous to those for bordered manifolds and su-

tured manifolds. We use the isomorphism from the previous section between periodic do-

mains and H2(Y, F ).

Notice that H1(Σ, ∂Σ\Z) maps onto H1(Y, ∂Y \F ), and therefore pairs with H2(Y, F ) and

periodic domains. Find a basis for H1(Σ, ∂Σ \ Z), represented by pairwise disjoint properly

embedded arcs a1, . . . , am. We can always do that since every component of Σ hits ∂Σ \ Z.

Cutting Σ along such arcs will give a collection of discs, each of which contains exactly one

component of Z in its boundary.

We can do finger moves of β along each ai, and along a push off bi of ai, in the opposite

direction. This ensures that there are regions, for which the multiplicities of any periodic
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domain D are equal to its intersection numbers with ai and bi, which have opposite signs.

Suppose D has a nonzero region, and pick a point p in such a region. By homological linear

independence p can be connected to ∂Σ \ Z in the complement of α ∪ Z, as well as in the

complement of β. Connecting these paths gives a cycle in H1(Σ, ∂Σ \ Z) , which pairs non

trivially with D. Since the ai span this group, at least one of them pairs non trivially with

D, which means D has negative multiplicity in some region.

4.5 Spinc–structures

Recall that a Spinc–structure on an n–manifold is a lift of its principal SO(n)–bundle to a

Spinc(n)–bundle. For 3–manifolds there is a useful reformulation due to Turaev (see [Tur97]).

In this setting, a Spinc–structure s on the 3–manifold Y is a choice of a non vanishing vector

field v on Y , up to homology. We say that two vector fields are homologous if they are

homotopic outside of a finite collection of disjoint open balls.

Given a trivialization of TY , a vector field v on Y can be thought of as a map v : Y →

S2. This gives an identification of the set Spinc(Y ) of all Spinc–structures with H2(Y ) via

s(v) 7→ v∗(ω), where ω = PD([pt]) ∈ H2(S2) is the top-dimensional cohomology class. The

identification depends on the trivialization of TY , but only by an overall shift. This means

that Spinc(Y ) is naturally an affine space over H2(Y ).

Given a fixed vector field v0 on a subspace X ⊂ Y , we can define the space of relative

Spinc–structures Spinc(Y,X, v0), or just Spinc(Y,X) in the following way. A relative Spinc–

structure is a vector field v on Y , such that v|X = v0, considered up to homology in Y \X.

If Spinc(Y,X, v0) is nonempty, it is an affine space over H2(Y,X).

To a Spinc–structure s in Spinc(X) or Spinc(Y,X, v0), represented by a vector field v, we

can associate its Chern class c1(s), which is just the first Chern class c1(v⊥) of the orthogonal

complement subbundle v⊥ ⊂ TY .

With a generator in a Heegaard diagram we will associate two types of Spinc–structures.

Let x ∈ G(H) be a generator. Fix a boundary-compatible Morse function f (and appropriate

metric). The vector field ∇f vanishes only at the critical points of f . Each intersection point
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in x lies on a gradient trajectory connecting an index–1 to an index–2 critical point. If we

cut out a neighborhood of that trajectory, we can modify the vector field inside to one that

is non vanishing (the two critical points have opposite parity). For any unoccupied αa arc,

the corresponding critical point is in F ⊂ ∂Y . We can therefore modify the vector field in

its neighborhood to be non vanishing. Call the resulting vector field v(x).

Notice that v0 = v(x)|∂Y \F = ∇f |∂Y \F does not depend on x, while v(x)|∂Y = vo(x) only

depends on o(x). Moreover, under a change of the Morse function or metric (even for different

diagrams), v0 and vo(x) can only vary inside a contractible set. Therefore the corresponding

sets Spinc(Y, ∂Y \F, v0) and Spinc(Y, ∂Y, vo(x)), respectively, are canonically identified. Thus

we can talk about Spinc(Y, ∂Y \ F ) and Spinc(Y, ∂Y, o), where o ⊂ {1, . . . , k}, as invariants

of the underlying bordered sutured manifold. This justifies the following definition.

Definition 4.5.1. Let s(x) and srel(x) be the relative Spinc–structures induced by v(x) in

Spinc(Y, ∂Y \ F ) and Spinc(Y, ∂Y, o(x)), respectively.

We can separate the generators into Spinc classes. Let

G(H, s) = {x ∈ G(H) : s(x) = s},

G(H, o, srel) = {x ∈ G(H) : o(x) = o, srel(x) = srel}.

The fact that the invariants split by Spinc structures is due to the following proposition.

Proposition 4.5.2. The set π2(x,y) is nonempty if and only if s(x) = s(y). The set

π∂2 (x,y) is nonempty if and only if o(x) = o(y) and srel(x) = srel(y).

Proof. This proof is, again, analogous to those for bordered and for sutured manifolds.

To each pair of generators x,y ∈ G(H), we associate a homology class ε(x,y) ∈ H1(Y, F ).

We do that by picking 1–chains a ⊂ α, and b ⊂ β, such that ∂a = y − x + z, where z is a

0–chain in Z, and ∂b = y − x, and setting ε(x,y) = [a− b]. We can interpret a− b as a set

of properly embedded arcs and circles in (Y, F ) containing all critical points.

The vector fields v(x) and v(y) differ only in a neighborhood of a− b. One can see that

in fact s(y)− s(x) = PD([a− b]) = PD(ε(x,y)). On the other hand, we can interpret ε(x,y)
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as an element of

H1(Σ× [0, 1],α× {0} ∪ β × {1} ∪ Z× [0, 1]) ∼= H1(Y, F ).

In particular, π2(x,y) is nonempty, if and only if there is a 2–chain in Σ × [0, 1] with

boundary which is a representative for ε(x,y) in the relative group above. This is equivalent

to ε(x,y) = 0 ∈ H1(Y, F ). This proves the first part of the proposition.

The second one follows analogously, noticing that we can pick a path a − b, such that

a ⊂ α, if and only if o(x) = o(y), and in that case π∂2 (x,y) is nonempty if and only if

εrel(x,y) = [a− b] = 0 ∈ H1(Y ), while srel(y)− srel(x) = PD([a− b]) ∈ H2(Y, ∂Y ).

4.6 Gluing

We can glue bordered sutured diagrams, similar to the way we glue bordered sutured mani-

folds.

Let H1 = (Σ1,α1,β1) and H2 = (Σ2,α2,β2) be bordered sutured diagrams for the mani-

folds (Y1,Γ1,Z, φ1) and (Y2,Γ2,−Z, φ2), respectively. We can identify Z with its embeddings

in ∂Σ1 and ∂Σ2 (one is orientation preserving, the other is orientation reversing).

Let Σ = Σ1 ∪Z Σ2. Each αa arc in H1 matches up with the corresponding one in H2 to

form a closed curve in Σ. Let α denote the union of all αc circles in H1 and H2, together

with the newly formed circles from all αa arcs. Finally, let β = β1 ∪ β2.

Proposition 4.6.1. The diagram H = (Σ,α,β) is compatible with the sutured manifold

Y1 ∪F (Z) Y2, as defined in Chapter 3.3.

Proof. The manifolds Y1 and Y2 are obtained from Σ1 × [1, 2] and Σ2 × [1, 2], respectively,

by attaching 2–handles (corresponding to αc and β circles), and halves of 2–handles (corre-

sponding to αa arcs). The surface of gluing F can be identified with the union of Z× [1, 2]

with the middles of the half-handles. Thus, we get a base of (Σ1 ∪Z Σ2) × [1, 2], with the

combined 2–handles from each side. In addition the half-handles glue in pairs to form actual

2–handles, each of which is glued along matching αa arcs.
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Similarly, we can do partial gluing. If we have manifolds (Y1,Γ1,Z0 ∪ Z1, φ1) and

(Y2,Γ2,−Z0 ∪ Z2, φ2) with diagrams H1 and H2, respectively, H1 ∪Z0 H2 is a diagram com-

patible with the bordered sutured manifold Y1 ∪F (Z0) Y2.

4.7 Nice diagrams

As with the other types of Heegaard Floer invariants, the invariants become a lot easier

to compute (at least conceptually) if we work in the category of nice diagrams, developed

originally by Sarkar and Wang in [SW10].

Definition 4.7.1. A bordered sutured diagram H = (Σ,α,β,Z, ψ) is nice if every region of

Σ \ (α ∪ β) is either adjacent to ∂Σ \ Z—in which case we call it a boundary region—or is

one of the following two types:

• A bigon, no sides of which are in Z.

• A quadrilateral, at most one of whose sides is in Z.

Proposition 4.7.2. Any bordered sutured diagram can be made nice by isotopies of β,

handleslides among the circles in β, and stabilizations.

Proof. The proof is a combination of those for bordered and sutured manifolds, in [LOT09]

and [Juh08], respectively.

First, we make some stabilizations until every component of Σ contains both α and β

curves. Next we do finger moves of β curves until any curve in α intersects β, and vice versa.

Then, we ensure all non boundary regions are simply connected. We do that inductively,

decreasing the rank of H1 relative boundary for each region.

Then, following [LOT09], we do finger moves of some β curves along curves parallel

to each component of Z to ensure that all regions adjacent to some Reeb chord in Z are

rectangles (where one side is in Z, two are in αa, and one is in β).

Finally, we label all regions by their distance, i.e. number of β arcs in Σ \α one needs to

cross, to get to a boundary region, and by their badness (how many extra corners they have).
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We do finger moves of a β arc in a bad region through α arcs, until we hit a boundary, a

bigon, or another (or the same) bad region. There are several cases depending on what kind

of region we hit, but the overall badness of the diagram decreases, so the algorithm eventually

terminates. The setup is such that we can never hit a region adjacent to a Reeb chord, so

the algorithm for sutured manifolds goes through for bordered sutured manifolds.
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Chapter 5

Moduli spaces of holomorphic curves

In this section we describe the moduli spaces of holomorphic curves involved in the definitions

of the bordered invariants and prove the necessary properties. The definitions and arguments

are mostly a straightforward generalization of those in [LOT09, Chapter 5].

5.1 Differences with bordered Floer homology

For the reader familiar with border Floer homology we highlight the similarities and the

differences with our definitions.

In the bordered setting of Lipshitz, Ozsváth, and Thurston, there is one boundary

component and one basepoint on the boundary. One counts pseudoholomorphic discs in

Σ× [0, 1]×R, but in practice one thinks of their domains in Σ. Loosely speaking, the curves

that do not hit ∂Σ correspond to differentials, the ones that do hit the boundary correspond

to algebra actions, while the ones that hit the basepoint are not counted at all.

In the bordered sutured setting, the boundary ∂Σ has several components, while some

subset Z of ∂Σ is distinguished. We again count pseudoholomorphic curves in Σ× [0, 1]×R,

and again, those curves that do not hit the boundary correspond to differentials. The novel

idea is the interpretation of the boundary. Here the algebra action comes from curves that

hit any component of Z ⊂ ∂Σ, while the curves that hit any component of ∂Σ \ Z are not

counted. In a sense, the set ∂Σ \ Z plays the role of the basepoint.
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With this in mind, most of the constructions in [LOT09] carry over. Below we describe

the necessary analytic constructions.

5.2 Holomorphic curves and conditions

We will consider several variations of the Heegaard surface Σ, namely the compact surface

with boundary Σ = Σ, the open surface Int(Σ), which can be thought of as a surface with

several punctures p = {p1, . . . , pn}, and the closed surface Σe, obtained by filling in those

punctures. Alternatively, it is obtained from Σ by collapsing all boundary components to

points.

We will also be interested in the surface D = [0, 1] × R, with coordinates s ∈ [0, 1] and

t ∈ R.

Let ωΣ be a symplectic form on Int(Σ), such that ∂Σ is a cylindrical end, and let jΣ

be a compatible almost complex structure. We can assume that αa is cylindrical near the

punctures in the following sense. There is a neighborhood Up of the punctures, symplecto-

morphic to ∂Σ × (0,∞) ⊂ T ∗(∂Σ), such that jΣ and αa ∩ Up are invariant with respect to

the R–action on ∂Σ × (0,∞). Let ωD and jD be the standard symplectic form and almost

complex structure on D ⊂ C.

Consider the projections

πΣ : Int(Σ)× D→ Int(Σ),

πD : Int(Σ)× D→ D,

s : Int(Σ)× D→ [0, 1],

t : Int(Σ)× D→ R.

Definition 5.2.1. An almost complex structure J on Int(Σ)× D is called admissible if the

following conditions hold:

• πD is J–holomorphic.

• J(∂s) = ∂t for the vector fields ∂s and ∂t in the fibers of πΣ.
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• The R–translation action in the t–coordinate is J–holomorphic.

• J = jΣ × jD near p× D.

Definition 5.2.2. A decorated source S. consists of the following data:

• A topological type of a smooth surface S with boundary, and a finite number of boundary

punctures.

• A labeling of each puncture by one of “+”, “−”, or “e”.

• A labeling of each e puncture by a Reeb chord ρ in Z.

Given S. as above, denote by Se the surface obtained from S by filling in all the e

punctures.

We consider maps

u : (S, ∂S)→ (Int(Σ)× D, (α× {1} × R) ∪ (β × {0} × R))

satisfying the following conditions:

1. u is (j, J)–holomorphic for some almost complex structure j on S.

2. u : S → Int(Σ)× D is proper.

3. u extends to a proper map ue : Se → Σe × D.

4. ue has finite energy in the sense of Bourgeois, Eliashberg, Hofer, Wysocki and Zehn-

der [BEH+03].

5. πD ◦ u : S → D is a g–fold branched cover. (Recall that g is the cardinality of β, not

the genus of Σ).

6. At each + puncture q of S, limz→q t ◦ u(z) = +∞.

7. At each − puncture q of S, limz→q t ◦ u(z) = −∞.

8. At each e puncture q of S, limz→q πΣ ◦ u(z) is the Reeb chord ρ labeling q.
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9. πΣ ◦u : S → Int(Σ) does not cover any of the regions of Σ\ (α∪β) adjacent to ∂Σ\Z.

10. Strong boundary monotonicity. For each t ∈ R, and each βi ∈ β, u−1(βi × {0} × {t})

consists of exactly one point. For each αci ∈ αc, u−1(αci × {1} × {t}) consist of exactly

one point. For each αai ∈ αa, u−1(αai × {1} × {t}) consists of at most one point.

11. u is embedded.

Under conditions (1)–(9), at each + or − puncture, u is asymptotic to an arc z× [0, 1]×

{±∞}, where z is some intersection point in α∩β. If in addition we require condition (10),

then the intersection points x1, . . . , xg corresponding to − punctures form a generator x,

while the ones y1, . . . , yg corresponding to + punctures form a generator y. We call x the

incoming generator, and y the outgoing generator for u.

If we compactify the R component of D to include {±∞}, we get a compact rectangle

D̃ = [0, 1] × [−∞,+∞]. Let u be a map satisfying conditions (1)–(10), and with incoming

and outgoing generators x and y. Let S̃ be S with all punctures filled in by arcs. Then u

extends to a map

ũ : (S̃, ∂S̃)→ (Σ× D̃, (α× {1} × [−∞,+∞]) ∪ (β × {0} × [−∞,+∞])

∪ (Z× D̃) ∪ (x× [0, 1]× {−∞}) ∪ (y × [0, 1]× {+∞})).

Notice that the pair of spaces on the right is the same as the one in Definition 4.3.1.

It is clear that a map u satisfying conditions (1)–(10) has an associated homology class

B = [u] = [ũ] ∈ π2(x,y).

We will also impose an extra condition on the height of the e punctures of S.

Definition 5.2.3. For a map u from a decorated source S., and an e puncture q on ∂S, the

height of q is the evaluation ev(q) = t ◦ ue(q) ∈ R.

Definition 5.2.4. Let E(S.) be the set of all e punctures in S. Let
−→
P = (P1, . . . , Pm) be

an ordered partition of E(S.) into nonempty subsets. We say u is
−→
P –compatible if for i =

1, . . . ,m all the punctures in Pi have the same height ev(Pi), and moreover ev(Pi) < ev(Pj)

for i < j.
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To a partition
−→
P = (P1, . . . , Pm) we can associate a sequence −→ρ (

−→
P ) = (ρ1, . . . ,ρm) of

sets of Reeb chords, by setting

ρi = {ρ : ρ labels q, q ∈ Pi}.

Moreover, to any such sequence −→ρ we can associate a homology class

[−→ρ ] = [ρ1] + · · ·+ [ρm] ∈ H1(Z, a),

and an algebra element

a(−→ρ ) = a(ρ1) · · · a(ρm).

It is easy to see that [a(−→ρ )] = [−→ρ ] (unless s(−→ρ ) vanishes). It is also easy to see that for

a curve u satisfying conditions (1)–(10) with homology class [u] = B, and for any partition
−→
P we have [−→ρ (

−→
P )] = ∂∂B.

5.3 Moduli spaces

We are now ready to define the moduli spaces that we will consider.

Definition 5.3.1. Let x,y ∈ G(H) be generators, let B ∈ π2(x,y) be a homology class, and

let S. be a decorated source. We will write

M̃B(x,y, S.)

for the space of curves u with source S. satisfying conditions (1)–(10), asymptotic to x at

−∞ and to y at +∞, and with homology class [u] = B.

This moduli space is stratified by the possible partitions of E(S.). More precisely, given

a partition
−→
P of E(S.), we write

M̃B(x,y, S.,
−→
P )

for the space of
−→
P –compatible maps in M̃B(x,y, S.), and

M̃B
emb(x,y, S.,

−→
P )

for the space of maps in M̃B(x,y, S.,
−→
P ) that also satisfy (11).
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Remark. The definitions in the current section are analogous to those in [LOT09], and a lot

of the results in that paper carry over without change. We will cite several of them here

without proof.

Proposition 5.3.2. There is a dense set of admissible J with the property that for all genera-

tors x, y, all homology classes B ∈ π2(x,y) and all partitions
−→
P , the spaces M̃B(x,y, S.,

−→
P )

are transversely cut out by the ∂–equations.

Proposition 5.3.3. The expected dimension ind(B, S.,
−→
P ) of M̃B(x,y, S.,

−→
P ) is

ind(B, S., P ) = g − χ(S) + 2e(B) + #
−→
P ,

where e(B) is the Euler measure of the domain of B.

It turns out that whether the curve u ∈ M̃B(x,y, S.,
−→
P ) is embedded depends entirely

on the topological data consisting of B, S., and
−→
P . That is, there are entire components

of embedded and of non embedded curves. Moreover, for such curves there is another index

formula that does not depend on S.. To give it we need some more definitions.

For a homology class B ∈ π2(x,y), and a point z ∈ α ∩ β, let nz(B) be the average

multiplicity of [B] at the four regions adjacent to z. Let nx =
∑

x∈x nx(B), and ny =∑
y∈y ny(B).

For a sequence −→ρ = (ρ1, . . . ,ρm), let ι(−→ρ ) be the Maslov component of the grading

gr(ρ1) · · · gr(ρm).

Definition 5.3.4. For a homology class B ∈ π2(x,y) and a sequence −→ρ = (ρ1, . . . ,ρm) of

Reeb chords, define the embedded Euler characteristic and embedded index

χemb(B,−→ρ ) = g + e(B)− nx(B)− ny(B)− ι(−→ρ ),

ind(B,−→ρ ) = e(B) + nx(B) + ny(B) + #−→ρ + ι(−→ρ ).

Proposition 5.3.5. Suppose u ∈ M̃B(x,y, S.,
−→
P ). Exactly one of the following two state-

ments holds.



52

1. u is embedded and the following equalities hold.

χ(S.) = χemb(B,−→ρ (
−→
P )),

ind(B, S.,
−→
P ) = ind(B,−→ρ (

−→
P )),

M̃B
emb(x,y, S.,

−→
P ) = M̃B(x,y, S.,

−→
P ).

2. u is not embedded and the following inequalities hold.

χ(S.) > χemb(B,−→ρ (
−→
P )),

ind(B, S.,
−→
P ) < ind(B,−→ρ (

−→
P )),

M̃B
emb(x,y, S.,

−→
P ) = ∅.

Proof. This is essentially a restatement of [LOT09, Proposition 5.47]

Each of these moduli spaces has an R–action that is translation in the t factor. It is free

on each M̃B(x,y, S.,
−→
P ), except when the moduli space consists of a single curve u, where

πD ◦ u is a trivial g–fold cover of D, and πΣ ◦ u is constant (so B = 0). We say that u is

stable if it is not this trivial case.

For moduli spaces of stable curves we mod out by this R–action:

Definition 5.3.6. For given x, y, S., and
−→
P , set

MB(x,y, S.,
−→
P ) = M̃B(x,y, S.,

−→
P )/R,

MB
emb(x,y, S.,

−→
P ) = M̃B

emb(x,y, S.,
−→
P )/R.

5.4 Degenerations

The properties of the moduli spaces which are necessary to prove that the invariants are

well defined and have the expected properties, are essentially the same as in [LOT09]. Their

proofs also carry over with minimal change. We sketch below the most important results.

To study degenerations we first pass to the space of holomorphic combs which are trees

of holomorphic curves in Σ× D, and ones that live at East infinity, i.e. in Z× R× D. This

is the proper ambient space to work in, to ensure compactness.
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The possible degenerations that can occur at the boundary of 1–dimensional moduli

spaces of embedded curves are of two types. One is a two story holomorphic building,

as usual in Floer theory. The second type consists of a single curve u in Σ × D, with

another curve degenerating at East infinity, at the e punctures of u. Those curves that can

degenerate at East infinity are of several types, join curves, split curves, and shuffle curves,

that correspond to certain operations on the algebra A(Z). In fact, the types of curves that

can appear dictate how the algebra should behave.

There are also corresponding gluing results, that tell us that in the cases we care about, a

rigid holomorphic comb is indeed the boundary of a 1–dimensional space of curves. Unfortu-

nately, in some cases the compactified moduli spaces are not compact 1–manifolds. However,

we can still recover the necessary result that certain counts of 0–dimensional moduli spaces

are even, and thus become 0, when reduced to Z/2.

The only place where significant changes need to be made to the arguments, are in ruling

out bubbling and boundary degenerations. The reason for the changes are the different ho-

mological assumptions we have made for Σ, Z, α, and β in the definition of bordered sutured

Heegaard diagrams. We give below the precise statement, and the modified proof. The rest

of the arguments are essentially local in nature, and do not depend on these homological

assumptions.

Proposition 5.4.1. Suppose M = MB(x,y, S.,
−→
P ) is 1–dimensional. Then the following

types of degenerations cannot occur as the limit u of a sequence uj of curves in M.

1. u bubbles off a closed curve.

2. u has a boundary degeneration, i.e. u is a nodal curve that collapses one or more

properly embedded arcs in (S, ∂S).

Proof. For (1) notice that if a closed curve bubbles off, it has to map to Int(Σ)×D ' Int(Σ)

which has no closed components. In particular, H2(Int(Σ) × D) = 0, and the bubble will

have zero energy.

For (2), assume there is such a degeneration u with source S.′. Repeating the argument

in [LOT09, Lemma 5.37], if an arc a ∈ S. collapses in u, then by strong boundary mono-
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tonicity its endpoints ∂a lie on the same arc in ∂Σ. If b is the arc in ∂S.′ connecting them,

then t ◦ u is constant on b. Therefore, πD ◦ u is constant on the entire component T of S.′

containing b.

There is a compactification T of T , filling in the punctures by arcs, and an induced

map u : T → Σ × D. The image of the boundary ∂T under u is contained in the two sets

∂α = (α ∪ Z) × {1} × R and ∂β = β × {0} × R. Their projections t(∂α) and πD(∂β) are

disjoint, while πD ◦ u is constant on T . Thus, u(∂T ) is entirely in ∂α, or entirely in ∂β. In

particular, we have either a map

πΣ ◦ u : (T , ∂T )→ (Σ,α ∪ Z),

or a map

πΣ ◦ u : (T , ∂T )→ (Σ,β).

By homological linear independence both of the groups H2(Σ,α ∪ Z) and H2(Σ,β) are

0, and u|T must have zero energy.

The equivalent statement in the bordered setting is necessary for [LOT09, Proposition

5.32].
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Chapter 6

Diagram gradings

In this section we define gradings on the set of generators G(H) for a given bordered sutured

diagram H. More precisely, if H represents the bordered sutured manifold (Y,Γ,Z), for

each Spinc–structure s ∈ Spinc(Y, ∂Y \ F (Z)) we define grading sets Gr(H, s) and Gr(H, s)

which have left actions by Gr(−Z) and Gr(−Z), respectively, and right actions by Gr(Z)

and Gr(Z), respectively. Then we define maps G(H, s)→ Gr(H, s) and G(H, s)→ Gr(H, s),

which are well-defined up to a shift to be made precise below. In the next couple of sections

we use these maps to define relative gradings on the bordered sutured invariants.

6.1 Domain gradings

We start by defining a grading on all homology classes in π2(x,y) for x and y generators in

G(H). We will abuse notation and will not distinguish between a given homology class and

its associated domain in H2(Σ,Z ∪α ∪ β).

Definition 6.1.1. Given a domain B ∈ π2(x,y) define

gr(B) = (−e(B)− nx(B)− ny(B), ∂∂B) ∈ Gr(Z).

Given a grading reduction r from Gr(Z) to Gr(Z), define

gr(B) = r(I(o(x))) · gr(B) · r(I(o(y)))−1 ∈ Gr(Z).
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The basic properties of these gradings, and in fact the reason they are called gradings is

that they are compatible with composition of domains. They are also compatible with the

indices of moduli spaces.

Proposition 6.1.2. Given a domain B ∈ π2(x,y), for any compatible sequence −→ρ of sets

of Reeb chords, we have gr(B) = λ− ind(B,−→ρ )+#−→ρ · gr(−→ρ ).

For any two domains B1 ∈ π2(x,y) and B2 ∈ π2(y, z), their concatenation has grading

gr(B1 ∗B2) = gr(B1) · gr(B2).

Similar statements hold for gr(B).

Proof. For the first statement, recall that ind(B,−→ρ ) = e(B) +nx(B) +ny(B) + ι(−→ρ ) + #−→ρ ,

and the homological components of gr(−→ρ ) and gr(B) are both ∂∂B for a compatible pair.

The second statement follows from the first, using the fact that the index is additive for

domains, and λ is central.

For the equivalent statement for gr, we just have to use gr(Io(x) · a(−→ρ ) · Io(y)), instead of

gr(−→ρ ) which is not defined, and notice that the reduction terms match up.

6.2 Generator gradings

We will give a relative grading for the generators in each Spinc–structure. Here a relative

grading in a G–set means a map g : G(H, s) → A, where G acts on A, say on the right.

Two such gradings g and g′ with values in A and A′ are equivalent, if there is a bijection

φ : A→ A′, such that φ is G–equivariant, and g′ = φ ◦ g. The traditional case of a relative

Z or Z/n–valued grading corresponds to Z acting on its quotient, with the grading map

defined up to an overall shift by a constant.

Definition 6.2.1. For a Heegaard diagram H and generator x ∈ G(H) define the stabilizer

subgroup P(x) = gr(π2(x,x)) ⊂ Gr(Z). For any Spinc–structure s pick a generator x0 ∈

G(H, s) and let Gr(H, s) be the set of right cosets P(x0)\Gr(Z) with the usual right Gr(Z)–

action. Define the grading gr : G(H, s) → Gr(H, s) by gr(x) = P · gr(B) for any B ∈

π2(x0,x).
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Proposition 6.2.2. Assuming G(H, s) is nonempty, this is a well-defined relative grading,

independent of the choice of x0, and has the property gr(x) · gr(B) = gr(y) for any B ∈

π2(x,y).

Proof. These follow quickly from the fact that concatenation of domains respects the grading.

For example, for any two domains B1, B2 from x0 to x, the cosets P(x0) · gr(Bi) are the

same. Independence from the choice of x0 follows from the fact that P(x) is a conjugate of

P(x0).

Fixing a grading reduction r, and setting P(x) = gr(π2(x,x)) = r(Io(x)) ·P(x) ·r(Io(x))
−1,

we get a reduced grading set Gr(H, s) with a right Gr(Z)–action, and reduced grading gr on

G(H, s) with the same properties as gr.

In light of the discussion in Chapter 2.6, the sets Gr(H, s) and Gr(H, s) have left actions

by Gr(−Z) and Gr(−Z), respectively. Keep in mind that for the reduced grading, the

reduction term used for acting on gr(x) is r(Io(x)), corresponding to the complementary

idempotent of x.

To define the grading on the bimodules B̂SDA, we will need to take a mixed approach.

Given a bordered sutured manifold (Y,Γ,Z1 ∪ Z2), thought of as a cobordism from −Z1

to Z2, we will use the left action of Gr(−Z1) ⊂ Gr(−(Z1 ∪ Z2)) and the right action of

Gr(Z2) ⊂ Gr(Z1 ∪ Z2). The two actions commute since the correction term L vanishes on

mixed pairs. Moreover, the Maslov components act the same on both sides.

6.3 A simpler description

In the special case when Z = ∅ and the manifold is just sutured, the grading takes a simpler

form that is the same as the usual relative grading on SFH. Recall that the divisibility

of a Spinc–structure s is the integer div(s) = gcdα∈H2(Y ) 〈c1(s), α〉, and that sutured Floer

homology groups SFH(Y, s) are relatively-graded by the cyclic group Z/ div(s). (See [Juh06].)

Theorem 6.3.1. Let H be a Heegaard diagram for a sutured manifold (Y,Γ), which can

also be interpreted as a diagram for the bordered sutured manifold (Y,Γ,∅). For any Spinc–
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structure s, the grading sets are Gr(H, s) = Gr(H, s) = 1
2
Z/ div(s), with the usual action

by Gr(∅) = Gr(∅) = 1
2
Z. Moreover, the relative gradings gr = gr on G(H, s) coincide with

relative grading on SFH. In particular, only the integer gradings are occupied.

Proof. The grading on SFH is defined in essentially the same way, on a diagram level. There

a domain B ∈ π2(x,y) is graded as − ind(B) = −e(B)−nx−ny = gr(B) ∈ Gr(∅). The rest

of definition is exactly the same, with the result that the gradings coincide, except that in

the bordered sutured case we start with the bigger group 1
2
Z, while gr(B) = − ind(B) still

takes only integer values.

In general, the grading sets Gr(H, s) and Gr(H, s) can look very complicated, but if we

forget some of the structure we can give a reasonably nice description similar to the purely

sutured case.

Proposition 6.3.2. There is a projection map π : Gr(H, s) → im(i∗ : H1(F ) → H1(Y ))

with the following properties. Each fiber looks like 1
2
Z/ div(s), with the usual translation

action by the central subgroup (1
2
Z, 0). Any element of the form (∗, α) permutes the fibers of

π, sending π−1(β) to π−1(β + i∗(α)), while preserving the 1
2
Z–action.

Proof. Recall that π2(x,x) is isomorphic to H2(Y, F ) by attaching the cores of 2–handles

and half-handles. Inside, the subgroup π∂2 (x,x) of provincial periodic domains is isomorphic

to H2(Y ) ⊂ H2(Y, F ). Similar to the purely sutured case, for provincial periodic domains

e(B) + 2nx(B) = 〈c1(s), [B]〉. The subgroup

P∂(x) = gr(π∂2 (x,x)) = (〈c1(s), H2(Y )〉 , 0) = (div(s)Z, 0)

is central, and therefore P∂(x) = gr(π∂2 (x,x)) ⊂ P(x) is also (div(s)Z, 0) and central in

Gr(Z).

In particular, taking the quotient Gr(Z)/P∂ has the effect of reducing the Maslov

component modulo div(s). On the other hand, since any two classes B1 and B2 with

the same ∂∂ differ by a provincial domain, P/P∂ is isomorphic to im(∂ : H2(Y, F ) →

H1(F )) = ker(i∗ : H1(F ) → H1(Y )). If we ignore the Maslov component, passing to

(P/P∂)\(Gr(Z)/P∂) = P\Gr(Z) reduces the homological component H1(F ) modulo ker i∗.

Therefore, the new homological component is valued in H1(F )/ ker i∗ ∼= im i∗.
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6.4 Grading and gluing

The most important property of the reduced grading is that it behaves nicely under gluing

of diagrams. This will later allow us to show that the pairing on B̂SDA respects the grading.

First, we define a grading for a pair of diagrams which can be glued together, and then show

it coincides with the grading on the gluing.

Suppose H1 and H2 are diagrams for (Y1,Γ1,−Z1 ∪ Z2) and (Y2,Γ2,−Z2 ∪ Z3), respec-

tively, and fix reductions for Gr(Z1), Gr(Z2), and Gr(Z3). Recall that Gr(H1, s1) has left

and right actions by Gr(Z1) and Gr(Z2), respectively, while Gr(H2, s2) has left and right

actions by Gr(Z2) and Gr(Z3), respectively.

It is easy to see that generators in H1 ∪Z2 H2 correspond to pairs of generators with

complementary idempotents at Z2, and there are restriction maps on Spinc–structures, such

that s(x1,x2)|Yi = s(xi). Let Fi = F (Zi). From the long exact homology sequence for the

triple (Y1 ∪ Y2, F1 ∪ F2 ∪ F3, F1 ∪ F3) and Poincaré duality, we can see that {s : s|Yi = si} is

either empty or an affine set over im(i∗ : H1(F2)→ H1(Y1 ∪ Y2, F1 ∪ F3)).

Definition 6.4.1. Let Gr(H1,H2, s1, s2) be the product

Gr(H1, s1)×Gr(Z2) Gr(H2, s2),

i.e. the usual product of the two sets, modulo the relation (a · g, b) ∼ (a, g · b) for any

g ∈ Gr(Z2). It inherits a left action by Gr(Z1) and a right action by Gr(Z3), which commute

and where the Maslov components act in the same way.

Define a grading on ∪s|Yi=siG(H1 ∪H2, s) by

gr′(x1,x2) = [(gr(x1), gr(x2)] ∈ Gr(H1,H2, s1, s2).

Theorem 6.4.2. Assume s1 and s2 are compatible, i.e. there is at least one s restricting to

each of them. There is a projection from the mixed grading set

π : Gr(H1,H2, s1, s2)� im(i∗ : H1(F2)→ H1(Y1 ∪ Y2, F1 ∪ F3)),

defined up to a shift in the image, with the following properties.



60

1. For any two generators x and y with s(x)|Yi = s(y)|Yi = si, we have

PD(s(y)− s(x)) = π(gr′(x))− π(gr′(y)),

i.e. π distinguishes Spinc–structures. Moreover, the Gr(Z1) and Gr(Z3)–actions pre-

serve the fibers of π.

2. For each s, such that s|Yi = si, there is a unique fiber Grs of π, such that the grading

gr′|G(H1∪H2,s) is valued in Grs, and is equivalent to gr valued in Gr(H1 ∪H2, s).

Proof. It is useful to pass to only right actions, as the grading sets were originally defined.

We will use Grij as shorthand for Gr(−Zi ∪ Zj), for i, j = 1, 2, 3, and Gr1223 as shorthand

for Gr(−Z1∪Z2∪−Z2∪Z3). Recall that for i = 1, 2, the grading set Gr(Hi, si) was defined

as the quotient P(xi)\Gri,(i+1) for some xi ∈ G(Hi, si). We can identify Gr(Z2) with the

subgroup

Q′ =
{

((a, α), (−a,−α)) : a ∈ 1

2
Z, α ∈ H1(F2)

}
⊂ Gr12 ×Gr23.

Note that Q′ commutes with Gr(−Z1) × Gr(Z3) in Gr12 × Gr23, so we can think of the

mixed grading set Gr(H1,H2, s1, s2) as the double quotient

(P(x1)× P(x2))\(Gr12 ×Gr23)/Q′,

with a right action by Gr(−Z1)×Gr(Z3).

The Maslov components are central, and we can take the quotients of Q′ and Gr12 ×

Gr23 by 1
2
Z = {((a, 0), (−a, 0))} ⊂ Q′. This has the effect of collapsing the two Maslov

components into one. Thus (Gr12×Gr23)/1
2
Z is canonically isomorphic to Gr1223, and Q′/1

2
Z

is canonically isomorphic to the abelian subgroup Q = {(0, α,−α) : α ∈ H1(F2)} ⊂ Gr22.

Let P be generated by the images of P(xi) ⊂ Gri,(i+1) in Gr1223, for i = 1, 2. We can identify

Gr(H1,H2, s1, s2) with the quotient P\Gr1223/Q, which has a right action by Gr13. In other

words, the mixed grading set has elements of the form [a] = P·a·Q, with action [a]·g = [a·g].

Let Π: Gr1223 → H1(F2) be addition of the two H1(F2)–homological component terms

together, and ignoring the rest. Note that Π is surjective, Q ⊂ ker Π, while Π|P is the
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restriction of Π ◦ gr to

π2(x1,x1)× π2(x2,x2) ∼= H2(Y1, F1 ∪ F2)×H2(Y2, F2 ∪ F3)

∼= H2(Y1 ∪ Y2, F1 ∪ F2 ∪ F3),

and coincides with the boundary map

∂ : H2(Y1 ∪ Y2, F1 ∪ F2 ∪ F3)→ H1(F1 ∪ F2 ∪ F3, F1 ∪ F3) ∼= H1(F2)

from the long exact sequence of the triple. Therefore Π(P) = im ∂ = ker(i∗ : H1(F2) →

H1(Y1 ∪ Y2, F1 ∪ F3)), and Π descends on the cosets to a projection π : (P\Gr1223/Q) →

H1(F2)/ ker i∗ ∼= im i∗. A different choice of xi only shifts the homological components, and

so the image of π.

To prove (1), we need to check that for any compatible yi ∈ G(Hi, si), the difference

s(y1,y2)−s(x1,x2) is the same as −(π(gr′(y1,y2))−π(gr′(x1,x2))). Suppose Bi ∈ π2(xi,yi).

Then the latter difference is −π([gr(B1), gr(B2)]) + π([0, 0]) = −i∗(h1 + h2), where hi is the

H1(F2) part of the homological component of gr(Bi). Since the Z2–idempotents of x1 and

x2 are complementary, as well as those of y1 and y2, the reduction terms r cancel, and we

can look at gr(B1) and gr(B2), instead. Therefore h1 + h2 = ∂∂2B1 + ∂∂2B2, interpreted as

an element of H1(F2) ⊂ H1(Z2, a2). Here ∂∂2 denotes the Z2 part of ∂∂. It is indeed in that

subgroup, again because of the complementary idempotents.

By the proof of Proposition 4.5.2, we have s(y) − s(x) = PD([a − b]), where a and

b are any two 1–chains in α and β, with ∂a = y − x + z and ∂b = y − x, where z

is a 0–chain in Z1 ∪ Z3. The boundaries of B1 and B2 almost give us such chains. Let

ai = ∂αBi, bi = ∂βBi, and ci = ∂∂2Bi, as chains. Then [c1 + c2] = h1 +h2, in H1(Z2, a2), and

[a1 + a2 + b1 + b2 + c1 + c2] = −[∂∂1B1 + ∂∂3B2] = 0 ∈ H1(Y1 ∪ Y2, F1 ∪ F3). Notice that we

can represent h1 +h2 ∈ H1(F2) by the 1–chain c1 + c2 + d, where d is a sum of some αa–arcs

in H1. Let a = a1 + a2 − d, and b = −(b1 + b2). They have the desired properties, and

[a− b] = [a1 +a2 + b1 + b2 + c1 + c2]− [c1 + c2 +d] = 0− i∗(h1 +h2). This finishes the proof of

the relation between π and the Spinc–structures in (1). Finally, since Gr(−Z1∪Z3) ⊂ ker Π,

its action preserves the fibers of π.
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For (2), we know the restriction gr′|G(H1∪H2,s) takes values in a unique fiber Grs. To see

that this grading is equivalent to gr, we need three results. First, we need to show that the

action of Gr(−Z1 ∪ Z3) is transitive on Grs. Second, we need to show that the stabilizers

of gr′(y0) and gr(y0) are the same for some y0 ∈ G(H1 ∪H2, s). These two steps show that

Grs and Gr(H1∪H2, s) are equivalent as grading sets. Finally, we need to show that for any

other y ∈ G(H1 ∪H2, s), there is at least one g ∈ Gr(−Z1 ∪Z3), such that gr(y) = gr(y0) · g

and gr′(y) = gr′(y0) · g.

For the first part, notice that Gr(−Z1 ∪ Z3) × Q is exactly the kernel of Π, while the

reduction to π was exactly by the image of P . Therefore, if π([a1]) = π([a2]), then Π(a1) =

Π(p · a2) for some p ∈ P , so a1 = p · a2 · g · q for some g ∈ Gr(−Z1 ∪Z3) and q ∈ Q. In other

words, [a1] = [a2] · g.

For the second part, we can assume (x1,x2) are in s, and use that as y0. In this case

the stabilizer for gr′ is (P ·H) ∩Gr(−Z1 ∪ Z3). We may also assume the base idempotents

for r are Io1(x1) for Z1, Io2(x1) = Io2(x2) for Z2, and Io3(x3) for Z3. This ensures gr = gr for

periodic domains at (x1,x2). This corresponds to the gradings of pairs of periodic classes

Bi ∈ π2(xi,xi) with ∂∂2B1+∂∂2B2 = 0, canceling those terms. But such pairs are in 1–to–1

correspondence with periodic class B ∈ π2((x1,x2), (x1,x2)). The gradings for such pairs

are additive, so the stabilizer of gr′ is the same as gr.

Finally, to show the relative gradings are the same, pick any B ∈ π2(y0,y). It decomposes

into two classes Bi connecting the Hi components of y0 and y with canceling ∂∂2 . Similar

to the above discussion, the regular gradings satisfy gr(B) = gr(B1) gr(B2). The reduction

terms match up, so the same holds for gr. Thus gr(B) is the grading difference between y

and y0 for both gradings.
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Chapter 7

One-sided invariants

7.1 Overview

To a bordered sutured manifold (Y,Γ,Z, φ), we will associate the following invariants. Each

of them is defined up to homotopy equivalence, in the appropriate sense.

1. A right A∞–module over A(Z), denoted B̂SA(Y,Γ,Z, φ).

2. A left type D structure over A(−Z), denoted B̂SD(Y,Γ,Z, φ).

3. A left differential graded module over A(−Z), which we denote B̂SDD(Y,Γ,Z, φ).

7.2 Type D structures

Although we can express all of the invariants and their properties in terms of differential

graded modules and A∞–modules, from a practical standpoint it is more convenient to use

the language of type D structures introduced in [LOT09]. We recall here the definitions and

basic properties. To simplify the discussion we will restrict to the case where the algebra

is differential graded, and not a general A∞–algebra. This is all that is necessary for the

present applications.

Remark. Any algebra or module has an implicit action by a base ring, and any usual tensor

product ⊗ is taken over such a base ring. In the case of the algebra A(Z) associated with
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an arc algebra, and any modules over it, the base ring is the idempotent ring I(Z). We will

omit the base ring from the notation to avoid clutter.

Let A be a differential graded algebra with differential µ1 and multiplication µ2.

Definition 7.2.1. A (left) type D structure over A is a graded module N over the base ring,

with a homogeneous operation

δ : N → (A⊗N)[1],

satisfying the compatibility condition

(µ1 ⊗ idN) ◦ δ + (µ2 ⊗ idN) ◦ (idA⊗ δ) ◦ δ = 0. (7.1)

We can define induced maps

δk : N → (A⊗k ⊗N)[k],

by setting

δk =

idN for k = 0,

(idA⊗ δk−1) ◦ δ for k ≥ 1.

Definition 7.2.2. We say a type D structure N is bounded if for any n ∈ N , δk(n) = 0

for sufficiently large k.

Given two left type D structures N , N ′ over A, the space Hom(N,A⊗N ′) of linear maps

over the base ring becomes a graded chain complex with differential

Df = (µ1 ⊗ idN ′) ◦ f + (µ2 ⊗ idN ′) ◦ (idA⊗ δ′) ◦ f + (µ2 ⊗ idN ′) ◦ (idA⊗f) ◦ δ.

The grading is given by the grading shifts on homogeneous maps.

Definition 7.2.3. A map of type D structures, from N to N ′, is a cycle in the above chain

complex.

Two such maps f and g are homotopic if f − g = Dh for some h ∈ Hom(N,A ⊗ N ′),

called a homotopy from f to g.

If f : N → A⊗N ′, and g : N ′ → A⊗N ′′ are type D structure maps, their composition

g ◦ f : N → A⊗N ′′ is defined to be

g ◦ f = (µ2 ⊗ idN ′′) ◦ (idA⊗ g) ◦ f.
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With the above definitions, type D structures over A form a differential graded category.

This allows us, among other things, to talk about homotopy equivalences. (In general, for

an A∞–algebra A, this is an A∞–category.)

Let M be a right A∞–module over A, with higher A∞ actions

mk : M ⊗ A⊗(k−1) →M [2− k], for k ≥ 1.

Let N be a left type D structure. We can define a special tensor product between them.

Definition 7.2.4. Assuming at least one of M and N is bounded, let

M �A N

be the graded vector space M ⊗N , with differential

∂ : M ⊗N → (M ⊗N)[1],

defined by

∂ =
∞∑
k=1

(mk ⊗ idN) ◦ (idM ⊗ δk−1).

The condition that M or N is bounded guarantees that the sum is always finite. In that

case ∂2 = 0 (using Z/2 coefficients), and M �N is a graded chain complex.

The most important property of �, as shown in [LOT10a] is that it is functorial up to

homotopy and induces a bifunctor on the level of derived categories.

The chain complex A�N is in fact a graded differential module over A, with differential

∂ = µ1 ⊗ idN +(µ2 ⊗ idN) ◦ δ,

and algebra action

a · (b, n) = (µ2(a, b), n).

In a certain sense working with type D structures is equivalent to working with their

associated left modules. In particular, A� · is a functor, and M ⊗̃ (A�N) and M �N are

homotopy equivalent as graded chain complexes.
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7.3 B̂SD and B̂SDD

Let H = (Σ,α,β,Z, ψ) be a provincially admissible bordered sutured Heegaard diagram,

and let J be an admissible almost complex structure.

We will define B̂SD as a type D structure over A(−Z).

Definition 7.3.1. Fix a relative Spinc–structure s ∈ Spinc(Y, ∂Y \ F ). Let B̂SD(H, J, s) be

the Z/2 vector space generated by the set of all generators G(H, s). Give it the structure of

an I(−Z) module as follows. For any x ∈ G(H, s) set

I(s) · x =

x if s = o(x),

0 otherwise.

We consider only discrete partitions
−→
P = ({q1}, . . . , {qm}).

Definition 7.3.2. For x,y ∈ G(H) define

ax,y =
∑

ind(B,−→ρ (
−→
P ))=1

−→
P discrete

#MB
emb(x,y, S.,

−→
P ) · a(−P1) · · · a(−Pm).

We compute a(−Pi), since the Reeb chord ρi labeling the puncture qi is oriented opposite

from −Z.

Definition 7.3.3. Define δ : B̂SD(H, J, s)→ A(−Z)⊗ B̂SD(H, J, s) as follows.

δ(x) =
∑

y∈G(H)

ax,y ⊗ y.

Note that, π2(x,y) is nonempty if and only if s(x) = s(y), so the range of δ is indeed

correct.

Theorem 7.3.4. The following statements are true.

1. B̂SD(H, J, s) equipped with δ, and the grading Gr(H, s)–valued grading gr is a type D

structure over A(−Z). In particular,

λ−1 · gr(x) = gr(a) · gr(y),

whenever δ(x) contains the term a⊗ y.
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2. If H is admissible, B̂SD(H, J, s) is bounded.

3. For any two provincially admissible diagrams H1 and H2, equipped with admissible

almost complex structures J1 and J2, there is a graded homotopy equivalence

B̂SD(H1, J1, s) ' B̂SD(H2, J2, s).

Therefore we can talk about B̂SD(Y,Γ,Z, ψ, s) or just B̂SD(Y,Γ, s), relatively graded

by Gr(Y, s).

Proof. In light of the discussion in Chapter 5.4, the proofs carry over from those for ĈFD in

the bordered case. We sketch the main steps below.

For (1), first we use provincial admissibility to guarantee the sums in the definitions are

finite. Indeed, only finitely many provincial domains B ∈ π∂2 (x,y) are positive and can

contribute. The number of non provincial domains ends up irrelevant, since only finitely

many sequences of elements of A(−Z) have nonzero product.

To show that Eq. (7.1) is satisfied, we count possible degenerations of 1–dimensional

moduli spaces, which are always an even number. Two story buildings correspond to the

(µ2 ⊗ idN) ◦ (idA⊗ δ) ◦ δ term. The degenerations with a curve at East infinity correspond

to the (µ1 ⊗ idN) ◦ δ term.

To show that the grading condition is satisfied, recall that a ⊗ y can be a term in δ(x)

only if there is a domain B ∈ π2(x,y), and a compatible sequence −→ρ = ({ρ1}, . . . , {ρp}) of

Reeb chords, such that ind(B,−→ρ ) = 1, and a = Io(x) · a(−ρ1) · · · a(−ρp) · Io(y). We will prove

the statement for gr, which allows us to ignore the idempotents at the end. The gr–version

then follows from using the same reduction terms.

Notice that gr−Z(−ρi) = (−1/2,−[ρi]), and so

gr(a) = (−p/2 +
∑
i<j

L−Z(−[ρi],−[ρj]),−[−→ρ ]),

which we can also interpret as a Gr(Z)–grading acting on the right. On the other hand,

grZ(ρi) = (−1/2, [ρi]), and

gr(−→ρ ) = (−p/2 +
∑
i<j

LZ([ρi], [ρj]), [
−→ρ ]).
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Recall that LZ and L−Z have opposite signs, so we have the relation gr(−→ρ ) gr(a) = λ−p.

Thus, we have

gr(a⊗ y) = gr−Z(a) · gr(y) = gr(y) · grZ(a)

= gr(x) · gr(B) gr(a) = gr(x) · λ− ind(B,−→ρ )+#−→ρ gr(−→ρ ) gr(a)

= gr(x) · λ−1+pλ−p = gr(x) · λ−1.

For (2), we use the fact that with admissibility, only finitely many domains B ∈ π2(x,y)

are positive, and could contribute to δk, for any k. Therefore, only finitely many of the terms

of δk(x) are nonzero.

For (3) we use the fact that provincially admissible diagrams can be connected by Hee-

gaard moves. To isotopies and changes of almost complex structure, we associate moduli

spaces, depending on a path (Ht, Jt) of isotopic diagrams and almost complex structures.

Counting 0–dimensional spaces gives a type D map B̂SD(H0, J0) → B̂SD(H1, J1). Analo-

gous results to those in Chapter 5 and counting the ends of 1–dimensional moduli spaces

show that the map is well defined and is in fact a homotopy equivalence. To handleslides, we

associate maps coming from counting holomorphic triangles, which also behave as necessary

in this special case.

For invariance of the grading, we show that both in time-dependent moduli spaces, and

when counting triangles we can grade domains compatibly. In particular, the stabilizers are

still conjugate, and the grading set is preserved. In both cases we count domains with index

0, so the relative gradings of individual elements are also preserved.

If we ignore Spinc structures we can talk about the total invariant

B̂SD(Y,Γ) =
⊕

s∈Spinc(Y,∂Y \F )

B̂SD(Y,Γ, s).

We define B̂SDD in terms of B̂SD. The two are essentially different algebraic represen-

tations of the same object.
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Definition 7.3.5. Given a bordered sutured manifold (Y,Γ,Z, φ), let

B̂SDD(Y,Γ, s) = A(−Z)� B̂SD(Y,Γ, s),

B̂SDD(Y,Γ) = A(−Z)� B̂SD(Y,Γ).

Remark. Recall that if (Y,Γ) is p–unbalanced, then any generator has p many occupied arcs.

However, for B̂SD the algebra action depends on unoccupied arcs. Therefore, if Z has k

many arcs, then B̂SD(Y,Γ) is in fact a type D structure over A(−Z, k − p) only.

7.4 B̂SA

The definition of B̂SA is similar to that of B̂SD, but differs in some important aspects. In

particular, we count a wider class of curves and they are recorded differently.

Let H = (Σ,α,β,Z, ψ) be a provincially admissible bordered sutured Heegaard diagram,

and let J be an admissible almost complex structure.

We define B̂SA as an A∞–module over A(Z).

Definition 7.4.1. Fix a relative Spinc–structure s ∈ Spinc(Y, ∂Y \ F ). Let B̂SA(H, J, s) be

the Z/2 vector space generated by the set of all generators G(H, s). Give it the structure of

an I(Z) module by setting

x · I(s) =

x if s = o(x),

0 otherwise.

For generators x,y ∈ G(H), a homology class B ∈ π2(x,y), and a source S. we consider

all partitions
−→
P = (P1, . . . , Pm), not necessarily discrete. We also associate to a sequence of

Reeb chords a sequence of algebra elements, instead of a product. Let

−→a (x,y,−→ρ ) = I(o(x)) · (a(ρ1)⊗ · · · ⊗ a(ρm)) · I(o(y)).

Definition 7.4.2. For x,y ∈ G(H), −→ρ = (ρ1, . . . ,ρm) define

cx,y,−→ρ =
∑

−→ρ (
−→
P )=−→ρ

ind(B,−→ρ )=1

#MB
emb(x,y, S.,

−→
P ).
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Definition 7.4.3. Define mk : B̂SA(H, J, s)⊗A(Z)⊗(k−1) → B̂SA(H, J, s) as follows.

mk(x, a1, . . . , ak−1) =
∑

y∈G(H)
−→a (x,y,−→ρ )=a1⊗···⊗ak−1

cx,y,−→ρ · y.

Theorem 7.4.4. The following statements are true.

1. B̂SA(H, J, s) equipped with the actions mk for k ≥ 1, and the Gr(H, s)–valued grading

gr is an A∞–module over A(Z). In particular,

gr(mk(x, a1, . . . , ak−1)) = gr(x) · gr(a1) · · · gr(ak−1)λk−2.

2. If H is admissible, B̂SA(H, J, s) is bounded.

3. For any two provincially admissible diagrams H1 and H2, equipped with admissible

almost complex structures J1 and J2, there is a graded homotopy equivalence

B̂SA(H1, J1, s) ' B̂SA(H2, J2, s).

Therefore we can talk about B̂SA(Y,Γ,Z, ψ, s) or just B̂SA(Y,Γ, s), relatively graded

by Gr(Y, s).

Proof. The proofs are analogous to those for B̂SD, with some differences. The biggest

difference is that we count more domains, so we need to use more results about degenerations.

The other major difference is the grading. Again, we prove the statement for gr, and

the one for gr follows immediately. Suppose y is a term in mk(x, a1, . . . , ak−1). Then there

is a domain B ∈ π2(x,y) and a compatible sequence −→ρ = (ρ1, . . . ,ρk−1) of sets of Reeb

chords, such that ind(B,−→ρ ) = 1, and ai = a(ρi, si), for some appropriate completion si. In

particular, gr(a1) · · · gr(ak−1) = gr(−→ρ ). On the other hand,

gr(y) = gr(x) · gr(B) = gr(x) · λ− ind(B,−→ρ )+#−→ρ gr(−→ρ )

= gr(x) · λ−1+(k−1) gr(a1) · · · gr(ak−1).

As with B̂SD, if we ignore Spinc–structures we can talk about the total invariant

B̂SA(Y,Γ) =
⊕

s∈Spinc(Y,∂Y \F )

B̂SA(Y,Γ, s).
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Remark. As with B̂SD the only nontrivial algebra action is by a single component of A(Z).

In this case the action depends on occupied arcs. Therefore if (Y,Γ) is p–unbalanced, then

B̂SA(Y,Γ) is an A∞–module over A(Z, p) only.

7.5 Invariants from nice diagrams

For a nice diagram H, the invariants can be computed completely combinatorially, avoiding

all discussion of moduli spaces.

Theorem 7.5.1. Let H be a nice diagram. Then for any admissible almost complex structure

J , the type D structure B̂SD(H, J) can be computed as follows. The map δ(x) counts the

following types of curves.

1. A source S. from x to y, consisting of g bigons with no e punctures, where all but one

of the bigons are constant on Σ, while the remaining one embeds as a convex bigon.

The interior of the image contains none of the points in x∩y. Such a curve contributes

I(o(x))⊗ y to δ(x).

2. A source S. from x to y, consisting of g − 2 bigons, each of which has no e punctures

and is constant on Σ, and a single quadrilateral with no e punctures, which embeds as

a convex rectangle. The interior of the image contains none of the points in x ∩ y.

Such a curve contributes I(o(x))⊗ y to δ(x).

3. A source S. from x to y, consisting of g−1 bigons, each of which has no e punctures and

is constant on Σ, and a single bigon with one e puncture, which embeds as a convex

rectangle, one of whose sides is the Reeb chord −ρ ⊂ Z labeling the puncture. The

interior of the image contains none of the points in x ∩ y. Such a curves contributes

I(o(x))a(ρ)I(o(y))⊗ y to δ(x).

Theorem 7.5.2. Let H be a nice diagram. Then for any admissible almost complex structure

J , the B̂SA(H, J) can be computed as follows.

The differential m1(x) counts the following types of regions. (These are the same as

cases (1) and (2) in Theorem 7.5.1.)
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1. A source S. from x to y, consisting of g bigons with no e punctures, where all but one

of the bigons are constant on Σ, while the remaining one embeds as a convex bigon.

The interior of the image contains none of the points in x∩y. Such a curve contributes

y to m1(x).

2. A source S. from x to y, consisting of g − 2 bigons, each of which has no e punctures

and is constant on Σ, and a single quadrilateral with no e punctures, which embeds as

a convex rectangle. The interior of the image contains none of the points in x ∩ y.

Such a curve contributes y to m1(x).

The algebra action m2(x, · ) counts regions of the type below.

1. A source S. from x to y, consisting of g − k bigons, each of which has no e punctures

and is constant on Σ, and a collection of k bigons, each of which has one e puncture

and which embeds as a convex rectangle, one of whose sides is the Reeb chord ρi ⊂ Z.

The height of all e punctures is the same, the interior of any image rectangle contains

none of the points in x∩ y and no other rectangles. Such a curve contributes y to the

action m2(x, I(o(x)){a(ρ1, . . . , ρk})I(o(y)).

In addition, all actions mk for k ≥ 3 are zero.

Proof of Theorems 7.5.1 and 7.5.2. The proofs follow the same steps as the ones for nice

diagrams in bordered manifolds. By looking at the index formula, and the restricted class

of regions, one can show that the only B, S., and
−→
P that have index ind(B, S.,

−→
P ) = 1 are

of the following two types.

1. S has no e punctures, and consists of g − 1 trivial components, and one non-trivial

bigon component, or g−2 trivial component and one non-trivial rectangle component.

2. S has several trivial components, and several bigons with a single e puncture each.

Moreover, the partition
−→
P consists of only one set.

The extra condition that the embedded index is also 1 (so the moduli space consists of

embedded curves), is equivalent to having no fixed points in the interior of a region, and no

region contained completely inside another.
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For such curves, MB
emb(x,y, S.,

−→
P ) has exactly one element, independent of the almost

complex structure J , using for example the Riemann mapping theorem.

7.6 Pairing theorem

In this section we describe the relationship between the sutured homology of the gluing of

two bordered sutured manifolds, and their bordered sutured invariants, proving the second

part of Theorem 4.

Recall that bordered sutured invariants are homotopy types of chain complexes, while

sutured Floer homology is usually regarded as an isomorphism type of homology groups.

However, one can also regard the underlying chain complex as an invariant up to homotopy

equivalence. To be precise, we will use SFH to denote sutured Floer homology, and SFC to

denote a representative chain complex defining that homology.

Theorem 7.6.1. Suppose (Y1,Γ1,Z, φ1) and (Y2,Γ2,−Z, φ2) are two bordered sutured mani-

folds that glue along F = F (Z) to form the sutured manifold (Y,Γ). Let si ∈ Spinc(Yi, ∂Yi\F )

be relative Spinc–structures for i = 1, 2. Then there is a graded chain homotopy equivalence⊕
s|Yi=si

SFC(Y,Γ, s) ' B̂SA(Y1,Γ1, s1)�A(Z) B̂SD(Y2,Γ2, s2),

provided that at least one of the modules on the right hand-side comes from an admissible

diagram.

To identify the gradings, we use the fact that the combined grading set Gr(Y1, s1)×Gr(Z)

Gr(Y2, s2) distinguishes the individual Spinc–structures s ∈ Spinc(Y, ∂Y ) by their homological

components, while the Maslov component agrees with the SFH grading on each SFC(Y, s).

Corollary 7.6.2. In terms of modules and derived tensor products, the pairing theorem can

be expressed as ⊕
s|Yi=si

SFC(Y,Γ, s) ' B̂SA(Y1,Γ1, s1) ⊗̃ B̂SDD(Y2,Γ2, s2).
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Corollary 7.6.2 is a restatement of Theorem 7.6.1 in purely A∞–module language. This

allows us to dispose of type D structures entirely. However, in practice, the definition of

the derived tensor product ⊗̃ involves an infinitely generated chain complex, while that of

� only a finitely generated chain complex (assuming both sides are finitely generated).

Proof of Theorem 7.6.1. We can prove the theorem using nice diagrams, similar to [LOT09,

Chapter 8].

Suppose H1 and H2 are nice diagrams for Y1 and Y2, respectively. If we glue them to get

a diagram H = H1 ∪ZH2 for Y = Y1 ∪F Y2, then H is also a nice diagram. Indeed, the only

regions that change are boundary regions, which are irrelevant, and regions adjacent to a

Reeb chord. In the latter case, two rectangular regions in H1 and H2, that border the same

Reeb chord, glue to a single rectangular region in H.

Generators in G(H) correspond to pairs of generators in G(H1) and G(H2) that occupy

complementary sets of arcs. Provincial bigons and rectangles in Hi are also bigons and

rectangles in H. The only other regions in H that contribute to the differential ∂ on SFC

are rectangles that are split into two rectangles in H1 and H2, each of which is adjacent to

the same Reeb chord ρ in Z. Such rectangles contribute terms of the form (m2⊗ id
B̂SD(H2)

)◦

(id
B̂SA(H1)

⊗ δ). Overall, terms in ∂ : SFC(H)→ SFC(H) are in a one-to-one correspondence

with terms in ∂ : B̂SA(H1)� B̂SD(H2)→ B̂SA(H1)� B̂SD(H2).

This shows that there is an isomorphism of chain complexes

SFC(H) ∼= B̂SA(H1)� B̂SD(H2).

The splitting into Spinc–structures and the equivalence of the gradings follow from Theo-

rems 6.3.1 and 6.4.2, where the latter is applied to (Y1,Γ1,−∅∪Z) and (Y2,Γ2,−Z∪∅).
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Chapter 8

Bimodule invariants

As promised in the introduction, we will associate to a decorated sutured cobordism, a

special type of A∞–bimodule. We will sketch the construction, which closely parallels the

discussion of bimodules in [LOT10a]. The reader is encouraged to look there, especially for

a careful discussion of the algebra involved.

8.1 Algebraic preliminaries

The invariants we will define have the form of type DA structures, which is a combination of

a type D structure and an A∞–module.

Definition 8.1.1. Let A and B be differential graded algebras with differential and multi-

plication denoted ∂A, ∂B, µA, and µB, respectively. A type DA structure over A and B is

a graded vector space M , together with a collection of homogeneous operations mk : M ⊗

B⊗(k−1) → A⊗M [2− k], satisfying the compatibility condition

k∑
p=1

(µA ⊗ idM) ◦ (idA⊗mk−p+1) ◦ (mp ⊗ idB⊗(k−p)) + (∂A ⊗ idM) ◦mk

+
k−2∑
p=0

mk ◦ (idM ⊗ idB⊗p ⊗ ∂B ⊗ idB⊗(k−p−2))

+
k−3∑
p=0

mk ◦ (idM ⊗ idB⊗p ⊗µB ⊗ idB⊗(k−p−3)) = 0,
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for all k ≥ 0.

We can also define mi
k : M ⊗B⊗(k−1) → A⊗i⊗M [1 + i− k], such that m0

1 = idM , m0
k = 0

for k > 1, m1
k = mk, and mi

k is obtained by iterating m1
∗:

mi
k =

k−1∑
j=0

(idA⊗(i−1) ⊗mj+1) ◦ (mi−1
k−j ⊗ idB⊗ j).

In the special case where A is the trivial algebra {1}, this is exactly the definition of a

right A∞–module over B. In the case when B is trivial, or we ignore mi
k for k ≥ 2, this is

exactly the definition of a left type D structure over A. In that case mi
1 corresponds to δi.

We will use some notation from [LOT10a] and denote a type DA structure over A and B

by AMB. In the same vein, a type D structure over A is AM , and a right A∞–module over

B is MB. We can extend the tensor � to type DA structures as follows.

Definition 8.1.2. Let AMB and BNC be two type DA structures, with operations mi
k, and

njl , respectively. Let AMB �B BNC denote the type DA structure A(M⊗N)C, with operations

(m� n)ik =
∑
j≥1

(mi
j ⊗ idN) ◦ (idM ⊗nj−1

k ).

In the case when A and C are both trivial, this coincides with the standard operation

MB � BN .

The constructions generalize to mixed multi-modules of type A1,...,Ai
B1,...,Bj

MC1,...,Ck
D1,...,Dl

. Such a

module is left, respectively right, type D with respect to Ap, respectively Cp, and left,

respectively right A∞–module with respect to Bp, respectively Dp. The category of such

modules is denoted A1,...,Ai
B1,...,Bj

ModC1,...,Ck
D1,...,Dl

. We can apply the tensor �X to any pair of such

modules, as long as one of them has X as an upper (lower) right index, and the other has

X as a lower (upper) left index.

We will only use a few special cases of this construction. The most important one is to

associate to AMB a canonical A,B A∞–bimodule A(A�M)B = AAA �A AMB. This allows

us to bypass type D and type DA structures. In particular,

A(A�M)B ⊗̃B B(B �N)C ' A(A� (M �B N))C .
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8.2 B̂SD and B̂SA revisited

Recall that the definition of B̂SD counted a subset of the moduli spaces used to define

B̂SA, and interpreted them differently. This operation can in fact be described completely

algebraically. For any arc diagram Z, there is a bimodule (or type DD structure) A(−Z),A(Z)I,

such that

A(−Z)B̂SD(H, J) = B̂SA(H, J)A(Z) �A(Z)
A(−Z),A(Z)I.

In fact, we could use this as the definition of B̂SD, and use the naturallity of � to prove

that it is well-defined for H and J , and its homotopy type is an invariant of the underling

bordered sutured manifold.

8.3 Bimodule categories

For two differential graded algebras A and B, the notion of a left-left A,B–module is exactly

the same as that of a left A ⊗ B–module. Similarly, a left type D structure over A and B

is exactly the same as a left type D structure over A⊗B. In other words, we can interpret

a module A,BM as A⊗BM , and vice versa, and the categories A,B Mod and A⊗B Mod are

canonically identified.

The situation is not as simple for A∞–modules. The categories ModA,B and ModA⊗B are

not the same, or even equivalent. Fortunately, there is a canonical functor F : ModA⊗B →

ModA,B which induces an equivalence of the derived categories. For this result, and the

precise definition of F see [LOT10a].

8.4 B̂SDA and B̂SDAM

We will give two definitions of the bimodules. One is purely algebraic, and allows us to easily

deduce that the bimodules are well-defined and invariant, while the other is more analytic,

but is more useful in practice.
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Definition 8.4.1. Suppose (Y,Γ,Z1∪Z2, φ) is a bordered sutured manifold—or equivalently,

a decorated sutured cobordism from F (−Z1) to F (Z2). Note that A(Z1 ∪ Z2) = A(Z1) ⊗

A(Z2). Define

A(−Z1)B̂SDA(Y,Γ, s)A(Z2) = F(B̂SA(Y,Γ, s))A(Z1),A(Z2) �A(Z1)
A(−Z1),A(Z1)I.

The invariance follows easily from the corresponding results for B̂SA and naturallity.

As promised, below we give a more practical construction. Fix a provincially admissible

diagram H = (Σ,α,β,Z1 ∪ Z2, ψ), and an admissible almost complex structure J .

Recall that to define both B̂SD and B̂SA, we looked at moduli spacesMB
emb(x,y, S.,

−→
P ),

where
−→
P is a partition of the e punctures on the source S.. In our case, we can distinguish

two sets of e punctures—those labeled by Reeb chords in Z1, and those labeled by Reeb

chords in Z2. We denote the two sets by E1 and E2, respectively. Any partition
−→
P restricts

to partitions
−→
P i =

−→
P |Ei on the two sets.

Definition 8.4.2. Define the moduli space

MB
emb(x,y, S.,

−→
P 1,
−→
P 2) =

⋃
−→
P |Ei=

−→
P i

MB
emb(x,y, S.,

−→
P ),

with index

ind(B,−→ρ 1,
−→ρ 2) = e(B) + nx(B) + ny(B)

+ #−→ρ 1 + #−→ρ 2 + ι(−→ρ 1) + ι(−→ρ 2),

where −→ρ i = −→ρ (
−→
P i) is a sequence of sets of Reeb chords in Zi, for i = 1, 2.

This has the effect of forgetting about the relative height of punctures in E1 to those in

E2. Its algebraic analogue is applying the functor F , which combines the algebra actions

m3(x, a⊗ 1, 1⊗ b) and m3(x, 1⊗ b, a⊗ 1) into m1,1,1(x, a, b).

The general idea is to treat the Z1 part of the arc diagram as in B̂SD, and the Z2 part

as in B̂SA. First, to a generator x ∈ G(H) we associate idempotents I1(o(x)) ∈ I(−Z1) and

I2(o(x)) ∈ I(Z2), corresponding to unoccupied arcs on the Z1 side, and occupied arcs on

the Z2 side, respectively. Next, we will look at discrete partitions
−→
P 1 = ({q1}, . . . , {qi}) on

the Z1 side, while allowing arbitrary partitions
−→
P 2 on the Z2 side.
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If the punctures in
−→
P 1 are labeled by the Reeb chords (ρ1, . . . , ρi), set

a1(x,y,
−→
P 1) = I1(o(x)) · a(−ρ1) · · · a(−ρi) · I1(o(y)) ∈ A(−Z1).

If the sets of punctures in
−→
P 2 are labeled by some sequence of sets of Reeb chords

(ρ1, . . . ,ρj), set

a2(x,y,
−→
P 2) = I2(x) · a(ρ1)⊗ · · · ⊗ a(ρj) · I2(y) ∈ A(Z2)⊗j.

Definition 8.4.3. Fix H, J , and s. Let B̂SDA(H, J, s) be freely generated over Z/2 by

G(H, s), with I(−Z1) and I(Z2) actions

I(s1) · x · I(s2) =

x if s1 = o(x) and s2 = o(x),

0 otherwise.

It has type DA operations

mk(x, b1, . . . , bk−1) = ∑
ind(B,−→ρ (

−→
P 1),−→ρ (

−→
P 2))=1

a2(x,y,
−→
P 2)=b1⊗···⊗bk−1

#MB
emb(x,y, S.,

−→
P 1,
−→
P 2) · a1(x,y,

−→
P 1)⊗ y.

It is easy to check that Definitions 8.4.3 and 8.4.1 are equivalent. The operation of

passing from a single partition to pairs of partitions corresponds to applying the functor F ,

while the operation of restricting to discrete partitions on the Z1 side and multiplying the

corresponding Reeb chords corresponds to the functor · �A(Z1)
A(−Z1),A(Z1) I.

We can use either definition to define

A(−Z1)B̂SDAM(Y,Γ, s)A(Z2) =

A(−Z1)A(−Z1)A(−Z1) �A(−Z1)
A(−Z1)B̂SDA(Y,Γ, s)A(Z2).

As with the one-sided modules, there is a well-defined grading.

Theorem 8.4.4. The grading gr on B̂SDA(Y,Γ, s) is well-defined with values in Gr(Y, s),

and makes it a graded DA–structure. In particular, whenever b ⊗ y is a summand in

mk(x, a1, . . . , ak−1), we have

gr(b) · gr(y) = λk−2 · gr(x) · gr(a1) · · · gr(ak−1).
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Proof. This is a straightforward combination of the arguments for the gradings on B̂SD and

B̂SA.

8.5 Nice diagrams and pairing

The key results for bimodules allowing us to talk about a functor from the decorated sutured

cobordism category SD to the category D of differential graded algebras and A∞–bimodules

are the full version of Theorem 4, and Theorem 5. Below we give a more precise version of

Theorem 4, in the vein of Theorem 7.6.1.

Theorem 8.5.1. Given two bordered sutured manifolds (Y1,Γ1,−Z1∪Z2) and (Y2,Γ2,−Z2∪

Z3), representing cobordisms from Z1 to Z2 and from Z2 to Z3, respectively, there are graded

homotopy equivalences of bimodules⊕
s|Yi=si

B̂SDA(Y1 ∪ Y2, s) ' B̂SDA(Y1, s1) �A(Z2) B̂SDA(Y2, s2).

⊕
s|Yi=si

B̂SDAM(Y1 ∪ Y2, s) ' B̂SDAM(Y1, s1) ⊗̃A(Z2) B̂SDAM(Y2, s2).

The gradings are identified in the sense of Theorem 6.4.2.

The proof is completely analogous to that of Theorem 7.6.1. It relies on the combinatorial

form of B̂SDA from a nice diagram, and the fact that gluing two such diagrams also gives a

nice diagram with direct correspondence of domains. The actual result for nice diagrams is

given below.

Theorem 8.5.2. For any nice diagram H = (Σ,α,β,Z1∪Z2, ψ) and any admissible almost

complex structure J the domains that contribute to mk are of the following types.

1. Provincial bigons and rectangles, which contribute terms of the form I ⊗ y to m1(x).

2. Rectangles hitting a Reeb chord at Z1, which contribute terms of the form a ⊗ y to

m1(x).

3. Collections of rectangles hitting Reeb chords at Z2, at the same height, which contribute

terms of the form I ⊗ y to m2(x, . . .).
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Proof. The proof is the same as those for B̂SD and B̂SA. The only new step is showing

that there are no mixed terms, i.e. combinations of (2) and (3). In other words, the actions

of A(−Z1) and A(Z2) commute for a nice diagram. The reason is that such a combined

domain that hits both Z1 and Z2 decomposes into two domains that hit only one side each.

There is no constraint of the relative heights, so such a domain will have index at least 2,

and would not be counted.

8.6 Bimodule of the identity

In this subsection we sketch the proof of Theorem 5. We prove a version for B̂SDA, which

implies the original statement.

Definition 8.6.1. Given an arc diagram Z, define the bimodule A(Z) IA(Z), which as an

I(Z)–bimodule is isomorphic to I(Z) itself, and whose nontrivial operations are

m2(Ii, a) = a⊗ If , (8.1)

for all algebra elements a ∈ A(Z) with initial and final idempotents Ii and If , respectively.

It is absolutely graded by Gr(Z), as a subset of A(Z), i.e. all elements are graded 0.

It is easy to see that A(Z) IA(Z) � A(Z)MA(Z′) ∼= A(Z)MA(Z′) canonically, and that A(Z) �

A(Z) IA(Z) ' A(Z).

Theorem 8.6.2. The identity decorated sutured cobordism idZ = (F (Z) × [0, 1],Λ × [0, 1])

from Z to Z has a graded bimodule invariant

A(Z) B̂SDA(idZ)A(Z) ' A(Z) IA(Z).

Proof (sketch). The proof is essentially the same as that of the corresponding statement for

pure bordered identity cobordisms in [LOT10a]. First we look at an appropriate Heegaard

diagram H for idZ . For any Z there is a canonical diagram of the form in Figure 10a, only

here we interpret the left side as the −Z, or type D, portion of the boundary, while the

right side is the +Z, or A∞–type, portion. Indeed, choosing which of the right arcs are
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occupied in a generator determines it uniquely, and G(H) is a one-to-one correspondence

with elementary idempotents. Thus the underlying space for B̂SDA(idZ) is I(Z). For any

Reeb chord ρ of length one there is a convex octagonal domain in H that makes Eq. (8.1)

hold for a = a(ρ, s), for any such ρ, and any completion s.

The rest of the proof is algebraic. Any bimodule with underlying module I(Z) corre-

sponds to some A∞–algebra morphism φ : A(Z) → A(Z). We compute the homology of

A(Z) and show it is Massey generated by length one Reeb chords as above. Since Eq. (8.1)

holds for such elements, φ is a quasi-isomorphism. By Theorem 8.5.1, we know B̂SDA(idZ)

squares to itself, and so does φ, i.e. φ◦φ ' φ. Since it is a quasi isomorphism, it is homotopic

to the identity morphism, and Eq. (8.1) holds for all a, up to homotopy equivalence.

Finally, for the grading, Gr(−Z∪Z) has two copies of H1(F (Z)), with opposite pairings.

For all Spinc–structures, there are obvious periodic domains, such that π2(x,x) = H1(F ).

Taking the quotient by the stabilizer subgroup identifies the subgroups Gr(−Z) and Gr(Z)

by the canonical anti-isomorphism. All domains have vanishing Maslov grading and cancel-

ing homological gradings, so in each Spinc–structure all generators have the same relative

grading. Thus, we can identify it with an absolute grading where all gradings are 0.
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Chapter 9

Applications

In this section we describe some applications of the new invariants. First, as a warm-up we

describe how both sutured Floer homology and the regular bordered Floer homology appear

as special cases of bordered sutured homology. Then we describe how we can recover the

sutured Floer homology of a manifold with boundary from its bordered invariants.

Another application is a new proof for the surface decomposition formula [Juh08, Theo-

rem1.3] of Juhász.

9.1 Sutured Floer homology as a special case

We have already seen that for a bordered sutured manifold (Y,Γ,∅), the bordered sutured

invariants coincide with the sutured ones. However, there are many more cases when this

happens. In fact, for any balanced bordered sutured manifold, the B̂SD and B̂SA invariants

still reduce to SFH, no matter what the arc diagram is.

Theorem 9.1.1. Let (Y,Γ) be a balanced sutured manifold, and φ : G(Z) → ∂Y be a

parametrization of any part of (Y,Γ) by an arc diagram Z with k matched pairs. Let (SFC, ∂)

be the sutured chain complex for (Y,Γ).

The following statements hold.

1. (B̂SA(Y,Γ,Z, φ),m1) ' (SFC(Y,Γ), ∂), where A(Z, 0) = {I(∅)} acts by identity on

B̂SA and A(Z, k) kills it for any k > 0.
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2. B̂SD(Y,Γ,Z, φ) ∼= SFC(Y,Γ) as a set, with

δ(x) = I ⊗ ∂(x),

where I = I({1, . . . , k}) is the unique idempotent in A(−Z, k).

3. B̂SDD(Y,Γ,Z, φ) ' A(−Z, k) ⊗ SFC(Y,Γ) as a product of chain complexes, with the

standard action of A(−Z) on A(−Z, k) on the left.

Proof. Let H be a provincially admissible Heegaard diagram for (Y,Γ,Z, φ). If we erase Z

and αa from the diagram, we obtain an admissible sutured diagram H′ for (Y,Γ). (Indeed,

any periodic domain for H′ is a provincial periodic domain for H.)

Remember that for a balanced, i.e. 0–unbalanced manifold, each generator occupies 0

arcs in αa. In particular G(H) = G(H′).

Let u ∈MB(x,y, S.,
−→
P ) be a strongly boundary monotonic curve. Let ot(u) denote the

set of α ∈ α, for which u−1(α × {1} × {t}) is nonempty. Since x occupies only α circles,

ot(u) ⊂ αc for small t. The only changes in ot(u) can occur at the heights of e punctures.

But at an e puncture, the boundary goes over a Reeb chord, so ot(u) can only change by

replacing some arc in αa with another. Therefore, ot(u) ⊂ αc for all t ∈ R, and S. has no

e punctures. Thus, u is a curve with no e punctures and doesn’t involve αa. But these are

exactly the curves from H′ counted in the definition of SFH.

Therefore, the curves counted for the definitions of B̂SD and B̂SA from H are in a one-

to-one correspondence with curves counted for the definition of SFH from H′. Moreover, in

B̂SD and B̂SA these curves are all provincial.

Algebraically, in B̂SD a provincial curve from x to y contributes 1⊗y to δ(x). In B̂SA it

contributes y to m1(x). Finally, in SFH it contributes y to ∂(x). The first two statements

follow. The last is a trivial consequence of the definition of B̂SDD.

In particular, the interesting behavior of the bordered sutured invariants occurs when

the underlying sutured manifold is unbalanced. In that case sutured Floer homology is not

defined, or is trivially set to 0.
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9.2 Bordered Floer homology as a special case

The situation in this section is the opposite of that in the previous one. Here we show that

if we look at manifolds that are, in a sense, maximally unbalanced, the bordered sutured

invariants reduce to purely bordered invariants.

First we recall a basic result from [Juh06].

Proposition 9.2.1. Let C denote the collection of (homeomorphism classes of) closed con-

nected 3–manifolds, and C ′ denote the collection of (equivalence classes of) sutured 3–manifolds

with one boundary component homeomorphic to S2, and a single suture on it. The following

statements hold.

1. C and C ′ are in a one-to-one correspondence given by the map

ξ : C → C ′,

where ξ(Y ) is obtained by removing an open 3–ball from Y , and putting a single suture

on the boundary.

2. There is a homotopy equivalence ĈF(Y ) ' SFC(ξ(Y )).

The correspondence is most evident on the level of Heegaard diagrams, where a diagram

for ξ(Y ) is obtained from a diagram for Y by cutting out a small disc around the basepoint.

There is a natural extension of this result to the bordered category.

Theorem 9.2.2. Let B denote the collection of (equivalence classes of) bordered manifolds

with one boundary component, and let B′ denote the collection of (equivalence classes of)

bordered sutured manifolds of the following form. (Y,Γ,Z, φ) ∈ B′ if and only if D =

∂Y \ F (Z) is a single disc D and Γ ∩D is a single arc. The following statements hold.

1. B and B′ are in a one-to-one correspondence given by the map

ζ : B → B′,

which to a bordered manifold Y parametrized by Z = (Z, a,M, z) associates a bordered

sutured manifold ζ(Y ) = (Y, Z,Z ′, φ), parametrized by Z ′ = (Z \D, a,M), where D is

a small neighborhood of z.
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2. For any Y ∈ B, we have

B̂SD(ζ(Y )) ' ĈFD(Y ),

B̂SA(ζ(Y )) ' ĈFA(Y ).

3. If Y1 and Y2 are bordered manifolds that glue to form a closed manifold Y , then ζ(Y1)

and ζ(Y2) glue to form ξ(Y ).

Proof. In the bordered setting the parametrization of F (Z) = ∂Y means that there is a self-

indexing Morse function f on F with one index–0 critical point p, one index–2 critical point

q, and 2k many index–1 critical points r1, . . . , r2k. The circle Z is the level set f−1(3/2), the

basepoint z is the intersection of a gradient flowline from p to q with Z, and the matched

points M−1(i) ∈ a are the intersections of the flowlines from ri with Z.

Note that F ′ = F \ D is a surface with boundary, parametrized by the arc diagram

Z ′ = (Z ′, a,M), where Z ′ = Z \D. Indeed, if we take D to be a neighborhood of a flowline

from p to q, then f |F ′ is a self indexing Morse function for F ′ with only index 1–critical

points, and their stable manifolds intersect the level set Z ′ at the matched points a.

Moreover, the circle Z separates F into two regions—a disc R+ around the index–2

critical point q, and a genus k surface R− with one boundary component. Thus, (Y, Z) is

indeed sutured, and the arc Z ′ embeds into the suture Z. Since D∩Z is an arc, the manifold

we get is indeed in B′.

To see that the construction is reversible we need to check that for any (Y,Γ,Z, φ) ∈ B′

there is only one suture in Γ, Z has only one component, and R+ is a disc. Indeed, Z ∩ Γ

consists only of properly embedded arcs in F (Z). But Γ ∩ ∂F = Γ ∩ ∂D consists of two

points, and therefore there is only one arc. Now Γ = (Γ∩F )∪ (Γ∩D) is a circle, and R+∩F

is half a disc, so R+ is a disc. This proves (1).

To see (2), we will investigate the correspondence on Heegaard diagrams. Consider a

boundary compatible Morse function f on a bordered 3–manifold Y . On the boundary it

behaves as described in the first part of the proof. In the interior, there are only index–1 and

index–2 critical points. Let B be a neighborhood in Y of the flowline from the index–0 to

the index–3 critical point, which are the index–0 and index–2 critical points on the surface.



87

Then D is precisely B ∩ ∂Y . Let Y ′ = Y \ B. Topologically, passing from Y to Y ′ has

no effect, except for canceling the two critical points. Now f |Y ′ is a boundary compatible

Morse function for the bordered sutured manifold Y ′ = ζ(Y ). One can verify this is the

same construction as above, except we have pushed D slightly into the manifold.

Looking at the Heegaard diagrams H = (Σ,α,β) and H′ = (Σ′,α,β), compatible with

f and f |Y ′ , respectively, one can see that the effect of removing B on H is that of removing

a neighborhood of the basepoint z ∈ ∂Σ. Now Z = ∂Σ \ ν(z), the Reeb chords correspond,

and ∂Σ′ \ Z is a small arc in the region where z used to be.

Recall that the definitions of ĈFD and ĈFA on one side, and B̂SD and B̂SA on the other,

are the same, except that ∂Σ′\Z in the latter plays the role of z in the former. Therefore the

corresponding moduli spacesM exactly coincide, and for these particular diagrams there is

actual equality of the invariants, proving (2).

For (3), it is enough to notice that Y = Y1 ∪F Y2, while ζ(Y1) ∪F\D ζ(Y2) = Y1 ∪F\D Y2,

which is Y minus a ball.

9.3 From bordered to sutured homology

In the current section we prove Theorem 1, which was the original motivation for developing

the theory of bordered sutured manifolds and their invariants. Recall that it states that for

any set of sutures on a bordered manifold, the sutured homology can be obtained from the

bordered homology in a functorial way. A refined version is given below.

Theorem 9.3.1. Let F be a closed connected surface parametrized by some pointed matched

circle Z. Let Γ be any set of sutures on F , i.e. an oriented multi curve in F that divides it

into positive and negative regions R+ and R−.

There is a (non unique) left type D structure ĈFD(Γ) over A(Z), with the following

property. If Y is any 3–manifold, such that ∂Y is identified with F , making (Y,Γ) a sutured

manifold, then

SFC(Y,Γ) ' ĈFA(Y )� ĈFD(Γ).
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Similarly, there is a (non unique) right A∞–module ĈFA(Γ) over A(−Z), such that

SFC(Y,Γ) ' ĈFA(Γ)� ĈFD(Y ).

Before we begin the proof, we will note that although ĈFD(Γ) and ĈFA(Γ) are not unique

(not even up to homotopy equivalence), they can be easily made so by fixing some extra

data. The exact details will become clear below.

Proof. Fix the surface F , pointed matched circle Z = (Z, a,M), and the sutures Γ. Repeat-

ing the discussion in the proof of Theorem 9.2.2, the parametrization of F means that there

is a self-indexing Morse function f on F with exactly one index–0 critical point, and exactly

one index–2 critical point, where the circle Z is the level set f−1(3/2).

The choice that breaks uniqueness is the following. Isotope Γ along F until one of the

sutures γ becomes tangent to Z at the basepoint z, and so that the orientations of Z and γ

agree. Let D be a disc neighborhood of z in F . We can further isotope γ until γ∩D = Z∩D.

We will refer to this operation as picking a basepoint, with direction, on Γ.

Let F ′ = F \D, and let P be the 3–manifold F ′× [0, 1]. Let ∆ be a set of sutures on P ,

such that

(F ′ × {1}) ∩∆ = (F ′ ∩ Γ)× {1},

(F ′ × {0}) ∩∆ = (F ′ ∩ Z)× {0},

(∂D × [0, 1]) ∩∆ = (Γ ∩ ∂D)× [0, 1].

We orient ∆ so that on the “top” surface F ′ × {1} its orientation agrees with Γ, its

orientation on the “bottom” is opposite from Z, and on ∂D × [0, 1] the two segments are

oriented opposite from each other.

As in Theorem 9.2.2, F ′ is parametrized by the arc diagram Z ′ = (Z\D, a,M). Therefore

the “bottom” of P , i.e. F ′ × {0} is parametrized by −Z ′. (Indeed −(Z \D) is part of ∆.)

This makes (P,∆) into a bordered sutured manifold, parametrized by −Z ′.

Isotopies of Γ outside of D have no effect on P , except for an isotopy of ∆ in the non

parametrized part of ∂P . Therefore the bordered sutured manifold P is an invariant of F ,

Γ, and the choice of basepoint on Γ.
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Define

ĈFD(Γ) = B̂SD(P,∆),

ĈFA(Γ) = B̂SA(P,∆).

It is clear that their homotopy types are invariants of Γ and the choice of basepoint

(with direction). Since A(Z ′) = A(Z), they are indeed modules over A(Z) and A(−Z),

respectively.

To prove the rest of the theorem, consider any manifold Y with boundary ∂Y = F .

By the construction in Theorem 9.2.2, ζ(Y ) is the sutured manifold (Y, Z), where F ′ is

parametrized by Z ′.

If we glue ζ(Y ) and P along F ′, we get the sutured manifold

(Y ∪ F ′ × [0, 1], (Z \ F ′) ∪ (∆ \ F ′ × {0})).

The sutures consist of Z \ F ′ = Z ∩ D = Γ ∩ D, ∆ ∩ (∂D × [0, 1]) = (Γ ∩ ∂D) × [0, 1],

and ∆∩ (F ′×{1}) = (Γ \D)×{1}. Up to homeomorphism, Y ∪F ′× [0, 1] = Y , and under

that homeomorphism the sutures get collapsed to Γ ⊂ F . Therefore, ζ(Y )∪F ′ P is precisely

(Y,Γ).

Using Theorem 9.2.2, B̂SD(ζ(Y )) ' ĈFD(Y ), and B̂SA(ζ(Y )) ' ĈFA(Y ). By Theo-

rem 7.6.1,

SFC(Y,Γ) ' B̂SA(ζ(Y ))� B̂SD(P ) ' ĈFA(Y )� ĈFD(Γ),

SFC(Y,Γ) ' B̂SA(P )� B̂SD(ζ(Y )) ' ĈFA(Γ)� ĈFD(Y ).

9.4 Surface decompositions

The final application we will show is a new proof of the surface decomposition theorem of

Juhász proved in [Juh08].

More precisely we prove the following statement.
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Theorem 9.4.1. Let (Y,Γ) be a balanced sutured manifold. Let S be a properly embedded

surface in Y with the following properties. S has no closed components, and each component

of ∂S intersects both R− and R+. (Juhász calls such a surface a good decomposing surface.)

A Spinc structure s ∈ Spinc(Y,Γ) is outer with respect to S if it is represented by a vector

field v which is nowhere tangent to a normal vector to −S (with respect to some metric).

Let (Y ′,Γ′) be the sutured manifold, obtained by decomposing Y along S. More precisely,

Y ′ is Y cut along S, such that ∂Y ′ = ∂Y ∪+S ∪ −S, and the sutures Γ′ are chosen so that

R−(Γ′) = R−(Γ) ∪ −S, and R+(Γ′) = R+(Γ) ∪+S. Here +S (respectively −S) is the copy

of S on ∂Y ′, whose orientation agrees (respectively disagrees) with S.

Then the following statement holds.

SFH(Y ′,Γ′) ∼=
⊕

s outward to S

SFH(Y,Γ, s).

Proof. We will consider three bordered sutured manifolds. Let T = S × [−2, 2] ⊂ Y be a

neighborhood of S in Y (so the positive normal of S is in the + direction). Let W = Y \ T ,

and let P = S × ([−2,−1]∪ [1, 2]) ⊂ T . We can assume that Γ∩ ∂T consists of arcs parallel

to the [−2, 2] factor.

Put sutures on T , W and P in the following way. First, notice that R+(Γ)∩ ∂S consists

of several arcs a = {a1, . . . , an}. Let A+ ⊂ S be a collection of disjoint discs, such that

A+ ∩ ∂S = a.

On T put sutures ΓT , such that

R+(ΓT ) ∩ ∂Y = R+(Γ) ∩ ∂T,

R+(ΓT ) ∩ (S × {±2}) = A+ × {±2}.

On W put sutures ΓW , such that

R+(ΓW ) ∩ ∂Y = R+(Γ) ∩ ∂W,

R+(ΓW ) ∩ (S × {±2}) = A+ × {±2}.
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On P put sutures ΓP , such that

R+(ΓP ) ∩ ∂Y = R+(Γ) ∩ ∂P,

R+(ΓP ) ∩ (S × {±2}) = A+ × {±2},

R+(ΓP ) ∩ (S × {−1}) = S × {−1},

R+(ΓP ) ∩ (S × {1}) = ∅.

Fix a parametrization of S by an arc diagram ZS with k many arcs, such that the positive

region of S is A+. This is possible, since S has no closed components, and the arcs a hit

every boundary component.

Parametrize the surfaces S × {±2} in each of T , W , and P by ±ZS, depending on

orientation. If we set U = S × {±2} ⊂ W , with the boundary orientation from W , then U

is parametrized by Z = Z1 ∪ Z2, where Z1
∼= ZS parametrizes S × {−2}, and Z2

∼= −ZS
parametrizes S ×{2}. Thus, W is a bordered sutured manifold parametrized by Z, while T

and P are parametrized by −Z (see Figure 9). Moreover, gluing along the parametrization,

W ∪U T = (Y,Γ),

W ∪U P = (Y ′,Γ′).

We will look at the relationship between B̂SD(T ) and B̂SD(P ). For simplicity we will

assume S is connected. The argument easily generalizes to multiple connected components.

Alternatively, it follows by induction. The Heegaard diagrams HT and HP for T and P are

shown in Figure 10. Since all regions D have nonzero ∂∂D, the diagrams are automatically

provincially admissible.

The algebra A(Z) splits as A(Z1)⊗A(Z2), and each idempotent I ∈ I(Z) splits as the

product I = I1 ⊗ I2, where I1 ∈ I(Z1) and I2 ∈ I(Z2). Moreover, I1 is in a summand

I(Z, l) for some l = 0, . . . , k. Denote this number by l(I). Intuitively, l(I) means “how

many arcs on the Z1 portion of Z does I occupy”. Similarly, for a generator x we can define

l(x) = l(I(o(x)).

Notice that HP has a unique generator xP , such that l(xP ) = k. Moreover, there are only

two regions in the diagram, and both of them are boundary regions. Therefore, no curves

contribute to δ. Thus, B̂SD(P ) has a unique generator xP , with δ(xP ) = 0.
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S × {−2} S × {2}

(a) W parametrized by Z.

S × {−2} S × {2}

(b) T parametrized by −Z.

S × {−2} S × {−1} S × {1} S × {2}

(c) P parametrized by −Z.

Figure 9: Bordered sutured decomposition of (Y,Γ) and (Y ′,Γ′).
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A

A
B

B

C

C

-Z1 -Z2

(a) HT with xT marked.

A

A
B

B

C

C

-Z1 -Z2

(b) HP with xP marked.

Figure 10: Heegaard diagrams for P and T . Here A, B, and C denote 1–handles.

Now, consider HT . Every αa arc intersects a unique β curve, and any β curve intersects

a unique pair of αa arcs, that correspond in −Z1 and −Z2
∼= Z1. Therefore for any s ⊂

{1, . . . , k} there is a unique generator xs ∈ G(Ht), such that I(o(x)) = I1(s) ⊗ I2(s), and

l(xs) = #s. These are all the elements of G(HP ).

Consider all the Spinc–structures in Spinc(T, ∂T \ S × {±2}). By Poincaré duality they

are an affine space over H1(T, S ×{±2}) = H1(S × [−2, 2], S ×{±2}) ∼= Z, generated by an

arc µ = {p} × [−2, 2] for any p ∈ S. It is easy to see that ε(x,y) = (l(x)− l(y)) · [µ]. Thus,

for any x ∈ G(HT ), its Spinc–structure s(x) depends only on l(x). In particular, there is a

unique generator xT , in the Spinc–structure sk = s(xT ) which corresponds to l = k.

Since l(xT ) = k, any class B ∈ π2(x,x) that contributes to δ could not hit any Reeb

chords on the Z2 side, and ∂∂B ∩ Z2 should be empty. But any elementary region in the

diagram hits Reeb chords on both sides. Therefore any such B should be 0, and δ(xT ) = 0.

Notice that G(HP ) = {xP} ∼= {xT} = G(HT , sk), I(o(xP )) = I(o(xT )) = I1({1, . . . , k})⊗

I2(∅), and δ(xP ) = δ(xT ) = 0. Therefore B̂SD(HP ) ∼= B̂SD(HT , sk), and B̂SD(P ) '

B̂SD(T, sk), as type D structures over A(Z).
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By the pairing theorem,

SFC(Y ′,Γ′) ' B̂SA(W )� B̂SD(P )

' B̂SA(W )� B̂SD(T, sk) '
⊕

s|T=sk

SFC(Y,Γ, s).

To finish the proof, we need to check that s ∈ Spinc(Y, ∂Y ) is outward to S if and only

if s|T = sk. This follows from the fact that being outward to S is a local condition. In

T = S × [−2, 2] the existence of an outward vector field representing sl is equivalent to

l = k.

In fact, using bimodules the proof carries through even when W has another bordered

component Z ′. Thus we get a somewhat stronger version of the formula.

Theorem 9.4.2. If (Y,Γ,Z, φ) is a bordered sutured manifold, and S is a nice decomposing

surface, where ∂S ⊂ ∂Y \F (Z), and (Y ′,Γ′,Z, φ) is obtained by decomposing along S, then

the following formulas hold.

B̂SD(Y ′,Γ′) '
⊕

s outward to S

B̂SD(Y,Γ, s),

B̂SA(Y ′,Γ′) '
⊕

s outward to S

B̂SA(Y,Γ, s).

Proof. The first statement follows as in Theorem 9.4.1, using B̂SDA(W ). The second follows

analogously, replacing the argument for B̂SD(T ) and B̂SD(P ) with one for B̂SA(T ) and

B̂SA(P ).
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Chapter 10

Examples

To help the reader understand the definitions we give some simple examples of bordered

sutured manifolds and compute their invariants.

10.1 Sutured surfaces and arc diagrams

First we discuss some simple arc diagrams and their algebras, that parametrize the same

sutured surfaces

Example 10.1.1. One of the simplest classes of examples is the following. Let Fn be the

sutured surface (D2,Λn), where Λn consists of 2n distinct points. That is, Fn is a disc,

whose boundary circle is divided into n positive and n negative arcs.

There are many different arc diagrams for Fn, especially for large n, but there are two

special cases which we will consider in detail.

Example 10.1.2. Let Z = {Z1, . . . , Zn} be a collection of oriented arcs, and a = {a1, . . . , a2n−2}

be a collection of points, such that a1, . . . , an−1 ∈ Z1 are in this order, and an+i−1 ∈ Zi+1 for

i = 1, . . . , n− 1. Let M be the matching M(ai) = M(a2n−i−1) = i for i = 1, . . . , n− 1. The

arc diagram Wn = (Z, a,M) parametrizes Fn, as in Figure 11a.

Proposition 10.1.1. For the arc diagram Wn from Example 10.1.2, the algebra A(Wn)

satisfies A(Wn, k) ∼= A(n− 1, k) for all k = 0, . . . , n− 1.



96

Z1

Z2 Zn

· · ·

(a) The arc diagramWn for Fn and correspond-

ing parametrization.

Z1

Z2 Zn

· · ·

(b) The arc diagram Vn for Fn and correspond-

ing parametrization.

Figure 11: Two parametrizations of Fn.

Proof. The algebra A(Wn) is a subalgebra of A(n− 1, 1, 1, . . . , 1) ∼= A(n− 1)⊗A(1)⊗(n−1).

But A(1) = A(1, 0) ⊕ A(1, 1), where both summands are trivial. The projection π to

A(n−1)⊗A(1, 0)⊗(n−1) ∼= A(n−1) respects the algebra structure. For each ρ and completion

s, the projection π kills all summands in a(ρ, s), except the one corresponding to the unique

section S of s, where S ⊂ {1, . . . , n− 1}. Therefore π|A(Wn) is an isomorphism.

Example 10.1.3. Let Z = {Z1, . . . , Zn} and a = {a1, . . . , a2n−2}, again but set a1 ∈ Z1,

a2n−2 ∈ Zn, while a2i, a2i+1 ∈ Zi+1 for i = 1, . . . , n−2. Set the matching M to be M(a2i−1) =

M(a2i) = i for i = 1, . . . , n− 1. The arc diagram Vn = (Z, a,M) also parametrizes Fn, as in

Figure 11b

Proposition 10.1.2. For the arc diagram Vn from Example 10.1.3, its associated algebra

A(Vn) has no differential.

Proof. By definition A(Vn) is a subalgebra of A(1)⊗A(2)⊗(n−2)⊗A(1). It is trivial to check

that neither A(1), nor A(2) have differentials. The differential on their product is defined

by the Leibniz rule, so it also vanishes.

It will be useful for next section to compute the two algebras A(W4) and A(V4) explicitly.

Recall Definition 2.3.2, which assigns to a collection ρ of Reeb chords, corresponding to

moving strands, and a completion s, corresponding to stationary strands, an algebra element

a(ρ, s). Abusing notation, we will denote the idempotent I({1, 2, 4}) by I124, etc.
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In W4 there are three Reeb chords—ρ1 from a1 to a2, ρ2 from a2 to a3, and their con-

catenation ρ12 from a1 to a3. The algebra splits into 4 summands. The 0– and 3–summands

A(W4, 0) = 〈I∅〉 and A(W4, 3) = 〈I123〉 are trivial.

The 1–summand is A(W4, 1) = 〈I1, I2, I3, ρ
′
1, ρ
′
2, ρ
′
12〉. It has three idempotents and three

other generators ρ′i = a({ρi},∅). It has no differential, and the only nontrivial product

is ρ′1 · ρ′2 = ρ′12. The 2–summand A(W4, 2) = 〈I12, I13, I23, ρ
′′
1, ρ
′′
2, ρ
′′
12, ρ

′′
2 · ρ′′1〉 is the most

interesting. Here ρ′′1 = a({ρ1}, {3}), ρ′′2 = a({ρ2}, {1}), ρ′′12 = a({ρ12}, {2}), and ρ′′2 · ρ′′1 =

a({ρ1, ρ2},∅). There is a nontrivial differential ∂ρ′′12 = ρ′′2 · ρ′′1, and one nontrivial product,

which is clear from our notation.

In V4 there are two Reeb chords—σ1 from a2 to a3, and σ2 from a4 to a5. Again,

the summands A(V4, 0) = 〈I∅〉 and A(V4, 3) = 〈I123〉 are trivial. The 1–summand is

A(V4, 1) = 〈I1, I2, I3, σ
′
1, σ

′
2〉, where σ′i = a({σi},∅). It has no nontrivial differentials or prod-

ucts. The 2–summand is A(V4, 2) = 〈I12, I13, I13, σ
′′
1 , σ

′′
2 , σ

′′
2 · σ′′1〉, where σ′′1 = a({σ1}, {3}),

σ′′2 = a({σ2}, {1}), and σ′′2 · σ′′1 = a({σ1, σ2},∅). There are no differentials and there is one

nontrivial product.

10.2 Bordered sutured manifolds

We give three examples of bordered sutured manifolds. Topologically they are all very

simple—in fact they are all D2× [0, 1]. They are, nonetheless, interesting and have nontrivial

invariants. Bordered sutured manifolds of this type are essential for the study of what

happens when we fill in a sutured surface with a chord diagram.

Example 10.2.1. The first example is M1 = (D2 × [0, 1],Γ1,−W4), where D2 × {0} is

parametrized by −W4, and the rest of the boundary is divided into two positive and three

negative regions (see Figure 12a). An admissible—and in fact nice—Heegaard diagram for

M1 is given in Figure 12d. We will compute A(W4) B̂SD(M1).

First, notice that the relative Spinc–structures are in one-to-one correspondence with

H1(D2× [0, 1], D2×{0}) = 0, so there is a unique Spinc–structure. There are two generators

(x) and (y), with idempotents I13 · (x) = (x), and I12 · (y) = (y) (both in I(W4, 2)). There
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(a) M1 bordering −W4 (b) M2 bordering −V4 (c) M3 bordering

−V4 ∪W4

A

A

−W4

ρ1

ρ2

x

y

(d) HM1

A

A

−V4

σ1

σ2

u

v

(e) HM2

A

A

B

B

C

C

−V4 W4

ρ1

ρ2

σ1

σ2

ab

cd

e

f

g

h

(f) HM3

Figure 12: Three examples of bordered sutured manifolds (top row), and their diagrams (bot-

tom row). Capital roman letters denote 1–handles, lower case roman letters denote intersection

points, and Greek letters denote Reeb chords (always oriented upward). All non-boundary el-

ementary regions have been shaded.
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is a single region contributing to δ. It corresponds to a source S. which is a bigon from

(y) to (x), with one e puncture labeled −ρ2. It contributes a2(ρ2)⊗ (x) = ρ′′2 ⊗ (x) to δ(y).

Therefore, the only nontrivial term in δ is

δ((y)) = ρ′′2 ⊗ (x).

If we want to compute B̂SA(M1)A(−W4), the same generators have idempotents (x) · I2 =

(x) and (y) · I3 = (y), and the same region contributes (x) to m2((y), a(−ρ2)), instead. The

only nontrivial term is

m2((y),−ρ′2) = (x).

Example 10.2.2. The second example is M2 = (D2 × [0, 1],Γ1,−V4), which is the same as

M1, except for the different parametrization of D2 × {0} (see Figure 12b). An admissible

diagram for M2 is given in Figure 12e.

First, we compute A(V4)B̂SD(M2). It has two generators, with idempotents I12 · (u) = (u)

and I23 · (v) = (v). There is one region which is a bigon with two e punctures labeled −σ2

and −σ1, at different heights. It contributes a2(σ2)a2(σ1) ⊗ (v) = σ′′2 · σ′′1 ⊗ (v) to δ((u)).

Therefore the differential is

δ((u)) = σ′′2 · σ′′1 ⊗ (v).

For B̂SA(M2)A(−V4), the idempotents are (u) · I3 = (u) and (v) · I1 = (v). The region

contributes to m3, yielding

m3((u),−σ′2,−σ′1) = (v).

Example 10.2.3. Our last—and richest—example is M3 = (D2× [0, 1],Γ2,−V4 ∪W4), where

−V4 parametrizes D2 × {0}, and W4 parametrizes D2 × {1} (see Figure 12c). This is a

decorated sutured cobordism from V4 to W4, which is an isomorphism in the decorated

category SD. An admissible diagram for M3 is given in Figure 12f.

We will compute (part of) A(V4)B̂SDA(M3)A(W4). In this case, since H1(D2 × [0, 1], D2 ×

{0, 1}) = Z, there are multiple Spinc–structures. As in the proof of Theorem 9.4.1, the

Spinc–structures correspond to how many αa arcs are occupied on the W4 side of −V4 ∪W4.

Let sk be the Spinc–structure with k arcs occupied. There are 3 − k arcs occupied on the
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−V4 side for each such generator, and therefore B̂SDA(M3, sk) is a bimodule over A(V4, k)

and A(W4, k). Moreover, only k = 0, 1, 2, 3 give nonzero invariants.

It is easy to check that B̂SDA(M3, s0) and B̂SDA(M3, s3) have unique generators, (ace)

and (fgh), respectively, with no nontrivial actions mk. We will leave B̂SDA(M3, s1) as an

exercise and compute B̂SDA(M3, s2). There are five generators, with idempotents as follows.

I12 · (agh) · I23 = (agh) I12 · (fbh) · I13 = (fbh)

I13 · (fch) · I13 = (fch) I13 · (fgd) · I12 = (fgd)

I23 · (fge) · I12 = (fge)

There are four elementary domains, each of which contributes one term to m1 or m2.

Some of them also contribute to m1 or m2 for B̂SDA(M3, s1), and there is a composite

domain that also contributes in that case. The nontrivial operations for B̂SDA(M3, s2) are

listed below.

m1((fgd)) = σ′′1 ⊗ (fge) m2((fgd), ρ′′2) = I13 ⊗ (fch)

m1((fbh)) = σ′′2 ⊗ (fch) m2((fbh), ρ′′1) = I12 ⊗ (agh)

10.3 Gluing

Our final example is of gluing of bordered sutured manifolds and the corresponding operation

on their invariants.

Example 10.3.1. We will use the manifolds from Examples 10.2.1–10.2.3. If we glue M1 and

M3 along F (W4) we obtain exactly M2. Treating A(W4)B̂SD(M1) as A(W4)B̂SDA(M1)A(∅), we

can compute the product

B̂SDA(M3) �A(W4) B̂SD(M1),

which is a type D structure over A(V4). Since the only relative Spinc–structure on M3 which

extends over M1 is s2, the product is equal to B̂SDA(M3, s2) � B̂SD(M1). Another way to

see this is to notice that if we decompose the product over �A(W4,k), only the k = 2 term is

nonzero.
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After taking the tensor product ⊗I(W4,2) of the underlying modules, the generators and

idempotents are

I13 · (fch)� (x) = (fch)� (x) I12 · (fbh)� (x) = (fbh)� (x)

I23 · (fge)� (y) = (fge)� (y) I13 · (fgd)� (y) = (fgd)� (y)

The induced operations are

δ((fgd)� (y)) = σ′′1 ⊗ ((fge)� (y)) + I13 ⊗ ((fch)� (x))

δ((fbh)� (x)) = σ′′2 ⊗ ((fch)� (x))

There is one pure differential, from (fgd)� (y) to (fch)� (x). We can cancel it, and see

that the complex is homotopy equivalent to B̂SD(M2), as expected from the pairing theorem.
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Part II

Gluing map for sutured Floer

homology
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Chapter 11

Topological preliminaries

We recall the definition of a sutured manifold and some auxiliary notions, and define what

we mean by gluing and surgery.

Remark. Throughout the thesis all manifolds are oriented. We use −M to denote the man-

ifold M with its orientation reversed.

11.1 Sutured manifolds and surfaces

Definition 11.1.1. As defined in [Juh06], a balanced sutured manifold is a pair Y = (Y,Γ)

consisting of the following:

• An oriented 3–manifold Y with boundary.

• A collection Γ of disjoint oriented simple closed curves in ∂Y , called sutures.

They are required to satisfy the following conditions:

• Y can be disconnected but cannot have any closed components.

• ∂Y is divided by Γ into two complementary regions R+(Γ) and R−(Γ), such that

∂R±(Y ) = ±Γ. (R+ and R− may be disconnected.)

• Each component of ∂Y contains a suture. Equivalently, R+ and R− have no closed

components.
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• χ(R+) = χ(R−).

In Part I we introduced the notion of a sutured surface.

Definition 11.1.2. A sutured surface is a pair F = (F,Λ) consisting of the following:

• A compact oriented surface F .

• A finite collection Λ ⊂ ∂F of points with sign, called sutures.

They are required to satisfy the following conditions:

• F can be disconnected but cannot have any closed components.

• ∂F is divided by Λ into two complementary regions S+(Γ) and S−(Γ), where ∂S±(Y ) =

±Λ. (S+ and S− may be disconnected.)

• Each component of ∂F contains a suture. Equivalently, S+ and S− have no closed

components.

A sutured surface is precisely the 2–dimensional equivalent of a balanced sutured mani-

fold. The requirement χ(S+) = χ(S−) follows automatically from the other conditions.

From F = (F,Λ) we can construct two other sutured surfaces: −F = (−F,−Λ), and

F = (−F,Λ). In both of −F and F , the orientation of the underlying surface F is reversed.

The difference between the two is that in −F the roles of S+ and S− are preserved, while in

F they are reversed.

Definition 11.1.3. Suppose F = (F,Λ) is a sutured surface. A dividing set Γ for F is a

finite collection Γ of disjoint embedded oriented arcs and simple closed curves in F , with the

following properties:

• ∂Γ = −Λ, as an oriented boundary.

• Γ divides F into (possibly disconnected) regions R+ and R− with ∂R± = (±Γ) ∪ S±.
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We can extend the definition of a dividing set to pairs (F,Λ) which do not quite satisfy

the conditions for a sutured surface. We can allow some or all of the components F to be

closed. We call such a pair degenerate. In that case we impose the extra condition that each

closed component contains a component of Γ.

Note that the sutures Γ of a sutured manifold (Y,Γ) can be regarded as a dividing set

for the (degenerate) sutured surface (∂Y,∅).

Definition 11.1.4. A partially sutured manifold is a triple Y = (Y,Γ,F) consisting of the

following:

• A 3–manifold Y with boundary and 1–dimensional corners.

• A sutured surface F = (F,Λ), such that F ⊂ ∂Y , and such that the 1–dimensional

corner of Y is ∂F .

• A dividing set Γ for (∂Y \ F,−Λ) (which might be degenerate).

Note that a partially sutured manifold Y = (Y,Γ,F1 t F2) can be thought of as a

cobordism between −F1 and F2. On the other hand, the partially sutured manifold Y =

(Y,Γ,∅) is just a sutured manifold, although it may not be balanced. We can concatenate

Y = (Y,Γ,F1 tF2) and Y ′ = (Y ′,Γ′,−F2 tF3) along F2 = (F2,Λ2) and −F2 = (−F2,−Λ2)

to obtain

Y ∪F2 Y ′ = (Y ∪F2 Y
′,Γ ∪Λ2 Γ′,F1 t F3).

We use the term concatenate to distinguish from the operation of gluing of two sutured

manifolds described in Definition 11.2.4.

A partially sutured manifold whose sutured surface is parametrized by an arc diagram is

a bordered sutured manifold, as defined in Part I. We will return to this point in section 12,

where we give the precise definitions.

An important special case is when Y is a thickening of F .

Definition 11.1.5. Suppose Γ is a dividing set for the sutured surface F = (F,Λ). Let

W = F × [0, 1], and W ′ = F × [0, 1]/ ∼, where (p, t) ∼ (p, t′) whenever p ∈ ∂F , and
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(a) The sutured surface F .
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(b) A dividing set Γ of F .

−F
[0, 1]

(F ,Γ)

(c) The cap for Γ.

Figure 13: A sutured annulus F , with a cap associated to a dividing set.

t, t′ ∈ [0, 1]. We will refer to the partially sutured manifolds

WΓ = (W,Γ× {1} ∪ Λ× [0, 1], (−F × {0},−Λ× {0})),

W ′Γ = (W ′,Γ× {1}, (−F × {0},−Λ× {0}))

as the caps for F associated to Γ.

Since W ′Γ is just a smoothing of WΓ along the corner ∂F × {1}, we will not distinguish

between them. An illustration of a dividing set and a cap is shown in Figure 13. In this and

in all other figures we use the convention that the dividing set is colored in green, to avoid

confusion with Heegaard diagrams later. We also shade the R+ regions.

Notice that the sutured surface for WΓ is −F . This means that if Y = (Y,Γ′,F) is a

partially sutured manifold, we can concatenate Y and W to obtain (Y,Γ′ ∪ Γ). That is, the

effect is that of “filling in” F ⊂ ∂Y by Γ.

Definition 11.1.6. Suppose F = (F,Λ) is a sutured surface. An embedding W ↪→ Y of the

partially sutured W = (W,ΓW ,F) into the sutured Y = (Y,ΓY ) is an embedding W ↪→ Y

with the following properties:

• F ⊂ ∂W is properly embedded in Y as a separating surface.

• ∂W \ F = ∂Y ∩W .

• ΓW = ΓY ∩ ∂W .
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W

Y

Y \W

F −F

Figure 14: Examples of a partially sutured manifold W embedding into the sutured manifold

Y, and the complement Y \W, which is also partially sutured.

The complement Y \W also inherits a partially sutured structure. We define

Y \W = (Y \W,ΓY \ ΓW ,−F).

The definition of embeddings easily extends to W ↪→ Y where both W = (W,ΓW ,F)

and Y = (Y,ΓY ,F ′) are partially sutured. In this case we require that W is disjoint from a

collar neighborhood of F ′. Then there is still a complement

Y \W = (Y \W,ΓY \ ΓW ,F ′ ∪ −F).

In both cases Y is diffeomorphic to the concatenation W ∪F (Y \ W). Examples of a

partial sutured manifold and of an embedding are given in Figure 14.

11.2 Mirrors and doubles; joining and gluing

We want to define a gluing operation which takes two sutured manifolds (Y1,Γ1) and (Y2,Γ2),

and surfaces F ⊂ ∂Y1 and −F ⊂ ∂Y2, and produces a new sutured manifold (Y1 ∪F Y2,Γ3).

To do that we have to decide how to match up the dividing sets on and around F and −F .

One solution is to require that we glue F ∩ R+(Γ1) to −F ∩ R+(Γ2), and F ∩ R−(Γ1) to

−F ∩R−(Γ2). Then (Γ1 \ F ) ∪ (Γ2 \ −F ) is a valid dividing set, and candidate for Γ3. The
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problem with this approach is that even if we glue two balanced sutured manifolds, the result

is not guaranteed to be balanced.

Another approach, suggested by contact topology is the following. We glue F ∩ R+ to

−F∩R−, and vice versa. To compensate for the fact that the dividing sets Γ1\F and Γ2\−F

do not match up anymore, we introduce a slight twist along ∂F . In contact topology this

twist appears when we smooth the corner between two convex surfaces meeting at an angle.

It turns out that the same approach is the correct one, from the bordered sutured point of

view. To be able to define a gluing map on SFH with nice formal properties, the underlying

topological operation should employ the same kind of twist. However, its direction is opposite

from the one in the contact world. This is not unexpected, as orientation reversal is the norm

when defining any contact invariant in Heegaard Floer homology.

As we briefly explained in Section 1.3, we will also define a surgery procedure which we

call joining, and which generalizes this gluing operation. We will associate a map on sutured

Floer homology to such a surgery in Chapter 13.2.

First we define some preliminary notions.

Definition 11.2.1. The mirror of a partially sutured manifold W = (W,Γ,F), where F =

(F,Λ) is −W = (−W,Γ,F). Alternatively, it is a partially sutured manifold (W ′,Γ′,F ′),

with an orientation reversing diffeomorphism ϕ : W → W ′, such that:

• F is sent to −F ′ (orientation is reversed).

• Γ is sent to Γ′ (orientation is preserved).

• R+(Γ) is sent to R−(Γ′), and vice versa.

• S+(Λ) is sent to S−(Λ′), and vice versa.

Whenever we talk about a pair of mirrors, we will implicitly assume that a specific

diffeomorphism between them has been chosen. An example is shown in Figure 15.

There are two partially sutured manifolds, which will play an important role.

Definition 11.2.2. A positive (respectively negative) twisting slice along the sutured surface

F = (F,Λ) is the partially sutured manifold T WF ,± = (F × [0, 1],Γ,−F ∪ −F) where we
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W = (W,Γ,F) −W = (−W,Γ,F)

F F

− + − + −+−+

Figure 15: A partially sutured manifold W and its mirror −W.

F F[0, 1]

(a) T WF ,+

F F[0, 1]

(b) T WF ,−

Figure 16: Positive and negative twisting slices. The dividing sets are Λ×[0, 1], after a fractional

Dehn twist has been applied. The R+ regions have been shaded.

identify −F with F×{0}, and −F with F×{1}. The dividing set Γ is obtained from Λ×[0, 1]

by applying 1
n

–th of a positive (respectively negative) Dehn twist along each component of

∂F ×{1
2
}, containing n points of Λ. (The twists might be different for different components.)

Examples of twisting slices are shown in Figure 16.

Definition 11.2.3. Let Y1 and Y2 be sutured manifolds, and W = (W,Γ,−F) be partially

sutured. Suppose there are embeddings W ↪→ Y1 and −W ↪→ Y2. We will call the new

sutured manifold

Y1 dW Y2 = (Y1 \W) ∪F T WF ,+ ∪−F (Y2 \ −W)

the join of Y1 and Y2 along W.
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Intuitively, this means that we cut out W and −W and concatenate the complements

together. There is a mismatch of R+ with R− along the boundary, so we introduce a positive

twist to fix it. An example of gluing was shown in Figure 4.

Another important operation is gluing.

Definition 11.2.4. Suppose that Y1 = (Y1,Γ1,F) and Y2 = (Y2,Γ2,F) are two partially

sutured manifolds, and Γ0 is a dividing set for F = (F,Λ). We define the gluing of the

sutured manifolds (Y1,Γ1 ∪Λ Γ0) and (Y2,Γ2 ∪Λ Γ0) along (F,Γ0) to be the concatenation

Y1 ∪−F T WF ,+ ∪F Y2,

and denote it by

(Y1,Γ1 ∪ Γ0) ∪(F,Γ0) (Y2,Γ2 ∪ Γ0).

An example of gluing was shown in Figure 3. It is easy to see that gluing is a special

case of the join. Recall that the concatenation (Y,Γ′,F) ∪F WΓ is the sutured manifold

(Y,Γ′ ∪ Γ). Thus we can identify gluing along (F,Γ0) with join along WΓ0 .

Another useful object is the double of a partially sutured manifold.

Definition 11.2.5. Given a partially sutured manifold W = (W,Γ,F), where F = (F,Λ),

define the double of W to be the be sutured manifold obtained by concatenation as follows:

D(W) = −W ∪−F T W−F ,− ∪F W .

All the operations we have defined so far keep us in the realm of balanced sutured

manifolds.

Proposition 11.2.6. If we join or glue two balanced sutured manifolds together, the result

is balanced. The double of any partially sutured manifold W is balanced.

Proof. There are three key observations. The first one is that χ(R+) − χ(R−) is additive

under concatenation. The second is that when passing fromW to its mirror −W , the values

of χ(R+) and χ(R−) are interchanged. Finally, for positive and negative twisting slices

χ(R+) = χ(R−).
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The operations of joining and gluing sutured manifolds have good formal properties

described in the following proposition.

Proposition 11.2.7. The join satisfies the following:

1. Commutativity: Y1 dW Y2 is canonically diffeomorphic to Y2 d−W Y1.

2. Associativity: If there are embeddings W ↪→ Y1, (−W tW ′) ↪→ Y2, and −W ′ ↪→ W3

then there are canonical diffeomorphisms

(Y1 dW Y2) dW ′ Y3
∼= Y1 dW (Y2 dW ′ Y3)

∼= (Y1 t Y3) dW∪−W ′ Y2.

3. Identity: Y dW D(W) ∼= Y.

Gluing satisfies analogous properties.

Proof. These facts follow immediately from the definitions.
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Chapter 12

Bordered sutured Floer homology

with β–arcs

We recall the definitions of bordered sutured manifolds and their invariants, as introduced

in Part I.

12.1 Arc diagrams and bordered sutured manifolds

Parametrizations by arc diagrams, as described below are a slight generalization of those

originally defined in Part I. The latter corresponded to parametrizations using only α–arcs.

While this is sufficient to define invariants for all possible situations, it is somewhat restrictive

computationally. Indeed, to define the join map Ψ we need to exploit some symmetries that

are not apparent unless we also allow parametrizations using β–arcs.

Definition 12.1.1. An arc diagram of rank k is a triple Z = (Z, a,M) consisting of the

following:

• A finite collection Z of oriented arcs.

• A collection of points a = {a1, . . . , a2k} ⊂ Z.

• A 2–to–1 matching M : a→ {1, . . . , k} of the points into pairs.
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• A type: “α” or “β”.

We require that the 1–manifold obtained by performing surgery on all the 0–spheres

M−1(i) in Z has no closed components.

We represent arc diagrams graphically by a graph G(Z), which consists of the arcs Z,

oriented upwards, and an arc ei attached at the pair M−1(i) ∈ Z, for i = 1, . . . , k. Depending

on whether the diagram is of α or β type, we draw the arcs to the right or to the left,

respectively.

Definition 12.1.2. The sutured surface F(Z) = (F (Z),Λ(Z)) associated to the α–arc

diagram Z is constructed in the following way. The underlying surface F is produced from the

product Z× [0, 1] by attaching 1–handles along the 0–spheres M−1(i)×{0}, for i = 1, . . . , k.

The sutures are Λ = ∂Z× {1/2}, with the positive region S+ being “above”, i.e. containing

Z× {1}.

The sutured surface associated to a β–arc diagram is constructed in the same fashion,

except that the 1–handles are attached “on top”, i.e. at M−1(i)× {1}. The positive region

S+ is still above.

Suppose F is a surface with boundary, G(Z) is properly embedded in F , and Λ =

∂G(Z) ⊂ ∂F are the vertices of valence 1. If F deformation retracts onto G(Z), we can

identify (F,Λ) with F(Z). In fact, the embedding uniquely determines such an identification,

up to isotopies fixing the boundary. We say that Z parametrizes (F,Λ).

As mentioned earlier, all arc diagrams considered in Part I are of α–type.

Let Z = (Z, a,M) be an arc diagram. We will denote by −Z the diagram obtained

by reversing the orientation of Z (and preserving the type). We will denote by Z the

diagram obtained by switching the type—from α to β, or vice versa—and preserving the

triple (Z, a,M). There are now four related diagrams: Z, −Z, Z, and −Z. The notation

is intentionally similar to the one for the variations on a sutured surface. Indeed, they are

related as follows:

F(−Z) = −F(Z), F(Z) = F(Z).
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e1

e2

e3

(a) Z of α-type

e1

e2

e3

(b) −Z of α-type

e1

e2

e3

(c) Z of β-type

e1

e2

e3

(d) −Z of β-type

Figure 17: Four variants of an arc diagram
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(c) F(Z)
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−

(d) F(−Z)

Figure 18: Parametrizations of surfaces by the arc diagrams in Figure 17

To illustrate that, Figure 17 has four variations of an arc diagram of rank 3. Figure 18

shows the corresponding parametrizations of sutured surfaces, which are all tori with one

boundary component and four sutures. Notice the embedding of the graph in each case.

Definition 12.1.3. A bordered sutured manifold Y = (Y,Γ,Z) is a partially sutured man-

ifold (Y,Γ,F), whose sutured surface F has been parametrized by the arc diagram Z.

As with partially sutured manifolds, Y = (Y,Γ,Z1tZ2) can be thought of as a cobordism

from F(−Z1) to F(Z2).

12.2 The bordered algebra

We will briefly recall the definition of the algebra A(Z) associated to an α–type arc diagram

Z. Fix a diagram Z = (Z, a,M) of rank k. First, we define a larger strands algebra A′(Z, a),
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which is independent of the matching M . Then we define A(Z) as a subalgebra of A′(Z, a).

Definition 12.2.1. The strands algebra associated to (Z, a) is a Z/2–algebra A′(Z, a),

which is generated (as a vector space) by diagrams in [0, 1] × Z of the following type. Each

diagram consists of several embedded oriented arcs or strands, starting in {0}×a and ending

in {1} × a. All tangent vectors on the strands should project non-negatively on Z, i.e. they

are “upward-veering”. Only transverse intersections are allowed.

The diagrams are subjects to two relations—any two diagrams related by a Reidemeister

III move represent the same element in A′(Z, a), and any diagram in which two strands

intersect more than once represents zero.

Multiplication is given by concatenation of diagrams in the [0, 1]–direction, provided the

endpoints of the strands agree. Otherwise the product is zero. The differential of a diagram

is the sum of all diagrams obtained from it by taking the oriented resolution of a crossing.

We refer to a strand connecting (0, a) to (1, a) for some a ∈ a as horizontal. Notice that

the idempotent elements of A′(Z, a) are precisely those which are sums of diagrams with

only horizontal strands. To recover the information carried by the matching M we single

out some of these idempotents.

Definition 12.2.2. The ground ring I(Z) associated to Z is a ground ring, in the sense

of Definition A.1.1, of rank 2k over Z/2, with canonical basis (ιI)I⊂{1,...,k}. It is identified

with a subring of the strands algebra A′(Z, a), by setting ιI =
∑

J DJ . The sum is over all

J ⊂ a such that M |J : J → I is a bijection, and DJ is the diagram with horizontal strands

[0, 1]× J .

For all I ⊂ {1, . . . , k}, the generator ιI is a sum of 2#I diagrams.

Definition 12.2.3. The bordered algebra A(Z) associated to Z is the subalgebra of I(Z) ·

A′(Z, a) · I(Z) consisting of all elements α subject to the following condition. Suppose

M(a) = M(b), and D and D′ are two diagrams, where D′ is obtained from D by replacing

the horizontal arc [0, 1] × {a} by the horizontal arc [0, 1] × {b}. Then α contains D as a

summand iff it contains D′ as a summand.
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(a) a1 (b) a2 (c) a3 (d) a4

Figure 19: Four generators of A(Z).

We use I(Z) as the ground ring for A(Z), in the sense of Definition B.2.1. The condition

in Definition 12.2.3 ensures that the canonical basis elements of I(Z) are indecomposable in

A(Z).

It is straightforward to check that Definition 12.2.3 is equivalent to the definition of A(Z)

in Part I.

Examples of several algebra elements are given in Figure 19. The dotted lines on the

side are given to remind us of the matching in the arc diagram Z. All strands are oriented

left to right, so we avoid drawing them with arrows. The horizontal lines in Figure 19b are

dotted, as a shorthand for the sum of two diagrams, with a single horizontal line each. For

the elements in this example, we have a1 · a2 = a3, and ∂a1 = a4.

The situation for arc diagrams of β–type is completely analogous, with one important

difference.

Definition 12.2.4. The bordered algebra A(Z) associated to a β–arc diagram Z, is defined

in the exact same way as in Definitions 12.2.3, except that moving strands are downward

veering, instead of upward.

The relationship between the different types of algebras is summarized in the following

proposition.

Proposition 12.2.5. Suppose Z is an arc diagram of either α or β–type. The algebras
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(a) A(Z) (b) A(−Z) (c) A(Z) (d) A(−Z)

Figure 20: Four elements in the algebras for Z, −Z, Z, and −Z, which correspond to each

other.

associated to Z, −Z, Z, and −Z are related as follows:

A(−Z) ∼= A(Z) ∼= A(Z)op,

A(−Z) ∼= A(Z).

Here Aop denotes the opposite algebra of A. That is, an algebra with the same additive

structure and differential, but the order of multiplication reversed.

Proof. This is easily seen by reflecting and rotating diagrams. To get from A(Z) to A(−Z)

we have to rotate all diagrams by 180 degrees. This means that multiplication switches

order, so we get the opposite algebra.

To get from A(Z) to A(Z) we have to reflect all diagrams along the vertical axis. This

again means that multiplication switches order.

An example of the correspondence is shown in Figure 20.

12.3 The bordered invariants

We will give a brief sketch of the definitions of the bordered invariants from Part I, which

apply for the case of α–arc diagrams. Then we discuss the necessary modifications when

β–arcs are involved.

For now assume Z = (Z, a,M) is an α–arc diagram.
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Definition 12.3.1. A bordered sutured Heegaard diagram H = (Σ,α,β,Z) consists of the

following:

• A compact surface Σ with no closed components.

• A collection of circles αc and a collection of arcs αa, which are pairwise disjoint and

properly embedded in Σ. We set α = αa ∪αc.

• A collection of disjoint circles β, properly embedded in Σ.

• An embedding G(Z) ↪→ Σ, such that Z is sent into ∂Σ, preserving orientation, while

αa is the image of the arcs ei in G(Z).

We require that π0(∂Σ\Z)→ π0(Σ\ (αc∪αa)) and π0(∂Σ\Z)→ π0(Σ\β) be surjective.

To such a diagram we can associate a bordered sutured manifold (Y,Γ,Z) as follows. We

obtain Y from Σ× [0, 1] by gluing 2–handles to β × {1} and αc × {0}. The dividing set is

Γ = (∂Σ \ Z)× {1/2}, and F (Z) is a neighborhood of Z× [0, 1] ∪αa × {0}.

As proved in Part I, for every bordered sutured manifold there is a unique Heegaard

diagram, up to isotopy and some moves.

The bordered invariants are certain homotopy-equivalence classes of A∞–modules (see

Appendix B). For a given Heegaard diagram H, we can form the set of generators G(H)

consisting of collections of intersection points of α ∩ β.

The invariant B̂SA(H)A(Z) is a right type–A A∞–module over A(Z), with Z/2–basis

G(H). The ground ring I(Z) acts as follows. The only idempotent in I(Z) which acts

nontrivially on x ∈ G(H) is ιI(x) where I(x) ⊂ {1, . . . , k} records the α–arcs which contain

a point of x.

The structure map m of B̂SA(H) counts certain holomorphic curves in Int Σ× [0, 1]×R,

with boundary on (α × {1} × R) ∪ (β × {0} × R). Each such curve has two types of

asymptotics—ends at (α ∩ β) × [0, 1] × ±∞, and ends at ∂Σ × {0} × {h} where h ∈ R is

finite. The possible ends at ∂Σ are in 1-to-1 correspondence with elements of A(Z).

The expression 〈m(x, a1, . . . , an),y∨〉 counts curves as above, which have asymptotics

x× [0, 1] at −∞, y× [0, 1] at +∞, and a1, a2, . . . , an at some finite values h1 < h2 < . . . < hn.
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We write B̂SA(Y) for the homotopy equivalence class of B̂SA(H). (Invariance was proven

in Part I.)

The invariant A(−Z)B̂SD(H) is a left type–D A∞–module over A(−Z) = A(Z)op, with

Z/2–basis G(H). (See Appendix B.2 for type–D modules, and the meaning of upper and

lower indices). The ground ring I(−Z) acts as follows. The only idempotent in I(−Z)

which acts nontrivially on x ∈ G(H) is ιIc(x) where Ic(x) ⊂ {1, . . . , k} records the α–arcs

which do not contain a point of x.

The structure map δ of B̂SD(H) counts a subset of the same holomorphic curves as for

B̂SA(H). The interpretation is somewhat different, though. Equivalently, A(Z)op
B̂SD(H) =

B̂SA(H)A(Z) � A(Z),A(Z)opI, where I is a certain bimodule defined in [LOT10a].

Again, we write B̂SD(Y) for the homotopy equivalence class of B̂SD(H). (Invariance was

proven in Part I.)

We can also construct invariants A(Z)opB̂SA(Y) and B̂SD(Y)A(Z) purely algebraically from

the usual B̂SA and B̂SD. Indeed, as discussed in Appendix B.6, any right A–module is a

left–Aop module and vice versa.

If Y is bordered by F(Z1) t F(Z2), we can similarly define several bimodules invariants

for Y :

A(Z1)opB̂SAA(Y)A(Z2)
A(Z1)op

B̂SDA(Y)A(Z2)

A(Z1)opB̂SAD(Y)A(Z2) A(Z1)op

B̂SDD(Y)A(Z2)

For the invariants of β–diagrams little changes. Suppose Z is a β–type arc diagram.

Heegaard diagrams will now involve β–arcs as the images of ei ⊂ G(Z), instead of α–arcs.

We still count holomorphic curves in Int Σ × [0, 1] × R. However, since there are β–curves

hitting ∂Σ instead of α, the asymptotic ends at ∂Σ × {1} × {h} are replaced by ends at

∂Σ× {0} × {h}, which again correspond to elements of A(Z). The rest of the definition is

essentially unchanged.

The last case is when Y is bordered by F(Z1)tF(Z2), where Z1 is a diagram of α–type

and Z2 is of β–type. We can extend the definition of B̂SAA(Y) as before. There are now

four types of asymptotic ends:
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• The ones at ±∞ which correspond to generators x,y ∈ G(H).

• ∂Σ× {1} × {h} (or α–ends) which correspond to A(Z1).

• ∂Σ× {0} × {h} (or β–ends) which correspond to A(Z2).

Each holomorphic curve will have some number k ≥ 0 of α–ends, and some number l ≥ 0

of β–ends. Such a curve contributes to the structure map mk|1|l which takes k elements of

A(Z1) and l elements of A(Z2).

To summarize we have the following theorem.

Theorem 12.3.2. Let Y be a bordered sutured manifold, bordered by −F(Z1)tF(Z2), where

Z1 and Z2 can be any combination of α and β types. Then there are bimodules, well defined

up to homotopy equivalence:

A(Z1)B̂SAA(Y)A(Z2)
A(Z1)B̂SDA(Y)A(Z2)

A(Z1)B̂SAD(Y)A(Z2) A(Z1)B̂SDD(Y)A(Z2)

If Y1 and Y2 are two such manifolds, bordered by −F(Z1)tF(Z2) and −F(Z2)tF(Z3),

respectively, then there are homotopy equivalences

B̂SAA(Y1 ∪ Y2) ' B̂SAA(Y1)�A(Z2) B̂SDA(Y2),

B̂SDA(Y1 ∪ Y2) ' B̂SDD(Y1)�A(Z2) B̂SAA(Y2),

etc. Any combination of bimodules for Y1 and Y2 can be used, where one is type–A for

A(Z2), and the other is type–D for A(Z2).

The latter statement is referred to as the pairing theorem. The proof of Proposition 12.3.2

is a straightforward adaptation of the corresponding proofs when dealing with only type–α

diagrams. An analogous construction involving both α and β arcs in the purely bordered

setting is given in [LOT10b].
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12.4 Mirrors and twisting slices

In this section we give two computations of bordered invariants. One of them relates the

invariants for a bordered sutured manifold W and its mirror −W . The other gives the

invariants for a positive and negative twisting slice.

Recall that if W = (W,Γ,F(Z)), its mirror is −W = (−W,Γ,F(Z)) = (−W,Γ,F(Z)).

Proposition 12.4.1. Let W and −W be as above. Let MA(Z) be a representative for the

homotopy equivalence class B̂SA(W)A(Z). Then its dual A(Z)M
∨ is a representative for

A(Z)B̂SA(−W). Similarly, there are homotopy equivalences(
B̂SD(W)A(Z)

)∨
' A(Z)B̂SD(−W),(

A(Z)opB̂SA(W)
)∨
' B̂SA(−W)A(Z)op ,(

A(Z)op

B̂SD(W)
)∨
' B̂SD(−W)A(Z)op

.

A similar statement holds for bimodules—if W is bordered by F(Z1) t F(Z2), then the

corresponding bimodule invariants of W and −W are duals of each other.

Proof. We prove one case. All others follow by analogy. Let H = (Σ,α,β,Z) be a Heegaard

diagram for W . Let H′ = (Σ,β,α,Z) be the diagram obtained by switching all α and β

curves. (Note that if Z was an α–type diagram, this turns it into the β–type diagram Z,

and vice versa.)

The bordered sutured manifold described by H′ is precisely −W . Indeed, it is obtained

from the same manifold Σ × [0, 1] by attaching all 2–handles on the opposite side, and

taking the sutured surface F also on the opposite side. This is equivalent to reversing

the orientation of W , while keeping the orientations of Γ ⊂ ∂Σ and Z ⊂ ∂Σ the same.

(Compare to [HKM09], where the EH–invariant for contact structures on (Y,Γ) is defined

in SFH(−Y,+Γ).)

The generators G(H) and G(H′) of the two diagrams are the same. There is also a 1–to–1

correspondence between the holomorphic curves u in the definition of B̂SA(H)A(Z) and the

curves u′ in the definition of B̂SA(H′)A(Z). This is given by reflecting both the [0, 1]–factor

and the R–factor in the domain Int Σ × [0, 1] × R. The ±∞ asymptotic ends are reversed.
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The α–ends of u are sent to the β–ends of u′, and vice versa, while their heights h on the

R–scale are reversed. When turning α–ends to β–ends, the corresponding elements of A(Z)

are reflected (as in the correspondence A(Z) ∼= A(Z)op from Proposition 12.2.5).

This implies the following relation between the structure maps m of B̂SA(H) and m′ of

B̂SA(H′):

〈m(x, a1, . . . , an),y∨〉 = 〈m′(y′, aop
n , . . . , a

op
1 ),x′∨〉 .

Turning B̂SA(H′) into a left module over (A(Z)op)op = A(Z), we get the relation

〈m(x, a1, . . . , an),y∨〉 = 〈m′(a1, . . . , an,y
′),x′∨〉 .

This is precisely the statement that B̂SA(H)A(Z) and A(Z)B̂SA(H′) are duals, with G(H)

and G(H′) as dual bases.

A similar statement for purely bordered invariants is proven in [LOT10b].

Proposition 12.4.2. Let Z be any arc diagram, and let A = A(Z). The twisting slices

T WF(Z),± are bordered by −F(Z) t −F(Z). They have bimodule invariants

AB̂SAA(T WF(Z),−)A ' AAA, AB̂SAA(T WF(Z),+)A ' AA
∨
A.

Proof. Since T WF(Z),± are mirrors of each other, by Proposition 12.4.1, it is enough to prove

the first equivalence. The key ingredient is a very convenient nice diagram H for T WF(Z),−.

This diagram was discovered by the author, and independently by Auroux in [Aur10], where

it appears in a rather different setting.

Recall from Part I that a nice diagram is a diagram, (Σ,α,β,Z) where each region of

Σ\(α∪β) is either a boundary region, a rectangle, or a bigon. The definition trivially extends

to the current more general setting. Nice diagrams can still be used to combinatorially

compute bordered sutured invariants.

The diagram is obtained as follows. For concreteness assume that Z is of α–type. To

construct the Heegaard surface Σ, start with several squares [0, 1] × [0, 1], one for each

component Z ∈ Z. There are three identifications of Z with sides of the squares:

• ϕ sending Z to the “left sides” {0} × [0, 1], oriented from 0 to 1.
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• ϕ′ sending Z to the “right sides” {1} × [0, 1], oriented from 1 to 0.

• ψ sending Z to the “top sides” [0, 1]× {1}, oriented from 1 to 0.

For each matched pair {a, b} = M−1(i) ⊂ a ⊂ Z, attach a 1–handle at ψ({a, b}). Add an

α–arc αai from ϕ(a) to ϕ(b), and a β–arc βai from ϕ′(a) to ϕ′(b), both running through the

handle corresponding to a, b. To see that this gives the correct manifold, notice that there

are no α or β–circles, so the manifold is topologically Σ× [0, 1]. The pattern of attachment

of the 1–handles shows that Σ = F (Z). It is easy to check that Γ and the arcs are in the

correct positions.

This construction is demonstrated in Figure 21. The figure corresponds to the arc diagram

Z from Figure 17c.

Calculations with the same diagram in [Aur10] and [LOT10b] show that the bimodule

B̂SAA(H) is indeed the algebra A as a bimodule over itself. While the statements in those

cases are not about bordered sutured Floer homology, the argument is purely combinatorial

and caries over completely.

We give a brief summary of this argument. Intersection points in α∩β are of two types:

• xi ∈ αai ∩ βai inside the 1–handle corresponding to M−1(i), for i ∈ {1, . . . , k}. The

point xi corresponds to the two horizontal strands [0, 1]×M−1(i) in A(Z).

• yab ∈ αaM(a) ∩ βaM(b), inside the square regions of H. The point yab corresponds to a

strand (0, a)→ (1, b) (or a→ b for short) in A(Z).

The allowed combinations of intersection points correspond to the allowed diagrams in A(Z),

so B̂SA(H) ∼= A(Z) as a Z/2–vector space.

Since H is a nice diagram the differential counts embedded rectangles in H, with sides on

α and β. The rectangle with corners (yad, ybc, yac, yad) corresponds to resolving the crossing

between the strands a→ d and b→ c (getting a→ c and b→ d).

The left action m1|1|0 of A counts rectangles hitting the −Z–part of the boundary. The

rectangle with corners (ϕ(a), yac, ybc, ϕ(b)) corresponds to concatenating the strands a → b

and b→ c (getting a→ c). The right action is similar, with rectangles hitting the −Z–part

of the boundary.
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−Z −Z

Figure 21: Heegaard diagram for a negative twisted slice T WF ,−.

∂

(a) Differential.

· =

(b) Left action.

· =

(c) Right action.

Figure 22: Examples of domains counted in the diagram for T WF ,−. In each case the domain

goes from the black dots to the white dots. Below them we show the corresponding operations

on the algebra.

Some examples of domains in H contributing to m0|1|0, m1|1|0, and m0|1|1 are shown in

Figure 22. They are for the diagram H from Figure 21.
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Chapter 13

The join map

In this section we will define the join and gluing maps, and prove some basic properties.

Recall that the gluing operation is defined as a special case of the join operation. The gluing

map is similarly a special case of the join map. Thus for the most part we will only talk

about the general case, i.e. the join map.

13.1 The algebraic map

We will first define an abstract algebraic map, on the level of A∞–modules.

Let A be a differential graded algebra, and AM be a left A∞–module over it. As discussed

in Appendix B.6, the dual M∨
A is a right A∞–module over A. Thus A(M ⊗M∨)A is an

A∞–bimodule. On the other hand, since A is a bimodule over itself, so is its dual AA
∨
A. We

define a map M ⊗M∨ → A∨ which is an A∞–analog of the natural pairing of a module and

its dual.

Definition 13.1.1. The algebraic join map ∇M : A(M ⊗M∨)A → AA
∨
A—or just ∇ when

unambiguous—is an A∞–bimodule morphism, defined as follows. It is the unique morphism

satisfying

〈
∇i|1|j(a1, . . . , ai, p, q

∨, , a′1, . . . , a
′
j), a

′′〉
=
〈
mi+j+1|1(a′1, . . . , a

′
j, a
′′, a1, . . . , ai, p), q

∨〉 , (13.1)
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= =∇M ∇M

m
M

A MM∨A

A∨

A MM A

A

A M M A

A

Figure 23: Definition of the join map ∇.

=hM mM

A A A M

M

A A A M

M

Figure 24: The homotopy equivalence hM : A ⊗̃M →M .

for any i, j ≥ 0, p ∈M , q∨ ∈M∨, and a∗∗ ∈ A.

Eq. (13.1) is best represented diagrammatically, as in Figure 23. Note that ∇M is a

bounded morphism if and only if M is a bounded module.

As discussed in Appendix B.4, morphisms of A∞–modules form chain complexes, where

cycles are homomorphisms. Only homomorphisms descend to maps on homology.

Proposition 13.1.2. For any AM , the join map ∇M is a homomorphism.

Proof. It is a straightforward but tedious computation to see that ∂∇M = 0 is equivalent to

the structure equation for mM .

A more enlightening way to see this is to notice that by turning the diagram in Figure 23

partly sideways, we get a diagram for the homotopy equivalence hM : A ⊗̃M → M , shown

in Figure 24. Taking the differential ∂∇M and turning the resulting diagrams sideways, we

get precisely ∂hM . We know that hM is a homomorphism and, so ∂hM = 0.

The equivalences are presented in Figure 25.

We will prove two naturallity statements about ∇ that together imply that ∇ descends

to a well defined map on the derived category. The first shows that ∇ is natural with respect

to isomorphisms in the derived category of the DG-algebra A, i.e. homotopy equivalences
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+ + + +
µA µA

µA

∇M ∇M

∇M

∇M ∇M

mM

mM

(a) The differential ∂∇M which needs to vanish to show that ∇M is an A∞–bimodule homomor-

phism.

+ + + +
µA

µA

µA

hM

hM

hM
hM hMmM

mM

(b) The differential ∂hM of the homotopy equivalence hM .

Figure 25: Proof that ∇ is a homomorphism, by rotating diagrams.

of modules. The second shows that ∇ is natural with respect to equivalences of derived

categories. (Recall from Part I that different algebras corresponding to the same sutured

surface are derived-equivalent.)

Proposition 13.1.3. Suppose AM and AN are two A∞–modules over A, such that there are

inverse homotopy equivalences ϕ : M → N and ψ : N →M . Then there is an A∞–homotopy

equivalence of A,A–bimodules

ϕ⊗ ψ∨ : M ⊗M∨ → N ⊗N∨,

and the following diagram commutes up to A∞–homotopy:

M ⊗M∨

ϕ⊗ψ∨
��

∇M

))SSSSSSSSSSSSSSSSS

N ⊗N∨
∇N // A∨.

Proposition 13.1.4. Suppose A and B are differential graded algebras, and BX
A and AY

B

are two type–DA bimodules, which are quasi-inverses. That is, there are A∞–homotopy

equivalences

A(Y �X)A ' AIA, B(X � Y )B ' BIB.
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Moreover, suppose H∗(B
∨) and H∗(X � A∨ �X∨) have the same rank (over Z/2).

Then there is a B,B–bimodule homotopy equivalence

ϕX : X � A∨ �X∨ → B∨.

Moreover, for any A∞–module AM , such that X �M is well defined, the following diagram

commutes up to A∞–homotopy:

X �M ⊗M∨ �X∨

idX �∇M�idX∨
��

∇X�M

**VVVVVVVVVVVVVVVVVVVVV

X � A∨ �X∨
ϕX // B∨.

Notice the condition that X �M be well defined. This can be satisfied for example if M

is a bounded module, or if X is reletively bounded in A with respect to B. Before proving

Propositions 13.1.3 and 13.1.4 in Chapter 13.3, we will use them to define the join Ψ.

13.2 The geometric map

Suppose that Y1 and Y2 are two sutured manifolds, and W = (W,Γ,−F) is a partially

sutured manifold, with embeddings W ↪→ Y1 and −W ↪→ Y2. Let Z be any arc diagram

parametrizing the surface F . Recall that −W = (−W,Γ,−F). Also recall the twisting slice

T WF ,+, from Definition 11.2.2. The join Y1 dW Y2 of Y1 and Y2 along W was defined as

Y1 dW Y2 = (Y1 \W) ∪F T WF ,+ ∪−F (Y2 \ −W).

Let A = A(Z) be the algebra associated to Z. Let AM , UA, and AV be representatives for

the bordered sutured modules AB̂SA(W), B̂SD(Y1 \W)A, and AB̂SD(Y2 \−W), respectively

such that U �M and M∨�V are well-defined. (Recall that the modules are only defined up

to homotopy equivalence, and that the � product is only defined under some boundedness

conditions.) We proved in Proposition 12.4.1 that M∨
A is a representative for B̂SA(−W)A,

and in Proposition 12.4.2 that AA
∨
A is a representative for B̂SAA(T WF ,+).

From the Künneth formula for SFH of a disjoint union, and from Theorem 12.3.2, we
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have the following homotopy equivalences of chain complexes.

SFC(Y1 ∪ Y2) ∼= SFC(Y1)⊗ SFC(Y2)

'
(

B̂SD(Y1 \W)�A B̂SA(W)
)
⊗
(

B̂SA(−W)�A B̂SD(Y2 \ −W)
)

' UA � A(M ⊗M∨)A �
AV.

SFC(Y1 dW Y2)

' B̂SD(Y1 \W)�A B̂SAA(T WF ,+)�A B̂SD(Y2 \ −W)

' UA � AA
∨
A �

AV.

Definition 13.2.1. Let Y1, Y2 and W be as described above. Define the geometric join map

ΨM : SFC(Y1)⊗ SFC(Y2)→ SFC(Y1 dW Y2)

by the formula

ΨM = idU �∇M � idV : U �M ⊗M∨ � V → U � A∨ � V. (13.2)

Note that such an induced map is not generally well defined (it might involve an infinite

sum). In this case, however, we have made some boundedness assumptions. Since U �M

and M∨�V are defined, either M must be bounded, or both of U and V must be bounded.

In the former case, ∇M is also bounded. Either of these situations guarantees that the sum

defining ΨM is finite.

Theorem 13.2.2. The map ΨM from Definition 13.2.1 is, up to homotopy, independent on

the choice of parametrization Z, and on the choices of representatives M , U , and V .

Proof. First, we will give a more precise version of the statement. Let Z ′ be any other

parametrization of F , with B = A(−Z ′), and let BM
′, U ′B and BV ′, be representatives for

the respective bordered sutured modules. Then there are homotopy equivalences ϕ and ψ

making the following diagram commute up to A∞–homotopy:

U �M ⊗M∨ � V
ϕ //

ΨM
��

U ′ �M ′ ⊗M ′∨ � V ′

ΨM′
��

U � A∨ � V
ψ // U ′ �B∨ � V ′.
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−F −F ′ −F ′′

W
W ′
W ′′PQ

Figure 26: The various pieces produced by slicing W at two surfaces parallel to F .

The proof can be broken up into several steps. The first step is independence from the

choice of U and V , given a fixed choice for A and M . This follows directly from the fact

id�· and ·� id are DG-functors.

The second step is to show independence from the choice of M , for fixed A, U , and

V . This follows from Proposition 13.1.3. Indeed, suppose ϕ : M → M ′ is a homotopy

equivalence with homotopy inverse ψ : M ′ →M . Then ψ∨ : M∨ →M ′∨ is also a homotopy

equivalence inducing the homotopy equivalence

idU �ϕ⊗ ψ∨ � idV : U �M ⊗M∨ � V → U �M ′ ⊗M ′∨ � V.

By Proposition 13.1.3, ∇M ' ∇M ′ ◦ (ϕ⊗ ψ∨), which implies

idU �∇M � idV ' (idU �∇M ′ � idV ) ◦ (idU �ϕ⊗ ψ∨ � idV ).

The final step is to show independence from the choice of algebra A. We will cut Y1

and Y2 into several pieces, so we can evaluate the two different versions of Ψ from the same

geometric picture.

Let −F ′ and −F ′′ be two parallel copies of −F in W , which cut out W ′ = (W ′,Γ′,−F ′)

and W ′′ = (W ′′,Γ′′,−F ′′), where W ′′ ⊂ W ′ ⊂ W . Let P = W ′ \ W ′′ and Q = W \W ′ (see

Figure 26). Both P and Q are topologically F × [0, 1].

Parametrize F and F ′′ by Z, and F ′ by Z ′, where A(Z) = A, and A(Z ′) = B. Let

BX
A and AY

B be representatives for BB̂SAD(P)A and AB̂SAD(Q)B, respectively. Note that

Q∪F ′ P is a product bordered sutured manifold, and thus has trivial invariant AB̂SAD(Q∪
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Y1 \W ′ P W ′′ −W ′′ −P Y2 \ −W ′

F ′ F ′′ F ′′ F ′

(a) Cutting Y1 and Y2 in two different places.

Y1 \W ′ P T WF ′′,+−P Y2 \ −W ′

F ′ F ′′ F ′′ F ′

(b) The join by W ′′.

Y1 \W ′ T WF ′,+ Y2 \ −W ′

F ′ F ′′ F ′′ F ′

(c) The join by W ′.

Figure 27: Two ways of cutting and pasting to get the join of Y1 and Y2.

P)A ' AIA. By the pairing theorem, this implies Y � X ' AIA. Similarly, by stacking P

and Q in the opposite order we get X � Y ' BIB.

There are embeddingsW ′,W ′′ ↪→ Y1 and −W ′,−W ′′ ↪→ Y2 and two distinct ways to cut

and glue them together, getting Y1 dW ′ Y2
∼= Y1 dW ′′ Y2. This is illustrated schematically in

Figure 27.

Let AM be a representative for AB̂SA(W ′′). By the pairing theorem, B(X � M) is a

representative for BB̂SA(W ′). Notice that T WF ′,+ ∼= P ∪ T WF ′′,+ ∪ −P and BB
∨
B and

B(X �A∨�X∨)B are both representatives for its B̂SAA invariant. In particular, they have

the same homology. Finally, let UB and BV be representatives for B̂SD(Y1 \ W ′)B and

BB̂SD(Y2 \ −W ′), respectively.

The two join maps ΨM and ΨX�M are described by the following equations.

ΨM = idU�X �∇M � idX∨�V :

(U �X)�M ⊗M∨ � (X∨ � V )→ (U �X)� A∨ � (X∨ � V ),
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ΨX�M = idU �∇X�M � idV :

U � (X �M)⊗ (M∨ �X∨)� V → U �B∨ � V.

We can apply Proposition 13.1.4. The boundedness condition can be satisfied by requiring

that X and Y are bounded modules. There is a homotopy equivalence ϕX : X�A∨�X∨ →

B, and a homotopy ∇X�M ∼ ϕX ◦ (idX �∇M � idX∨). These induce a homotopy

(idU �ϕX � idV ) ◦ΨM = idU �(ϕX ◦ (idX �∇M � idX∨))� idV

∼ idU �∇X�M � idV = ΨX�M .

This finishes the last step. Combining all three gives complete invariance. Thus we can

refer to ΨW from now on.

13.3 Proof of algebraic invariance

In this section we prove Propositions 13.1.3 and 13.1.4.

Proof of Proposition 13.1.3. The proof will be mostly diagrammatic. There are two modules

AM and AN , and two inverse homotopy equivalences, ϕ : M → N and ψ : N → M . The

dualizing functor A Mod→ ModA is a DG-functor. Thus it is easy to see that

ϕ⊗ ψ∨ = (ϕ⊗ idN∨) ◦ (idM ⊗ψ∨)

is also a homotopy equivalence. Let H : M →M be the homotopy between idM and ψ ◦ ϕ.

We have to show that the homomorphism

∇M +∇N ◦ (ϕ⊗ ψ∨) (13.3)

is null-homotopic (see Figure 28a). Again, it helps if we turn the diagram sideways, where

bar resolutions come into play. Let hM : A ⊗̃M →M and hN : A ⊗̃N → N be the natural

homotopy equivalences.

Turning the first term in Eq. (13.3) sideways, we get hM . Turning the second term

sideways we get ψ ◦ hN ◦ (idA ⊗̃ϕ). Thus we need to show that

hM + ψ ◦ hN ◦ (idA ⊗̃ϕ) (13.4)
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M

m
N

ϕ ψ

(a) Representation of Eq. (13.3).

+hM hN

ϕ

ψ

(b) Representation of Eq. (13.4).

+
ϕ

ψ

hM

H

(c) Null-homotopy of (13.4).

+

ϕ ψ

m
M H

(d) Null-homotopy of (13.3).

Figure 28: Diagrams from the proof of Proposition 13.1.3.

is null-homotopic (see Figure 28b).

There is a canonical homotopy hϕ : A ⊗̃M → N between ϕ ◦ hM and hN ◦ (idA ⊗̃ϕ),

given by

hϕ(a1, . . . , ai, (a′, a′′1, . . . , a
′′
j , m)) = ϕ(a1, . . . , ai, a

′, a′′1, . . . , a
′′
j , m).

Thus we can build the null-homotopy ψ ◦ hϕ +H ◦ hM (see Figure 28c). Indeed,

∂(ψ ◦ hϕ) = ψ ◦ ϕ ◦ hM + ψ ◦ hN ◦ (idA ⊗̃ϕ),

∂(H ◦ hM) = idM ◦hM + ψ ◦ ϕ ◦ hM .

Alternatively, we can express the null-homotopy of the expression (13.3) directly as in

Figure 28d.

Proof of Proposition 13.1.4. Recall the statement of Proposition 13.1.4. We are given two

differential graded algebras A and B, and three modules—BX
A, AY

B, and AM . We assume

that there are homotopy equivalences X�Y ' BIB and Y �X ' AIA, and that X�A∨�X∨

and B∨ have homologies of the same rank.
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(a) Definition of ϕ.

=hX δX

B B B X

X A

B B B X

X A

(b) View as a map B ⊗̃X → X.

Figure 29: Two views of the homotopy equivalence ϕ from Eq. (13.5).
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Figure 30: Equality of the direct and induced ∇ maps for X �M .

We have to construct a homotopy equivalence ϕX : X�A∨�X∨ → B∨, and a homotopy

∇X�M ' ϕX ◦ (idX �∇M � idX∨).

We start by constructing the morphism ϕ. We can define it by the following equation:

〈
(ϕX)i|1|j(b1, . . . , bi, (x, a∨, x′∨), b′1, . . . , b

′
j), b

′′〉
=
〈
δi+j+1|1|1(b′1, . . . , b

′
j, b
′′, b1, . . . , bi, x), (x′, a)∨

〉
. (13.5)

Again, it is useful to “turn it sideways”. We can reinterpret ϕX as a morphism of type–

AD modules B ⊗̃ X → X. In fact, it is precisely the canonical homotopy equivalence hX

between the two. Diagrams for ϕX and hX are shown in Figure 29. Since the hX is a

homomorphism, it follows that ϕX is one as well.

Next we show that ∇X�M is homotopic to ϕX ◦ (idX �∇M � idX∨). They are in fact

equal. This is best seen in Figure 30. We use the fact that δX and δX commute with merges

and splits.
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Finally, we need to show that ϕX is a homotopy equivalence. We will do that by con-

structing a right homotopy inverse for it. Combined with the fact that the homologies of

the two sides have equal rank, this is enough to ascertain that it is indeed a homotopy

equivalence.

Recall that X�Y ' I. Thus there exist morphisms of type–AD B,B–bimodules f : I→

X � Y , and g : X � Y → I, and a null-homotopy H : I → I of idI−g ◦ f . Note that

g∨ : I∨ → Y ∨ �X∨ is a map of type–DA–modules, and (BIB)∨ = BIB.

Let ϕY : Y �B∨ � Y ∨ → A be defined analogous to ϕX . Construct the homomorphism

ψ = (idX �ϕY � idX∨) ◦ (f � idB∨ � idY ∨ � idX∨) ◦ (idI� idB �g
∨) :

I�B∨ � I→ X � A∨ �X∨.

We need to show that ϕX ◦ ψ is homotopic to idB∨ , or more precisely to the canonical

isomorphism ι : I�B∨�I→ B∨. A graphical representation of ϕX◦ψ is shown in Figure 31a.

It simplifies significantly, due to the fact that B is a DG-algebra, and µB only has two nonzero

terms. The simplified version of ϕX ◦ ψ is shown in Figure 31b. As usual, it helps to turn

the diagram sideways. We can view it as a homomorphism B ⊗̃ I → I of type–AD B,B–

bimodules. As can be seen from Figure 31c, we get the composition

g ◦ (hX � idY ) ◦ (idB ⊗̃f) = g ◦ hX�Y ◦ (idB ⊗̃f) : B ⊗̃ I→ I. (13.6)

On the other hand, the homomorphism ι : I�B∨�I→ B∨, if written sideways, becomes

the homotopy equivalence hI : B ⊗̃ I → I. See Figure 32 for the calculation. In the second

step we use some new notation. The caps on the thick strands denote a map BarB → K to

the ground ring, which is the identity on B⊗0, and zero on B⊗i for any i > 0. The dots on

the I strands denote the canonical isomorphism of I � B∨ � I and B∨ as modules over the

ground ring.

Finding a null-homotopy for ι+ϕX ◦ψ is equivalent to finding a null-homotopy B ⊗̃I→ I

of hI + g ◦ hX�Y ◦ (idB ⊗̃f). There is a null-homotopy ζf : B ⊗̃ I → B ⊗̃ �X � Y of



136

δX

δX

δ X

δX

δX

δX

δY

δ Y

δY

δY
µB

µB

f

g

B BIB B
BIB B

B

(a) Before simplification.
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(c) Written sideways.

Figure 31: Three views of ϕX ◦ ψ : I�B∨ � I→ B∨.
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Figure 32: The equivalence of the morphism ι and hI.

f ◦ hI + hX�Y ◦ (idB ⊗̃f). Recall that H was a null-homotopy of idI +g ◦ f . Thus we have

∂(H ◦ hI + g ◦ ζf ) = (idI ◦hI + g ◦ f ◦ hI)

+ (g ◦ f ◦ hI + g ◦ hX�Y ◦ (idB ⊗̃F )

= hI + g ◦ hX�Y ◦ (idB ⊗̃F ),

giving us the required null-homotopy.

To finish the proof, notice that if ϕX ◦ ψ is homotopic to idB, then it is a quasi-

isomorphism, i.e. a homomorphism whose scalar component is a quasi-isomorphism of chain

complexes. Moreover, when working with Z/2–coefficients, as we do, quasi-isomorphisms of

A∞–modules and bimodules coincide with homotopy equivalences.

In particular we have that (ϕX ◦ ψ)0|1|0 = (ϕX)0|1|0 ◦ ψ0|1|0 induces an isomorphism on

homology (in this case the identity map on homology). In particular ψ induces an injection,

while ϕX induces a surjection. Combined with the initial assumption that B∨ and X�A∨�

X∨ have homologies of equal rank, this implies that (ϕX)0|1|0 and ψ0|1|0 induce isomorphisms

on homology. That is, ϕX and ψ are quasi-isomorphisms, and so homotopy equivalences.

This concludes the proof of Proposition 13.1.4, and with it, of Theorem 13.2.2.
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Chapter 14

Properties of the join map

In this section we give some formulas for the join and gluing maps, and prove their formal

properties.

14.1 Explicit formulas

We have abstractly defined the join map ΨW in terms of ∇
B̂SA(W)

but so far have not given

any explicit formula for it. Here we give the general formula, as well as some special cases

which are somewhat simpler.

If we want to compute ΨW for the join Y1 dW Y2, we need to pick a parametrization by

an arc diagram Z, with associated algebra A, and representatives U for B̂SD(Y1)A, V for

AB̂SD(Y2), and M for AB̂SA(W). Then we know SFC(Y1) = U �M , SFC(Y2) = M∨ � V ,

and SFC(Y1 dW Y2) = U � A∨ � V . As given in Definition 13.2.1, the join map ΨW is

ΨW = idU �∇M � idV : U �M ⊗M∨ � V → U � A∨ � V.

In graphic form this can be seen in Figure 33a.

This general form is not good for computations, especially if we try to write it alge-

braically. However ΨW has a much simpler form when M is a DG-type module.

Definition 14.1.1. An A∞–module MA is of DG-type if it is a DG-module, i.e., if its

structure maps m1|i vanish for i ≥ 2. A bimodule AMB is of DG-type if mi|1|j vanish, unless



139

(i, j) is one of (0, 0), (1, 0) or (0, 1) (i.e. it is a DG-module over A⊗B).

A type–DA bimodule AMB is of DG-type if δ1|1|j vanish for all j ≥ 2. A type–DD

bimodule AMB is of DG-type if δ1|1|1(x) is always in A ⊗ X ⊗ 1 + 1 ⊗ X ⊗ B (i.e. it is

separated). All type D–modules MA are DG-type.

The �–product of any combination of DG-type modules is also DG-type. All modules

B̂SA, B̂SD, B̂SAA, etc., computed from a nice diagram are of DG-type.

Proposition 14.1.2. Let the manifolds Y1, Y2, and W, and the modules U , V , and M be

as in the above discussion. If M is DG-type, the formula for the join map ΨW simplifies to:

ΨW(u�m⊗ n∨ � v) =
∑
a

〈mM(a,m), n∨〉 · u� a∨ � v, (14.1)

where the sum is over a Z/2–basis for A. A graphical representation is given in Figure 33b.

Finally, an even simpler case is that of elementary modules. We will see later that

elementary modules play an important role for gluing, and for the relationship between the

bordered and sutured theories.

Definition 14.1.3. A type–A module AM (or similarly MA) is called elementary if the

following conditions hold:

1. M is generated by a single element m over Z/2.

2. All structural operations on M vanish (except for multiplication by an idempotent,

which might be identity).

A type–D module AM (or MA), is called elementary if the following conditions hold:

1. M is generated by a single element m over Z/2.

2. δ(m) = 0.

Notice that for an elementary module M = {0,m} we can decompose m as a sum

m = ι1m + · · · + ιkm, where (ιi) is the canonical basis of the ground ring. Thus we must

have ιim = m for some i, and ιjm = 0 for all i 6= j. Therefore, elementary (left) modules

over A are in a 1–to–1 correspondence with the canonical basis for its ground ring.

We only use elementary type–A modules in this section but we will need both types later.



140

δU δV
m
M

U

U

V

V

M M

A

(a) The general case.

m
M

U

U

V

V

M M

A

(b) M of DG-type.
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(c) M elementary.

Figure 33: Full expression for join map in three cases.

Remark. For the algebras we discuss, the elementary type–A modules are precisely the simple

modules. The elementary type–D modules are the those AM for which A �M ∈ A Mod is

an elementary projective module.

Proposition 14.1.4. If AM = {m, 0} is an elementary module corresponding to the basis

idempotent ιM , then the join map ΨW reduces to

ΨW(u�m⊗m∨ � v) = u� ιM
∨ � v. (14.2)

Graphically, this is given in Figure 33c.

Moreover, in this case, SFC(Y1) = U �M ∼= U · ιM ⊂ U and SFC(Y2) = M � V ∼=

ιM · V ⊂ V as chain complexes.

Proposition 14.1.2 and Proposition 14.1.4 follow directly from the definitions of DG-type

and elementary modules.

14.2 Formal properties

In this section we will show that the join map has the formal properties stated in Theorem 7.

A more precise statement of the properties is given below.

Theorem 14.2.1. The following properties hold:

1. Let Y1 and Y2 be sutured and W be partially sutured, with embeddings W ↪→ Y1 and

−W ↪→ Y2. There are natural identifications of the disjoint unions Y1tY2 and Y2tY1,
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and of of the joins Y1 dW Y2 and Y2 d−W Y1. Under this identification, there is a

homotopy

ΨW ' Ψ−W .

2. Let Y1, Y2, and Y3 be sutured, and W1 and W2 be partially sutured, such that there are

embeddings W1 ↪→ Y1, (−W1 t W2) ↪→ Y2, and −W2 ↪→ Y3. The following diagram

commutes up to homotopy:

SFC(Y1 t Y2 t Y3)
ΨW1 //

ΨW2

��

ΨW1t−W2

++WWWWWWWWWWWWWWWWWWWWW
SFC(Y1 d Y2 t Y3)

ΨW2

��
SFC(Y1 t Y2 d Y3)

ΨW1

// SFC(Y1 d Y2 d Y3)

3. Let W be partially sutured. There is a canonical element [∆W ] in the sutured Floer

homology SFH(D(W)) of the double of W. If ∆ is any representative for [∆W ], and

there is an embedding W ↪→ Y, then

ΨW(·,∆) ' idSFC(Y) : SFC(Y)→ SFC(Y). (14.3)

Proof. We will prove the three parts in order.

For part (1), take representatives UA for B̂SD(Y1 \W), AV for B̂SD(Y2 \−W), and AM

for B̂SA(W). The main observation here is that we can turn left modules into right modules

and vice versa, by reflecting all diagrams along the vertical axis (see Appendix B.6). If

we reflect the entire diagram for ΨM, domain and target chain complexes are turned into

isomorphic ones and we get a new map that is equivalent.

The domain UA�AM⊗M∨
A�AV becomes V Aop

�AopM∨⊗MAop�Aop
U , and the target

UA � AA
∨
A � AV becomes V Aop

� Aop(A∨)op
Aop � Aop

U .

Notice that V Aop
is B̂SD(Y2 \ −W), AopU is B̂SD(Y1 \ W), and AopM∨ is B̂SA(−W).

In addition (A∨)op = (Aop)∨. Since the map ∇M is completely symmetric, when we reflect

it, we get ∇M∨ . Everything else is preserved, so reflecting ΨW gives precisely Ψ−W . This

finishes part (1).

For part (2), the equivalence is best seen by working with convenient representatives.

Pick the following modules as representatives: UA for B̂SD(Y1 \ W1), AXB for B̂SDD(Y2 \
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(−W1 ∪ W2)), BV for B̂SD(Y1), AM for B̂SA(W1) and BN for B̂SD(W2). We can always

choose M , N , and X to be of DG-type in the sense of Definition 14.1.1. Since X is of

DG-type, taking the �–product with it is associative. (This is only true up to homotopy in

general). Since M and N are DG-type, we can apply Proposition 14.1.2 to get formulas for

ΨW1 and ΨW2 . The two possible compositions are shown in Figures 34a and 34b.

To compute ΨW1∪−W2 , notice that (U ⊗ V )A,B
op

represents B̂SDD((Y1 ∪ Y3) \ (W1 ∪

−W3)), A,B
op
X represents B̂SDD(Y2\(−W1∪W2)), and A,Bop(M⊗N∨) is a DG-type module

representing B̂SAA(W1∪−W2). To compute the join map, we need to convert them to single

modules. For type–DD modules, this is trivial (any A,B–bimodule is automatically an

A⊗B–module and vice versa). For type–AA modules, this could be complicated in general.

Luckily, it is easy for DG-type modules. Indeed, if PA,B is DG-type, the corresponding

A⊗B–module PA⊗B is also DG-type, with algebra action

m1|1(·, a⊗ b) = m1|1|0(·, a) ◦m1|0|1(·, b) = m1|0|1(·, b) ◦m1|1|0(·, a).

In the definition of bimodule invariants in Part I, the procedure used to get B̂SAA from

B̂SA, and B̂SDD from B̂SD is exactly the reverse of this construction.

Thus, we can see that (U ⊗ V )A⊗B
op

represents B̂SD((Y1 ∪ Y3) \ (W1 ∪ −W3)), A⊗B
op
X

represents B̂SD(Y2 \ (−W1 ∪W2)), and A⊗Bop(M ⊗ N∨) represents B̂SA(W1 ∪ −W2). It is

also easy to check that

AA
∨
A ⊗ Bop(Bop)∨Bop

∼= A⊗Bop(A⊗Bop)∨A⊗Bop .

We can see a diagram for ΨW1∪−W2 in Figure 34c. By examining the diagrams, we see

that the three maps are the same, which finishes part (2).

Part (3) requires some more work, so we will split it in several steps. We will define ∆M

for a fixed representative M of B̂SD(W). We will prove that [∆M ] does no depend on the

choice of M . Finally, we will use a computational lemma to show that Eq. (14.3) holds for

∆M .

First we will introduce some notation. Given an A∞–module AM over A = A(Z), define

the double of M to be

D(M) = M∨ � (AIA � A� AIA)�M. (14.4)



143

m
M

m
N

UM MXN N V

U A X B V

(a) ΨW2 ◦ΨW1

m
M

m
N

UM MXN N V

U A X B V

(b) ΨW1 ◦ΨW2

m
M

m
N

U⊗VM⊗N∨ M∨⊗N X

U⊗V A⊗Bop X

(c) ΨW1∪−W2

Figure 34: Three ways to join Y1, Y2, and Y3.

=

∆M

1

MAIA A AIAM MAIA A AIAM

Figure 35: The diagonal element ∆M .

Note that if M = B̂SA(W), then D(M) = B̂SA(−W) � B̂SDD(T WF ,−) � B̂SA(W) '

SFC(D(W)). Next we define the diagonal element ∆M ∈ D(M) as follows. Pick a basis

(m1, . . . ,mk) of M over Z/2. Define

∆M =
k∑
i=1

mi � (∗� 1� ∗)�mi
∨. (14.5)

It is easy to check that this definition does not depend on the choice of basis. Indeed

there is a simple diagrammatic representation of ∆M , given in Figure 35. We think of it as

a linear map from Z/2 to D(M). It is also easy to check that ∂∆M = 0. Indeed, writing out

the definition of ∂∆M , there are are only two nonzero terms which cancel.

The proof that [∆M ] does not depend on the choices of A and M is very similar to the

proof of Theorem 13.2.2, so will omit it. (It involves showing independence from M , as well

as from A via a quasi-invertible bimodule AXB.)

Lemma 14.2.2. Let A be a differential graded algebra, coming from an arc diagram Z.

There is a homotopy equivalence

cA : AIA � A∨ � AIA � AAA → AIA,
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given by

(cA)1|1|0 (∗� a∨ � ∗� b) =

b⊗ ∗ if a is an idempotent,

0 otherwise.

Here we use ∗ to denote the unique element with compatible idempotents in the two

versions of I. (Both versions have generators in 1–to–1 correspondence with the basis idem-

potents.)

Remark. As we mentioned earlier, one has to be careful when working with type–DD mod-

ules. While � and ⊗̃ are usually associative by themselves, and with each other, this might

fail when a DD–module is involved, in which case we only have associativity up to homo-

topy equivalence. However, this could be mitigated in two situations. If the DD–module is

DG-type (which fails for AIA), or if the type–A modules on both sides are DG-type, then

true associativity still holds. This is true for A and A∨, so the statement of the lemma makes

sense.

Proof of Lemma 14.2.2. Note that we can easily see that there is some homotopy equivalence

(I� A∨ � I)� A ' I, since the left-hand side is

B̂SDD(T WF ,+)� B̂SAA(T W−F ,−) ' B̂SDA(T WF ,+ ∪ T W−F ,−),

while the right side is B̂SDA(F × [0, 1]), and those bordered sutured manifolds are the same.

The difficulty is in finding the precise homotopy equivalence, which we need for computations,

in order to “cancel” A∨ and A.

First, we need to show that cA is a homomorphism. This is best done graphically. The

definition of cA is represented in Figure 36. The notation we use there is that AIA is a jagged

line, without a direction, since I is its own dual. AIA is represented by a dashed line. As

before the line can start or end with a dot, signifying the canonical isomorphism given by

·� ∗.

We need to show that ∂cA = 0. Note that by definition cA only has a 1|1|0–term. On

the other hand δ on I�A∨ � I�A has only 1|1|0– and 1|1|1–terms, while δ on I has only a

1|1|1–term.
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Figure 36: The cancellation homotopy equivalence cA : I�A∨ � I�A→ I.
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Figure 37: Nontrivial terms of ∂cA.

Thus only four terms from the definition of ∂cA survive. These are shown in Figure 37.

Expanding the definition of δ on I�A∨�I�A in terms of the operations of I, A, and A∨, we

get seven terms. We can see them in Figure 38. The terms in Figures 38a—38d correspond

to Figure 37a, while those in Figures 38e—38g correspond to Figures 37b—37d, respectively.

Six of the terms cancel in pairs, while the one in 38b equals 0.

Showing that cA is a homotopy equivalence is somewhat roundabout. First we will show

that the induced map

idA�cA : A� (AIA � A∨ � AIA � A)→ A� AIA ∼= A

is a homotopy equivalence. It is easy to see that the map is

(idA�cA)0|1|0(a� ∗� b∨ � ∗� c) =

a · c if b is an idempotent,

0 otherwise.

In particular, it is surjective. Indeed, idA�cA(a�∗�1∨�∗�1) = a for all a ∈ A. Thus the

induced map on homology is surjective. But the source and domain are homotopy equivalent
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Figure 38: Elementary terms of ∂h.

for topological reasons (both represent B̂SAA(T WF ,−)). This implies that idA�cA is a quasi-

isomorphism, and a homotopy equivalence. But (I�A∨�I)�A ' I and A�(I�A∨�I) ' I

for topological reasons, so A� · is an equivalence of derived categories. Thus, cA itself must

have been a homotopy equivalence, which finishes the proof of the lemma.

We will now use Lemma 14.2.2, to show that for any Y there is a homotopy ΨW(·,∆M) '

idSFC(Y). Let cA be the homotopy equivalence from the lemma. There is a sequence of

homomorphisms as follows.

I�M
idI�M ⊗∆M

��
I�M ⊗D(M) ∼= I�M ⊗M∨ � I� A� I�M

idI �∇M�idI�A�I�M
��

I� A∨ � I� A� I�M
cA�idI�M

��
I�M

The composition of these maps is shown in Figure 39. As we can see from the diagram,

it is equal to idI� idM . If U = B̂SD(Y \ W), then by applying the functor idU �· to both
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Figure 39: Proof that ΨM (·,∆M ) ' id.

homomorphisms, we see that

(idU �cA � idI�M) ◦ΨM ◦ (idSFC(Y)�∆M) = idSFC(Y),

which is equivalent to Eq. (14.3).

14.3 Self-join and self-gluing

So far we have been talking about the join or gluing of two disjoint sutured manifolds.

However, we can extend these notions to a self-join or self-gluing of a single manifold. For

example if there is an embedding (W t −W) ↪→ Y , then we can define the self-join of Y

along W to be the concatenation

YdW,	 = (Y \ (W t−W)) ∪F∪F T WF ,+ ∼= Y dWt−W D(W).

It is easy to see that if W and −W embed into different components of Y , this is the same

as the regular join.

Similarly, we can extend the join map to a self-join map

ΨW,	 : SFC(Y)→ SFC(Y dWt−W D(W)) ' SFC(YdW,	),

by setting

ΨW,	 = ΨWt−W(·,∆W).
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Again, if W and −W embed into disjoint components of Y , ΨW,	 is, up to homotopy,

the same as the regular join map ΨW . This follows quickly from properties (2) and (3) in

Theorem 14.2.1.
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Chapter 15

The bordered invariants in terms of

SFH

In this section we give a (partial) reinterpretation of bordered and bordered sutured invari-

ants in terms of SFH and the gluing map Ψ. This is a more detailed version of Theorem 2.

15.1 Elementary dividing sets

Recall Definition 11.1.3 of a dividing set. Suppose we have a sutured surface F = (F,Λ)

parametrized by an arc diagram Z = (Z, a,M) of rank k. We will define a set of 2k

distinguished dividing sets.

Before we do that, recall the way an arc diagram parametrizes a sutured surface, from

Chapter 12.1. There is an embedding of the graph G(Z) into F , such that ∂Z = Λ (Recall

Figure 18). We will first define the elementary dividing sets in the cases that Z is of α–type.

In that case the image of Z is a push-off of S+ into the interior of F . Denote the regions

between S+ and Z by R0. It is a collection of discs, one for each component of S+. The

images of the arcs ei ⊂ G(Z) are in the complement F \R0.

Definition 15.1.1. Let I ⊂ {1, . . . , k}. The elementary dividing set for F associated to I



150

1
2

3
4

1

2
3

4

(a) α–type diagram.

1
2

3
4

1

2
3

4

(b) β–type diagram.

Figure 40: Elementary dividing sets for an arc diagram. In each case we show the arc diagram,

its embedding into the surface, and the dividing set Γ{2,3}. The shaded regions are R+.

is the dividing set ΓI constructed as follows. Let R0 be the region defined above. Set

R+ = R0 ∪
⋃
i∈I

ν(ei) ⊂ F.

Then ΓI = (∂R+) \ S+.

If Z is of β–type, repeat the same procedure, substituting R− for R+ and S− for S+.

For example the region R0 consists of discs bounded by S− ∪Z. Examples of both cases are

given in Figure 40.

We refer to the collection of ΓI for all 2k–many subsets of {1, . . . , k} as elementary dividing

sets for Z. The reason they are important is the following proposition.

Proposition 15.1.2. Let Z be an arc diagram of rank k, and let I ⊂ {1, . . . , k} be any

subset. Let ιI be the idempotent for A = A(Z) corresponding to horizontal arcs at all i ∈ I,

and let ιIc be the idempotent corresponding to the complement of I. Let WI be the cap

associated to the elementary dividing set ΓI .

Then the following hold:

• AB̂SD(W) is (represented by) the elementary type–D module for ιI .

• AB̂SA(W) is (represented by) the elementary type–A module for ιIc.

Proof. The key fact is that there is a particularly simple Heegaard diagram H for WI . For

concreteness we will assume Z is a type–α diagram, though the case of a type–β diagram is

completely analogous.
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A A B B

Figure 41: Heegaard diagram H for the cap W2,3 corresponding to the dividing set from

Figure 40a.

The diagram H = (Σ,α,β,Z) contains no α–circles, exactly one α–arc αai for each

matched pair M−1(i), and k−#I many β–circles. Each β–circle has exactly one intersection

point on it, with one of αai , for i /∈ I. This implies that there is exactly one generator

x ∈ G(H), that occupies the arcs for Ic. This implies that B̂SD(WI) and B̂SA(WI) are both

{x, 0} as Z/2–modules. The actions of the ground ring are ιI · x = x for B̂SD(WI) and

ιIc · x = x for B̂SA(WI). This was one of the two requirements for an elementary module.

The connected components of Σ\ (α∪β) are in 1–to–1 correspondence with components

of ∂R+. In fact each such region is adjacent to exactly one component of ∂Σ \Z. Therefore,

there are only boundary regions and no holomorphic curves are counted for the definitions

of B̂SD(WI) and B̂SA(WI). This was the other requirement for an elementary module, so

the proof is complete. The diagram H can be seen in Figure 41.

We will define one more type of object. Let F be a sutured surface parametrized by some

arc diagram Z. Let I and J be two subsets of {1, . . . , k}. Consider the sutured manifold

−WI ∪ T W−F ,− ∪ WJ . Since −WI and WJ are caps, topologically this is F × [0, 1]. The

dividing set can be described as follows. Along F × {0} it is ΓI × {0}, along F × {1} it is

ΓJ×{1}, and along ∂F × [0, 1] it consists of arcs in the [0, 1] direction with a partial negative

twist.

Definition 15.1.3. Let ΓI→J denote the dividing set on ∂(F × [0, 1]), such that

(F × [0, 1],ΓI→J) = −WI ∪ T WF ,− ∪WJ .
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15.2 Main results

The main results of this section are the following two theorems. We will give the proofs in

the next subsection.

Theorem 15.2.1. Let F be a sutured surface parametrized by an arc diagram Z. The

homology of A = A(Z) decomposes as the sum

H∗(A) =
⊕

I,J⊂{1,...,k}

ιI ·H∗(A) · ιJ =
⊕

I,J⊂{1,...,k}

H∗(ιI · A · ιJ), (15.1)

where

ιI ·H∗(A) · ιJ ∼= SFH(F × [0, 1],ΓI→J). (15.2)

Multiplication µ2 descends to homology as

µH = Ψ(F,ΓJ ) : SFH (F × [0, 1],ΓI→J)⊗ SFH (F × [0, 1],ΓJ→K)

→ SFH (F × [0, 1],ΓI→K) ,
(15.3)

and is 0 on all other summands.

Theorem 15.2.2. Let Y = (Y,Γ,F) be a bordered sutured manifold where F parametrized

by Z. Then there is a decomposition

H∗

(
B̂SA(Y )A

)
=

⊕
I⊂{1,...,k}

H∗

(
B̂SA(Y)

)
· ιI

=
⊕

I⊂{1,...,k}

H∗

(
B̂SA(Y ) · ιI

)
,

(15.4)

where

H∗

(
B̂SA(Y )

)
· ιI ∼= SFH(Y,Γ ∪ ΓI). (15.5)

Moreover, the m1|1 action of A on B̂SA descends to the following action on homology:

mH = Ψ(F,ΓI) : SFH(Y,Γ ∪ ΓI)⊗ SFH(F × I,ΓI→J)→ SFH(Y,Γ ∪ ΓJ), (15.6)

and mH = 0 on all other summands.

Similar statements hold for left A–modules AB̂SA(Y), and for bimodules AB̂SAA(Y)B.
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Theorem 15.2.1 and 15.2.2, give us an alternative way to think about bordered sutured

Floer homology, or pure bordered Floer homology. (Recall that as shown in Part I, the

bordered invariants ĈFD and ĈFA are special cases of B̂SD and B̂SA.) More remarkably,

as we show in [Zar11b], H∗(A), µH , and mH can be expressed in purely contact-geometric

terms.

For practical purposes, A and B̂SA can be replaced by the A∞–algebra H∗(A) and the

A∞–module H∗(B̂SA) over it. For example, the pairing theorem will still hold. This is

due to the fact that (using Z/2–coefficients), an A∞–algebra or module is always homotopy

equivalent to its homology.

We would need, however, the higher multiplication maps of H∗(A), and the higher actions

of H∗(A) on H∗(B̂SA). The maps µH and mH that we just computed are only single terms

of those higher operations. (Even though A is a DG-algebra, H∗(A) usually has nontrivial

higher multiplication.)

15.3 Proofs

In this section we prove Theorems 15.2.1 and 15.2.2. Since there is a lot of overlap of the

two results and the arguments, we will actually give a combined proof of a mix of statements

from both theorems. The rest follow as corollary.

Combined proof of Theorem 15.2.1 and Theorem 15.2.2. First, note that both Eq. (15.1)

and Eq. (15.4) follow directly from the fact that the idempotents generate the ground ring

over Z/2.

We will start by proving a generalization of Eq. (15.2) and Eq. (15.5). The statement is

as follows. Let F and F ′ be two sutured surfaces parametrized by the arc diagrams Z and

Z ′ of rank k and k′, respectively. Let A = A(Z) and B = A(Z ′). Let Y = (Y,Γ,F tF ′) be

a bordered sutured manifold, and let M = AB̂SAA(Y)B.

Fix I ⊂ {1, . . . , k} and J ⊂ {1, . . . , k′}. LetWI andW ′J be the respective caps associated

to the dividing sets ΓI on F and Γ′J on F ′. Then the following homotopy equivalence holds.

ιI · B̂SAA(Y) · ιJ ' SFC(Y,ΓI ∪ Γ ∪ Γ′J). (15.7)
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The proof is easy. Notice that the sutured manifold (Y,ΓI∪Γ∪Γ′J) is just −WI∪Y∪W ′J .

By the pairing theorem, SFC(Y,ΓI ∪ Γ ∪ Γ′J) ' B̂SD(−WI) � B̂SAA(Y) � B̂SD(W ′J). But

by Proposition 15.1.2, B̂SD(−WI) = {xI , 0} is the elementary module corresponding to ιI ,

while B̂SD(W ′J) = {yJ , 0} is the elementary idempotent corresponding to ι′J . Thus we have

B̂SD(−WI)� B̂SAA(Y)� B̂SD(W ′J) = xI � B̂SAA(Y)� yJ

∼= ιI · B̂SAA(Y) · ι′J .

Eq. (15.2) follows from Eq. (15.7) by substituting the empty sutured surface ∅ = (∅,∅)

for F . Its algebra is A(∅) = Z/2, so Z/2B̂SAA(Y)B and B̂SA(Y)B can be identified.

Eq. (15.5) follows from Eq. (15.7) by substituting F(Z) for both F and F ′, and T W−F ,−
for Y . Indeed, B̂SAA(−T WF ,−) ' A(Z), as a bimodule over itself, by Proposition 12.4.2.

Next we prove Eq. (15.6). Let UA be a DG-type representative for B̂SA(Y)A, and let MI

be the elementary representative for AB̂SA(WI). Since both are DG-type, we can form the

associative product

U � AIA �MI ' B̂SA(Y )� B̂SD(WI)

' SFC(Y,Γ ∪ ΓI).

Similarly, pick MJ to be the elementary representative for AB̂SA(WJ). We also know that

AAA is a DG-type representative for AB̂SAA(T W−F ,−)A. We have the associative product

MI
∨ � AIA � A� AIA �MJ ' B̂SD(−WI)� A� B̂SD(WJ)

' SFC(F × [0, 1],ΓI→J).

Gluing the two sutured manifolds along (F,ΓI) results in

Y ∪ T WF ,+ ∪ T W−F ,− ∪WJ
∼= Y ∪WJ = (Y,Γ ∪ ΓJ),

so we get the correct manifold.

The gluing map can be written as the composition of

ΨMI
: (U � I)�MI ⊗MI

∨ � (I� A� I�MJ)

→ (U � I)� A∨ � (I� A� I�MJ),

idU �cA � idI�MJ
: U � (I� A∨ � I� A)� I�MJ → U � I�MJ ,
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=

idU�I�∇MI
� idI�A�I�MJ

idU �cA � idI�MJ
mU

ι∨I

1

U I MI MI I A I MJ U IMIMII A IMJ

U I MJ U IMJ

Figure 42: The gluing map ΨMI
on SFC(Y,ΓI)⊗ SFC(F × [0, 1],ΓI→J), followed by the chain

homotopy equivalence id�cA � id.

where cA is the homotopy equivalence from Lemma 14.2.2.

Luckily, since MI is elementary, ΨMI
takes the simple form from Proposition 14.1.4. In

addition, since U and MJ are DG-type, id�h � id is also very simple. As can be seen in

Figure 42, the composition is in fact

u� ∗� xIc ⊗ xIc∨ � ∗� a� ∗� xJc 7→ m1|1(u, a)� ∗� xJc .

Since ·� ∗� xIc corresponds to ·ιI , this translates to the map

Ψ(F,ΓI) : (U · ιI)⊗ (ιI · A · ιJ)→ U · ιJ ,

(u · ιI)⊗ (ιI · a · ιJ). 7→ m(u, a) · ιJ

Note that even though we picked a specific representative for B̂SA(Y)A, the group

H∗(B̂SA(Y)) and the induced action mH of H∗(A) do not depend on this choice. Finally,

Eq. (15.3) follows by treating A as a right module over itself.
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Appendix A

Calculus of diagrams

This appendix summarizes the principles of the diagrammatic calculus we have used through-

out the thesis. First we describe the algebraic objects we work with, and the necessary

assumptions on them. Then we describe the diagrams representing these objects.

A.1 Ground rings

The two basic objects we work with are a special class of rings, and bimodules over them.

We call these rings ground rings.

Definition A.1.1. A ground ring K is a finite dimensional Z/2–algebra with a distinguished

basis (e1, . . . , ek) such that multiplication is given by the formula

ei · ej =

ei if i = j,

0 otherwise.

Such a basis for K is called a canonical basis.

The canonical basis elements are uniquely determined by the property that ei cannot be

written as a sum u + v, where u and v are nonzero and u · v = 0. Each element of K is an

idempotent, while 1K = e1 + · · ·+ ek is an identity element.

We consider only finite dimensional bimodules KML over ground rings K and L, and

collections (KMiL)i∈I where I is a countable index set (usually I = {0, 1, 2, . . .}, or some
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Cartesian power of the same), and each Mi is a finite-dimensional K,L–bimodule. It is often

useful to think of the collection (Mi) as the direct sum
⊕

i∈IMi, but that sometimes leads

to problems, so we will not make this identification.

There are some basic properties of bimodules over ground rings as defined above.

Proposition A.1.2. Suppose K, L, and R are ground rings with canonical bases (e1, . . . , ek),

(e′1, . . . , e
′
l), and (e′′1, . . . , e

′′
r), respectively.

• A bimodule KML is uniquely determined by the collection of Z/2–vector spaces

ei ·M · e′j, i ∈ {1, . . . , k}, j ∈ {1, . . . , l},

which we will call the components of M .

• A K,L–bilinear map f : M → N is determined by the collection of Z/2–linear maps

f |ei·M ·e′j : ei ·M · e′j → ei ·N · e′j.

• The tensor product (KML)⊗L (LNR) has components

ei · (M ⊗L N) · e′′j =
l⊕

p=1

(ei ·M · e′p)⊗Z/2 (e′p ·N · e′′j ).

• The dual LM
∨
K of KML has components

ei ·M∨ · e′j ∼= (e′j ·M · ei)∨,

and the double dual (M∨)∨ is canonically isomorphic to M .

Proof. These follow immediately. The fact that M∨∨ ∼= M is due to the fact each component

is a finite dimensional vector space.

Finally, when dealing with countable collections we introduce the following conventions.

For consistency we can think of a single module M as a collection (Mi) indexed by the set

I = {1}.

Definition A.1.3. Let K, L, and M be as in Proposition A.1.2.
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• An element of (Mi)i∈I is a collection (mi)i∈I where mi ∈Mi.

• A bilinear map f : (KMiL)i∈I → (KNjL)j∈J is a collection

f(i,j) : Mi → Nj (i, j) ∈ I × J.

Equivalently, a map f is an element of the collection

HomK,L((Mi)i∈I , (Nj)j∈J) = (Hom(Mi, Nj))(i,j)∈I×J .

• The tensor K(Mi)L ⊗ L(Nj)R is the collection

((M ⊗N)(i,j))(i,j)∈I×J = (Mi ⊗Nj)(i,j)∈I×J .

• The dual ((Mi)i∈I)
∨ is the collection (Mi

∨)i∈I .

• Given bilinear maps f : (Mi) → (Nj) and g : (Nj) → (Pp), their composition g ◦

f : (Mi)→ (Pp) is the collection

(g ◦ f)(i,p) =
∑
j∈J

g(j,p) ◦ f(i,j).

Note that the composition of maps on collections may not always be defined due to a

potentially infinite sum. On the other hand, the double dual (Mi)
∨∨ is still canonically

isomorphic to (Mi).

A.2 Diagrams for maps

We will use the following convention for our diagram calculus. There is a TQFT-like struc-

ture, where to decorated planar graphs we assign bimodule maps.

Proposition A.2.1. Suppose K0, K1, . . . , Kn = K0 are ground rings, n ≥ 0, and Ki−1
MiKi

are bimodules, or collections of bimodules. Then the following Z/2–spaces are canonically

isomorphic.

Ai = Mi ⊗Mi+1 ⊗ · · · ⊗Mn ⊗M1 ⊗ · · · ⊗Mi−1/ ∼,

Bi,j = HomKi,Kj(M
∨
i ⊗ · · · ⊗M∨

1 ⊗M∨
n ⊗ · · · ⊗M∨

j+1, Mi+1 ⊗ · · · ⊗Mj),

Ci,j = HomKj ,Ki(M
∨
j ⊗ · · · ⊗M∨

i+1, Mj+1 ⊗ · · · ⊗Mn ⊗M1 ⊗ · · · ⊗Mi),
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for 0 ≤ i ≤ j ≤ n, where the relation ∼ in the definition of Ai is k · x ∼ x · k, for k ∈ Ki−1.

Proof. The proof is straightforward. If all Mi are single modules, then we are only dealing

with finite-dimensional Z/2–vector spaces. If some of them are collections, then the index

sets for Ai, Bi,j and Ci,j are all the same, and any individual component still consists of

finite dimensional vector spaces.

This property is usually referred to as Frobenius duality. Our bimodules behave similar

to a pivotal tensor category. Of course we do not have a real category, as even compositions

are not always defined.

Definition A.2.2. A diagram is a planar oriented graph, embedded in a disc, with some

degree–1 vertices on the boundary of the disc There are labels as follows.

• Each planar region (and thus each arc of the boundary) is labeled by a ground ring K.

• Each edge is labeled by a bimodule KML, such that when traversing the edge in its

direction, the region on the left is labeled by K, while the one on the right is labeled by

L.

• An internal vertex with all outgoing edges labeled by M1, . . . ,Mn, in cyclic counter-

clockwise order, is labeled by an element of one of the isomorphic spaces in Proposi-

tion A.2.1.

• If any of the edges adjacent to a vertex are incoming, we replace the corresponding

modules by their duals.

When drawing diagrams we will omit the bounding disc, and the boundary vertices. We

will usually interpret diagrams consisting of a single internal vertex having several incoming

edges M1, . . . ,Mm “on top”, and several outgoing edges N1, . . . , Nn “on the bottom”, as a

bilinear map in Hom(M1 ⊗ · · · ⊗Mm, N1 ⊗ · · · ⊗Nn). See Figure 43 for an example.

Under some extra assumptions, discussed in Chapter A.3, a diagram with more vertices

can also be evaluated, or interpreted as an element of some set, corresponding to all outgoing
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↔ ↔F F

F

M1M2M3M4M5 M2M3M4 M5M1

M∨1M
∨
5 M∨4M

∨
3M

∨
2

Figure 43: Three equivalent diagrams with a single vertex. The label F is interpreted as an

element of A1 = M1⊗· · ·⊗M5/ ∼, B1,4 = Hom(M∨1 ⊗M∨5 ,M2⊗M3⊗M4), and C1,4 Hom(M∨4 ⊗

M∨3 ⊗M∨2 ,M5 ⊗M1), respectively.

edges. The most common example is having two diagrams D1 and D2 representing linear

maps

M
f1 // N

f2 // P.

Stacking the two diagrams together, feeding the outgoing edges of D1 into the incoming

edges of D2, we get a new diagram D, corresponding to the map f2 ◦ f1 : M → P . More

generally, we can “contract” along all internal edges, pairing the elements assigned to the

two ends of an edge. As an example we will compute the diagram D in Figure 44. Suppose

the values of the vertices F , G, and H are as follows:

F =
∑
i

mi ⊗ qi ⊗ si ∈M ⊗Q⊗ S,

G =
∑
j

s′j ⊗ r′j ⊗ p′j ∈ S∨ ⊗R∨ ⊗ P∨,

H =
∑
k

q′k ⊗ nk ⊗ rk ∈ Q∨ ⊗N ⊗R.

Then the value of D is given by

D =
∑
i,j,k

〈qi, q′k〉Q ·
〈
si, s

′
j

〉
S
·
〈
rk, r

′
j

〉
R
·mi ⊗ nk ⊗ p′j ∈M ⊗N ⊗ P∨.

Edges that go from boundary to boundary and closed loops can be interpreted as having

an identity vertex in the middle. As with individual vertices, we can rotate a diagram to

interpret it as an element of different spaces, or different linear maps.

Note that the above construction might fail if any of the internal edges corresponds to a

collection, since there might be an infinite sum involved. The next section discusses how to

deal with this problem.
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=
D

F G

H

MN P M N P
Q R

S

Figure 44: Evaluation of a complex diagram.

A.3 Boundedness

When using collections of modules we have to make additional assumptions to avoid infinite

sums. We use the concept of boundedness of maps and diagrams.

Definition A.3.1. An element (mi)i∈I of the collection (Mi)i∈I is called bounded if only

finitely many of its components mi are nonzero. Equivalently, the bounded elements of (Mi)

can be identified with the elements of
⊕

iMi.

For a collection (Mi,j)i∈I,j∈J there are several different concepts of boundedness. An

element (mi,j) is totally bounded if it is bounded in the above sense, considering I × J as a

single index-set. A weaker condition is that (mi,j) is bounded in J relative to I. This means

that for each i ∈ I, there are only finitely many j ∈ J , such that mi,j is nonzero. Similarly,

an element can be bounded in I relative to J .

Note that f : (Mi) → (Nj) is bounded in J relative to I exactly when f represents a

map from
⊕

iMi to
⊕

j Nj. In computations relatively bounded maps are more common

than totally bounded ones. For instance the identity map id: (Mi)→ (Mi) and the natural

pairing 〈·, ·〉 : (Mi)
∨ ⊗ (Mi) → K are not totally bounded, but are bounded in each index

relative to the other.

To be able to collapse an edge labeled by a collection (Mi)i∈I in a diagram, at least

one of the two adjacent vertices needs to be labeled by an element relatively bounded in

the I–index. For a given diagram D we can ensure that it has a well-defined evaluation

by imposing enough boundedness conditions on individual vertices. (There is usually no

unique minimal set of conditions.) Total or relative boundedness of D can also be achieved

by a stronger set of conditions. For example, if all vertices are totally bounded, the entire

diagram is also totally bounded.
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Appendix B

A∞–algebras and modules

In this section we will present some of the background on A∞–algebras and modules, and the

way they are used in the bordered setting. A more thorough treatment is given in [LOT10a].

As in Appendix A, we always work with Z/2–coefficients which avoids dealing with signs.

Everything is expressed in terms of the diagram calculus of Appendix A. As described there,

all modules are finite dimensional, although we also deal with countable collections of such

modules. There is essentially only one example of collections that we use, which is presented

below.

B.1 The bar construction

Suppose K is a ground ring and KMK is a bimodule over it.

Definition B.1.1. The bar of M is the collection

BarM = (M⊗i)i=0,...,∞,

of tensor powers of M .

There are two important maps on the bar of M .
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BarM BarM BarM

BarM BarM M BarM BarM BarM BarM

(a) Split maps.

BarM BarM BarM

BarM BarM M BarM BarM M BarM

(b) Merge maps.

Figure 45

Definition B.1.2. The split on BarM is the map s : BarM → BarM ⊗ BarM with

components

s(i,j,k) =

id : M⊗i → (M⊗j)⊗ (M⊗k) if i = j + k,

0 otherwise.

The merge map BarM ⊗ BarM → BarM is similarly defined.

Merges and splits can be extended to more complicated situations where any combination

of copies of BarM and M merge into BarM , or split from BarM . All merges are associative,

and all splits are coassociative.

Like the identity map, splits and merges are bounded in incoming indices, relative to out-

going, and vice versa. To simplify diagrams, we draw merges and splits as merges ans splits

of arrows, respectively, without using a box for the corresponding vertex (see Figure 45).

B.2 Algebras and modules

The notion of an A∞–algebra is a generalization of that of a differential graded (or DG)

algebra. While the algebras that arise in the context of bordered Floer homology are only

DG, we give the general definition for completeness. We will omit grading shifts.

Definition B.2.1. An A∞–algebra A over the base ring K consists a K–bimodule KAK,

together with a collection of linear maps µi : A
⊗i → A, i ≥ 1, satisfying certain compatibility

conditions. By adding the trivial map µ0 = 0: K → A, we can regard this as a map

µ = (µi) : BarA → A. This induces a map µ : BarA → BarA, given by splitting BarM

into three copies of itself, applying µ to the middle one, and merging again (see Figure 46a).
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µ µ=

(a) µ̄ in terms of µ.

= 0 ⇐⇒ = 0

µ µ

µ µ

(b) Compatibility conditions.

Figure 46: Definition of A∞–algebras

The compatibility condition is µ ◦ µ = 0, or equivalently µ ◦ µ = 0 (see Figure 46b).

The algebra is unital if there is a map 1: K → A (which we draw as a circle labeled “1”

with an outgoing arrow labeled “A”), such that µ2(1, a) = µ2(a, 1) = a, and µi(. . . , 1, . . .) = 0

if i 6= 2.

The algebra A is bounded if µ is bounded, or equivalently if µ is relatively bounded in

both directions.

Notice that a DG-algebra with multiplication m and differential d is just an A∞ algebra

with µ1 = d, µ2 = m, and µi = 0 for i ≥ 3. Moreover, DG-algebras are always bounded.

Since DG-algebras are associative, there is one more operation that is specific to them.

Definition B.2.2. The associative multiplication π : BarA→ A for a DG-algebra A is the

map with components

πi(a1 ⊗ · · · ⊗ ai) =

a1a2 · · · ai i > 0,

1 i = 0.

There are two types of modules: type–A, which is the usual notion of an A∞–module,

and type–D. There are four types of bimodules: type–AA, type–DA, etc. These can be

extend to tri-modules and so on. We describe several of the bimodules. Other cases can be

easily deduced.

Suppose A and B are unital A∞–algebras with ground rings K and L, respectively. We

use the following notation. A type–A module over A will have A as a lower index. A type–D

module over A will have A as an upper index. Module structures over the ground rings K

and L are denoted with the usual lower index notation.
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m

m

µA

m

µB

m

+ + = 0

Figure 47: Structure equation for a type–AA module.

...= ...
...δ

δ

δ

(a) δ in terms of δ.

+ += 0 = 0⇐⇒
µB δ µB δ

δ µA δ µA

(b) Structure equation for a type–DA module.

Figure 48

Definition B.2.3. A type–AA bimodule AMB consists of a bimodule KML over the ground

rings, together with a map m = (mi|1|j) : BarA ⊗ M ⊗ BarB → M . The compatibility

conditions for m are given in Figure 47.

The bimodule M is unital if m1|1|0(1A,m) = m0|1|1(m, 1B) = m, and mi|1|j vanishes in all

other cases where one of the inputs is 1A or 1B.

The bimodule can be bounded, bounded only in A, relatively bounded in A with respect to

B, etc. These are defined in terms of the index sets of BarA and BarB.

Definition B.2.4. A type–DA bimodule AMB consists of a bimodule KML over the ground

rings, together with a map δ = (δ1|1|j) : M ⊗ BarB → A ⊗M . This induces another map

δ = (δi|1|j) : M⊗BarB → BarA⊗M , by splitting BarB into i copies, and applying δ i–many

times (see Figure 48a). The compatibility conditions for δ and δ are given in Figure 48b.

The bimodule M is unital if δ1|1|1(m, 1B) = 1A ⊗m, and δ1|1|i vanishes for i > 1 if one of

the inputs is 1B.

Again, there are various boundedness conditions that can be imposed.

Type–DD modules only behave well if the algebras involved are DG, so we only give the

definition for that case.
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+ + = 0

δ δ δ

δ
µA µB

µA µB

Figure 49: Structure equation for a type–DD module.

Definition B.2.5. Suppose A and B are DG-algebras. A type DD–module AMB consists

of a bimodule KML over the ground rings, together with a map δ1|1|1 : M → A ⊗M ⊗ B

satisfying the condition in Figure 49.

We omit the definition of one-sided type–A and type–D modules, as they can be regarded

as special cases of bimodules. Type–A modules over A can be interpreted as type–AA

bimodules over A and B = Z/2. Similarly, type–D modules are type DA–modules over Z/2.

B.3 Tensor products

There are two types of tensor products for A∞–modules. One is the more traditional derived

tensor product ⊗̃. It is generally hard to work with, as M ⊗̃N is infinite dimensional over Z/2

even when M and N are finite dimensional. This is bad for computational reasons, as well

as when using diagrams—it violates some of the assumptions of Appendix A. Nevertheless,

we do use it in a few places throughout the thesis.

Throughout the rest of this section assume that A, B, and C are DG-algebras over the

ground rings K, L, and P , respectively.

Definition B.3.1. Suppose AMB and BNC are two type–AA bimodules. The derived tensor

product (AMB)⊗̃B (BNC) is a type–AA bimodule A(M ⊗̃N)B defined as follows. Its underling

bimodule over the ground rings is

K(M ⊗̃N)P = (KML)⊗L

(
∞⊕
i=0

LBL
⊗i

)
⊗L (LNP )

= M ⊗L BarB ⊗L N.
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= + +mM⊗̃N mM mN µB

(a) AMB ⊗̃ BNC

= + +δM⊗̃N δM mN µB1 1

(b) AMB ⊗̃ BNC

Figure 50: Structure maps for two types of ⊗̃ products.

Here we’re slightly abusing notation in identifying BarB with a direct sum. The structure

map as an A∞–bimodule over A and C is mM⊗̃N , as shown in Figure 50a.

Similarly, we can take the derived tensor product of a DA module and an AA module,

or a DA module and an AD module. The former is demonstrated in Figure 50b.

The other type of tensor product is the square tensor product �. It is asymmetric, as it

requires one side to be a type–D module, and the other to be a type–A module. The main

advantage of � over ⊗̃ is that M �N is finite dimensional over Z/2 whenever M and N are.

Its main disadvantage is that M�N is only defined subject to some boundedness conditions

on M and N .

Definition B.3.2. Suppose AMB is a type–AA bimodule and BNC is a type–DA bimodule,

such that at least one of M and N is relatively bounded in B. The square tensor product

(AMB) �B (BNC) is a type–AA bimodule A(M � N)C defined as follows. Its underlying

bimodule over the ground rings is

K(M �N)P = (KML)�L (LNP ),

and its structure map is mM�N as shown in Figure 51a.

There are three other combinations depending on whether the modules are of type D or

A with respect A and C. All combinations are shown in Figure 51.
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=mM�N mM δN

(a) AMB � BNC

=δM�N δM δN

(b) AMB � BNC

=δM�N mM δN πC

(c) AMB � BNC

=δM�N δM δN πC

(d) AMB � BNC

Figure 51: Structure maps for the four types of � products.

B.4 Morphisms and homomorphisms

There are two different notions of morphisms when working with A∞–modules and bimod-

ules. The more natural one is that of homomorphisms, which generalize chain maps. How-

ever, if we work only with homomorphisms, too much information is lost. For this reason we

also consider the more general morphisms. These generalize linear maps of chain complexes,

which do not necessarily respect differentials.

Definition B.4.1. A morphism f : M → N between two bimodules M and N of the same

type is a collection of maps of the same type as the structure maps for M and N . For

example, f : AMB → ANB has components fi|1|j : BarA⊗M ⊗ BarB → N . The spaces of

morphisms are denoted by A MorB(M,N), etc.

Suppose A and B are DG-algebras. The bimodules of each type, e.g. A ModB, form a

DG-category, with morphism spaces A MorB, etc. The differentials and composition maps

for each type are shown in Figures 52 and 53, respectively.

Definition B.4.2. A homomorphism f : M → N of bimodules is a morphism f which is a

cycle, i.e., ∂f = 0. A null-homotopy of f is a morphism H, such that ∂H = f . The space

of homomorphisms up to homotopy is denoted by A HomB, etc.

Notice that the homomorphism space A HomB(M,N) is precisely the homology of the

morphism space A MorB(M,N). This gives us a new category of bimodules.
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= + + +∂f

mM f µA µB

f mN f f

(a) Type–AA.

= + + +∂f f

f f

f

δM

δN

µA µA
µA

µB

(b) Type–DA.

= + + +∂f f

f f fδM

δN

µA µB µA µB
µA µB

(c) Type–DD.

Figure 52: Differentials of the different types of morphisms.

Having homomorphisms and homotopies allows us to talk about homotopy equivalences

of modules. For example, if AMB is a bimodule, then A ⊗̃M 'M 'M ⊗̃ B, via canonical

homotopy equivalences. For example, there is hM : A ⊗̃M → M , which we used in several

places.

B.5 Induced morphisms

Suppose f : M → N is a bimodule morphism. This induces morphisms

f ⊗̃ id : M ⊗̃ P → N ⊗̃ P f � id : M � P → N � P,
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=g◦f
f

g

(a) Type–AA.

=g◦f g

f

µA

(b) Type–DA.

=g◦f g

f

µA µB

(c) Type–DA.

Figure 53: Compositions of the different types of morphisms.

=f�idN f δN

(a)

=idM�f mM

δN

f

δP

(b)

=f ⊗̃idN f

(c)

Figure 54: Three types of induced maps on tensor products.

whenever the tensor products are defined. The main types of induced morphisms are shown

in Figure 54. The functors · � id and · ⊗̃ id are DG-functors. That is, they preserve

homomorphisms, homotopies, and compositions.

B.6 Duals

There are two operations on modules, which can be neatly expressed by diagrams. One is

the operation of turning a bimodule AMB into a bimodule BopMAop . (Similarly, type–DA

bimodules become type–AD bimodules, etc.) Diagrammatically this is achieved by reflecting

diagrams along the vertical axis. See Figure 55 for an example.

The other operation is dualizing modules and bimodules. If AMB has an underlying
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=

A M AopM AopM

BM BopM BopM

mM mM mop
M

Figure 55: Passing from A ModB to Bop ModA
op

by reflection.

=

A M

A

M AM

BM

B

M B M

mM

mM mM∨

Figure 56: Passing from A ModB to B ModA by rotation.

bimodule KML over the ground rings, then its dual BM
∨
A has an underlying bimodule

LM
∨
K = (KML)∨. Diagrammatically this is achieved by rotating diagrams by 180 degrees.

Again, there are variations for type–D modules. See Figure 56 for an example.

Since the structure equations are symmetric, it is immediate that both of these operations

send bimodules to bimodules, as long as we restrict to modules finitely generated over Z/2.

This gives equivalences of the DG-categories

A ModB ∼= Bop ModA
op ∼=

(
B ModA

)op
,

etc. One can check that both constructions extend to tensors, induced morphisms, etc.
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