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Abstract

F-virtual Abelian Varieties of GLo-type
and

Rallis Inner Product Formula

Chenyan Wu

This thesis consists of two topics. First we study F-virtual Abelian varieties of
GLo-type where F' is a number field. We show the relation between these Abelian
varieties and those defined over F'. We compare their ¢-adic representations and study
the modularity of F-virtual Abelian varieties of GLo-type. Then we construct their
moduli spaces and in the case where the moduli space is a surface we give criteria
when it is of general type. We also give two examples of surfaces that are rational
and one that is neither rational nor of general type.

Second we prove a crucial case of Siegel-Weil formula for orthogonal groups and
metaplectic groups. With this we can compute the pairing of theta functions and
show in this case that it is related to the central value of Langlands L-function. This
new case of Rallis inner product formula enables us to relate nonvanishing of L-value

to the nonvanishing of theta lifting.
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Chapter 1

Introduction

This thesis is made up of two topics. In Chapter [2] we study F-virtual Abelian varieties of
GLo-type where F' is a number field. Virtual Abelian variety is a generalization of Q-curve
first studied by Gross[4] in the the CM case. The concept of Q-curve was generalized by
Ribet[25][26] to include non-CM elliptic curves and Abelian varieties of GLo-type. Ribet[20]
showed that every elliptic curve coming from a quotient of J1(N) is a Q-curve and that Serre
conjecture implies that the converse holds, namely that all Q-curves are modular. Then
Ellenberg-Skinner[2] showed that all Q-curves are modular under some local condition at 3.
Later Serre conjecture was proved by Khare and Wintenberger[12][13], implying by Ribet’s
work[26] that all Q-virtual Abelian varieties of GLa-type are modular. The Heegner points
on J1(N) then can be used to construct rational points on Q-virtual Abelian varieties of
GLo-type and this gives supporting evidence to the BSD conjecture. We would like to
investigate if general F-virtual Abelian varieties of GLa-type are modular. In Chapter
we will show some properties of the associated f-adic representations.

Elkies studied the F-virtual elliptic curves in [I] and produced concrete examples of
moduli space of virtual elliptic curves and Quer[21] computed some equations for Q-virtual
elliptic curves (i.e., Q-curves) based on the parametrization by Elkies[l] and Gonzalez-
Lario[3]. However little is known for F' # Q and for Abelian varieties of higher dimension.
This work attempts to produce concrete examples of F-virtual Abelian varieties of GLa-type
in higher dimensions. We will describe the moduli spaces which turn out to be generalized

Atkin-Lehner quotients of Shimura varieties and in the cases where the moduli spaces are



surfaces, classify them birationally.

An Abelian variety A is said to be of GLy(E)-type if its endomorphism algebra contains
the number field E of degree over Q equal to the dimension of A. This leads to Galois
representations on Tate modules of rank 2 over £ ® QQ; and hence the nomenclature GLo.
Let F be a number field and let A be an Abelian variety defined over F. We say A is an
F-virtual Abelian variety if for all & € Gal(F/F) there exists an isogeny A to A over F.

We focus on non-CM simple Abelian varieties. We can actually attach Galois repre-
sentations of Gal(F'/F) to F-virtual Abelian varieties (Chapter . Since simple Abelian
variety B over F' of GLo-type factors over F isotypically into a power of simple F-virtual
Abelian variety of GLa-type, the Galois representation associated to F-virtual Abelian vari-
ety of GLa-type is essentially that associated to Abelian variety over F' of GLa-type (Prop.
2.2.1).

For F-virtual elliptic curves Elkies[I] constructed ¢-local trees where vertices are iso-
morphism classes of F-virtual elliptic curves and edges represent cyclic isogenies. Note
that the endomorphism algebra for F-virtual elliptic curves is Q. For Abelian varieties of
GL2(E)-type the field E does not necessarily have class number 1. The same construction
would produce loops in the A-local graph for A\ a prime of E. We work around this problem
by introducing certain equivalence relation on the category of Abelian varieties. Essentially
we are modding out Pic(Og) by making the Serre tensor A ® 2 equivalent to A where 2 is
a (fractional) ideal of E. Then the A-local graphs are still trees. Applying graph theory we

get

Proposition 1.0.1. [Prop. [2.3.14] For an F-virtual Abelian variety A of GLo(E)-type there
exists an isogenous Abelian variety A’ and a minimal level structure n C Og such that its

Galois orbit is contained in the generalized n-Atkin-Lehner orbit.

Remark 1.0.2. Note that the Atkin-Lehner operators are no longer involutions. Because of
the equivalence relation we have introduced, we need to extend the group W of Atkin-Lehner
operators to incorporate the action of Pic(Og). Thus the generalized group of Atkin-Lehner

operators is W x Pic(Op). Please refer to Chapter Here n is an isogeny invariant.

Let SE ., denote the quotient by the group of generalized n-Atkin-Lehner operators on



the Shimura variety parametrizing Abelian varieties with endomorphism algebra E and

with level n. With the above theorem we deduce

Theorem 1.0.3. [Thm. [2.3.15] Every F-point on Sgn gives F-virtual Abelian varieties of
GLa(E)-type. Conversely for an F-virtual Abelian variety A of GLa(E)-type there exists
an isogenous Abelian variety A’ which corresponds to an F-point on some Sgn where n s

determined as in the above proposition.

There is also an analogous result for F-virtual Abelian varieties with endomorphism

algebra D which is a quaternion algebra containing F.

Theorem 1.0.4. [Thm. [2.3.20] Every F-point on the Shimura variety S’ﬁn gives an F'-
virtual Abelian variety of GLo(E)-type. Conversely for any F-virtual Abelian variety A of
GLy(E)-type s.t. End® A = D there is an isogenous Abelian variety A’ of GLo(E)-type which

corresponds to an F-rational point on S]J{) w0 quotient of Shimura variety of PEL-type,.

In [I] Elkies produced concrete examples of moduli space of Q-elliptic curves and from
that Quer[21] computed some equations for Q-elliptic curves. In an attempt to give examples
of F-virtual Abelian varieties we study the cases where FE is a real quadratic field of narrow
class number 1. Then the quotient of Shimura variety is a surface. Following Van der Geer’s
method in [28] we study the desingularity of SE’R, estimate the Chern numbers and show

in Thm. [2.5.20| with explicit conditions which ones are surfaces of general type:

Theorem 1.0.5. [Thm. [2.5.20] The quotient of the Shimura variety is of general type if

the discriminant D of E or N(n) is sufficiently large.

Then careful examination of configuration of (—1)-curves and (—2)-curves enables us to
show in Chapter

Ezample 1.0.6. 1. For E = Q(+/5) and n = (2), the moduli space is a rational surface;
2. For £ = Q(v/13) and n = (4 + v/13), the moduli space is a rational surface;

3. For £ = Q(v/13) and n = (2), the moduli space is neither rational nor of general type.

In Chapter |3| we study the Rallis inner product formula. As it relies on a new case of

regularized Siegel-Weil formula, we deduce the latter first.



Let k£ be a number field. Let V' be a vector space of dimension m over k equipped with
the quadratic form Q. Let H = O(V) and G = Sp(2n). Consider the dual reductive pair

—~

H(A) and G(A) which is a metaplectic double cover of G(A). Form the Eisenstein series
E(g,s, f3) and the theta series 0(g, h, ¢) for g € C?(K) and h € H(A) and ¢ € So(V™(A)).
Here f, is the Siegel-Weil section associated to ¢. Let Irgg denote the regularized theta
integral, c.f. Chapter Please see Chapter for further notations. We prove a new

case of regularized Siegel-Weil formula under some choice of Haar measures:

Theorem 1.0.7. [Thm. [3.1.1] Let m = n + 1 and exclude the split binary case. We have
for all ¢ € So(V™(A))

E(Sag7 f¢)|8:0 = HIREG(97¢)
where Kk = 2.

Kudla and Rallis[I7] introduced the regularized theta integral by using some differential
operator at a real place. Then they showed for m even the leading term of the Eisenstein
series is a scalar multiple of the regularized theta integral which involves the complementary
space of V. Ichino[§] generalized Kudla and Rallis’s regularization process by using Hecke
operator and showed for m > n+1 with no parity restriction on m that the above statement
holds.

Our method closely follows that of Kudla and Rallis[I7] and Ichino’s[§]. However some
representation results were lacking in the metaplectic case. In Chapter [3.5 we prove the
representations R, (V') are irreducible and nonsingular in the sense of Howe[7] and thus can
produce an operator to kill the singular Fourier coefficients of the automorphic forms in-
volved. Then we use Fourier-Jacobi coefficients (c.f. Chapter to compare nonsingular
Fourier coefficients of the Eisenstein series and the regularized theta integral inductively.

With this case of Siegel-Weil formula proved we are able to extend the Rallis inner
product formula to the following case. Now let V be a quadratic space of dimension m =
2n 4+ 1. Let w be a genuine irreducible cuspidal representation of C?(\A/) and let ©(h, f,¢) =

fG B\ G f(9)0(g,h,¢)dg. Then we have the regularized Rallis inner product formula:



Theorem 1.0.8. [Thm. [3.7.3] Suppose m =2n + 1. Then

LS(3,m®X)

(O(f1,®1), O(f2, P2))rEG = (m(Es) f1, f2)

where
Es(g9) = (ws(g)®P1,s5, P2s)-

Here ggQ(s) is a product of some local zeta functions away from a finite set of places
S. The local zeta integrals were computed by Li[19] in the unramified case. For m even
this is the analogue of Kudla and Rallis[I7, Thm. 8.7]. Combining our results with those

of Ichino’s[8], we get information on poles of L-function and the nonvanishing of theta lifts:
Theorem 1.0.9. [Thm. 3.7.2]

1. The poles of L°(s,7 ® X) in the half plane Res > 1/2 are simple and are contained

35 [nt1] 1
2727 2 2

2. Set mg=4n+2—m. If4n+2 > m > 2n + 1 then suppose L°(s,m @ x) has a pole

in the set

at s = n+1— (mg/2). If m = 2n + 1 then suppose L% (s,m @ x) does not vanish
at s =n+1—(mg/2) = 1/2. Then there exists a quadratic space Uy over k with

dimension mo and xy, = x such that Oy, (m) # 0 where O, (m) denotes the space of

automorphic forms O(f, ®) on O(Uy)(A) for f € m and & € S(Up(A)™).



Chapter 2

F-virtual Abelian Varieties of

GLo-type

Let F' be a number field. This chapter studies F-virtual Abelian varieties of GLa-type.
These Abelian varieties themselves are not necessarily defined over F' but their isogeny
classes are defined over F'. They are generalization of Abelian varieties of GLo-type defined
over F' which are in turn generalization of elliptic curves. The Galois representations of
Gal(F/F) associated to F-virtual Abelian varieties of GLa-type are projective represen-
tations of dimension 2. Thus it is expected many techniques for GLa-type can also be
applied, such as modularity results and Gross-Zagier formula. Furthermore the study of
virtual Abelian varieties of GLs-type can possibly furnish evidence for the BSD conjecture.

The simplest case of F-virtual Abelian varieties of GLo-type consists of Q-elliptic curves.
They were first studied by Gross[4] in the CM case and by Ribet[25][26] in the non-CM
case. Also Ribet generalized the notion of Q-elliptic curves to Q-virtual Abelian varieties
of GLg-type. Elkies studied the quotients of modular curves X*(V) that parametrize Q-
elliptic curves and computed some explicit equations of these quotients[l]. Then Gonzilez
and Lario[3] described those X*(N) with genus zero or one. Based on the parametrization,
Quer[21] computed explicit equations of some Q-curves.

In this chapter first we study the ¢-adic representations associated to F-virtual Abelian

varieties of GLo-type. Then we determine the quotients of Shimura varieties that parametrize



F-virtual Abelian varieties and classify them birationally in the case where the quotients
are surfaces. It turns out that almost all of them are of general type. We also give examples

of surfaces that are rational.

2.1 Abelian Varieties of GLo-type

We start with the definition and some properties of the main object of this chapter.

Definition 2.1.1. Let A be an Abelian variety over some number field F' and F a number
field. Let 6 : E < End’ A = End A ®7 Q be an algebra embedding. Then the pair (A4, 6) is
said to be of GLy(E)-type if [E : Q] = dim A.

Remark 2.1.2. We will drop 0 if there is no confusion. It is well-known that the Tate module
Vi(A) = Ty(A) @z, Qy is a free E®gQg-module of rank 2. The action of Gal(F/F) on V,(A)
defines a representation with values in GLy(E ®g Q) and thus the nomenclature GLa-type.
We can also define GL,,(E)-type if we have 6 : E < End"(A) with [F : Q] = 2dim A/n.
Of course, we require n|2 dim A.
In the following when we say a field acting on an Abelian variety we mean the action

up to isogeny.

Definition 2.1.3. An Abelian variety A over some number field F' of dimension g is said
to have sufficiently many complex multiplication (CM) if EndO(Af), the endomorphism
algebra of Az contains a commutative Q-algebra of degree 2g. Also A over F' of dimension
g is said to have sufficiently many complex multiplication (CM) over F' if End®(A) contains

a commutative QQ-algebra of degree 2g.

Proposition 2.1.4. Let A be an Abelian variety defined over a totally real field F'. Then

A does not have sufficiently many complex multiplication (CM) over F'.

Proof. Suppose the contrary. Fix an embedding of F into Q. Suppose E < End’ A with
E a CM-algebra and [F : Q] = 2dim A. Consider the CM-type coming from the action of
E on Lie Ag. Then the reflex field E' of £ is Q(tr ®) and is a CM-field. Since E actually
acts on Lie A/F, we find tr ® C F. Thus E' = Q(tr ®) is contained in the totally real field

F and we get a contradiction. O



Remark 2.1.5. The proof, in particular, shows that if a field is embedded in End®(A) for an

Abelian variety A over a totally real field F', then it is at most of degree dim A.

2.1.1 Decompostion over F

Suppose that A is an Abelian variety of dimension g over some number field F' of GLy(E)-
type. Fix an embedding F' < Q. We consider the decomposition of A@. Since the embed-
ding 0 of a number field E into endomorphism algebra is given as part of the data, when
we consider isogenies between Abelian varieties of GLa-type we require compatibility with

the given embeddings. More precisely we define:

Definition 2.1.6. Let 6; be an embedding of a Q-algebra D into the endomorphism algebra
of an Abelian variety A;/F, for i = 1 or 2. Then an isogeny u between A; and Aj is said

to be D-equivariant or D-linear if o 03(a) = 61(a) o u, for all a € D.
To describe the factors of Ag we define F-virtuality:

Definition 2.1.7. Let A be an Abelian variety defined over Q and suppose 6 : D =
End’(A). Let F be a number field that embeds into Q. Then A is said to be F-virtual if
(9A, %) is D-equivariantly isogenous to (A, #) for all ¢ € Gal(Q/F).

Remark 2.1.8. Note that here we assumed that 6 is an isomorphism.
This definition makes it precise what it means for an Abelian variety to have isogenous
class defined over F.

If dimA=1and F =Q, Ais what is known as a Q-curve, c.f. [4] and [26].

We analyze the endomorphism algebra of A@. Notice the number field £ also embeds
into EndO(A@) via End’ A — EndO(A@). Let C' be the commutant of E in EndO(A@).
There are two possibilities: either F = C so that we are in the non-CM case or F C C so

that we are in the CM case.

2.1.1.1 Case CM

We have £ C C, so [C': Q] = 2dim A = 2g. Hence A is CM. A priori, Ag ~ [[B" with

Bjy’s pairwise nonisogenous simple Abelian varieties. Thus End’ Ag = [IM,,(L;) where



L; = End® B;. Then E embeds into [] P; with P; a maximal subfield of M, (L;). Consider
projection to the i-th factor. We have ' — P,. Note that the identity element of E is
mapped to the identity element in [[ P;. Hence E — P; is not the zero map and so it is
injective. Since [E : Q] = g, P; has degree greater than or equal to g. On the other hand
SIP; : Q] = 2g. We are forced to have

E— P

with [P} : Q] = 2g or
E%Pl X P2

with P, = P, = E. Correspondingly we have either Ag ~ B or Ag ~ B x By?*. In the
second case E must be a CM field.
Now we discuss what conditions on A make sure that A@ is isogenous to a power of a

simple Abelian variety. Fix an embedding of Q into C.

Proposition 2.1.9. Suppose either that the g embeddings of E into C coming from the
action of E on Lie(Ac) exhaust all possible embeddings of E into C or that A is defined

over a totally real field F'. Then A@ ~ B™ for some simple Abelian variety B.

Proof. Suppose the contrary that A is not isogenous to a power of some simple Abelian
variety, ie., Ag ~ Bi"* x By?. Let S be the centre of End’ Ag. Then S = Ly x Ly for two
number fields L; and Ls. Denote by e; the identity element of L;. Let A; be the image of
A under e; or rather he; for some integer h such that he; € End A@. Then A ~ A x Ay
and E acts on A;. This gives rise to CM-types (E, ®;).

Suppose that the first part of the assumption holds; then ®; LI &5 gives all possible
embeddings of E into C. Thus ®; = 1Py where ¢ denote the complex conjugation of C.
Then ®; = ®o1p for the complex conjugation g of E. If we change the embedding of F
into End® Ay by g € Gal(E/Q) then the action of F on Ay has also type ®;. This means
that Ay ~ A; and we get a contradiction. Thus A decomposes over Q into a power of a
simple Abelian variety.

Now suppose that the second part of the assumption holds; then F' is a totally real
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field. Thus the complex conjugate ‘A is isomorphic to A. If ‘A4; = A; then A; can be
defined over R. This is impossible by Prop. [2.1.4] since it is CM. Thus ‘A7 = A,. Then
for some automorphism o of F, we have t®10 = ®3. Thus ®; and P4 are different by an
automorphism tgo of . Again A1 ~ As, a contradiction.

Thus A decomposes over Q into a power of a simple Abelian variety. O

2.1.1.2 Case Non-CM

In this case £ = C'. In particular the centre L of EndO(A@) is contained in F and hence is a
field. Thus End’ (Ag) % M,,(D) for n some positive integer and D some division algebra.
Correspondingly A@ ~ B™ with B some simple Abelian variety over Q and End’ B = D.
Let e = [L : Q] and d = /[D: L]. Then E is a maximal subfield of M,,(D). We know
that edQI%Q and that g = [E : Q] = nde. This forces d|2. If d =1, End"B = L. If d = 2,
End’ B = D with D a quaternion algebra over L.

Since A is defined over F, we get for all o € Gal(Q/F),

onpn g ~ n
B" ~ %Ag = Ag ~ B".

By the uniqueness of decomposition we find °B ~ B, for all ¢ € Gal(Q/F). Furthermore
the canonical isomorphism °A = A is L-equivariant, since the endomorphisms in 6(L) are
rational over F'. Fix isogeny A@ — B™. The actions of L on B™ and “B" are the pullbacks
of the actions of L on A and A, so °B™ ~ B" is L-equivariant. As the L-actions are just
diagonal actions, we have °B"™ ~ B L-equivariantly.

Let P be a maximal subfield of D. Then B is an Abelian variety of GLo(L)-type for
d =1 or GLg(P)-type for d = 2. Even though we are using different letters L, F and D,
they may refer to the same object. In this subsection all Abelian varieties are assumed to
be without CM and this assumption is implicit in the lemmas and the propositions.

First we record a result that follows from the discussion.

Proposition 2.1.10. The endomorphism algebra of an Abelian variety of GLa-type has one
of the following types: a matriz algebra over some number field or a matriz algebra over

some quaternion algebra.
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The following lemma shows that L-equivariance is as strong as D-equivariance.

Lemma 2.1.11. Let B/Q be an Abelian variety of GLy-type with @ : D = End®(B). Let
L be the centre of D. Suppose °B is L-equivariantly isogenous to B for all o € Gal(Q/F).
Then after modifying 0, we can make B into an F-virtual Abelian variety, i.e., there exist

D-equivariant isogenies °B — B for all o € Gal(Q/F).

Proof. Choose L-equivariant isogenies p, : °B — B. This means that u, o “¢ = ¢ o u, for

¢ € L. Thus we have L-algebra isomorphisms:

D — D

¢ 1o 0 7do ;!

By Skolem-Noether theorem there exists an element 1) € D* s.t. p,0%¢oust =hogorp~L.

Let p/, =11 o py. Then p! gives a D-equivariant isogeny between °B and B. O

Proposition 2.1.12. An Abelian variety A/F of GLa-type is Q-isogenous to a power of a

Q-simple Abelian variety B. Moreover B is an F-virtual Abelian variety of GLa-type.

Proof. This follows from the discussion above and the lemma. O

2.1.2 F-virtual Abelian varieties and simple Abelian varieties over F

We consider the converse problem. Given a simple F-virtual Abelian variety B of GLs-type
we want to give an explicit construction of a simple Abelian variety A over F' of GLa-type

such that B is a factor of A. We separate into two cases:

2.1.2.1 Case Non-CM

Theorem 2.1.13. Let A/Q be a simple abelian variety of GLo(E)-type. Suppose that °A
and A are E-equivariantly isogenous for all o € Gal(Q/F). Then there exists an F-simple
Abelian variety B/F of GLa-type s.t. A is a factor of Bg.

Proof. By Lemma [2.1.11] the Abelian variety A is actually F-virtual. Find a model of A

over a number field K such that K;/F is Galois and all endomorphisms of A are defined
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over Kj. We identify A and A via the canonical isomorphism for o € Gal(Q/K1). Let D
denote the full endomorphism algebra of A. Choose D-equivariant Q-isogenies p, : %A — A
for representatives o in Gal(Q/F)/ Gal(Q/K;) = Gal(K;/F). The rest of the yu,’s for all
o in Gal(Q/F) are determined from these representatives and the canonical isomorphisms.
Now let K be a field extension of K; such that K is Galois over F' and that all u,’s for o
in Gal(K/F) are defined over K. Base change the model over K; to K and still call this
model A. Instead of considering all ¢ € Gal(Q/F), we only need to consider o-twists of A
for o € Gal(K/F).

Define ¢(o,T) = 1o+, In the quaternion algebra case, note that

g,

(0,7).0 = po ety @ = potr " Dligt = poDliriigy = Ppio e iy

for ¢ € D. Thus ¢ has values in L*.

It is easy to check that c is a 2-cocycle on Gal(K/F') with values in L*. By inflation
we consider the class of ¢ in H2(Gal(Q/F), L*). It can be shown that H2(Gal(Q/F),L")
with the Galois group acting trivially on L™ is trivial by a theorem of Tate as quoted as

Theorem 6.3 in [26]. Hence there exists a locally constant function: o : Gal(Q/F) — L~

a(o)a(r)
a(oT)

s.t. c(o, 1) = . We will use « in the construction of an Abelian variety of GLa-type.
Let B = Resg/r A be the restriction of scalars of A from K to F. Then B is defined
over F'. We let D o u, denote the set of isogenies {f o i, | Vf € D}. Then we have the

commutative diagram:

End’ B —=—T], Hom"(°4, A) ——T1, D o po

End’ Bxg —— ], . Hom’("4, 7A)

where the right verticle arrow maps f : °A — A to f : "7A — "A, for all 7 and the products
are running over Gal(K/F). The multiplication of the ring [], D oy, can be described as
follows. Let ¢, ©» € D. Then (¢ o puy).(V o pur) = ¢po pig 0% 0%Ur = o) o iy 0 py =
porpoc(o,T)per since py is D-equivariant. Thus [[, Do u, can be viewed as D[Gal(K/F)]

twisted by the cocycle c.
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Let the number field £ embed into End® B via 6 into the factor Hom®(A, A) of End® B.
Let End% B denote the commutant of E in End® B. Since the p,’s are E-equivariant and
the commutant of E in D is F, End} B = [[(E) o .

Let Lo(E, resp.) denote the field L(FE resp.) adjoined with values of a. Let D, =
D ®r, L. Take

w:HDouU%Da

P ol PR alo).

Then w is a D-algebra homomorphism. If we restrict w to End% B we find w\End% p has
image E,. Since End’ B is a semisimple Q-algebra, we have End® B = D, @ kerw. Being
the commutant of E in a semisimple algebra End® B, End% B is semisimple and therefore
we have EndOE B = FE,dker W‘End% p- Let m € End’ B be a projector to D,. Let B, be the
image of w. Then B, has action up to isogeny exactly given by D,,.

Before finishing the proof, we need the following:

Lemma 2.1.14. Let R denote End% B. Then the Tate module Vy(B) = Vy(Bxg) is a free
R ® Qg-module of rank 2.

Proof. Note Bi =[], 7A. Passing to Tate modules we have V;(Bg) = ®,V;(?A). We know
that V;(A) is a free £ ®g Qp-module of rank 2. Choose an E ®q Q-basis {e1, ez} of V;(A).
Then Uilug{el, ea} gives a basis for the free £ ®g Q-module V;(°A) of rank 2, since ji,’s

are F-equivariant. Hence Vj(Bf) is freely generated over R by {ei,ea}. O

Thus Vy(B,) is a free E, ® Qg-module of rank 2. Therefore [F,, : Q] = dim B,. Now we
consider 3 cases.

Case D, = E4. Then B, is F-simple. We take B = B, and A is a quotient of B over
Q.

Case D, # E, and D, not split. Then D, is a quaternion algebra over L,. Then B,
is F-simple. We take B = B, and A is a quotient of B over Q.

Case D, # E, and D, split. Then D, = Ms(L,). B, is F-isogenous to B? for some
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simple Abelian variety B and End’ B = L,. We check the degree of the endomorphism
algebra: [L, : Q] = % dim B, = dim B’. Thus A is a Q-quotient of a simple Abelian variety
B of GLa(Lg)-type. O

We record a corollary to the proof of Thm. [2.1.13] Suppose u, are given isogenies
from °A to A. Let c(0,7) = usur 1, be the associated 2-cocycle. Fix a choice of o that

trivializes c. Let E, denote the field constructed from F by adjoining values of .

Corollary 2.1.15. Let A be a simple F-virtual Abelian variety of GLa(E)-type. Then there
exists an Abelian variety By /F that has A as an F-factor, that has action by Es and that

is either simple or isogenous to the square of an F-simple Abelian variety of GLa-type.

2.1.2.2 Case CM

Next we consider a CM simple Abelian variety A/Q. Suppose (4, 6) has type (E,®). Then
it is known from [27] that the isogeny class of (4, 6) is defined over E*, the reflex field of

E, i.e., there exist F-equivariant isogenies iy : %A — A for all o € Gal(Q/E*).

Theorem 2.1.16. Let A be as above. Then there exists a simple Abelian variety A" over a

totally real field F of GLa-type with A a Q-quotient.

Proof. Let F = E*t be the maximal totally real subfield of Ef. We will construct a simple
Abelian variety over F of GLo-type with A a Q-quotient. First we construct a simple CM
Abelian variety over F' whose endomorphisms are all defined over F. We proceed as in the
proof of Theorem Find a model of A over K, a number field Galois over E? such
that all endomorphisms of A is defined over K and that all the u,’s are defined over K.

+. Then c has values in E* and we can

Let B = Resg/p: A. Also define (o, 7) = P Ophr i
trivialize ¢ by a : Gal(Q/E!) — E”. Again

End’ B = HHomO(UA,A) = HE 0 g

Similarly we find that End® B can be split into ker w @ E,, where E,, is the field by adjoining
F with values of & and w : End’ B — E,, g — a(0o). Hence corresponding to the decompo-

sition of the endomorphism algebra we get an Abelian subvariety B, of B . Consider V;(B)
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the Tate module of B. Similarly we find that V;(B) is a free [[(F o f1r) ® Qp-module of rank
1. Hence Vi(B,) is a free E, ® Qg-module of rank 1. This shows that B, has CM by E,.
Then we set A’ = Resps /i Ba. Note that A’ is F-simple. Otherwise A’ ~ Ay x Ay for some
Abelian varieties A7 and As defined over F, so A/Eﬁ ~ Ay g X Ay s Yet A}Eﬁ >~ B, x ‘B,
where ¢ is the nontrivial element in Gal(E*/F). Since B, and ‘B, are E*-simple, we find
Ay gt ~ B or Ay gy ~ B,. However Proposition says B, cannot be descended to a
totally real field. We get a contradiction. Thus A’ is F-simple.

Now End’ A’ = Hom’('B,, B,) x End’ B, as Q-vector spaces. As F, < End’ A’ we

find A’ is a simple Abelian variety over F of GLa(E,)-type with Q-quotient A. O

2.2 [(-adic Representations

In this section F' denotes a totally real field. Let A be an Abelian variety over F' of GLy(E)-
type. Then the Tate module VA is free of rank 2 over F ® Qy. Let G denote the Galois

group Gal(Q/F). The action of G on V;A induces a homomorphism

pe: Grp — GL2(E ® Qp).

For each prime X of E lying above ¢ if we set V\A = V}A ®ggq, £ then the action of Gp

defines a A-adic reprensentation on V) A:

P : GF — GLQ(E)\)

We can also associate Galois representations to an F-virtual Abelian variety. Let B be
an F-virtual Abelian variety of GLa(E)-type defined over Q. Define p}(c).P := p(°P) for

P in VB and ¢ in Gp. This is not an action, since

pe(0)py(T) P = o 17" "P.

The obstruction is given by ¢(o,7) := jyu-p,.t. This is the same ¢ we constructed in the

proof of Thm. [2.1.13] We know that ¢ is a 2-cocycle on Gy with values in E*, in fact, in
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L*, if we let L denote the centre of the endomorphism algebra of B. Consider the class of

¢in H2(Gp,E™). As is shown by Tate, H2(Gp, E") = 0. Thus ¢ can be trivialized:

by some locally constant map a: Gp — E”™. Then set

pe(0) P = a” (o) s P.

This gives an action of Gr on V;B. We get a homomorphism

pe: Gp — E* GLy(E ® Q).

More precisely, py actually factors through EX GLo(E ® Q) where E, denote the subfield
of Q generated over E by the values of a. If we fix a choice of a then to simplify notation
we write B’ for E,. Let ) be a prime of E’ lying above A a prime of E which in turn lies

above ¢. Then the representation p, gives rise to:

px : Gp — E'S GLo(E)).

We can view py as a representation of Gg on Vy ®g, F),.

Proposition 2.2.1. Let A be a simple F-virtual Abelian variety of GLo(E)-type. Fiz a
choice of a and let A’/F denote the Abelian variety B, as in Cor. . Then the field
E' generated over E by the values of o acts up to isogeny on A'. Let N be a prime of E'.
Associate the representations pa y and par y to A and A" respectively. Then pax = pary

as E),[Gr|-module.

Proof. Note that p,’s correspond to a(c)’s in the endomorphism algebra of A’. The propo-

sition follows from the definiton of the \-adic representations. O

Because of this proposition we will focus on the Galois representations associated to

Abelian varieties defined over F'. We record some properties of the A-adic representations.
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Definition 2.2.2. Let F be a totally real field or CM field. A polarized Abelian variety of
GL2(E)-type is an Abelian variety of GLy(E)-type with a polarization that is compatible

with the canonical involution on F.
Remark 2.2.3. The canonical involution is just identity if E is totally real.

Proposition 2.2.4. If A is a polarized simple F-virtual Abelian variety of GLo(E)-type
then the associated Abelian variety A'/F can also be endowed with a polarization compatible

with E'.

Proof. Let L' be the centre of the endomorphism algebra of A’. Then by construction E’
is actually the composite of L' and F and hence is totally real or CM as L’ is totally real
by Prop. and Prop. (whose proofs depends solely on the analysis on polarized
Abelian varieties over F' and do not depend on this proposition) and E either CM or totally
real. O

Let A be a polarized Abelian variety over F' of GLo(E)-type. Let V; denote V;A. Then
Vi = @,¢Vi corresponding to the decomposition of £ ® Q; = ©FE) where \’s are primes of
E lying above ¢. We get the A-adic representations py of G on V). The set of py’s for all
A forms a family of strictly compatible system of E-rational representations|25].

Let ) denote det p) and x, the ¢-adic cyclotomic character.

Lemma 2.2.5. There exists a character of finite order € : Gp — E* such that 5y = €xy.

Furthermore € is unramified at primes which are primes of good reduction for A.

Remark 2.2.6. ¢ is trivial if E is totally real, as can be seen from Prop. [2.2.9

Proof. Since the 0)’s arise from an Abelian variety, they are of the Hodge-Tate type. They
are associated with an F-valued Grossencharacter of type Ag of F. Thus they have to be
of the form ) = exj for some E-valued character of finite order.

By the criterion of Néron-Ogg-Shafarevich p) is unramified at primes of F which are
primes of good reduction for A and which do not divide ¢. Then J, is also unramified at
those primes. Since yy is unramified at primes not dividing ¢, € is unramified at primes of
F which are primes of good reduction for A and which do not divide ¢. Let ¢ vary and we

find that e is unramified at primes of F' which are primes of good reduction for A.
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Now consider the representation of Gr on detg, V4. It is known to be given by X?imA

which is equal to XEE:Q] since A is of GLyo(FE)-type. On the other hand it is also equal to

H/\\f Ng, /0,90 = Ngjg 5.X2L[E:Q]. Since x, has infinite order and ¢ has finite order we are

forced to have n =1 and Ng/ge = 1. O

Lemma 2.2.7. The character 0y is odd, i.e., dy sends all complex conjugations to —1.

~

Proof. For each embedding of fields Q — C we have a comparison isomorphism V) 2
H,(A(C),Q) ®g E\. Via this isomorphism complex conjugation acts as Fix, ® 1 where Fi,
comes from the action of complex conjugation on A(C) by transport of structure. We need
to show that det F, is —1 where det is taken with respect to the E-linear action of F, on
Hi(A(C),Q).

Note that Hq(A(C), Q) is of dimension 2 over E. Since F, is an involution on H;(A(C), Q)
its determinant is 1 if and only if Fi, acts as a scalar. Since Fy, permutes Hy 1 and Hi g in
the Hodge decomposition of H1(A(C), Q) it obviously does not act as a scalar. Thus det Fi

is —1. U

Proposition 2.2.8. For each A, py is an absolutely irreducible 2-dimensional representation

of Gr over Ex and Endg, g, VA = E\.

Proof. By Faltings’s results V; is a semisimple Gp-module and Endggq,q,) Ve = £ ® Q.
Thus corresponding to the decomposition of V; = @,V we have Endg, g,V = Ex. This

shows V) is simple over E). Hence p) is absolutely irreducible. ]

For prime v of F' at which A has good reduction let a, = trg, (Frob, |y, ) if v { ¢ for ¢
lying below A. Let ¢ be the canonical involution on F if E' is CM and identity if F is totally

real.
Proposition 2.2.9. For each place v of good reduction a, = t(ay)e(Froby).

Proof. For each embedding o of E into Q, denote by V, := V; ® pgg, Q; where the algebra
homomorphism F ® Q; — Q, is induced by o.

Fix a polarization of A that is compatible with . We have a Weil pairing:

(,):VixVy— Q1)
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such that (ex,y) = (x,1(e)y) for e in E. This pairing is G p-equivariant, i.e.,("x,y) = (x,y)
for all 7 € Gp.
After extending scalar to Q, we get pairings between the spaces V,, and V,,. Thus we

have isomorphism of Q,[G r]-modules
Vo, 2 Hom(Vy, Qg(1)).
On det V,,, Gg acts by %xy. As V, is 2-dimensional over @g
Hom(V,, Q(%xe)) = Vs

as Gp-modules. Thus we find that V,, (%) = V,. As trFrob, is o(a,) on V, and is

oi(ay)%(Froby,) on V5, (%) for v place of good reduction and v prime to ¢ we get
o(ay) = oi(ay)%(Froby).

It follows a, = t(ay)e(Frob,). O
Corollary 2.2.10. ¢ s trivial when E is totally real.

Proposition 2.2.11. Let S be a finite set containing all the places of bad reduction. Then

E is generated over Q by the a,’s with v & S.

Proof. Again we consider the V,’s corresponding to embeddings of E into Q, as in the
proof of Prop. As V, is semisimple, so is V; ® Q,. Since V; ® Q;, = @, V, we get
End E®@Z[GF](@UVU) = E® Qy =[], Q. This shows that the V,’s are simple and pairwise
nonisomorphic. Thus their traces are pairwise distinct. Since the trace of Frob, acting on
Vs is o(ay) for v place of good reduction, by Cebotarev Density theorem the embeddings o
are pairwise distinct when restricted to the set of a,’s for v € S. Thus E is generated over

Q by the set of a,’s for v & S. O

Proposition 2.2.12. Let L be the subfield of E generated by a?/e(Frob,) forv & S. Then
L is a totally real field and E/L is Abelian.
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Proof. We check

a? o fay)? a?

L(E(Frgbv)) ~ 1((Froby)) = aye”"(Froby Je(Froby) = E(Fr;bq,)'

Thus L is totally real.
Since FE is contained in the extension of L obtained by adjoining the square root of all

of the a2 /e(Frob,)’s and all roots of unity, E is an Abelian extension of L.

O]

Now we consider the reductions of py. Replace A by an isogenous Abelian variety so
that O actually acts on A. Consider the action of G on the A-torsion points A[\] of A

and we get a 2-dimensional representation py of G over [y, the residue field at A.
Lemma 2.2.13. For almost all A, the representation py is absolutely irreducible.

Proof. A result of Faltings implies that for almost all \’s A[)] is a semisimple F)[G p]-module

whose commutant is Fy. The lemma follows immediately. O

Proposition 2.2.14. Let A/F be a simple Abelian variety of GLo(E)-type. Let D de-
note the endomorphism algebra of A@ and L its centre. Then L is generated over Q by
a2 /e(Froby,).

Proof. Let £ be a prime that splits completely in E. Then all embeddings of E into Q,
actually factors through Q. Suppose the isogenies in D are defined over a number field K.
Fix an embedding of K into Q. Let H denote the Galois group Gal(Q/K) which is an open
subgroup of Gal(Q/F). Shrink H if necessary so that H is contained in the kernel of e. By
a result of Faltings’s, D ® Q¢ = Endg,(z] Vs. The centre of D ® Qy is L ® Q. By our choice
of £, the Tate module V; decomposes as @, V, where o runs over all embedding of E into
Q¢ and where V; := V; ® g, Q¢. Note that Qg is viewed as an E ® Qy-module via 0. Each
Vo is a simple Q[H]-module. Thus Endg, g Vo = Q.

For each prime w of K prime to £ and not a prime of bad reduction of A, we have a
trace of Frobenius at w associated to the A-adic representations. Denote it by b,, and it is

in E. Then tr Froby, |V, = 0(by). The Q/[H]-modules V,, and V; are isomorphic if and only
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if o(by) = 7(by) for all w. If we let L' denote the field generated over Q by the b,,’s, then
the Q[H]-modules V, and V; are isomorphic if and only if 0|z = 7|r/. Thus the centre of
D ® Qy is isomorphic to L' ® Q,. We have L ® Q, = L' ® Q, with equality taken inside
E®Qp. Thus L =L'.

Now suppose that o and 7 agree on L so that V, = V; as Qy[H]-modules. There is a
character ¢ : Gp — Q; such that V, = V; ® ¢ as Q/[Gr]-modules. Taking traces we get
o(ay) = p(Froby)7r(a,) for all primes v of F' which are prime to ¢ and not primes of bad
reduction of A. Taking determinants we get % = ?%. Thus o and 7 agree on a2 /¢ for all
good v prime to £. This shows that a2 /e is in L.

On the other hand, suppose o (a2/e) = 7(a2/¢) for all good v prime to £. This implies by
Chebotarev density theorem that tr? / det are the same for the representations of Gr on V
and V;. Since € is trivial on H we get tr(h|V,) = £tr(h|V;). If we choose H small enough
we will have tr(h|V;) = tr(h|V;). Then V, = V; as Q;[H]-modules. Thus L is contained in

the field generated over Q by the a2/e’s. O

Corollary 2.2.15. Let A be a polarized simple F-virtual Abelian variety of GLa(E)-type.
Let L be the centre of End®(A). Then L is generated over Q by a2/e(Frob,). In particular

L is totally real.

Proof. Bym there exists a simple Abelian variety B/F of GLa-type such that A is a Q-
factor. The centre of the endomorphism algebra of A is just the centre of the endormorphism
algebra of B by Prop The corollary follows from the proposition. That L is totally
real is established in Proposition O

Proposition 2.2.16. Suppose that 3 is totally split in E and suppose for \|3 the represen-

tation py s irreducible. Then py is modular.

Proof. In this case we have py : Grp — GL2(F3). We have already shown that py is odd.

Then the proposition follows from the theorem of Langlands and Tunnel. O
We record a modularity result first.

Theorem 2.2.17 (Shepherd-Barron, Taylor). Let ¢ be 3 or 5 and let F be a field of
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characteristic different from £. Suppose p : Gp — GLa(Fy) is a representation such that

det(p) = x¢. Then there is an elliptic curve C defined over F' such that p = pc .
Then from our analysis we get:

Corollary 2.2.18. Let ¢ be 3 or 5. Suppose that E is totally real and that ¢ is totally split

in E. Then for | there exists an elliptic curve C/F such that pa x = pcy.

Proof. Since FE is totally real, det(p) = x¢. Then all conditions in the quoted theorem is
satisfied. n

2.3 Moduli of F-virtual Abelian Varieties of GLy-type

Now we consider the moduli space of F-virtual Abelian Varieties of GLo-type. Roughly
speaking, in the construction we will produce trees whose vertices are such Abelian varieties
and whose edges represent isogenies. Then via graph theoretic properties of the trees, we
can locate a nice Abelian variety that is isogenous to a given F-virtual Abelian Varieties
of GLso-type and that is represented by F-points on certain quotients of Shimura varieties.

We exclude the CM case and consider the non-quaternion and quaternion cases separately.

2.3.1 Case End’(A) = E

Let A be the category of Abelian varieties over Q. Let Ag be the category of Abelian
varieties over Q up to isogeny. We consider the subcategory B of A defined as follows.
The objects are pairs (A, 1) where A is an Abelian variety over Q of dimension [E : Q] and
t: Op — End(A) is a ring isomorphism. The morphisms Morg((A;, t1), (A2, t2)) are those
homomorphisms in Hom(A;, Az) that respect Og-action and is denoted by Home,, (A1, A2).
Also define the categories By, where A is a prime of Op, as follows. The objects are the
same as in B. The morphisms Morg, ((A1, 1), (A2,t2)) are Homo, (A1, A2) ®oy Op (),
where O () denotes the ring O localized at A (but not completed). If no confusion arises
the ¢’s will be omitted to simplify notation. Most often we will work in the category B.
Let f be a morphism in Morg, (A, B). Then f can be written as g ® (1/s) with ¢ in
Hom(A, B) and s in Og \ A. Define the kernel of f, ker f to be the X part of the kernel of ¢
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in the usual sense, (ker g)). Note here kernel is not in the sense of category theory. Suppose
that we write f in another way by ¢’ ® (1/s"). Then consider f = gs' ® (1/ss’) and we find
(ker gs’)x = (kerg)y as ¢ is prime to A and also (ker ¢’s)y = (kerg’)x. Since ¢'s = gs’ we
find our kernel well-defined.

We construct a graph associated to each By. Let the vertices be the isomorphism classes

of By modulo the relation ~, where A ~ B if there exists a fractional ideal 2 of E such that
A Ko E A= B

Denote the vertex associated to A by [A] and connect [A] and [B] if there exists f €
Morg, (A, B) such that
ker f = Op /Nt @ O/

for some r. If we change A to A/A[\] = A ®o, A~! then the kernel becomes Op/\" @
Op/X~! and as we quotient out more we will get to Og/A. Obviously there is an f’ €

Morg, (B, A) such that ker = OE/)\S'H @ Og /s for some s.

Lemma 2.3.1. Suppose that two vertices [A] and [B] can be connected by a path of length
n. Then there exists f € Morg, (A, B) such that ker f = Og /A" for some representatives A

and B.

Proof. For n = 1 the lemma is true. For n = 2 suppose we have [A] connected to [A]
and then [A;] to [B] and suppose we have f € Morg, (4, A1) and g € Morg, (A;, B) with
ker f 2 Og/\ and ker g = Og/A. Then if kergo f = Op/A® O/ we find B ~ A and thus
[A] = [B]. Then [A] and [A;] are connected by two edges. However by the construction
there is at most one edge between two vertices. Thus we must have ker g o f = O /)2
Now suppose the lemma holds for all paths of length n — 1. Suppose that [A] and [B]

are connected via [Ai],---,[An—1] and that we have morphisms A Jo, Aq ELN N

A1 h;> B where all kernels are isomorphic to Og/A. Then f = f,_90---0 fy and
g = fn_10---0 f1 have kernel isomorphic to Og/A""1. If g o fo has kernel isomorphic to
Op/A""t @ Og/)\ then f must have kernel isomorphic to Op/A\"~2 @& Op/) and we get a

contradiction. Thus g o fy has kernel isomorphic to Og/A™. This concludes the proof. [



24

Proposition 2.3.2. Fach connected component of the the graph is a tree.

Proof. We need to show that there is no loop. Suppose there is one. By the previous lemma
we have a morphism f € Morg, (A, A’) for some A’ in the same ~-equivalence class as A
such that ker f = Og/A\". This means we have a morphism f € Morg, (A, A) with kernel
isomorphic to Og /A" & Og /A" for some r. This is impossible as any isogeny in Endp,, (4)

has kernel isomorphic to (Og/A*)? for some s. Thus there is no loop. O

Definition 2.3.3. For an Abelian variety A and for each A the tree that contains the vertex

associated to A is called the A-local tree associated to A.

Obviously the Galois group G acts on the graph. If a connect component has a
vertex coming from an F-virtual Abelian variety, then automatically all vertices in this
component come from F-virtual Abelian varieties. Also G preserves this component and

we get another characterization of F-virtual Abelian varieties.

Lemma 2.3.4. The Gp-orbit of an F-virtual Abelian variety is contained in the same

A-local tree.

Now let Ag be an F-virtual Abelian variety in B. If considered as an object in By, it is
mapped to a vertex in its A-local tree. Also for all 0 € G the vertex [7Ap] is in the same
A-local tree. A priori, the Galois orbit of the vertex associated to Ag is hard to describe.
However for some special vertex in the tree the Galois orbit is essentially contained in the

Atkin-Lehner orbit which we will describe below.

Definition 2.3.5. For a finite subset S of vertices of a tree the centre is the central edge

or central vertex on any one of the longest paths connecting two vertices in S.

Remark 2.3.6. There are possibly more than one longest path, but they give the same

centre. Thus the centre is well-defined.

Definition 2.3.7. The centre associated to Ag in each local tree is defined to be the centre

of the image of the set {?Ap : 0 € Gr} in the tree.

Obviously we have:
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Proposition 2.3.8. The associated centre of Ay is fized under the action of Gg. (Note if the
centre is an edge it can be flipped.) Furthermore the vertices in the image of {?Ap : 0 € GF}

are at the same distance to the nearer vertex of the centre.

Proposition 2.3.9. The set of central edges associated to an F-virtual Abelian variety A

of GLo(E)-type such that End® A 2 E is an E-linear isogeny invariant.

Proof. Suppose in the A-local tree the centre associated to Ag is an edge. Then there is
an element in G that exchanges the two vertices connected by the edge. Otherwise all
Galois conjugates of Ay will be on one side of the edge, contrary to the fact that this edge
is central.

Once we have a fixed edge which is flipped under Galois action there can be no fixed
vertices or other fixed edges in the tree. We take an Abelian variety By which is E-linearly
isogenous to Ap. Then the centre associated to By is also fixed under Galois action and
hence must be an edge. Furthermore it must coincide with the central edge associated to

Ap. Thus central edges are F-linear isogeny invariants. O

Remark 2.3.10. Central vertices are not necessarily isogeny invariants. For example we can
just take an Abelian variety A over F such that End® A = Op and take B = A/C where C
is a subgroup of A isomorphic to Og/A. Then obviously the central vertex for A is [A] and

for B it is [B] and they are not the same by construction.

Let X be the set of primes where the centre is an edge.
Lemma 2.3.11. The set X is a finite set.

Proof. The Abelian varieties 4y for o in Gr end up in the same equivalence class as long
as A does not devide the degree of the isogenies pi,’s between the Galois conjugates. Thus

there are only finitely many A’s where the associated centre can be an edge. O

Remark 2.3.12. Also we note that for almost all A’s, [Ag] is just its own associated central

vertex.
For each central edge we choose one of the vertices and for central vertices we just use

the central vertices. Then these vertices determine an Abelian variety up to ~. Recall that

A= B it A®p, U is isomorphic to B for some fractional ideal 2.
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Consider the Hilbert modular variety Yjy(n) classifying Abelian varieties with real mul-

tiplication E with level structure Ky(n) where n is the product of the prime in 3.
Yo(n) := GLo(E) \ 1" x GLy(E)/Ko(n)
First we have Pic O acting on Yy(n) which is defined by:
p(m): (A— B)—~ (A®o, m = B®p, m).

for m € Pic(Og). This corresponds to ~.
On the quotient Pic(Og) \ Yo(n) we have the Atkin-Lehner operators wy for A|n defined
as follows. Suppose we are given a point on Pic(Opg) \ Yy(n) represented by (A EN B) and

let C denote the kernel of f. Then w) sends this point to
(A/C[A] = B/ f(A[A])).

This operation of w)y, when viewed on the A-tree sends one vertex on the central edge to

the other one if A = Ag or does nothing if A\ # Ag.

Definition 2.3.13. Let W be the group generated by w)’s and let W be the group W x
Pic(Og) acting on Yp(n).

Thus we have:

Proposition 2.3.14. The Gg-orbit of any Abelian variety coming the central vertices is

contained in the W—orbit.

Denote W \ Yy(n) by Y, (n). Then we have associated to Ay a point in Y, (n)(Q). As
this point is fixed by G this is actually an F-point.

On the other hand take an F-rational point of Y;"(n) and we get a set of Abelian
varieties in Yp(n) that lie above it. They are all isogenous. Take any one of them, say A.
Then its Galois conjugates are still in the set and they are E-linearly isogenous to A by
construction. We get an F-virtual Abelian variety of GLa(FE)-type. However we cannot

rule out the possibility that it may have larger endomorphism algebra than E.
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We have shown

Theorem 2.3.15. Every F-point on the Hilbert modular variety YOJr (n) gives an F-virtual
Abelian variety of GLo(E)-type. Conversely for any F-virtual Abelian variety A of GLa(E)-
type there is an isogenous F-virtual Abelian variety of GLo(FE)-type A" which corresponds
to an F'-rational point on a Hilbert modular variety of the form Y0+(n) where n is given as

in the tree construction above.

2.3.2 Case End°A =D

We cannot simply follow Case End® A = E, since we will get a graph with loop in that
way. We will construct local trees in a slightly different way. Otherwise everything is the
same as in Case End’ A = E. Let L denote the centre of D and Op a maximal order of D
containing OF.

Let B be the subcategory of A defined as above except for the requirements that ¢ :
Op — End(A) is a ring isomorphism and that morphisms should respect Op-action. For
the definition of By we divide into 2 cases.

If D does not split at A, let Q be the prime of Op lying above A\. We have Q? =
A. Then define Morg, (A1, A2) to be Homp,, (A1, A2) ®o, Op,(q)- Define the kernel of
f € Morp, (A1, Az) to be the A-part of the usual kernel of g in some decomposition of
f =g ® (s71). The equivalence relation ~ on objects of By is given as follows: A ~ B if

and only if there exists some f € Morg, (A4, B) such that

ker f = Op/AN"Op

for some r. Connect [A] and [B] if there exists f € Morg, (4, B) such that

ker f =2 Op/Q @ Op/A\"Op

for some r.
If D splits at A, then define Morg, (A1, A2) to be Homp, (A1, A2) ®o, O (x). Still

define the kernel of f € Morg, (A1, A2) to be the A-part of the usual kernel of g in some
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decomposition of f = g ® (s!). The equivalence relation =~ on objects of B is given as

follows: A ~ B if and only if there exists some f € Morg, (A, B) such that

ker f = Ma(Op/A"OL)

for some 7. Connect [A] and [B] if there exists f € Morg, (41, A2) such that

ker f 2 (Or/\)? @ My(O1/\"Op)

for some 7.

Now we follow what we have done in the previous subsection. Similarly we get
Proposition 2.3.16. Fach connected component of the graph is a tree.

Proposition 2.3.17. The set of central edges associated to an F-virtual Abelian variety A

of GLa(E)-type such that End®(A) = D is a D-linear isogeny invariant.

Let ¥ denote the set of primes at which the associated centre is an edge. Note that X

is again a finite set.
Proposition 2.3.18.

Now we consider the Shimura variety Sy, parametrizing the quadruples (A, *, ¢, C) where

the level structure C is isomorphic to

(@ rex (OL/A)?)® (@ rez Op,/Qn).
Mdisc(D) Al disc(D)

Let W be the group acting on Sy, generated by

wy : (A, *,0,C) = (AJC[N, %,/ ,C + A[N/C[N]) if A € 2 and A ¢ disc(D);
wy i (A, %,0,C) = (A/C1Q,], ', ', C/CIAN] + (A/C[Q\])[Q,]) if A € ¥ and | disc(D);

wh i (A, *,0,C) — (AJA[T],«,/,C) if J prime to X.

Also we have
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Lemma 2.3.19. The group W is a finitely generated Abelian group.

Denote W \ Sy by S; . Similarly we have that the F-points of S; give isogeny classes

of F-virtual Abelian varieties of GLa(E)-type.

Theorem 2.3.20. FEvery F-point on the Shimura variety Sg gives an F-virtual Abelian
variety of GLa(E)-type. Conversely for any F-virtual Abelian variety A of GLa(E)-type s.t.
End® A = D there is an isogenous Abelian variety A’ of GLy(E)-type which corresponds to
an F-rational point on Sg, a quotient of Shimura variety of PEL-type, where 3 is given

above.

2.4 Field of Definition

Now we consider the field of definition of F-virtual Abelian varieties of GLo-type. Even
though they are not necessarily defined over F' we will show that in their isogenous class
there exist ones that can be defined over some polyquadratic field extension of F'. Here we

follow essentially [6] except in the quaternion algebra case.

Proposition 2.4.1. Let A be an F-virtual Abelian variety. Let ¢ be the associated 2-cocycle
on Gp. If ¢ is trivial in H*(Gp, L*), then A is isogenous to an Abelian variety defined

over F'.

a(o)a(r)

a(or)~ Where o and 7 are in Gpr. Let v, = poa (o). Let K

Proof. Suppose ¢(o,7) =
be Galois over F” such that A is defined over K, that all the isogenies involved are defined
over K as we did in the proof of Thm and « is constant on G . Let B = Resg /g A.
Then the assignment o — v, is a D-linear algebra isomorphism between D[Gg/p/] and
End’ B. Consider the D-algebra homomorphism D[G /7] — D where o is sent to 1. Since
D[G g p] is semisimple, D is a direct summand of D[Gk/p]. Since e = [KilF,] ZUGGK/F’ o
is an idempotent of D[G /] which splits off D, then if we let A" = Ne(B) where N is

chosen so that Ne is an endomorphism of B, then A’ is defined over F’ and is isogenous to

A. O

Proposition 2.4.2. The two cocycle c is of 2-torsion in H>(Gp, LX) and c is trivial in

H?(Gpr, L) where F' can be taken as a polyquadratic extension.
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Proof. First consider the case when D is a quaternion algebra. Let A be the lattice in C9
that corresponds to A. Then A ® Q is isomorphic to D as left D-modules. Fix such an
isomorphism. For °A we get an induced isomorphism between °A ® Q and D as left D-
modules. Then a D-linear isogeny f between °A and "A induces a D-module isomorphism
D — D which is just right multiplication by an element in D*. Let d(f) denote the reduced
norm of that element from D to L. Obviously d(f) = d(°f), for ¢ € Gp. Furthermore
d(f og) = d(f)d(g). Thus d(c(o,7)) = *(o,7) = %, which shows that ¢? is a
coboundary.

Second consider the case when D = F = L. Then the lattice A corresponding to A is
isomorphic to E? as E-vector space after tensoring with Q. Fix such an isomorphism and
correspondingly isomorphisms between A ® Q and E?. An E-linear isogeny f between °A
and "A then induces linear transformation. Let d(f) denote the determinant of the linear
transformation. Still d is multiplicative and d(f) = d(°f). Thus d(c(o,7)) = (c(o,7))? =
%, which shows that c is 2-torsion in H?(Gp, L*).

Now all that is left is to show that c is trivial after a polyquadratic extension of F'.

Consider the split short exact sequence of G p-modules
0—ps— L —=P—0

where P 22 L* /p5. We get that H?(Gp, LX) = H*(GF, u2) x H*(Gp, P). Since H?(GF, p2)
corresponds to those quaternion algebra elements in Br(F') it can be killed by a quadratic
extension of F. To kill the 2-torsion elements in H?(Gf, P), consider the short exact
sequence:

05PZ% P P/2P =0
where group multiplication is written additively. We get a long exact sequence:

Hom(Gr, P) — Hom(Gp, P/2P) — H2(Gp, P) =% H*(Gp,P) = -

Since P is torsion-free Hom(Gp, P) is trivial, we find Hom(G g, P/2P) = H*(GF, P)[2].

After a polyquadratic extension of F to F' we can make Hom(Gp/, P/2P) as well as
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H?(Gp, p2) trivial. Thus c is trivial in H*(Gpr, L*). O

2.5 Classification of Hilbert Modular Surfaces

We will focus on the case where E is a real quadratic field with narrow class number 1 and
study the Hilbert modular surfaces Y0+ (p) where p is a prime ideal of E. We have shown
in Section that the F-points of Y0+(p) represent F-virtual Abelian varieties. Suppose
E = Q(+/D) where D is the discriminant. Because of the narrow class number 1 assumption,
necessarily D is either a prime congruent to 1 modulo 4 or D = 8. We fix an embedding of
E into R. The conjugate of an element a in E is denoted by a®. Since the class group of F is
trivial, the group W in Deﬁnition is just W, a group of order 2. The group WTy(p) is
in fact the normalizer of Iy(p) in PGLJ (E) and Y (p) is isomorphic to WT(p) \ H? where

Pop) = 4 [ “ U] € PSLy(0): =0 (mod p)

In our case PSLy(Og) = PGLJ (Og). Let X (p) denote the minimal desingularity of
WTo(p) \ HZUP(E). The classification done in [28] does not cover our case. We will follow
the line of [28] and show that most surfaces in question are of general type and will give
examples of surfaces not of general type. Our method relies on the estimation of Chern

numbers. To do so we must study the singularities on the surfaces.

2.5.1 Cusp Singularities

Obviously for To(p) \ H? U PL(E) there are two inequivalent cusps 0 and oo. They are
identified via the Atkin-Lehner operator w, = (_%p (1)), where the prime ideal p is equal
to (wp) and wy, is chosen to be totally positive. This is possible as we assumed that the
narrow class number of E is 1. The isotropy group of the unique inequivalent cusp oo in
WT(p) is equal to that in PSLy(OFp), as WT'g(p) contains all those elements in PSLa(OF)

that are of the form (3 Z). Thus the type of the cusp singularity is the same as that for
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PSLy(O) and the isotropy group is equal to

€ u
€ PSLy(E) : e € O, € Op
0 e!
. (2.5.1)
= €PGL](E):e€ O3, u€ Op
0 1

~ X+
_OENOE .

By [28, Chapter II] we have the minimal resolution of singularity resulting from toroidal

embedding and the exceptional divisor consists of a cycle of rational curves.

2.5.2 Elliptic Fixed Points

Now consider the inequivalent elliptic fixed points of WT(p) on H2. More generally we
consider the elliptic fixed points of PGL3 (E). Suppose z = (21, 22) is fixed by a = (a1, a)
in the image of PGLJ (E) in PGLj (R)2. Then

for j =1 or 2 where a; = (% bj_ . Solving the equation we get
J J cj dj

a; — dj 1 \/ 9
zZi = + ——/tr(a;)? — 4det(a;).
J 26] 2|CJ‘ ( ]) ( ])
Tranform z; to 0 via mébius transformation (; — g :2 then the isotropy group of (z1, z2)
acts as rotation around 0 on each factor. For a; the rotation factor is r; = €29 where
tr(a; .
cosf; = () cjsinf; > 0. (2.5.2)

2./det(a;)’
The isotropy group of an elliptic point is cyclic.

Definition 2.5.1. We say that the quotient singularity is of type (n;a,b) if the rotation

factor associated to a generator of the isotropy group acts as (wy, we) + ((%wy, (Cwsy) where
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(n is a primitive n-th root of 1.

Remark 2.5.2. We require that a and b are coprime to n respectively and we can make a
equal to 1 by changing the primitive n-th root of 1. The method of resolution of singularity

in [28, Section 6, Chapter II] depends only on the type.

Definition 2.5.3. Let a2(T") denote the number of I'-inequivalent elliptic points of type
(2;1,1). Let a, (') denote the number of I'-inequivalent elliptic points of type (n;1,1). Let

a,, (I') denote the number of I-inequivalent elliptic points of type (n;1, —1).
From the expression for 6; we get:

Lemma 2.5.4. Assume D > 12. Then the elliptic elements of I'o(p) can only be of order

2 or 3.

2.5.3 Estimation of Chern Numbers

Now we estimate the Chern numbers of X (p). We will use the following criterion (Prop.
2.5.5)) found on page 171 of [28] to show that most of our surfaces are of general type. Let x
denote the Euler characteristic and ¢; be the i-th Chern class. The Chern class of a surface

S, ¢;(S), is the Chern class of the tangent bundle.

Proposition 2.5.5. Let S be a nonsingular algebraic surface with vanishing irreqularity.

If x > 1 and 2 > 0, then S is of general type.

Definition 2.5.6. Let S be a normal surface with isolated singular points and let S’ be its
desingularization. Suppose p is a singular point on S and the irreducible curves C1,...,Cy,
on S’ form the resolution of p. Then the local Chern cycle of p is defined to be the unique

divisor Z = Z:’;l a;C; with rational numbers a; such that the adjunction formula holds:

ZC; — CiC; = 2 = 2p,(C;).

Remark 2.5.7. For quotient singularity of type (n;1,1), the exceptional divisor consists
of one rational curve Sy with S§ = —n and the local Chern cycle is (1 — 2/n)S. For

quotient singularity of type (n;1,—1), the exceptional divisor consists of n — 1 rational
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curves S1,...,S,_1 with Sg = —2, 5;.1.5; = 1 and the rest of the intersection numbers
involving these rational curves are 0. The local Chern cycle is 0. For cusp singularity,
the exceptional divisor consists of several rational curves Sy, ..., Sy, such that S;_1.5; = 1,
Sp.Sm = 1, 52 < —2 and the rest of the intersection numbers involving these rational curves

are 0. The local Chern cycle is ), S;.

We will make frequent comparison to the surface associated to the full Hilbert modular
group PSLo(Q). As is computed on page 64 of [28] we have the following with a slight

change of notation:

Theorem 2.5.8. Let I' C PGLJ (R)? be commensurable with PSLy(O) and let Xt be the

minimal desingularization of T'\ H2. Then

cH(Xr) = 2vol(T\ H?) + ¢+ Z a(T';n;a,b)e(n; a,b), (2.5.3)

n—1

ca(Xr) = vol(T\H?) + 1+ Y _ a(T;n;a,b)(I(n;a,b) + ) (2.5.4)

n

where

a(T';n; a,b) =#quotient singularity of T\ H? of type (n;a,b),
c =sum of the self-intersection number of the local Chern cycles of
cusp singularities,
c(n; a,b) =self-intersection number of the local Chern cycle of a quotient
singularity of type (n;a,b),
I =F#curves in the resolution of cusps,
l(n;a,b) =#curves in the resolution of a quotient singularity of type

(n;a,b).

Lemma 2.5.9.

vol(PSLa(Op) \ H?) = 2¢p(—1). (2.5.5)

Now we will estimate the chern numbers under the assumption that D > 12. This
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ensures that we only have (2;1,1) or (3;1,%1) points for I'g(p) and hence only (2;1,1),
(3;1,4£1), (4;1,4£1) and (6;1,£1) points for WTy(p). From [28, II. 6] as summarized in
Remark we know how the elliptic singularities are resolved and can compute the self-

intersection number of local chern cycles. Thus after we plug in the values equation (2.5.3)

reads
2 1 1+ +_ 8 ¢
(X (WTo(p))) =3 [PSLa(0) : To(p) (1) + ¢ — 1 —af — o
1 1 2 2
(X (WTo(p))) =3 [PSLa(O) : To(B)]2Ca(~1) + 1+ (L4 J)aa + (1+2)af +(2+ 2)ag
3 3, _ 5 S5, _
+(1+ Z)QI + 3+ Z)a“ +(1+ 6)a6+ +(5+ 6)a6 :
(2.5.6)
We quote some results in [28, Section VIL5].
D3/2

Lemma 2.5.10. For all D a fundamental discriminant Cg(—1) > g5

This is equation (1) in [28] Section VIL5].

As ag, aF, aF, af and | are non-negative, co(WT(p)) > (Np + 1)%. Thus if

3/2

D
(Np+ 1)% > 12 (2.5.7)

then co(WTo(p)) > 12.
Now we estimate ¢3(X (WTo(p))). Let n denote the index of I'y(p) in PSLy(Og), which
is equal to Np 4 1. First the self-intersection number of the local Chern cycle at the cusp,

¢, is equal to that for PSLy(O) as the isotropy group for the unique cusp in WT'y(p) is the
same as that in PSLy(O).

Lemma 2.5.11. The local Chern cycle

c= % > > oL (2.5.8)

22<D,x2=D (mod 4) CL>0,(1|D7T“T2

and if D > 500,

Lo 3 2
> —— — . . 0.
c> 2D (27r210g D +1.05log D (2.5.9)
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This is [28, Lemma VIL.5.3].

Definition 2.5.12. Let h(D) denote the class number of the quadratic field Q(v/D) where

D is a fundamental discriminant.

Lemma 2.5.13. If D > 0 is a fundamental discriminant then h(—D) < log D.

1§

This is [28, Lemma VIL.5.2].

Lemma 2.5.14. If D > 12 and C17(Q(v/D)) = 1, then

as(PSLy(0)) =h(—4D)
) (2.5.10)
@ (PSLs(0)) =5h(=3D)

Combining the above two lemmas we get:

Lemma 2.5.15.

ﬁ

D
log4D
d (2.5.11)

ot (PSLa(0)) < %\/@ log(3D).

az(PSL2(0)) <

Lemma 2.5.16. If D > 12 and CIT(Q(v/D)) = 1 then

Sv4D log4D
. T (2.5.12)
a§ (To(p)) < 5 -V3Dlog(3D).

az(Lo(p)) <

Proof. Let z be an elliptic point of PSLa(OFf) with isotropy group generated by g = (‘c’ g).
We have coset decomposition of SLa(Op) = UaTo(p)da UTo(p)dos, where 6o = (L) with
a € Op running through a set of representatives of Og/p and doo = (_01 (1)) For each d,
we need to check if 5,95, 1 is in To(p), i.e., if ¢+ (a — d)a — ba? is in p. In Fy, the equation
c+ (a —d)a —ba? = 0 has at most two solutions unless ¢,a — d,b € p. This cannot happen

if g is elliptic. Indeed from ad — bc = 1 we get a®> = 1 (mod p) and thus a = +1 (mod p).

Replace g by —g¢ if necessary we suppose that a = 1 (mod p). Suppose a+d =t with t =0



37

or =1 and suppose a = 1 + v with v € p. Then

1=ad-bc
=a(t—a)—bc
( ) (2.5.13)
=a(t—a) (mod p?)

=t—14(t—2w (mod p?).

We find that (t—2)(1+v) (mod p?). By assumption D > 12 is a prime so (2) or (3) cannot
ramify. We always have that 1 4+ v =0 (mod p), which is impossible.

Thus the number of elliptic points of any type increases to at most threefold that for

PSLy(Op). 0

Lemma 2.5.17. Suppose D > 12 and C1*(Q(v/D)) = 1. Then af (WTo(p)) = 0 unless (3)

is inert in O and p = (3) and
2
2a (WTo(p)) + ad (WTy(p)) < 5\/31) log(3D); (2.5.14)

and a (WTo(p)) = 0 unless (2) is inert and p = (2) and

V4D
aj (WTo(p)) < 5 — logdD. (2.5.15)
Proof. We check the rotation factor
tr(a;)

cosf; = (2.5.16)

2,/det(a;)

associated to an elliptic element «. In order to have a point with isotropy group of order 4
in WT'o(p) we must have cos 0; = ig. As D > 12, we need det(a;) = @, in 20% and also
p = (2). In order to have a point with isotropy group of order 6 in WT's(p) we must have
cosb; = :I:@. As D > 12, we need det(a;j) = @, in 30% and also p = (3).

The Atkin-Lehner operator exchanges some of the I'g(p)-inequivalent (3;1,1)-points

which result in (3; 1, 1)-points and fixes the rest of the points which result in (6; 1, 1)-points.
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All (3;1,1)- and (6;1, 1)-points for WT'y(p) arise in this way. We have

2a5 (WTo(p)) + ag (To(p)) = a3 (To(p))- (2.5.17)

The Atkin-Lehner operator exchanges some of the I'g(p)-inequivalent (2;1,1)-points which
result in (2;1, 1)-points and fixes the rest of the points which result in (4;1,1)-points. All
(4;1,1)-points for WTy(p) arise in this way, but we may get (2;1,1)-points not arising in
this way. We have

af (To(p)) < af (To(p)). (25.18)
Combining with Lemma [2.5.16] we prove this lemma. O

Lemma 2.5.18. Suppose D > 12 and C17(Q(v/D)) = 1. Then
o (WTo(p) + 8 (Wo(p)) < Saif (Co(p) (2.5.19)
if (3) is inert and p = (3). If p # (3) then
1. 1
S (WTo(p) = 2o (Co(p)). (25.20)

Combining all these inequalities we find
Lemma 2.5.19. Suppose D > 500 and C1T(Q(v/'D)) = 1. Then

nD?3/2 B lDl/Q(
180 2

LV3Dlog(3D) ifp#(3)

3
A(Xg (p) > 52 log? D + 1.05log D)

| 7V3Dlog(3D) ifp = (3) (2.5.21)

0 ifp # (2)
\%\/E log(4D) if p=(2).

Now it is easy to estimate for what values of D and n we have c¢2(WT(p)) > 0. For

small D we just compute ¢ precisely by using Equation [2.5.8|instead of using the estimates.
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Theorem 2.5.20. Suppose D > 12, D = 1 (mod 4) and C17(Q(v/D)) = 1. Then the
Hilbert modular surface XJ(p) is of general type if D or n = Np + 1 is suffiently large or

more precisely if the following conditions on D and n are satisfied:

D > 853 or D =193, 241, 313, 337, 409, n can be arbitrary

433, 457, 521, 569, 593, 601, 617, 641,
673, 769, 809

D = 157, 181, 277, 349, 373, 397, 421, n#5, e, p#(2)
509, 541, 557, 613, 653, 661, 677, 701,
709, 757, 773, 797, 821, 829

D = 137,233,281, 353, 449, n# 10, i.e., p # (3)

D = 149,173,197, 269, 293,317,389,461 | n # 5,10, i.c., p # (2), (3)

D =113 n > 8 and n # 10
D =109 n>6
D =101 n>6 and n # 10
D =97 n=>5
D =89 n=>06
D =173 n>7
D =61 n > 10
D =153 n>12
D =41 n>17
D =37 n > 20
D =29 n > 28
D =17 n > 62
D =13 n > 93

Proof. First we note that the condition for (2) to split is that D =1 (mod 8) and for (3)
to split is that D = 1 (mod 3). We check for what values of D and n the inequality
is satisfied and the right hand side of the inequaltiy in Inequality is greater than 0
by using a computer program. Then we have ¢(X (p)) > 0 and c2(X (p)) > 12 and thus
x(Xg (p)) > 1. The surface is of general type by Prop. m O
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Remark 2.5.21. There are some values that, a priori, n cannot achieve.

2.5.4 Examples

The first two examples give rational surfaces and the third example is neither a rational

surface nor a surface of general type.

2541 D=5

Consider the Hilbert modular surface PSLy(Og) \ H? where E = Q(+/5). The cusp resolu-
tion is a nodal curve. We will focus on quotient resolutions to study the configurations of
rational curves on the surface. Following the method in [5], we can locate all the PSLa(OF)-

inequivalent elliptic points.

p = (2) The Ty(p)-inequivalent elliptic points and their types are summarized in the
following table. As the coordinates of the points themselves are not important we only list

a generator of the isotropy groups.

Type Generator of Isotropy Group
1 -1
(21,1
2 —1
-1 —1+v5
(2:1,1) ’
-1-v5 1
1+V5 -1
2
(3;1,1) s
1-v5
2 2
3+v5 -1
2
(3;1,1) v
1+v5
3 + \/5 - +2
1-v5 —1+V5
(3? la _1> ? 2\/»
1+v5
—1— \/5 +2
_ 145 —14++/5
(3a 11 _1) ? 2\/»
3+v5
—4-2V5 3%

The Atkin-Lehner operator fixes the two (2;1,1)-points respectively and exchanges the
two (3;1,1)- (resp. (3;1,—1)-) points. We get one (4;1,1)-, one (4;1,—1)-, one (3;1,1)-
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, one (3;1,—1)- and possibly some new (2;1,1)-points. We consider the (4;1, —1)-point

represented by ( lf:/%, 11__\}5) and the (3;1,—1)-point represented by (gﬁii}g, _‘g?f_lg))

Consider the curve Fg on WTo(p) \ H? defined as the image of the curve

— 21
Fp =14 (z1,22): (22 1) B =0 (2.5.22)

and let F';, denote the strict transform of Fg in X (p), the desingularity of WTo(p) \ H2 U
0 (1—\25)\/3

(1+v5)V5 0
2

The stabilizer I'g of B in I'g(p) is a degree 2 extension of the group

PY(E). Let B = ( ). Then the two elliptic points noted above lie on Fp.

1_‘/5)\/52} (2.5.23)

{(23)EFO(p):a,deZ,ce(lJr\/B)\/EZ,be( .

generated by ( V5 \/5_1). The stabilizer of B in WTy(p) is a degree 2 extension of I'p

1+\/5f \\/fg
by ( 2 B ). We find that the image of Fp in WTo(p) \ H? is a quotient of
—(1+VB)V5 —4

[o(10Z)\'H and thus Fj is a rational curve in X (p). Consider the intersection of Fj
with the local Chern cycles. Following the method in [28] V.2] we find that the intersection

number of Fj; with the cusp resolution is 2. Thus we have

1 18 1 1
cl(Xg(p)).F,g:—2-6~—+2+§-n3+§-n4 (2.5.24)

where ng is the number of (3;1, 1)-points that F}; passes through and n4 is the number of
(4;1,1)-points that Fj; passes through. As intersection number is an integer, we are force
to have ng = 0 and ny = 1 and thus ¢; (X (p)).Fp = 1. By Adjunction formula, Fj? = —1.
We get a linear configuration of rational curves with self-intersection numbers —2, —1, —2,
where the (—2)-curves come from desingularity of the (3;1, —1)- and the (4;1, —1)-points
mentioned above. After blowing down Fp we acquire two intersecting (—1)-curves and this

shows that the surface X (p) is a rational surface.



42

2.54.2 D=13

Consider the Hilbert modular surface PSLy(Og) \ H? where E = Q(+/13). The cusp reso-
lution is of type (5;2,2) and the rational curves are labelled as Sy, S1 and Ss. Following
the method in [5], we can locate all the PSLy(OF)-inequivalent elliptic points.

It is easy to find the I'g(p)-inequivalent elliptic points from right coset decomposition
PSL2(Og) = Ual'0(p)ga UTo(p)goo where go = (1 V) and goo = (% §) with o running over

a set of representatives of O /p.

D =13, p= (44 +13) Suppose p = (4 + +/13). Then we list one generator of isotropy

group for each I'y(p)-inequivalent elliptic point:

Type Generator of Isotropy Group
-1 1
(3:;1,1)
-3 2
311) (-1+V13)/2 —2
(5-VI3/2 (-V3)/2
(3;1, 1) ? (14 V13)/2
. —(14+V13)/2 -1
31 —1) (5+13)/2  (3+13)/2

—(14VI3) —(3+VI3)/2

Since there cannot be any elliptic points with isotropy group of 6 for WT'y(p) acting on

H2. The Atkin-Lehner operator exchanges the two (3; 1, 1)-points (resp. (3;1, —1)-points).

0 4—\/ﬁ)
—4—/13 0 ’

Still let F denote the closure of F in WTy(p) \ H2 UP(E) and let Fy denote the strict

Now consider the curve Fg on WT'g(p) \ H? defined as in (2.5.22)) and set B = (

transform of Fjg in X (p), the desingularity of WTy(p) \ H? U PY(E).

The elements of WT(p) that stabilize Fp are of the form (2%) with a,d € Z, ¢ €
(44 V13)Z and b € (4 — v/13)Z and determinant 1. Thus we find that Fl = T(3Z) \ 'H
which is of genus 0. Furthermore ¢ (X, (p)).Fg = 2vol(Fy) + Y Z,.Fj where Z, is the

local Chern cycle at x a singular point. We compute that

1 1
cl( Xy (p).Fp = —2-6 -4+2+§ n (2.5.25)
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with n the number of (3;1,1)-points that F; passes through. As there is just one (3;1,1)-
point, we are forced to have n = 1 and thus ¢1(Xg (p)).Fjy = 1. By Adjunction formula
F2 = —1. We also find that Fj intersects with the cusp resolution: Fg.S; = Fp.Sy =
1. Note that S; and Sy have self-intersection number —2. After blowing down Fj we
get two intersecting (—1)-curves. Again by an algebraic geometry criterion, the surface

WTo((4 4 v/13))\ H? is a rational surface.

D = 13, p = (2) Suppose p = (2). We have two inequivalent (2;1,1)-points namely
((i+1)/2,(i+1)/2) and ((i +1)/(3+/13), (i —1)/(=3+/13)), four inequivalent (3;1,1)-
points and four inequivalent (3; 1, —1)-points. The Atkin-Lehner operator fixes the (2;1,1)-
points and exchanges (3;1, 1)-points (resp. (3;1, —1)-points). It is easy to check that we get
one (4;1,1)-, one (4;1,—1)-, two (3;1,1)- and two (3;1, —1)-points and some new (2;1,1)-
points. We compute that ¢;(X; (p))* =2-2-¢-5 - % -2—1= -3 and e2(X{ (p)) =
2:2- 24+ (1+3)as+(1+2)2+2+2)2+(1+432)1+ (3+3)1 =18+ 3a. The Euler
characteristic x(Xg (p)) = (c1(Xg ()% + c2(Xg (p)))/12 = (15+ 3a2)/12 > 2. Thus X (p)
cannot be a rational surface.

Consider the curve F'j with

0 4—4/13
B= (2.5.26)

—4—+/13 0.

The stabilizer I'g of l?]; in T'o(p) consists of elements of the form (‘CI 3) with a,d € Z,
c € (2(4+V13))Z and b € (4 — V/13)Z and determinant 1. The stabilizer of Fz in WTo(p)
is a degree 2 extension of I'p generated by ( 72 (4J2r Vi3) 41@), Thus we find that I'g(6Z) \ H
is a degree 2 cover of Fj;. Thus FJ is of genus 0. We compute that

112 1 1
cl(X;(p)).Fg:—2-6-—+2+§-n3+§-n4 (2.5.27)

where ng is the number of (3;1, 1)-points that F}; passes through and n4 is the number of
(4;1,1)-points that F; passes through. As there are two (3;1,1)-points and one (4;1,1)-

point on X (p) we are forced to have that n3 = 0 and ng = 0. Thus ¢;(X; (p)) = 0. By
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Adjunction formula, Fj? = —2. We have the configuration of (—2)-curves consisting of Fi,
S1 and S5 such that Fj_;.Sl = F]B.Sg = 51.59 = 1. This cannot occur on a surface of general
type by [28, Prop. VIL.2.7]. Hence in this example we find a surface which is birationally

equivalent to a K3, an Enrique surface or an honestly elliptic surface.
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Chapter 3

Rallis Inner Product Formula

In this chapter we study the case of the Rallis inner product formula that relates the pairing
of theta functions to the central value of Langlands L-function. We study the Siegel-Weil
formula first, as it is a key ingredient in the proof.

We consider the dual reductive pair H = O(V) and G = Sp(2n) with n the rank of the
symplectic group. We use C?(K) to denote the metaplectic group which is a double cover of
G(A). Let V be a vector space over a number field k£ with the quadractic form @ and let m
be the dimension of the vector space and r its Witt index. Set s = (m—n—1)/2. Form the
Siegel Eisenstein series E(g, s, fo) and the theta integral I(g, ®) for g € C?(\A/Q and @ in the
Schwartz space Sp(V"(A)). The Eisenstein series can be meromorphically continued to the
whole s-plane. The theta integral is not necessarily convergent and we will use Ichino’s[S]
regularized theta integral Irpg(g, ®). Please see Sec. for further notations. Roughly
speaking, the Siegel-Weil formula gives the relation between the value or the residue at sg
of the Siegel Eisenstein series and the regularized theta integral.

When the Eisenstein series and the theta integral are both absolutely convergent, Weil[30]
proved the formula in great generality. In the case where the groups under consideration
are orthogonal group and the metaplectic group, Weil’s condition for absolute convergence
for the theta integral is that m —r > n+1 or r = 0. The Siegel Eisenstein series E(g, s, fg)
is absolutely convergent for Res > (n +1)/2, so if m > 2n + 2, E(g, s, fo) is absolutely

convergent at sop = (m —n — 1)/2. Then assuming only the absolute convergence of theta

integral, i.e., m —r > n+1 or r = 0, Kudla and Rallis in [I5] and [16] proved that the ana-
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lytic continued Siegel Eisenstein series is holomorphic at sp and showed that the Siegel-Weil
formula holds between the value at sg of the Siegel Eisenstein series and the theta integral.

In [17] Kudla and Rallis introduced the regularized theta integral to remove the require-
ment of absolute convergence of the theta integral. The formula then relates the residue of
Siegel Eisenstein series at sp with the leading term of the regularized theta integral. How-
ever they worked under the condition that m is even, in which case the metaplectic group
splits. The regularized theta integral is actually associated to Vj, the complementary space
of Vikn+1<m<2nand m—r <n+1 with V isotropic. In the case m = n + 1 the
Fisenstein series is holomorphic at sg = 0 and the formula relates the value of Eisenstein
series at so to the leading term of the regularized theta integral associated to V. Note that
in the above summary we excluded the split binary case for clarity.

For m odd Ikeda in [I0] proved an analogous formula. However his theta integral does not
require regularization since he assumed that the complementary space Vj of V' is anisotropic
in the case n+1 < m < 2n+ 2 or that V is anisotropic in the case m = n+ 1. The method
for regularizing theta integral was generalized by Ichino[8]. Instead of using differential
operator at a real place as in [I7], he used a Hecke operator at a finite place and thus did
away with the assumption that the ground field k& has a real place. In Ichino’s notation
the Siegel-Weil formula is a relation between the residue at sy of the Siegel Eisenstein
series and the regularized theta integral Ijgc(g, ®) itself. He considered the case where
n+1<m<2n+2 and m —r < n+ 1 with no parity restriction on m. The interesting
case m = n + 1 with m odd, however, is still left open.

The case of Rallis inner product formula we are concerned with involves the orthogonal
group O(V') with V' a quadratic space of dimension 2n’+1 and the symplectic group Sp(2n’)
of rank n’. Via the doubling method, to compute the inner product we ultimately need to
apply the Siegel-Weil formula with m = 2n’ + 1 and n = 2n/. Note that m is odd here. We
show that the pairing of theta functions is related to the central value of an L-function.

The idea of proof originates from Kudla and Rallis’s paper[I7]. We try to show the
identity by comparing the Fourier coefficients of the Siegel Eisenstein series and regularized
theta integral. By showing that a certain representation is nonsingular (c.f. Section we

can find a Schwartz function on Sym,, (k,) for some finite place v of k to kill the singular
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Fourier coefficients of the automorphic form A which is the difference of E(g, s, ®)|s=s, and
2IreG (g, ®). The constant 2 is with respect to some normalization of Haar measures. Then
via the theory of Fourier-Jacobi coefficients we are able to show the nonsingular Fourier
coefficients of A actually vanish. Then by a density argument we show that A = 0.
Finally via the new case of Rallis inner product formula we show the relation between

nonvanishing of L-value and the nonvanishing of theta lifts.

3.1 Notations and Preliminaries

Let k£ be a number field and A its adele ring. Let U be a vector space of dimension m over
k with quadratic form ). We view the vectors in U as column vectors. The associated
bilinear form on U is denoted by (, )¢ and it is defined by (z,y)g = Q(z+y) — Q(z) — Q(y).
Thus Q(x) = %(x, x) - Let r denote the Witt index of @, i.e., the dimension of a maximal

isotropic subspace of U. Let H = O(U) denote the orthogonal group of (U,Q) and G =

Sp(2n) the symplectic group of rank n. Let G(A) be the metaplectic group which is a double
cover of G(A) and fix a non-trivial additive character ¢ of A/k and set ¢g(-) = 1(S-) for

—_~—

S € k. Locally the multiplication law of G(k,) is given by

(91,€1)(92, C2) = (9192, (91, 92)C1G2)-

where ¢; € {£1} and c(g1,92) is Rao’s 2-cocycle on G(k,) with values in {£1}. The

1G4+

properties of ¢ can be found in |24, Theorem 5.3]. There the factor (—1,—1)" 2 should

iG=1)

be (—1,—1)" 2 as pointed out, for example, in [I4, Remark 4.6].

Via the Weil representation w, G(A) x H(A) acts on the space of Schwartz functions
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S(U™(A)). Locally it is characterized by the following properties (see e.g., [14, Prop. 4.3]):

wl( LO)B(X) = xo(det A, ¢)| det A[7*D(X A),
1, B 1
wll({ 7 [ OIB) =M (X X)g, BPX)
-1,
all| LONBX) = "yt 0 Qu) " FR(=X)

w(h)®(X) = d(h~1X)

where ® € S(U™(k,)), X € U™(ky), A € GL,(ky), B € Sym,,(ky), ¢ € {£1} and h € H(k,).
Here 7, is the Weil index of the character of second degree x — 1, o Q,(z) and has values
in 8-th roots of unity. The matrix (X, X)q, has (X;, X;)q, as ij-th entry if we write
X = (Xy,...,X,) with X; column vectors in U(k,). The Fourier transform of ® with

respect to ¥, and @), is defined to be

Fo(X) = /U"(k )wv(tr<X,Y>Qv)¢(Y)dY
and

m(m—1) (@, ¢v,1/2)_1 if m is odd,
Xv(a7<) = Cm(aa (_1) 2 det( ) >Qv)k‘v : (3.1.1)

1 if m is even.

for a € k; and ¢ € {£1}. Here (, )i, denote the Hilbert symbol and det (, ), is the
determinant of the symmetric bilinear form on U (k).

Define the theta function

O(g, ;@) = > wlg,h)®(u)
ueUn (k)
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—

where g € G(A), h € H(A) and ® € S(U™(A)) and consider the integral

I(g,®) = / O(g. hi; B)dh.
H(k)\ H(A)

It is well-known that this integral is absolutely convergent for all ® € S(U"(A)) if either
r=0or m—r >n+1. Thus in the case considered in this paper we will need to regularize
the theta integral unless @ is anisotropic.

Let P be the Siegel parabolic subgroup of G, N the unipotent part and f(z the standard
maximal compact subgroup of 5(\&) For g € 5(\&) write g = m(A)nk with A € GL,(A),
n € N and k € vac Set a(g) = det A in any such decomposition of g and it is well-defined.

The Siegel-Weil section associate to ® € S(U™(A)) is defined to be

fa(g,5) = la(g)|”*w(g)®(0),

where sg = (m —n — 1)/2. Then the Eisenstein series

E(g787f<19): Z f<1>(’>/g78)

YEP(R)\ G(k)

is absolutely convergent for Re(s) > (n + 1)/2 and has meromorphic continuation to the
whole s-plane if ® is /Eé-ﬁnite. In the case where m =n+ 1, E(g, s, fo) is holomorphic at
s=(m—n-—1)/2=0[8, Page 216].

Let So(U™(A)) denote the Kg-finite part of S (U™(A)). We will show, under some

normalization of Haar measures, the following

Theorem 3.1.1. Assume that m =n + 1 and exclude the split binary case. Then

E(gv S, f¢)|s=0 = QIREG(ga (I))

for all ® € So(U™(A)).

Remark 3.1.2. The regularized theta integral Irgg will be defined in Section
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3.2 Regularization of Theta Integral

The results concerning the regularization of theta integrals summarized in this section are
due to Ichino[8, Section 1]. We consider the case where the theta integral is not necessarily
absolutely convergent for all ® € S(U™(A)) i.e., if @ is isotropic and m —r < n + 1.

Take v a finite place of k and temporarily suppress it from notation. If 2 { ¢ then there is
a canonical splitting of G over K¢, the standard maximal compact subgroup of G. Identify
Kg with the image of the splitting. Let Hg and Hpy denote the spherical Hecke algebras
of G and H:

He = {a € H(G//Ke)|a(eg) = €™a(g) for all g € GY,

Hy =H(H//Kn)

where € = (19, —1) € G.

Proposition 3.2.1. Assume m < n+1 and r # 0. Fix ® € S(U"(A)) and choose a
good place v for ®. Then there exists a Hecke operator o € Hg, satisfying the following
conditions:

1. I(g,w(a)®) is absolutely convergent for all g € C?(\Z/A),'

2. 6(a).1 = cq.1 with cq # 0.

Remark 3.2.2. For the definition of good place please refer to [8, Page 209]. Here 6 is
an algebra homomorphism between the Hecke algebras Hg, and Hp, such that wg(a) =

w@(f()) as in [8, Prop 1.1]. The trivial representation of H is denoted by 1 here.

Definition 3.2.3. Define the regularized theta integral by

IREG(ga @) = Cgll(ng(a)q))'

Remark 3.2.4. Also write Ixgc(g, ®) = I(g, ®) for @ anisotropic. The above definition is

independent of the choice of v and «.
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Let S(U™(A))ape denote the subspace of S(U™(A)) consisting of ® such that I(g, ®) is

absolutely convergent for all g. Then I defines an H (A)-invariant map

I:S(U™A))ape = A™(G)

—

where A is the space of smooth automorphic forms on G(A) (left-invariant by G(k))

without the j(vg—ﬁniteness condition.

Proposition 3.2.5. [8, Lemma 1.9] Assume m < n+ 1. Then Irgpg is the unique H(A)-

invariant extension of I to S(U™(A)).

3.3 Siegel Eisenstein Series

—~

Now we define the Siegel Eisenstein series. Let x be a character of P(A). Let I(x, s) denote

—~—
—~—

the induced representation Indg%:% x|det|*. A function f(g,s) on G(A) x C is said to be a

holomorphic section of I(y,s) if

—~

1. f(g,s) is holomorphic with respect to s for each g € G(A),
2. f(pg, 5) = x(p)|a(p)|"* V2 f(g,5) for p € P(A) and g € G(A) and
3. f(,s) is K-finite.

For f a holomorphic section of I(x,s) we form the Siegel Eisenstein series

E(g,s, /)= >, [(19:9)

YEP(K)\ G(k)

—_~—

Note that G(A) splits over G(k).

We will specialize to the case where x is the character associated to the x in (3.1.1)):

(p, 2) = x(a(p), 2). (3.3.1)

Still denote this character by x. For ® € S(U"(A)) set

m—n—1

fa(g,s) =la(g)]”" 2 w(g)®(0).
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Then fg is a holomorphic section of I(y, s). The Eisenstein series E(g, s, fg) is absolutely
convergent for Re(s) > (n+ 1)/2 and has meromorphic continuation to the whole s-plane.
From [8, Page 216] we know that if m =n+ 1, E(g, s, fo) is holomorphic at s = 0.

The following definition will be useful later.

Definition 3.3.1. A holomorphic section f € I(y,s) is said to be a weak SW section
associated to ® € S(U™(A)) if f(g, ==2=1) = w(g)®(0).

Define similarly I,(xy,s) in the local cases. Fix one place v. For w # v, fix &, €
S(U™(ky)) and let f2(gy,s) be the associated holomorphic sections where we suppress the
subscript ®,,. Then if m =n + 1 we have the map

I, — A
(3.3.2)

for> E(g,8, fu ® (®w7évfg))’8=0-

Then by [16, Prop. 2.2] this map is G,-intertwining if v is finite or (gv, [A(;)-intertwining if

v 1s archimedean.

3.4 Fourier-Jacobi Coefficients

A key step in the proof of Siegel-Weil formula is the comparison of the B-th Fourier coef-
ficients of the Eisenstein series and the regularized theta integral where B is a nonsingular
symmetric matrix. It is easy to show that the B-th Fourier coefficient of the Eisenstein
series is a product of Whittaker functions. In the case where m is even by [29] and [11]
the Whittaker functions can be analytically continued to the whole complex plane. Also
true is the case where n = 1 and m arbitrary. However in the case m odd this is not fully
known. To work around the problem Ikeda[I0] used Fourier-Jacobi coefficients to initiate an
induction process. The B-th Fourier coefficients can be calculated from the Fourier-Jacobi
coefficients from lower dimensional objects.

We generalize the calculation done in [§] and in [I0]. First we introduce some subgroups

of GG, describe Weil representation realized on some other space and then define the Fourier-
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Jacobi coefficients. The exposition closely follows that in [§]. Put

V=<uv(z,y,z2) = zyek™ L zeky,

—'z 1,1
Z ={v(0,0,2) € V'},
W ={v(z,y,0) € V},

L ={v(z,0,0) e V},

;

1
a b a b
Gl = S Spn_l s
1 c d
c d
\
1
1n1 ny
Ny = ny € Sym,,
1
L 1n71

Then V = W & Z is a Heisenberg group with centre Z and the symplectic form on W is
set to be (v(z1,y1,0),v(x2,¥2,0))yy = 2(z1'%y2 — y1"r2). Here the coefficient 2 is added to
facilitate later computation. We set (x,y) = 2z%, for  and y row vectors of length n — 1.
Sometimes we identify L with row vectors of length n — 1. The Schrédinger representation

w of V(A) with central character ¢ can be realized on the Schwartz space S(L(A)):

w(v(z,y,2))o(t) = ¢(t + 2)P(z + (t,y) + %@37 y))

for ¢ € S(L(A)). By the Stone-von Neumann theorem, w is irreducible and unique up to
isomorphism. Moreover the Schrédinger representation w of V(A) naturally extends to the
Weil representation w of V(A) x G1(A) on S(L(A)). Let K¢, denote the standard maximal

—~—

compact subgroup of G1(A) and Sp(L(A)) the I/(\G/l—ﬁnite vectors in S(L(A)).
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For each ¢ € S(L(A)) define the theta function

I(vgr,0) = Y w(vg)d(t)

teL(k)

for v € V(A) and g1 € m Suppose that A is an automorphic form on 5(\1@ Then

—_——

define a function on G1(k)\ G1(A) by

FJ%(g1; A) = / A(vg))0(ogn, B)dv.
V(k)\V(A)

For 8 € Sym,,_;(k), let FJg(gl; A) be the B-th Fourier coefficient of FJ?(g1; A).

Suppose that the bilinear form (, >Q is equal to (, )g + (, >Q1 where S and @) are
quadratic forms of dimension 1 and n — 1 respectively. Decompose accordingly U = k@ U;.
Note that (z,y)¢ = 2Szy. Let H = O(U;). With this setup we will use the character g

in the Schrédinger model instead of .

Lemma 3.4.1. [8, Lemma 4.1] Let S € k* and § € Sym,,_;(k). Let A be an automorphic

form on C?(T&), and assume that FJz(gl;p(f)A) =0 for all $ € So(L(A)) and all f €

—_~—

H(G(A)). Then A =0 for

Proof. For n € N we set b(n) to be the upper-right block of n and set bi(n) to be the
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lower-right block of size (n — 1) x (n — 1) of b(n). We compute

gluA)

u/“ A(wnag)9(omags, SV~ tr(by (m)B))dvdn
E)\ N1(A) JV(E)\V(A)

J
[
/ O\ L) /N(k N )A(nmgl)mw(—tr(bl(nw))dndx
Lo

L)\ L(4) / Z A(naz gy )w(tnwgy)$(0)1(— tr(bi(n)B))dnda

tGL

_ / / Al g G0 (1))
L(A) I N(k)\

A(ntzg)w(ntzgr)$(0) (= tr(bi(n)B))dndz

(R\L(&) 70 / N(k)\ N(4)

~

/ /° Alneg ol SIS~ (1))
L(A) JN(K)\ N(A
- | o, Ao~ (b B)dnds
L(A) IN(K)\
/ B(xg1)w(gr)o(x)de.
L

—_— P

Since FJg(gl,A) = 0 for all g1 € G1(A) we conclude that Ap(g1) = 0 for all g; € G1(A).
Then we apply a sequence of f; € H(CT(:&)) that converges to the Dirac delta at g € C:’ZK)
to conclude that Ag(g) =0 for all g € (?(K) O

3.4.1 Fourier-Jacobi coefficients of the regularized theta integrals

Now we consider the Fourier-Jacobi coefficients of the regularized theta integrals

FJ‘b(gl;IRE(;((I))) = cc_yl/ / O(vgy, h;w(a)®)I(vg1, ¢)dhdv.
(K)\V(A) JH(K)\ H(A)

Put



for u € UI"'(A). Then the map

S(U™(A) @ S(L(A)) — SUFTH(A))

OR ¢ U(D,0)

—~—

is G1(A)-intertwining, i.e.,

w(91)¥(P,¢) = ¥(w(g1)P,w(g1)9)

P

o6

for g1 € G1(A). Notice that on S(U"(A)) and S(UJ* '(A)) the Weil representations are

associated with the character ¢ and on S(L(A)) the Weil representation is associated with

the character ¥g. Then we have:

Proposition 3.4.2. Suppose that 5 € Sym,, (k) with det(8) # 0. Then

FJ% (91 Tnuc (®))

1s equal to the absolutely convergent integral

/ Innc,5(g1, O (w(R), ¢))dh.
Hi(A)\ H(A)

Proof. We need to compute the following integral.

FJ%(g1; Inec(®))

:cal/ / / 0(vnigi, ho,w(a)®)d(vnig1, @)
Ni(k)\ N1(A) JV(K)\V(A) JH(k)\ H(A)

x (= trby(n1)B)dhodvdn.

First we consider

/ 0(vgr, ho, )% (vg1, P)dv.
V(k)\V(A)

(3.4.1)

(3.4.2)



Suppose v = v(z,0,0)v(0,y, z). Then

0(vg1, ho, @)

= > w(vgi, ho)d(1)

teUn (k)

= Z w(v(0,y, 2)g1, ho)P(t )

teUn (k) 1

= Y wigiho)®(t (5 tr <t

teun (k) 1

where t1 € k, to € k"1, t3 € Uy(k) and t4 € Uffl(k:). Also we expand

ﬁ(vgla ¢)

= > wlg)d(t +x)vs(z + (,y) + (t,y))

teL(k)

= 3 wlgn)elt + @)ws(z + 20y + (t,1)).

teL(k)

Thus if we integrate against z the integral (3.4.2)) vanishes unless

t t
< L > — 25,
t3 t3
Q

By Witt’s theorem there exists some h € H (k) such that

t _
t3
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Note that the stabilizer of (}) in H(k) is Hy(k). After changing ( ) to h™ (ti) we find

that (3.4.2)) is equal to

1 ¢ 1 =z
/ w(g1)w(a)®(hyth™? ? )
W(k)\W(A) Hi(k)\ H(k) t2.ta te L(k) 0 4 1
1 t
w(g)e(t +z)i Y)s(=(ty)))dwdy
0
1t 1 z
_ / w(gr)®(hg'h ! ’ )
WIRNWA) he by (k) \ H (k) t2,ta teL(k) 0t 1

X w(g1)(t + 2)1p (25t ) s (—(t, y)))dady.

Now the integration against y vanishes unless ¢ = t5 and we get

1 1l |\
:/Lm) S Seoennt| Jw(gn)o(t + v)dx

heHy (k)\ H(k) ta 0 4 1

- Y Y wl)ue.9).

heH1 (k) \ H(k) tcU* (k)

Then we consider the integration over Ni(k)\ N1(A) in (3.4.1). This will kill those terms

such that <t=t>Q1 # . Thus (3.4.1)) is equal to

-1
o /H . > > wlg)¥(tw(hho)w(a)®, ¢)dho.

&) he Hy (k) \ H (k) teu™ (k),
<t,t>Q1 :B

We assume that 2Q); represents [, since otherwise the lemma obviously holds. As
tkB=n—1,{te Uln_l(k)\(t,le = [} is a single H;(k)-orbit. Fix a representative to of

this orbit. Since the stabilizer of ¢y in H;(k) is of order k = 2, FJg(gl; Irec(®)) is equal to

it | 5™ w(g0)(w(hho)w(a)®, é; to)dho.
H(E)\ H(4) 70

The convergence Lemma in [§] holds also for m = n+1 which is recorded here as Lemma
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Thus we can exchange the orders of integration in FJg(gl; Izrgpc(®)) and continue the com-

putation to get

Kt [ el Vel éit)dn
H(A

o ] h &, p)dh
wle Z) / oy 0¥ (R0,

yEH1 (K

'/ S wlo)B(wh)w()®, ¢ t)dh
H; (k) \ H(A) (t)t>Q1:6

=c, ! / / > wlgn, h) P (w(h)w(a)®, ¢;t)dhydh
Hl(A)\H(A) Hl(k)\Hl(A) <t,t>Q1:ﬁ

_ / Ingc.s(g1, U(w(h)®, ¢))dh.
Hi(A)\ H(A)
]

Lemma 3.4.3. 1. Let t € U™(k). If rkt = n then fH(A)w(h)CI)(t)dh is absolutely con-
vergent for any ® € S(U™(A)).

2. Lett; € UM (k). Iftkty =n — 1 then

r | ——

1
/ W(w(h)®, 6 t1)dh — / / w(h)® o) dwdh
HA) H(b) JL(a) 0t

is absolutely convergent for any ® € S(U™(A)) and ¢ € S(L(A)).

Proof. The argument in [I7, pp. 59-60] also includes the case m = n + 1 and it proves (1).

For (2) consider the function on U"(A)
1 =z N
o) = [ o o
L(A) 1p—1

This integral is absolutely convergent and defines a smooth function on U™(A). Furthermore

¢ € S(U™(A)). Then we apply (1) to get (2). O
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3.4.2 Fourier-Jacobi coefficients of the Siegel Eisenstein series

Now we compute the Fourier-Jacobi coefficients of the Siegel Eisenstein series

FI%(g1, E(f, s)) = /V vy E )7, 61

Let x1 be the character associated to ¢ and @ defined similarly as in (3.1.1]).

—_~—

Proposition 3.4.4. For ¢ € S§y(G1(A)) we have

FI%(g1, E(f,5)= >, Ry, f.s,9)

veP1(k)\ G1(k)

where

Rl fos0) = [ flanvwn ih)olon, )60,
V(4)

Gilh)

Pi(A)

absolutely convergent for Res > —(n—3)/2 and can be analytically continued to the domain

is a holomorphic section of Ind X1,8) for Res >> 0. Furthermore R(q1, f,s,®) is

Res > —(n—2)/2.
Proof. This was proved in [9, Theorem 3.2 and Theorem 3.3]. O
Now we will relate R(g1, fs,$,®) to ¥(g1, P, ¢). First we need a lemma.

Lemma 3.4.5. Let n =1 and S € k*. Assume m > 5 or (m,r) = (4,0), (4,1), (3,0) or

(2,0). Letw= (2 §) and so =% — 1. Then

1 =z
/ folw )05 (2)dz (3.4.3)
A 0 1

can be meromorphically continued to the whole s-plane and is holomorphic at s = sg. Its
value at s = sy is 0 if Q does not represent S. If Q = (S Ql) then its value at s = sq is

equal to the absolutely convergent integral

1
K / d(h! Ydh
Hi(A)\ H(A) 0
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where k = 2 for (m,r) = (2,0) and K = 1 otherwise.

Proof. The cases excluded are those where the Eisenstein series has a pole at s = sy or when
the theta integral is not absolutely convergent. Then (3.4.3)) is the S-th Fourier coefficient
of E(g,s, f) and

1
/ o(ht Ydh
Hi(A)\ H(A) 0

is the S-th Fourier coefficient of I(g, s). Thus the lemma follows from the known Siegel-Weil

formula for n = 1. Please see [10] for details. O

Proposition 3.4.6. Assume m =n+1. Also assume that m > 5 or (m,r) = (4,0), (4,1),
(3,0) or (2,0). Let ¢ € So(L(A)) and fo(s) be a holomorphic section of I(x,s) associated
to ® € S(U™(A)). If Q does not represent S then R(g1, fo,s,¢) =0. If

O
I

@1

then

FJ?(g1; E(s, f3))]s=0 = / E(g1, fo(wom),¢)(s))dh.

Hy(A)\ H(A)
Proof. First we simplify R(g1, fs,s,¢). We will suppress the subscript ®. Suppose v =
v(z,0,0)v(0,y,2). Then R(¢1, f, s, ¢) is equal to

/ f wnv(o Y,z )wn 191, S ) (wn 191)¢(9€)¢S(z+<$7y>)dv

/ / f(wnv(0,y, 2)wn—191, s)w(g1) () Ys((—x, t))¥s (2 + (z,y))dtdv.

Integration against x vanishes unless y = ¢t. Thus we continue

— / / F(wn(0, y, 2)wn 191, $)0(g0)B(9) 05 (2)dyd-=.
AJL)
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Embed Sp(2) into G = Sp(2n) by

go = =
c d c d

and denote this embedding by ¢. Also denote the lift Sp(2) — Sp(2n) by ¢. Then as a

—_—~—

function of gg € Sp(2),

f(b(go)wnq

is a weak SW section associated to

0 vy

ty On—l

wn—191))®(u,0),

a Schwartz function in S(U(A)). Then by lemma if @ does not represent S then

R(g1,f,0,0)=0. If Q = (S Ql) then by LemmamR(gl, f,0,¢) is equal to
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Thus we find
R(g1, f,0,¢) = / w(g1)¥(0,w(h)®, ¢)dh.

Hi(A)\ H(A)
The calculation relies on the Siegel-Weil formula in the case n=1and m—r > 2 orr =0
arbitrary. Thus we have to exclude certain cases where the Eisenstein series may have a

pole at sop = (m — 2)/2. O

Remark 3.4.7. The cases not covered above are (m,r) = (4,2), (3,1) and (2,1). The
anisotropic cases and the m even cases of the Siegel-Weil formula were dealt with in [I7].

Thus we cannot go down only when we reach the (m,r) = (3,1) case.

3.5 Some Representation Theory

Now we want to study irreducible submodules of the induced representations and show
that it is nonsingular in the sense of Howe[7]. In Section [3.6| we will interpret the difference
A(g,®) = E(g, s, fo)|s=0—2I(g, ) as an element in an irreducible nonsingular submodules.
This forces the B-th Fourier coefficients of A to vanish if B is not of full rank.

Fix v a finite place of k and suppress it from notation. Thus k is a nonarchimedean
local field for the present. We consider the various groups over k. Let x be a quasicharacter
of P trivial on N and form the normalised induced representation I(y) = Indg(x). Define

maximal parabolic subgroups of GL,:

a x

Qr = a € GL,_,,be GL,
0 b

Here r is not related to the Witt index of Q.

Lemma 3.5.1. The Jacquet module of I(x)n has an M -stable filtration
IXn=I">I'">--.o1" > =0

with successive quotients

Z"(x) =1"/T""" = Indgvf”(ir)
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where &, is the quasicharacter of Q, given by

a n —T T
& <l =x||m (| | Idetal ™2 [det o] 5
0 b 1
Proof. We follow the proof in [18]. Choose double coset decomposition representatives w,

for P\ G/P: for 0 < r < n, let

Then the relative Bruhat decomposition holds G = szoﬁwjlg. Let J° = I(x) and for
1<r<n+1,set J = {f € Jo‘f =0 on Igwr,llg}. Alternatively set J"! = 0 and

J' = {f € I(x)[supp(f) C H;‘:Tﬁwj]g}. Also define

N,=4qn a € Sym, (k)

We check that we have a ﬁ—intertwining map

JT Indgfn (&),

D — {\II s (m(a), () — @(an(m(a),())dn} .

N,

Obviously the map factors through J"+! if the above is well-defined. Notice that the
properties of Rao’s 2-cocycle[24, Theorem 5.3] implies that wyn(m,{) = (m’,Q)w,n’ for
some other elements m’ € M and n’ € N. Standard computation then shows that ¥ is in
the space of Indgu?” (&).

Gustafson checked in Sp,, case that the integral converges and that the map is surjective

and that the kernel of the map J"/J™ ! — Indgif" & is J7/J"T(N). By exactness of
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Jacquet functor we get an M-module isomorphism of Jf,/ J]T\’,Jr1 with the space Indng” &

Setting I" = J} for each r finishes the proof. O
We are interested in the case where x(m(a), () is the one in (3.3.1)).

Lemma 3.5.2. Suppose that m C I(x) is a G-submodule. Then

dim Hom (7, I(x)) < 2.

In particular, I(x) has at most two irreducible submodules.

Proof. The centre Z of (ifn consists of elements of the form

(aln, ().

Also note that we can view y as a character on GAITn Given w

Homg (, I(x)) = Homgg (m, x| |"F1/2).

Now we consider the generalized eigenspaces of my and of I(x)x with respect to the action

of Z , where the eigencharacter of interest is

plaly, ¢) = x(aln, C)‘a|n(n+1)/2‘
On the other hand the central characters of the successive quotients Z,(x) of I(x)n are

aIn—r n2+n72n'r72r
2

(aln, () = X ¢ | lal
al,

If » = 0 then one of these coincides with u. If » = n and since x(a™, () = x(a™", () we get

one more solution. Thus we get the bound

dim Hom (7, I(x)) < 2.
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Let R, (U) denote the image of the map

SU") = 1(x)

® — w(g)P(0).

This map induces an isomorphism S(U™) g = R, (U) by [22]. Let U’ be the quadratic space

with the same dimension and determinant with U but with opposition Hasse invariant.

Lemma 3.5.3. The G-modules R,(U) and R,(U’) are irreducible. Furthermore I(x) =
R,(U) ® R,(U"),

Proof. We have an intertwining operator

M :1I(x) = I(x)

frs (g /N f(wnng)dn).

Thus I(x) is unitarizable and hence completely reducible. Also by [16, Prop. 3.4] we
know that R, (U) and R, (U’) are inequivalent and by [16, Lemmas 3.5 and 3.6] it cannot

happen that one is contained in the other. These combined with Lemma force I(x) =

O

R,(U)® R,(U") with R,,(U) and R, (U’) irreducible.

Lemma 3.5.4. Assume m = n+ 1. Then R, (U) is a nonsingular representation of G in

the sense of Howe[7].

Proof. This follows from [16, Prop 3.2(ii)]. O

3.6 Proof of Siegel-Weil Formula

Combining the results above we are ready to show the Siegel-Weil formula. Note the
assumption that m = n + 1. We will focus on the cases where metaplectic double cover of
Sp(2n) must be considered so in the proofs we only deal with the cases where m is odd.

For the cases where m is even please refer to [I7]. Set A(g,®) = E(g, s, fo)|s=0 — 2I(g, D).
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Proposition 3.6.1. Assume m >3 or m =2 and V anisotropic. Then for B € Sym,, (k)

with rank n, the Fourier coefficients Ag = 0.

Proof. Without loss of generality suppose B = (S 5) for some S € k£* and some nonsingular
B € Sym,,_; (k). First we prove the anisotropic case. The base case m = 2 and n = 1 was
proved in [23, Chapter 4]. Now for m = n + 1, if @ does not represent S then by Prop.
and Prop. [3.:4.6] we obviously have Ap = 0. If Q represents S then we can just assume
that Q = (S Or ) Note that ) is still anistropic. Again by Prop. |3.4.2[ and Prop. [3.4.6
and the induction hypothesis we conclude that Ap=0.

Secondly we assume ) to be isotropic and m > 4, so ) represents S. We can just

assume that Q) = (S O )

From Sectionwe get by Prop. [3.4.2/and Prop. [3.4.6|and the m even case FJg(A) =0

for all ¢ € S(L(A)) if the rank of § is n» — 1. Then by Lemma Ap vanishes for
B € Sym" (k) such that det B # 0.

Finally assume that @ is isotropic and m = 3. By the expression for Fp(g, s, fo) in
Remark 4.1 of [23] we know that Ep(g,s, fo) is analytic at s = 0. Thus Prop 4.2 of [23]
holds: Egp(g,0, fo) = clp(g, ) where ¢ does not depend on ® or B. Now we consider
objects in dimension m = 4 and n = 3. Here Ep(g,0, fo) = 2Ip(g, ?). By Prop. and
Prop. and the independence of ¢ on ® we conclude that ¢ = 2 and this finishes the

proof of the lemma. O

Remark 3.6.2. For the split binary case please refer to [I7] and note that the Eisenstein
series vanishes at 0, so the Siegel-Weil formula takes a different form.
In the above proof we the argument dealing with the case (m,r) = (3,1) can also be

used to prove other cases. We use two methods for the record.

Proof of Theorem |3.1.1. Fix a finite place v of k and fix for each place w not equal to v a
®Y € Sy(U™(A)). Consider the map A, which sends ®, € So(U?) to A(g, Py @ (Quze®Y))-
By invariant distribution theorem R, (U,) = S(U;')n,. Thus A, is a G,-intertwining oper-
ator

S\U;)— A
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which actually factors through R, (U,). As R,(U,) is nonsingular in the sense of [7] by
Lemma take f € S(Sym"(k,)) such that its Fourier transform is supported on non-

singular symmetric matrices. Then for all g € G(A) with g, = 1 and all B € Sym,, (k) we

have
(ol ). A /S o /S o A gm0 ex(0) e
:/ / A(®)(nn(c)g)w(— tr(Bb))dcdb
Sym,, (k) \ Sym,, ( n(kv

/ / F()A(®)(ng)y(—tr(B(b — c)))dedb
m,, (k) \ Sym,, (A) JSym,, (kv)

= f(=B)A(®)5(9)-

The above is always 0, since f(B) = 0 if tk B < n and A(®)p = 0 if kB = n. Thus
p(f)A(®) =0 as G(k) ], ., Gw is dense in G(A). Since f does not act by zero and R, (Us)

is irreducible we find that in fact A(®) = 0 and this concludes the proof. O

3.7 Inner Product Formula

We will apply Theorem to show a case of Rallis Inner Product formula via the doubling
method. We will also deduce the location of poles of Langlands L-function from information

on the theta lifting.

~——

Let G2 denote the symplectic group of rank 2n, P» its Siegel parabolic and G2(A) the
metaplectic group. Let H = O(U, Q) with (U, Q) a quadratic space of dimension 2n + 1.

—_~—

Let 7 be a genuine irreducible cuspidal automorphic representation of G(A). For f € m and

® € S(U™(A)) define

O(h; f.®) = / oo T00 0

G(k)\ G(A)
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Consider the mapping

—~—

to: G(A) X G(A) — Ga(A)

al bl
as b
((91,¢1)s (92, C2)) = ( ,G162)
C1 d1
C2 d2
if g; = (Zz ZZ) For g € G set
(1 1,
g = g
-1, -1,

to

al b1

az —bo

With this we find O(c(g1, g2), h; ®) = O(g1, h; ®1)O(ga, h; B2) if we set & = &y @ Py for

®;, € S(U™(A)). Suppose the inner product

(©(f1,21), O(f2, P2))

=/ / _ _ fi1(91)©(g1, h; ®1) f2(g2)O (g2, h; P2)dg1dgadh
H(k)\ H(A) J(G(k)xG(k) \(G(A)xG(A))
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is absolutely convergent. Then it is equal to

/ _ __ filg1) f2(g2) (/ O(g1, h; ®1)0(g2, h; %)dh) dg1dgo
(G(k)xG(k)\(G(A)xG(A)) H(k)\ H(A)

:/ ___ filgr) fa(g2) (/ 9(b(91,92),h;‘1’)> dg1dgo
(G(k)xG (k) \(G(A)xG(A)) H(k)\ H(A)

/ AR ((g1, g2): ®)dgidgs.
(G(k)xG(k)\(G(A)xG(A))

Thus we define the regularized inner product by

(O(f1,®1), O(f2, P2))rREC

=/ _— __ filg1) f2(g2)IrEG (L(91, 92); @)dgrdge.  (3.7.1)
(G(k)xG (k) \(G(A)xG(A))

We could apply the Siegle-Weil formula now, but then we would not be able to use
the basic identity in [20] directly. Thus we will follow Li[I9] to continue the computation.
Now consider G to be the group of isometry of the 2n-dimensional space V' with symplectic
form (, ) and suppose V = X & Y with X and Y maximal isotropic subspaces. Then
the Weil representation w considered up till now is in fact realised on S(U ® X (A)). Let
Vo =V @V be endowed with the split form (, )—(, ). The space U ® V5 has two complete
polarizations U Vo = (U® (X @ X))o U (Y@Y))and U Ve = (U V)@ (UeVy),

where V¢ = {(v,v)|v € V} and V; = {(v, —v)|v € V'}. There is an isometry

§:S((U® (X & X))(A) = S(U Vy)(A))

—~—

intertwining the action of Ga(A). We have as in [19] Eq. (13)]
(5((131 ®@)(0) = <(I)1, (I)Q>.
Then (3.7.1) is equal to

/ _ __ filg1) fo(g2)IrEG(L(g1, 92); 6P)dg1dgs.
(G(k)xG (k) \(G(A)xG(A))



71

Note here the theta function is associated to the Weil representation realised on S(U ®

Va)(A)). Now we apply the regularized Siegel-Weil formula and get

21/ _— __ filg1) f2(92)E(e(91, 92), S, F5a)|s=0dg1dga
(G(R)xG (k) \(G(A)xG(A))

where to avoid conflict of notation we use Fs¢ to denote the Siegel-Weil section associated
to 6.

Set the zeta function to be

Z(f, fors, F) = 271 / R RIE((g ), 5, F)dgidgs  (3.7.2)
(G(k)xG(k)\(G(A)xG(A))

and we will deduce some of its properties.
By the basic identity in [20] generalized to the metaplectic case and by [19, Eq. (25)]
Z(f1, f2, s, F) is equal to

1
2 /5@ Flu(g,1),5) /G s (020 PG

\G(A)

_ g1 /N F(i(g,1),)-(x(9) f1, f2)dg

G(A)

:/ F(u(g,1), s)(m(9) f1, f2)dg.
G(A)

The last equation holds since we are dealing with genuine representations.
Suppose F' and f; are factorizable. Then the above factorizes into a product of local

zeta integrals

Z(fl,vaflv,saFv):/ Fv(b(gva1)73)<7T’U(gv)f1,v>f2,v>dgv-

Gy

Let S be a finite set of places of k£ containing all the archimedean places, even places,
outside which 7, is an unramified principal series representation, f; spherical and normal-
ized, F' normalized spherical Siegel-Weil section and ¢, unramified. Notice m, ® x, can be

viewed as a representation of G, rather than évv Then by [19, Prop. 4.6] the local integral
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Z(fiv, fo, S, Fy) is equal to
L(s+ %, o @ Xv)

dGQ,v (5)

where L(s + %, Ty ® Xy) 18 the Langlands L-function associated to m ® x and

n

Jo2(9) = G5 + ) [T 25 + 20
=1

Note here we normalize the Haar measure on G, so that K¢, has volume 1.

Proposition 3.7.1. The poles of L°(s,7®X) in Re(s) > 1/2 are simple and are contained
in the set

35

5757... ’n+§}

{1,
Proof. By [17, Prop. 7.2.1] we deduce that the poles of L°(s + %,TF ® x) are contained in
the set of poles of ng (s)E(s,t(g1,92), F'). The poles of the Eisenstein series in Re(s) > 0

are simple and are contained in {1,2,...,n}, c.f. [8, Page 216]. From this we get the

proposition. O

Our result combined with that of Ichino’s[8] gives an analogue of Kudla and Rallis’s [17,

Thm. 7.2.5]. Let mg = 4n + 2 — m be the dimension of the complementary space Uy of U.

Theorem 3.7.2. 1. The poles of L°(s,m ® x) in the half plane Res > 1/2 are simple

and are contained in the set

2. If dn+2 > m > 2n+ 1 then suppose L° (s, 7 ®@x) has a pole at s = n+1—(mg/2). If
m = 2n + 1 then suppose L%(s,m ® x) does not vanish at s =n+ 1 — (mgy/2) = 1/2.
Then there exists a quadratic space Uy over k with dimension mg and xy, = X such
that Oy, (m) # 0 where O, () denotes the space of automorphic forms O(f, ®) on

Ou,(A) for f € m and ® € S(Up(A)™).

Proof. Consider the residue of L%(s,m ® x) at sq + % with so € {1,2,...,n}. Then it

vanishes if the residue of Z(f1, fa, s, Fss) vanishes at sg. Note that for some choice of
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Schwartz function ®, F' is the normalized spherical standard Siegel-Weil section. We apply

the Siegel-Weil formula of Ichino’s[8] and ours and get

Ress—sy Z(f1, f2,5, F5a) =/ _— __ filgr) fa(92)IrEG(e(91, 92), P)dgi1dga
(G(R)xG (k) \(G(A)xG(A))

or

Z(f1, f2,0, Fsa) =/ _— __ fil¢) f2(92) Irec (¢(g1, g2), ®)dg1dge
(G(k)xG (k) \(G(A)xG(A))

which is exactly the regularized pairing of theta liftings ©(f1, ®1) and ©(f2, ®2). Then if
the residue of L%(s,m ® x) at so + & does not vanish or L°(s,7 ® x) does not vanish at 3
then the space of theta lifting does not vanish and we prove 2).

On the other hand the space of theta lifting vanishes if mo < n by [I7, Lemma 7.2.6].

n+2
“5= and we prove

This means so > (n + 1)/2, so L¥(s,7 ® x) can only have poles for s <

1). O
Finally we set s to 0 in the zeta function and get the Rallis inner product formula:

Theorem 3.7.3. Suppose m = 2n+ 1. Then

L33, m®x)

(O(f1,21), O(f2, 2))rEC = dz, (0)

(m(Es) f1, f2)

where

Es(g) = (ws(g)®1,s, Pa.s)-
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