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Abstract

F -virtual Abelian Varieties of GL2-type

and

Rallis Inner Product Formula

Chenyan Wu

This thesis consists of two topics. First we study F -virtual Abelian varieties of

GL2-type where F is a number field. We show the relation between these Abelian

varieties and those defined over F . We compare their `-adic representations and study

the modularity of F -virtual Abelian varieties of GL2-type. Then we construct their

moduli spaces and in the case where the moduli space is a surface we give criteria

when it is of general type. We also give two examples of surfaces that are rational

and one that is neither rational nor of general type.

Second we prove a crucial case of Siegel-Weil formula for orthogonal groups and

metaplectic groups. With this we can compute the pairing of theta functions and

show in this case that it is related to the central value of Langlands L-function. This

new case of Rallis inner product formula enables us to relate nonvanishing of L-value

to the nonvanishing of theta lifting.
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Chapter 1

Introduction

This thesis is made up of two topics. In Chapter 2 we study F -virtual Abelian varieties of

GL2-type where F is a number field. Virtual Abelian variety is a generalization of Q-curve

first studied by Gross[4] in the the CM case. The concept of Q-curve was generalized by

Ribet[25][26] to include non-CM elliptic curves and Abelian varieties of GL2-type. Ribet[26]

showed that every elliptic curve coming from a quotient of J1(N) is a Q-curve and that Serre

conjecture implies that the converse holds, namely that all Q-curves are modular. Then

Ellenberg-Skinner[2] showed that all Q-curves are modular under some local condition at 3.

Later Serre conjecture was proved by Khare and Wintenberger[12][13], implying by Ribet’s

work[26] that all Q-virtual Abelian varieties of GL2-type are modular. The Heegner points

on J1(N) then can be used to construct rational points on Q-virtual Abelian varieties of

GL2-type and this gives supporting evidence to the BSD conjecture. We would like to

investigate if general F -virtual Abelian varieties of GL2-type are modular. In Chapter 2.2

we will show some properties of the associated `-adic representations.

Elkies studied the F -virtual elliptic curves in [1] and produced concrete examples of

moduli space of virtual elliptic curves and Quer[21] computed some equations for Q-virtual

elliptic curves (i.e., Q-curves) based on the parametrization by Elkies[1] and González-

Lario[3]. However little is known for F 6= Q and for Abelian varieties of higher dimension.

This work attempts to produce concrete examples of F -virtual Abelian varieties of GL2-type

in higher dimensions. We will describe the moduli spaces which turn out to be generalized

Atkin-Lehner quotients of Shimura varieties and in the cases where the moduli spaces are
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surfaces, classify them birationally.

An Abelian variety A is said to be of GL2(E)-type if its endomorphism algebra contains

the number field E of degree over Q equal to the dimension of A. This leads to Galois

representations on Tate modules of rank 2 over E ⊗ Q` and hence the nomenclature GL2.

Let F be a number field and let A be an Abelian variety defined over F . We say A is an

F -virtual Abelian variety if for all σ ∈ Gal(F/F ) there exists an isogeny σA to A over F .

We focus on non-CM simple Abelian varieties. We can actually attach Galois repre-

sentations of Gal(F/F ) to F -virtual Abelian varieties (Chapter 2.2). Since simple Abelian

variety B over F of GL2-type factors over F isotypically into a power of simple F -virtual

Abelian variety of GL2-type, the Galois representation associated to F -virtual Abelian vari-

ety of GL2-type is essentially that associated to Abelian variety over F of GL2-type (Prop.

2.2.1).

For F -virtual elliptic curves Elkies[1] constructed `-local trees where vertices are iso-

morphism classes of F -virtual elliptic curves and edges represent cyclic isogenies. Note

that the endomorphism algebra for F -virtual elliptic curves is Q. For Abelian varieties of

GL2(E)-type the field E does not necessarily have class number 1. The same construction

would produce loops in the λ-local graph for λ a prime of E. We work around this problem

by introducing certain equivalence relation on the category of Abelian varieties. Essentially

we are modding out Pic(OE) by making the Serre tensor A⊗A equivalent to A where A is

a (fractional) ideal of E. Then the λ-local graphs are still trees. Applying graph theory we

get

Proposition 1.0.1. [Prop. 2.3.14] For an F -virtual Abelian variety A of GL2(E)-type there

exists an isogenous Abelian variety A′ and a minimal level structure n ⊂ OE such that its

Galois orbit is contained in the generalized n-Atkin-Lehner orbit.

Remark 1.0.2. Note that the Atkin-Lehner operators are no longer involutions. Because of

the equivalence relation we have introduced, we need to extend the group W of Atkin-Lehner

operators to incorporate the action of Pic(OE). Thus the generalized group of Atkin-Lehner

operators is W n Pic(OE). Please refer to Chapter 2.3. Here n is an isogeny invariant.

Let S+
E,n denote the quotient by the group of generalized n-Atkin-Lehner operators on
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the Shimura variety parametrizing Abelian varieties with endomorphism algebra E and

with level n. With the above theorem we deduce

Theorem 1.0.3. [Thm. 2.3.15] Every F -point on S+
E,n gives F -virtual Abelian varieties of

GL2(E)-type. Conversely for an F -virtual Abelian variety A of GL2(E)-type there exists

an isogenous Abelian variety A′ which corresponds to an F -point on some S+
E,n where n is

determined as in the above proposition.

There is also an analogous result for F -virtual Abelian varieties with endomorphism

algebra D which is a quaternion algebra containing E.

Theorem 1.0.4. [Thm. 2.3.20] Every F -point on the Shimura variety S+
D,n gives an F -

virtual Abelian variety of GL2(E)-type. Conversely for any F -virtual Abelian variety A of

GL2(E)-type s.t. End0A = D there is an isogenous Abelian variety A′ of GL2(E)-type which

corresponds to an F -rational point on S+
D,n, a quotient of Shimura variety of PEL-type,.

In [1] Elkies produced concrete examples of moduli space of Q-elliptic curves and from

that Quer[21] computed some equations for Q-elliptic curves. In an attempt to give examples

of F -virtual Abelian varieties we study the cases where E is a real quadratic field of narrow

class number 1. Then the quotient of Shimura variety is a surface. Following Van der Geer’s

method in [28] we study the desingularity of S+
E,n, estimate the Chern numbers and show

in Thm. 2.5.20 with explicit conditions which ones are surfaces of general type:

Theorem 1.0.5. [Thm. 2.5.20] The quotient of the Shimura variety is of general type if

the discriminant D of E or N(n) is sufficiently large.

Then careful examination of configuration of (−1)-curves and (−2)-curves enables us to

show in Chapter 2.5.4:

Example 1.0.6. 1. For E = Q(
√

5) and n = (2), the moduli space is a rational surface;

2. For E = Q(
√

13) and n = (4 +
√

13), the moduli space is a rational surface;

3. For E = Q(
√

13) and n = (2), the moduli space is neither rational nor of general type.

In Chapter 3 we study the Rallis inner product formula. As it relies on a new case of

regularized Siegel-Weil formula, we deduce the latter first.
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Let k be a number field. Let V be a vector space of dimension m over k equipped with

the quadratic form Q. Let H = O(V ) and G = Sp(2n). Consider the dual reductive pair

H(A) and G̃(A) which is a metaplectic double cover of G(A). Form the Eisenstein series

E(g, s, fφ) and the theta series θ(g, h, φ) for g ∈ G̃(A) and h ∈ H(A) and φ ∈ S0(V n(A)).

Here fφ is the Siegel-Weil section associated to φ. Let IREG denote the regularized theta

integral, c.f. Chapter 3.2. Please see Chapter 3.1 for further notations. We prove a new

case of regularized Siegel-Weil formula under some choice of Haar measures:

Theorem 1.0.7. [Thm. 3.1.1] Let m = n + 1 and exclude the split binary case. We have

for all φ ∈ S0(V n(A))

E(s, g, fφ)|s=0 = κIREG(g, φ)

where κ = 2.

Kudla and Rallis[17] introduced the regularized theta integral by using some differential

operator at a real place. Then they showed for m even the leading term of the Eisenstein

series is a scalar multiple of the regularized theta integral which involves the complementary

space of V . Ichino[8] generalized Kudla and Rallis’s regularization process by using Hecke

operator and showed for m > n+1 with no parity restriction on m that the above statement

holds.

Our method closely follows that of Kudla and Rallis[17] and Ichino’s[8]. However some

representation results were lacking in the metaplectic case. In Chapter 3.5 we prove the

representations Rn(V ) are irreducible and nonsingular in the sense of Howe[7] and thus can

produce an operator to kill the singular Fourier coefficients of the automorphic forms in-

volved. Then we use Fourier-Jacobi coefficients (c.f. Chapter 3.4.1) to compare nonsingular

Fourier coefficients of the Eisenstein series and the regularized theta integral inductively.

With this case of Siegel-Weil formula proved we are able to extend the Rallis inner

product formula to the following case. Now let V be a quadratic space of dimension m =

2n+ 1. Let π be a genuine irreducible cuspidal representation of G̃(A) and let Θ(h, f, φ) =∫
G(k) \ G̃(A)

f(g)θ(g, h, φ)dg. Then we have the regularized Rallis inner product formula:
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Theorem 1.0.8. [Thm. 3.7.3] Suppose m = 2n+ 1. Then

〈Θ(f1,Φ1),Θ(f2,Φ2)〉REG =
LS(1

2 , π ⊗ χ)

d̃SG2
(0)

· 〈π(ΞS)f1, f2〉

where

ΞS(g) = 〈ωS(g)Φ1,S ,Φ2,S〉.

Here d̃SG2
(s) is a product of some local zeta functions away from a finite set of places

S. The local zeta integrals were computed by Li[19] in the unramified case. For m even

this is the analogue of Kudla and Rallis[17, Thm. 8.7]. Combining our results with those

of Ichino’s[8], we get information on poles of L-function and the nonvanishing of theta lifts:

Theorem 1.0.9. [Thm. 3.7.2]

1. The poles of LS(s, π ⊗ χ) in the half plane Re s > 1/2 are simple and are contained

in the set {
1,

3

2
,
5

2
, . . . ,

[
n+ 1

2

]
+

1

2

}
.

2. Set m0 = 4n + 2 −m. If 4n + 2 > m > 2n + 1 then suppose LS(s, π ⊗ χ) has a pole

at s = n + 1 − (m0/2). If m = 2n + 1 then suppose LS(s, π ⊗ χ) does not vanish

at s = n + 1 − (m0/2) = 1/2. Then there exists a quadratic space U0 over k with

dimension m0 and χU0 = χ such that ΘU0(π) 6= 0 where ΘU0(π) denotes the space of

automorphic forms Θ(f,Φ) on O(U0)(A) for f ∈ π and Φ ∈ S(U0(A)n).
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Chapter 2

F -virtual Abelian Varieties of

GL2-type

Let F be a number field. This chapter studies F -virtual Abelian varieties of GL2-type.

These Abelian varieties themselves are not necessarily defined over F but their isogeny

classes are defined over F . They are generalization of Abelian varieties of GL2-type defined

over F which are in turn generalization of elliptic curves. The Galois representations of

Gal(F/F ) associated to F -virtual Abelian varieties of GL2-type are projective represen-

tations of dimension 2. Thus it is expected many techniques for GL2-type can also be

applied, such as modularity results and Gross-Zagier formula. Furthermore the study of

virtual Abelian varieties of GL2-type can possibly furnish evidence for the BSD conjecture.

The simplest case of F -virtual Abelian varieties of GL2-type consists of Q-elliptic curves.

They were first studied by Gross[4] in the CM case and by Ribet[25][26] in the non-CM

case. Also Ribet generalized the notion of Q-elliptic curves to Q-virtual Abelian varieties

of GL2-type. Elkies studied the quotients of modular curves X∗(N) that parametrize Q-

elliptic curves and computed some explicit equations of these quotients[1]. Then González

and Lario[3] described those X∗(N) with genus zero or one. Based on the parametrization,

Quer[21] computed explicit equations of some Q-curves.

In this chapter first we study the `-adic representations associated to F -virtual Abelian

varieties of GL2-type. Then we determine the quotients of Shimura varieties that parametrize
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F -virtual Abelian varieties and classify them birationally in the case where the quotients

are surfaces. It turns out that almost all of them are of general type. We also give examples

of surfaces that are rational.

2.1 Abelian Varieties of GL2-type

We start with the definition and some properties of the main object of this chapter.

Definition 2.1.1. Let A be an Abelian variety over some number field F and E a number

field. Let θ : E ↪→ End0A = EndA⊗Z Q be an algebra embedding. Then the pair (A, θ) is

said to be of GL2(E)-type if [E : Q] = dimA.

Remark 2.1.2. We will drop θ if there is no confusion. It is well-known that the Tate module

V`(A) = T`(A)⊗Z`Q` is a free E⊗QQ`-module of rank 2. The action of Gal(F/F ) on V`(A)

defines a representation with values in GL2(E⊗QQ`) and thus the nomenclature GL2-type.

We can also define GLn(E)-type if we have θ : E ↪→ End0(A) with [E : Q] = 2 dimA/n.

Of course, we require n|2 dimA.

In the following when we say a field acting on an Abelian variety we mean the action

up to isogeny.

Definition 2.1.3. An Abelian variety A over some number field F of dimension g is said

to have sufficiently many complex multiplication (CM) if End0(AF ), the endomorphism

algebra of AF contains a commutative Q-algebra of degree 2g. Also A over F of dimension

g is said to have sufficiently many complex multiplication (CM) over F if End0(A) contains

a commutative Q-algebra of degree 2g.

Proposition 2.1.4. Let A be an Abelian variety defined over a totally real field F . Then

A does not have sufficiently many complex multiplication (CM) over F .

Proof. Suppose the contrary. Fix an embedding of F into Q. Suppose E ↪→ End0A with

E a CM-algebra and [E : Q] = 2 dimA. Consider the CM-type coming from the action of

E on LieAQ. Then the reflex field E′ of E is Q(tr Φ) and is a CM-field. Since E actually

acts on LieA/F , we find tr Φ ⊂ F . Thus E′ = Q(tr Φ) is contained in the totally real field

F and we get a contradiction.
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Remark 2.1.5. The proof, in particular, shows that if a field is embedded in End0(A) for an

Abelian variety A over a totally real field F , then it is at most of degree dimA.

2.1.1 Decompostion over F

Suppose that A is an Abelian variety of dimension g over some number field F of GL2(E)-

type. Fix an embedding F ↪→ Q. We consider the decomposition of AQ. Since the embed-

ding θ of a number field E into endomorphism algebra is given as part of the data, when

we consider isogenies between Abelian varieties of GL2-type we require compatibility with

the given embeddings. More precisely we define:

Definition 2.1.6. Let θi be an embedding of a Q-algebra D into the endomorphism algebra

of an Abelian variety Ai/F , for i = 1 or 2. Then an isogeny µ between A1 and A2 is said

to be D-equivariant or D-linear if µ ◦ θ2(a) = θ1(a) ◦ µ, for all a ∈ D.

To describe the factors of AQ we define F -virtuality:

Definition 2.1.7. Let A be an Abelian variety defined over Q and suppose θ : D
∼−→

End0(A). Let F be a number field that embeds into Q. Then A is said to be F -virtual if

(σA, σθ) is D-equivariantly isogenous to (A, θ) for all σ ∈ Gal(Q/F ).

Remark 2.1.8. Note that here we assumed that θ is an isomorphism.

This definition makes it precise what it means for an Abelian variety to have isogenous

class defined over F .

If dimA = 1 and F = Q, A is what is known as a Q-curve, c.f. [4] and [26].

We analyze the endomorphism algebra of AQ. Notice the number field E also embeds

into End0(AQ) via End0A ↪→ End0(AQ). Let C be the commutant of E in End0(AQ).

There are two possibilities: either E = C so that we are in the non-CM case or E ( C so

that we are in the CM case.

2.1.1.1 Case CM

We have E ( C, so [C : Q] = 2 dimA = 2g. Hence A is CM. A priori, AQ ∼
∏
Bni
i with

Bi’s pairwise nonisogenous simple Abelian varieties. Thus End0AQ
∼=
∏

Mni(Li) where
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Li = End0Bi. Then E embeds into
∏
Pi with Pi a maximal subfield of Mni(Li). Consider

projection to the i-th factor. We have E → Pi. Note that the identity element of E is

mapped to the identity element in
∏
Pi. Hence E → Pi is not the zero map and so it is

injective. Since [E : Q] = g, Pi has degree greater than or equal to g. On the other hand∑
[Pi : Q] = 2g. We are forced to have

E ↪→ P1

with [P1 : Q] = 2g or

E ↪→ P1 × P2

with P1
∼= P2

∼= E. Correspondingly we have either AQ ∼ Bn1
1 or AQ ∼ Bn1

1 ×B
n2
2 . In the

second case E must be a CM field.

Now we discuss what conditions on A make sure that AQ is isogenous to a power of a

simple Abelian variety. Fix an embedding of Q into C.

Proposition 2.1.9. Suppose either that the g embeddings of E into C coming from the

action of E on Lie(AC) exhaust all possible embeddings of E into C or that A is defined

over a totally real field F . Then AQ ∼ B
n for some simple Abelian variety B.

Proof. Suppose the contrary that A is not isogenous to a power of some simple Abelian

variety, i.e., AQ ∼ Bn1
1 ×B

n2
2 . Let S be the centre of End0AQ. Then S = L1 × L2 for two

number fields L1 and L2. Denote by ei the identity element of Li. Let Ai be the image of

A under ei or rather hei for some integer h such that hei ∈ EndAQ. Then A ∼ A1 × A2

and E acts on Ai. This gives rise to CM-types (E,Φi).

Suppose that the first part of the assumption holds; then Φ1 t Φ2 gives all possible

embeddings of E into C. Thus Φ1 = ιΦ2 where ι denote the complex conjugation of C.

Then Φ1 = Φ2ιE for the complex conjugation ιE of E. If we change the embedding of E

into End0A2 by ιE ∈ Gal(E/Q) then the action of E on A2 has also type Φ1. This means

that A2 ∼ A1 and we get a contradiction. Thus A decomposes over Q into a power of a

simple Abelian variety.

Now suppose that the second part of the assumption holds; then F is a totally real
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field. Thus the complex conjugate ιA is isomorphic to A. If ιA1
∼= A1 then A1 can be

defined over R. This is impossible by Prop. 2.1.4 since it is CM. Thus ιA1
∼= A2. Then

for some automorphism σ of E, we have ιΦ1σ = Φ2. Thus Φ1 and Φ2 are different by an

automorphism ιEσ of E. Again A1 ∼ A2, a contradiction.

Thus A decomposes over Q into a power of a simple Abelian variety.

2.1.1.2 Case Non-CM

In this case E = C. In particular the centre L of End0(AQ) is contained in E and hence is a

field. Thus End0(AQ)
θ←−
∼

Mn(D) for n some positive integer and D some division algebra.

Correspondingly AQ ∼ Bn with B some simple Abelian variety over Q and End0B ∼= D.

Let e = [L : Q] and d =
√

[D : L]. Then E is a maximal subfield of Mn(D). We know

that ed2|2gn and that g = [E : Q] = nde. This forces d|2. If d = 1, End0B ∼= L. If d = 2,

End0B ∼= D with D a quaternion algebra over L.

Since A is defined over F , we get for all σ ∈ Gal(Q/F ),

σBn ∼ σAQ
∼= AQ ∼ B

n.

By the uniqueness of decomposition we find σB ∼ B, for all σ ∈ Gal(Q/F ). Furthermore

the canonical isomorphism σA ∼= A is L-equivariant, since the endomorphisms in θ(L) are

rational over F . Fix isogeny AQ → Bn. The actions of L on Bn and σBn are the pullbacks

of the actions of L on A and σA, so σBn ∼ Bn is L-equivariant. As the L-actions are just

diagonal actions, we have σBn ∼ B L-equivariantly.

Let P be a maximal subfield of D. Then B is an Abelian variety of GL2(L)-type for

d = 1 or GL2(P )-type for d = 2. Even though we are using different letters L, E and D,

they may refer to the same object. In this subsection all Abelian varieties are assumed to

be without CM and this assumption is implicit in the lemmas and the propositions.

First we record a result that follows from the discussion.

Proposition 2.1.10. The endomorphism algebra of an Abelian variety of GL2-type has one

of the following types: a matrix algebra over some number field or a matrix algebra over

some quaternion algebra.
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The following lemma shows that L-equivariance is as strong as D-equivariance.

Lemma 2.1.11. Let B/Q be an Abelian variety of GL2-type with θ : D
∼−→ End0(B). Let

L be the centre of D. Suppose σB is L-equivariantly isogenous to B for all σ ∈ Gal(Q/F ).

Then after modifying θ, we can make B into an F -virtual Abelian variety, i.e., there exist

D-equivariant isogenies σB → B for all σ ∈ Gal(Q/F ).

Proof. Choose L-equivariant isogenies µσ : σB → B. This means that µσ ◦ σφ = φ ◦ µσ for

φ ∈ L. Thus we have L-algebra isomorphisms:

D → D

φ 7→ µσ ◦ σφ ◦ µ−1
σ

By Skolem-Noether theorem there exists an element ψ ∈ D× s.t. µσ ◦σφ◦µ−1
σ = ψ◦φ◦ψ−1.

Let µ′σ = ψ−1 ◦ µσ. Then µ′σ gives a D-equivariant isogeny between σB and B.

Proposition 2.1.12. An Abelian variety A/F of GL2-type is Q-isogenous to a power of a

Q-simple Abelian variety B. Moreover B is an F -virtual Abelian variety of GL2-type.

Proof. This follows from the discussion above and the lemma.

2.1.2 F -virtual Abelian varieties and simple Abelian varieties over F

We consider the converse problem. Given a simple F -virtual Abelian variety B of GL2-type

we want to give an explicit construction of a simple Abelian variety A over F of GL2-type

such that B is a factor of A. We separate into two cases:

2.1.2.1 Case Non-CM

Theorem 2.1.13. Let A/Q be a simple abelian variety of GL2(E)-type. Suppose that σA

and A are E-equivariantly isogenous for all σ ∈ Gal(Q/F ). Then there exists an F -simple

Abelian variety B/F of GL2-type s.t. A is a factor of BQ.

Proof. By Lemma 2.1.11, the Abelian variety A is actually F -virtual. Find a model of A

over a number field K1 such that K1/F is Galois and all endomorphisms of A are defined
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over K1. We identify σA and A via the canonical isomorphism for σ ∈ Gal(Q/K1). Let D

denote the full endomorphism algebra of A. Choose D-equivariant Q-isogenies µσ : σA→ A

for representatives σ in Gal(Q/F )/Gal(Q/K1) ∼= Gal(K1/F ). The rest of the µσ’s for all

σ in Gal(Q/F ) are determined from these representatives and the canonical isomorphisms.

Now let K be a field extension of K1 such that K is Galois over F and that all µσ’s for σ

in Gal(K1/F ) are defined over K. Base change the model over K1 to K and still call this

model A. Instead of considering all σ ∈ Gal(Q/F ), we only need to consider σ-twists of A

for σ ∈ Gal(K/F ).

Define c(σ, τ) = µσ
σµτµ

−1
στ . In the quaternion algebra case, note that

c(σ, τ).φ = µσ
σµτµ

−1
στ .φ = µσ

σµτ
στφµ−1

στ = µσ
σφµτµ

−1
στ = φµσ

σµτµ
−1
στ

for φ ∈ D. Thus c has values in L×.

It is easy to check that c is a 2-cocycle on Gal(K/F ) with values in L×. By inflation

we consider the class of c in H2(Gal(Q/F ), L×). It can be shown that H2(Gal(Q/F ), L
×

)

with the Galois group acting trivially on L
×

is trivial by a theorem of Tate as quoted as

Theorem 6.3 in [26]. Hence there exists a locally constant function: α : Gal(Q/F ) → L
×

s.t. c(σ, τ) = α(σ)α(τ)
α(στ) . We will use α in the construction of an Abelian variety of GL2-type.

Let B = ResK/F A be the restriction of scalars of A from K to F . Then B is defined

over F . We let D ◦ µσ denote the set of isogenies {f ◦ µσ | ∀f ∈ D}. Then we have the

commutative diagram:

End0B
∼

� _

��

∏
σ Hom0(σA,A)

� _

��

∼ ∏
σD ◦ µσ

End0BK
∼ ∏

ρ,τ Hom0(τA, ρA)

where the right verticle arrow maps f : σA→ A to τf : τσA→ τA, for all τ and the products

are running over Gal(K/F ). The multiplication of the ring
∏
σD ◦ µσ can be described as

follows. Let φ, ψ ∈ D. Then (φ ◦ µσ).(ψ ◦ µτ ) = φ ◦ µσ ◦ σψ ◦ σµτ = φ ◦ ψ ◦ µσ ◦ σµτ =

φ◦ψ ◦ c(σ, τ)µστ since µσ is D-equivariant. Thus
∏
σD ◦µσ can be viewed as D[Gal(K/F )]

twisted by the cocycle c.
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Let the number field E embed into End0B via θ into the factor Hom0(A,A) of End0B.

Let End0
E B denote the commutant of E in End0B. Since the µσ’s are E-equivariant and

the commutant of E in D is E, End0
E B
∼=
∏
θ(E) ◦ µσ.

Let Lα(Eα resp.) denote the field L(E resp.) adjoined with values of α. Let Dα =

D ⊗L Lα. Take

ω :
∏
σ

D ◦ µσ → Dα

φ ◦ µσ 7→ φ⊗ α(σ).

Then ω is a D-algebra homomorphism. If we restrict ω to End0
E B we find ω|End0

E B
has

image Eα. Since End0B is a semisimple Q-algebra, we have End0B ∼= Dα ⊕ kerω. Being

the commutant of E in a semisimple algebra End0B, End0
E B is semisimple and therefore

we have End0
E B
∼= Eα⊕kerω|End0

E B
. Let π ∈ End0B be a projector to Dα. Let Bα be the

image of π. Then Bα has action up to isogeny exactly given by Dα.

Before finishing the proof, we need the following:

Lemma 2.1.14. Let R denote End0
E B. Then the Tate module V`(B) = V`(BK) is a free

R⊗Q`-module of rank 2.

Proof. Note BK ∼=
∏
σ
σA. Passing to Tate modules we have V`(BK) ∼= ⊕σV`(σA). We know

that V`(A) is a free E ⊗Q Q`-module of rank 2. Choose an E ⊗Q Q`-basis {e1, e2} of V`(A).

Then σ−1
µσ{e1, e2} gives a basis for the free E ⊗Q Q`-module V`(

σA) of rank 2, since µσ’s

are E-equivariant. Hence V`(BK) is freely generated over R by {e1, e2}.

Thus V`(Bα) is a free Eα⊗Q`-module of rank 2. Therefore [Eα : Q] = dimBα. Now we

consider 3 cases.

Case Dα = Eα. Then Bα is F -simple. We take B = Bα and A is a quotient of B over

Q.

Case Dα 6= Eα and Dα not split. Then Dα is a quaternion algebra over Lα. Then Bα

is F -simple. We take B = Bα and A is a quotient of B over Q.

Case Dα 6= Eα and Dα split. Then Dα
∼= M2(Lα). Bα is F -isogenous to B2 for some
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simple Abelian variety B and End0B ∼= Lα. We check the degree of the endomorphism

algebra: [Lα : Q] = 1
2 dimBα = dimB′. Thus A is a Q-quotient of a simple Abelian variety

B of GL2(Lα)-type.

We record a corollary to the proof of Thm. 2.1.13. Suppose µσ are given isogenies

from σA to A. Let c(σ, τ) = µσ
σµτµ

−1
στ be the associated 2-cocycle. Fix a choice of α that

trivializes c. Let Eα denote the field constructed from E by adjoining values of α.

Corollary 2.1.15. Let A be a simple F -virtual Abelian variety of GL2(E)-type. Then there

exists an Abelian variety Bα/F that has A as an F -factor, that has action by Eα and that

is either simple or isogenous to the square of an F -simple Abelian variety of GL2-type.

2.1.2.2 Case CM

Next we consider a CM simple Abelian variety A/Q. Suppose (A, θ) has type (E,Φ). Then

it is known from [27] that the isogeny class of (A, θ) is defined over E], the reflex field of

E, i.e., there exist E-equivariant isogenies µσ : σA→ A for all σ ∈ Gal(Q/E]).

Theorem 2.1.16. Let A be as above. Then there exists a simple Abelian variety A′ over a

totally real field F of GL2-type with A a Q-quotient.

Proof. Let F = E]+ be the maximal totally real subfield of E]. We will construct a simple

Abelian variety over F of GL2-type with A a Q-quotient. First we construct a simple CM

Abelian variety over F whose endomorphisms are all defined over F . We proceed as in the

proof of Theorem 2.1.13. Find a model of A over K, a number field Galois over E] such

that all endomorphisms of A is defined over K and that all the µσ’s are defined over K.

Let B = ResK/E] A. Also define c(σ, τ) = µσ
σµτµ

−1
στ . Then c has values in E× and we can

trivialize c by α : Gal(Q/E])→ E
×

. Again

End0B ∼=
∏

Hom0(σA,A) ∼=
∏

E ◦ µσ.

Similarly we find that End0B can be split into kerω⊕Eα where Eα is the field by adjoining

E with values of α and ω : End0B → Eα, µσ 7→ α(σ). Hence corresponding to the decompo-

sition of the endomorphism algebra we get an Abelian subvariety Bα of B . Consider V`(B)
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the Tate module of B. Similarly we find that V`(B) is a free
∏

(E ◦µσ)⊗Q`-module of rank

1. Hence V`(Bα) is a free Eα ⊗ Q`-module of rank 1. This shows that Bα has CM by Eα.

Then we set A′ = ResE]/F Bα. Note that A′ is F -simple. Otherwise A′ ∼ A1×A2 for some

Abelian varieties A1 and A2 defined over F , so A′
E]
∼ A1,E] × A2,E] . Yet A′

E]
∼= Bα × ιBα

where ι is the nontrivial element in Gal(E]/F ). Since Bα and ιBα are E]-simple, we find

A1,E] ∼ Bα or A2,E] ∼ Bα. However Proposition 2.1.4 says Bα cannot be descended to a

totally real field. We get a contradiction. Thus A′ is F -simple.

Now End0A′ ∼= Hom0(ιBα, Bα) × End0Bα as Q-vector spaces. As Eα ↪→ End0A′ we

find A′ is a simple Abelian variety over F of GL2(Eα)-type with Q-quotient A.

2.2 `-adic Representations

In this section F denotes a totally real field. Let A be an Abelian variety over F of GL2(E)-

type. Then the Tate module V`A is free of rank 2 over E ⊗Q`. Let GF denote the Galois

group Gal(Q/F ). The action of GF on V`A induces a homomorphism

ρ` : GF → GL2(E ⊗Q`).

For each prime λ of E lying above ` if we set VλA = V`A⊗E⊗Q` Eλ then the action of GF

defines a λ-adic reprensentation on VλA:

ρλ : GF → GL2(Eλ)

We can also associate Galois representations to an F -virtual Abelian variety. Let B be

an F -virtual Abelian variety of GL2(E)-type defined over Q. Define ρ′`(σ).P := µσ(σP ) for

P in V`B and σ in GF . This is not an action, since

ρ′`(σ)ρ′`(τ)P = µσ
σµτ

στP .

The obstruction is given by c(σ, τ) := µσ
σµτµ

−1
στ . This is the same c we constructed in the

proof of Thm. 2.1.13. We know that c is a 2-cocycle on GF with values in E×, in fact, in
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L×, if we let L denote the centre of the endomorphism algebra of B. Consider the class of

c in H2(GF , E
×

). As is shown by Tate, H2(GF , E
×

) = 0. Thus c can be trivialized:

c(σ, τ) =
α(σ)α(τ)

α(στ)

by some locally constant map α : GF → E
×

. Then set

ρ`(σ)P := α−1(σ)µσ
σP .

This gives an action of GF on V`B. We get a homomorphism

ρ` : GF → E
×

GL2(E ⊗Q`).

More precisely, ρ` actually factors through E×α GL2(E ⊗Q`) where Eα denote the subfield

of Q generated over E by the values of α. If we fix a choice of α then to simplify notation

we write E′ for Eα. Let λ′ be a prime of E′ lying above λ a prime of E which in turn lies

above `. Then the representation ρ` gives rise to:

ρλ′ : GF → E′
×
λ′ GL2(Eλ).

We can view ρλ′ as a representation of GF on Vλ ⊗Eλ E′λ′ .

Proposition 2.2.1. Let A be a simple F -virtual Abelian variety of GL2(E)-type. Fix a

choice of α and let A′/F denote the Abelian variety Bα as in Cor. 2.1.15. Then the field

E′ generated over E by the values of α acts up to isogeny on A′. Let λ′ be a prime of E′.

Associate the representations ρA,λ′ and ρA′,λ′ to A and A′ respectively. Then ρA,λ′ ∼= ρA′,λ′

as E′λ′ [GF ]-module.

Proof. Note that µσ’s correspond to α(σ)’s in the endomorphism algebra of A′. The propo-

sition follows from the definiton of the λ′-adic representations.

Because of this proposition we will focus on the Galois representations associated to

Abelian varieties defined over F . We record some properties of the λ-adic representations.
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Definition 2.2.2. Let E be a totally real field or CM field. A polarized Abelian variety of

GL2(E)-type is an Abelian variety of GL2(E)-type with a polarization that is compatible

with the canonical involution on E.

Remark 2.2.3. The canonical involution is just identity if E is totally real.

Proposition 2.2.4. If A is a polarized simple F -virtual Abelian variety of GL2(E)-type

then the associated Abelian variety A′/F can also be endowed with a polarization compatible

with E′.

Proof. Let L′ be the centre of the endomorphism algebra of A′. Then by construction E′

is actually the composite of L′ and E and hence is totally real or CM as L′ is totally real

by Prop. 2.2.12 and Prop. 2.2.14 (whose proofs depends solely on the analysis on polarized

Abelian varieties over F and do not depend on this proposition) and E either CM or totally

real.

Let A be a polarized Abelian variety over F of GL2(E)-type. Let V` denote V`A. Then

V` = ⊕λ|`Vλ corresponding to the decomposition of E ⊗Q` = ⊕Eλ where λ’s are primes of

E lying above `. We get the λ-adic representations ρλ of GF on Vλ. The set of ρλ’s for all

λ forms a family of strictly compatible system of E-rational representations[25].

Let δλ denote det ρλ and χ` the `-adic cyclotomic character.

Lemma 2.2.5. There exists a character of finite order ε : GF → E∗ such that δλ = εχ`.

Furthermore ε is unramified at primes which are primes of good reduction for A.

Remark 2.2.6. ε is trivial if E is totally real, as can be seen from Prop. 2.2.9.

Proof. Since the δλ’s arise from an Abelian variety, they are of the Hodge-Tate type. They

are associated with an E-valued Grossencharacter of type A0 of F . Thus they have to be

of the form δλ = εχn` for some E-valued character of finite order.

By the criterion of Néron-Ogg-Shafarevich ρλ is unramified at primes of F which are

primes of good reduction for A and which do not divide `. Then δλ is also unramified at

those primes. Since χ` is unramified at primes not dividing `, ε is unramified at primes of

F which are primes of good reduction for A and which do not divide `. Let ` vary and we

find that ε is unramified at primes of F which are primes of good reduction for A.
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Now consider the representation of GF on detQ` V`. It is known to be given by χdimA
`

which is equal to χ
[E:Q]
` since A is of GL2(E)-type. On the other hand it is also equal to∏

λ|` NEλ/Q` δλ = NE/Q ε.χ
n[E:Q]
` . Since χ` has infinite order and ε has finite order we are

forced to have n = 1 and NE/Q ε = 1.

Lemma 2.2.7. The character δλ is odd, i.e., δλ sends all complex conjugations to −1.

Proof. For each embedding of fields Q → C we have a comparison isomorphism Vλ ∼=

H1(A(C),Q)⊗E Eλ. Via this isomorphism complex conjugation acts as F∞ ⊗ 1 where F∞

comes from the action of complex conjugation on A(C) by transport of structure. We need

to show that detF∞ is −1 where det is taken with respect to the E-linear action of F∞ on

H1(A(C),Q).

Note thatH1(A(C),Q) is of dimension 2 over E. Since F∞ is an involution onH1(A(C),Q)

its determinant is 1 if and only if F∞ acts as a scalar. Since F∞ permutes H0,1 and H1,0 in

the Hodge decomposition of H1(A(C),Q) it obviously does not act as a scalar. Thus detF∞

is −1.

Proposition 2.2.8. For each λ, ρλ is an absolutely irreducible 2-dimensional representation

of GF over Eλ and EndEλ[GF ] Vλ = Eλ.

Proof. By Faltings’s results V` is a semisimple GF -module and EndE⊗Q`[GF ] V` = E ⊗ Q.

Thus corresponding to the decomposition of V` = ⊕λ|`Vλ we have EndEλ[GF ] Vλ = Eλ. This

shows Vλ is simple over Eλ. Hence ρλ is absolutely irreducible.

For prime v of F at which A has good reduction let av = trEλ(Frobv |Vλ) if v - ` for `

lying below λ. Let ι be the canonical involution on E if E is CM and identity if E is totally

real.

Proposition 2.2.9. For each place v of good reduction av = ι(av)ε(Frobv).

Proof. For each embedding σ of E into Q` denote by Vσ := V` ⊗E⊗Q` Q` where the algebra

homomorphism E ⊗Q` → Q` is induced by σ.

Fix a polarization of A that is compatible with ι. We have a Weil pairing:

〈 , 〉 : V` × V` → Q`(1)
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such that 〈ex, y〉 = 〈x, ι(e)y〉 for e in E. This pairing is GF -equivariant, i.e.,〈τx, τy〉 = τ〈x, y〉

for all τ ∈ GF .

After extending scalar to Q` we get pairings between the spaces Vσ and Vσι. Thus we

have isomorphism of Q`[GF ]-modules

Vσι ∼= Hom(Vσ,Q`(1)).

On detVσ, GF acts by σεχ`. As Vσ is 2-dimensional over Q`

Hom(Vσ,Q`(
σεχ`)) ∼= Vσ

as GF -modules. Thus we find that Vσι(
σε) ∼= Vσ. As tr Frobv is σ(av) on Vσ and is

σι(av)
σε(Frobv) on Vσι(

σε) for v place of good reduction and v prime to ` we get

σ(av) = σι(av)
σε(Frobv).

It follows av = ι(av)ε(Frobv).

Corollary 2.2.10. ε is trivial when E is totally real.

Proposition 2.2.11. Let S be a finite set containing all the places of bad reduction. Then

E is generated over Q by the av’s with v 6∈ S.

Proof. Again we consider the Vσ’s corresponding to embeddings of E into Q` as in the

proof of Prop. 2.2. As V` is semisimple, so is V` ⊗ Q`. Since V` ⊗ Q` = ⊕σVσ we get

EndE⊗Q`[GF ](⊕σVσ) = E ⊗Q` =
∏
σ Q`. This shows that the Vσ’s are simple and pairwise

nonisomorphic. Thus their traces are pairwise distinct. Since the trace of Frobv acting on

Vσ is σ(av) for v place of good reduction, by Cebotarev Density theorem the embeddings σ

are pairwise distinct when restricted to the set of av’s for v 6∈ S. Thus E is generated over

Q by the set of av’s for v 6∈ S.

Proposition 2.2.12. Let L be the subfield of E generated by a2
v/ε(Frobv) for v 6∈ S. Then

L is a totally real field and E/L is Abelian.
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Proof. We check

ι(
a2
v

ε(Frobv)
) =

ι(av)
2

ι(ε(Frobv))
= a2

vε
−2(Frobv)ε(Frobv) =

a2
v

ε(Frobv)
.

Thus L is totally real.

Since E is contained in the extension of L obtained by adjoining the square root of all

of the a2
v/ε(Frobv)’s and all roots of unity, E is an Abelian extension of L.

Now we consider the reductions of ρλ. Replace A by an isogenous Abelian variety so

that OE actually acts on A. Consider the action of GF on the λ-torsion points A[λ] of A

and we get a 2-dimensional representation ρ̄λ of GF over Fλ, the residue field at λ.

Lemma 2.2.13. For almost all λ, the representation ρ̄λ is absolutely irreducible.

Proof. A result of Faltings implies that for almost all λ’s A[λ] is a semisimple Fλ[GF ]-module

whose commutant is Fλ. The lemma follows immediately.

Proposition 2.2.14. Let A/F be a simple Abelian variety of GL2(E)-type. Let D de-

note the endomorphism algebra of AQ and L its centre. Then L is generated over Q by

a2
v/ε(Frobv).

Proof. Let ` be a prime that splits completely in E. Then all embeddings of E into Q`

actually factors through Q`. Suppose the isogenies in D are defined over a number field K.

Fix an embedding of K into Q. Let H denote the Galois group Gal(Q/K) which is an open

subgroup of Gal(Q/F ). Shrink H if necessary so that H is contained in the kernel of ε. By

a result of Faltings’s, D⊗Q`
∼= EndQ`[H] V`. The centre of D⊗Q` is L⊗Q`. By our choice

of `, the Tate module V` decomposes as ⊕σVσ where σ runs over all embedding of E into

Q` and where Vσ := V`⊗E⊗Q` Q`. Note that Q` is viewed as an E⊗Q`-module via σ. Each

Vσ is a simple Q`[H]-module. Thus EndQ`[H] Vσ = Q`.

For each prime w of K prime to ` and not a prime of bad reduction of A, we have a

trace of Frobenius at w associated to the λ-adic representations. Denote it by bw and it is

in E. Then tr Frobw |Vσ = σ(bw). The Q`[H]-modules Vσ and Vτ are isomorphic if and only



21

if σ(bw) = τ(bw) for all w. If we let L′ denote the field generated over Q by the bw’s, then

the Q`[H]-modules Vσ and Vτ are isomorphic if and only if σ|L′ = τ |L′ . Thus the centre of

D ⊗ Q` is isomorphic to L′ ⊗ Q`. We have L ⊗ Q` = L′ ⊗ Q` with equality taken inside

E ⊗Q`. Thus L = L′.

Now suppose that σ and τ agree on L so that Vσ ∼= Vτ as Q`[H]-modules. There is a

character ϕ : GF → Q×` such that Vσ ∼= Vτ ⊗ ϕ as Q`[GF ]-modules. Taking traces we get

σ(av) = ϕ(Frobv)τ(av) for all primes v of F which are prime to ` and not primes of bad

reduction of A. Taking determinants we get σε = ϕ2τε. Thus σ and τ agree on a2
v/ε for all

good v prime to `. This shows that a2
v/ε is in L.

On the other hand, suppose σ(a2
v/ε) = τ(a2

v/ε) for all good v prime to `. This implies by

Chebotarev density theorem that tr2 / det are the same for the representations of GF on Vσ

and Vτ . Since ε is trivial on H we get tr(h|Vσ) = ± tr(h|Vτ ). If we choose H small enough

we will have tr(h|Vσ) = tr(h|Vτ ). Then Vσ ∼= Vτ as Q`[H]-modules. Thus L is contained in

the field generated over Q by the a2
v/ε’s.

Corollary 2.2.15. Let A be a polarized simple F -virtual Abelian variety of GL2(E)-type.

Let L be the centre of End0(A). Then L is generated over Q by a2
v/ε(Frobv). In particular

L is totally real.

Proof. By 2.1.13 there exists a simple Abelian variety B/F of GL2-type such that A is a Q-

factor. The centre of the endomorphism algebra of A is just the centre of the endormorphism

algebra of B by Prop 2.1.12. The corollary follows from the proposition. That L is totally

real is established in Proposition 2.2.12.

Proposition 2.2.16. Suppose that 3 is totally split in E and suppose for λ|3 the represen-

tation ρ̄λ is irreducible. Then ρ̄λ is modular.

Proof. In this case we have ρ̄λ : GF → GL2(F3). We have already shown that ρ̄λ is odd.

Then the proposition follows from the theorem of Langlands and Tunnel.

We record a modularity result first.

Theorem 2.2.17 (Shepherd-Barron, Taylor). Let ` be 3 or 5 and let F be a field of
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characteristic different from `. Suppose ρ : GF → GL2(F`) is a representation such that

det(ρ) = χ`. Then there is an elliptic curve C defined over F such that ρ ∼= ρ̄C,`.

Then from our analysis we get:

Corollary 2.2.18. Let ` be 3 or 5. Suppose that E is totally real and that ` is totally split

in E. Then for λ|` there exists an elliptic curve C/F such that ρ̄A,λ ∼= ρ̄C,`.

Proof. Since E is totally real, det(ρ) = χ`. Then all conditions in the quoted theorem is

satisfied.

2.3 Moduli of F -virtual Abelian Varieties of GL2-type

Now we consider the moduli space of F -virtual Abelian Varieties of GL2-type. Roughly

speaking, in the construction we will produce trees whose vertices are such Abelian varieties

and whose edges represent isogenies. Then via graph theoretic properties of the trees, we

can locate a nice Abelian variety that is isogenous to a given F -virtual Abelian Varieties

of GL2-type and that is represented by F -points on certain quotients of Shimura varieties.

We exclude the CM case and consider the non-quaternion and quaternion cases separately.

2.3.1 Case End0(A) ∼= E

Let A be the category of Abelian varieties over Q. Let A0 be the category of Abelian

varieties over Q up to isogeny. We consider the subcategory B of A defined as follows.

The objects are pairs (A, ι) where A is an Abelian variety over Q of dimension [E : Q] and

ι : OE → End(A) is a ring isomorphism. The morphisms MorB((A1, ι1), (A2, ι2)) are those

homomorphisms in Hom(A1, A2) that respect OE-action and is denoted by HomOE (A1, A2).

Also define the categories Bλ, where λ is a prime of OE , as follows. The objects are the

same as in B. The morphisms MorBλ((A1, ι1), (A2, ι2)) are HomOE (A1, A2) ⊗OE OE,(λ),

where OE,(λ) denotes the ring OE localized at λ (but not completed). If no confusion arises

the ι’s will be omitted to simplify notation. Most often we will work in the category B.

Let f be a morphism in MorBλ(A,B). Then f can be written as g ⊗ (1/s) with g in

Hom(A,B) and s in OE \λ. Define the kernel of f , ker f to be the λ part of the kernel of g
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in the usual sense, (ker g)λ. Note here kernel is not in the sense of category theory. Suppose

that we write f in another way by g′ ⊗ (1/s′). Then consider f = gs′ ⊗ (1/ss′) and we find

(ker gs′)λ = (ker g)λ as s′ is prime to λ and also (ker g′s)λ = (ker g′)λ. Since g′s = gs′ we

find our kernel well-defined.

We construct a graph associated to each Bλ. Let the vertices be the isomorphism classes

of Bλ modulo the relation ≈, where A ≈ B if there exists a fractional ideal A of E such that

A⊗OE A ∼= B

Denote the vertex associated to A by [A] and connect [A] and [B] if there exists f ∈

MorBλ(A,B) such that

ker f ∼= OE/λr+1 ⊕OE/λr

for some r. If we change A to A/A[λ] = A ⊗OE λ−1 then the kernel becomes OE/λr ⊕

OE/λr−1 and as we quotient out more we will get to OE/λ. Obviously there is an f ′ ∈

MorBλ(B,A) such that ker f ′ ∼= OE/λs+1 ⊕OE/λs for some s.

Lemma 2.3.1. Suppose that two vertices [A] and [B] can be connected by a path of length

n. Then there exists f ∈ MorBλ(A,B) such that ker f ∼= OE/λn for some representatives A

and B.

Proof. For n = 1 the lemma is true. For n = 2 suppose we have [A] connected to [A1]

and then [A1] to [B] and suppose we have f ∈ MorBλ(A,A1) and g ∈ MorBλ(A1, B) with

ker f ∼= OE/λ and ker g ∼= OE/λ. Then if ker g ◦f ∼= OE/λ⊕OE/λ we find B ≈ A and thus

[A] = [B]. Then [A] and [A1] are connected by two edges. However by the construction

there is at most one edge between two vertices. Thus we must have ker g ◦ f ∼= OE/λ2.

Now suppose the lemma holds for all paths of length n − 1. Suppose that [A] and [B]

are connected via [A1], · · · , [An−1] and that we have morphisms A
f0−→ A1

f1−→ · · · fn−2−−−→

An−1
fn−1−−−→ B where all kernels are isomorphic to OE/λ. Then f = fn−2 ◦ · · · ◦ f0 and

g = fn−1 ◦ · · · ◦ f1 have kernel isomorphic to OE/λn−1. If g ◦ f0 has kernel isomorphic to

OE/λn−1 ⊕ OE/λ then f must have kernel isomorphic to OE/λn−2 ⊕ OE/λ and we get a

contradiction. Thus g ◦ f0 has kernel isomorphic to OE/λn. This concludes the proof.
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Proposition 2.3.2. Each connected component of the the graph is a tree.

Proof. We need to show that there is no loop. Suppose there is one. By the previous lemma

we have a morphism f ∈ MorBλ(A,A′) for some A′ in the same ≈-equivalence class as A

such that ker f ∼= OE/λn. This means we have a morphism f ∈ MorBλ(A,A) with kernel

isomorphic to OE/λn+r⊕OE/λr for some r. This is impossible as any isogeny in EndOE (A)

has kernel isomorphic to (OE/λs)2 for some s. Thus there is no loop.

Definition 2.3.3. For an Abelian variety A and for each λ the tree that contains the vertex

associated to A is called the λ-local tree associated to A.

Obviously the Galois group GF acts on the graph. If a connect component has a

vertex coming from an F -virtual Abelian variety, then automatically all vertices in this

component come from F -virtual Abelian varieties. Also GF preserves this component and

we get another characterization of F -virtual Abelian varieties.

Lemma 2.3.4. The GF -orbit of an F -virtual Abelian variety is contained in the same

λ-local tree.

Now let A0 be an F -virtual Abelian variety in B. If considered as an object in Bλ, it is

mapped to a vertex in its λ-local tree. Also for all σ ∈ GF the vertex [σA0] is in the same

λ-local tree. A priori, the Galois orbit of the vertex associated to A0 is hard to describe.

However for some special vertex in the tree the Galois orbit is essentially contained in the

Atkin-Lehner orbit which we will describe below.

Definition 2.3.5. For a finite subset S of vertices of a tree the centre is the central edge

or central vertex on any one of the longest paths connecting two vertices in S.

Remark 2.3.6. There are possibly more than one longest path, but they give the same

centre. Thus the centre is well-defined.

Definition 2.3.7. The centre associated to A0 in each local tree is defined to be the centre

of the image of the set {σA0 : σ ∈ GF } in the tree.

Obviously we have:
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Proposition 2.3.8. The associated centre of A0 is fixed under the action of GF . (Note if the

centre is an edge it can be flipped.) Furthermore the vertices in the image of {σA0 : σ ∈ GF }

are at the same distance to the nearer vertex of the centre.

Proposition 2.3.9. The set of central edges associated to an F -virtual Abelian variety A

of GL2(E)-type such that End0A ∼= E is an E-linear isogeny invariant.

Proof. Suppose in the λ-local tree the centre associated to A0 is an edge. Then there is

an element in GF that exchanges the two vertices connected by the edge. Otherwise all

Galois conjugates of A0 will be on one side of the edge, contrary to the fact that this edge

is central.

Once we have a fixed edge which is flipped under Galois action there can be no fixed

vertices or other fixed edges in the tree. We take an Abelian variety B0 which is E-linearly

isogenous to A0. Then the centre associated to B0 is also fixed under Galois action and

hence must be an edge. Furthermore it must coincide with the central edge associated to

A0. Thus central edges are E-linear isogeny invariants.

Remark 2.3.10. Central vertices are not necessarily isogeny invariants. For example we can

just take an Abelian variety A over F such that End0A = OE and take B = A/C where C

is a subgroup of A isomorphic to OE/λ. Then obviously the central vertex for A is [A] and

for B it is [B] and they are not the same by construction.

Let Σ be the set of primes where the centre is an edge.

Lemma 2.3.11. The set Σ is a finite set.

Proof. The Abelian varieties σA0 for σ in GF end up in the same equivalence class as long

as λ does not devide the degree of the isogenies µσ’s between the Galois conjugates. Thus

there are only finitely many λ’s where the associated centre can be an edge.

Remark 2.3.12. Also we note that for almost all λ’s, [A0] is just its own associated central

vertex.

For each central edge we choose one of the vertices and for central vertices we just use

the central vertices. Then these vertices determine an Abelian variety up to ≈. Recall that

A ≈ B if A⊗OE A is isomorphic to B for some fractional ideal A.
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Consider the Hilbert modular variety Y0(n) classifying Abelian varieties with real mul-

tiplication E with level structure K0(n) where n is the product of the prime in Σ.

Y0(n) := GL2(E) \Hn ×GL2(Ê)/K0(n)

First we have PicOE acting on Y0(n) which is defined by:

ρ(m) : (A→ B) 7→ (A⊗OE m→ B ⊗OE m).

for m ∈ Pic(OE). This corresponds to ≈.

On the quotient Pic(OE) \Y0(n) we have the Atkin-Lehner operators wλ for λ|n defined

as follows. Suppose we are given a point on Pic(OE) \Y0(n) represented by (A
f−→ B) and

let C denote the kernel of f . Then wλ sends this point to

(A/C[λ]→ B/f(A[λ])).

This operation of wλ0 when viewed on the λ-tree sends one vertex on the central edge to

the other one if λ = λ0 or does nothing if λ 6= λ0.

Definition 2.3.13. Let W be the group generated by wλ’s and let W̃ be the group W n

Pic(OE) acting on Y0(n).

Thus we have:

Proposition 2.3.14. The GF -orbit of any Abelian variety coming the central vertices is

contained in the W̃ -orbit.

Denote W̃ \Y0(n) by Y +
0 (n). Then we have associated to A0 a point in Y +

0 (n)(Q). As

this point is fixed by GF this is actually an F -point.

On the other hand take an F -rational point of Y +
0 (n) and we get a set of Abelian

varieties in Y0(n) that lie above it. They are all isogenous. Take any one of them, say A.

Then its Galois conjugates are still in the set and they are E-linearly isogenous to A by

construction. We get an F -virtual Abelian variety of GL2(E)-type. However we cannot

rule out the possibility that it may have larger endomorphism algebra than E.
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We have shown

Theorem 2.3.15. Every F -point on the Hilbert modular variety Y +
0 (n) gives an F -virtual

Abelian variety of GL2(E)-type. Conversely for any F -virtual Abelian variety A of GL2(E)-

type there is an isogenous F -virtual Abelian variety of GL2(E)-type A′ which corresponds

to an F -rational point on a Hilbert modular variety of the form Y +
0 (n) where n is given as

in the tree construction above.

2.3.2 Case End0 A = D

We cannot simply follow Case End0A = E, since we will get a graph with loop in that

way. We will construct local trees in a slightly different way. Otherwise everything is the

same as in Case End0A = E. Let L denote the centre of D and OD a maximal order of D

containing OE .

Let B be the subcategory of A defined as above except for the requirements that ι :

OD → End(A) is a ring isomorphism and that morphisms should respect OD-action. For

the definition of Bλ we divide into 2 cases.

If D does not split at λ, let Q be the prime of OD lying above λ. We have Q2 =

λ. Then define MorBλ(A1, A2) to be HomOD(A1, A2) ⊗OD OD,(Q). Define the kernel of

f ∈ MorBλ(A1, A2) to be the λ-part of the usual kernel of g in some decomposition of

f = g ⊗ (s−1). The equivalence relation ≈ on objects of Bλ is given as follows: A ≈ B if

and only if there exists some f ∈ MorBλ(A,B) such that

ker f ∼= OD/λrOD

for some r. Connect [A] and [B] if there exists f ∈ MorBλ(A,B) such that

ker f ∼= OD/Q⊕OD/λrOD

for some r.

If D splits at λ, then define MorBλ(A1, A2) to be HomOD(A1, A2) ⊗OL OL,(λ). Still

define the kernel of f ∈ MorBλ(A1, A2) to be the λ-part of the usual kernel of g in some
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decomposition of f = g ⊗ (s−1). The equivalence relation ≈ on objects of Bλ is given as

follows: A ≈ B if and only if there exists some f ∈ MorBλ(A,B) such that

ker f ∼= M2(OL/λrOL)

for some r. Connect [A] and [B] if there exists f ∈ MorBλ(A1, A2) such that

ker f ∼= (OL/λ)2 ⊕M2(OL/λrOL)

for some r.

Now we follow what we have done in the previous subsection. Similarly we get

Proposition 2.3.16. Each connected component of the graph is a tree.

Proposition 2.3.17. The set of central edges associated to an F -virtual Abelian variety A

of GL2(E)-type such that End0(A) ∼= D is a D-linear isogeny invariant.

Let Σ denote the set of primes at which the associated centre is an edge. Note that Σ

is again a finite set.

Proposition 2.3.18.

Now we consider the Shimura variety SΣ parametrizing the quadruples (A, ∗, ι, C) where

the level structure C is isomorphic to

(⊕ λ∈Σ
λ-disc(D)

(OL/λ)2)⊕ (⊕ λ∈Σ
λ| disc(D)

ODλ/Qλ).

Let W̃ be the group acting on SΣ generated by

wλ : (A, ∗, ι, C) 7→ (A/C[λ], ∗′, ι′, C +A[λ]/C[λ]) if λ ∈ Σ and λ - disc(D);

wλ : (A, ∗, ι, C) 7→ (A/C[Qλ], ∗′, ι′, C/C[Qλ] + (A/C[Qλ])[Qλ]) if λ ∈ Σ and λ|disc(D);

w′I : (A, ∗, ι, C) 7→ (A/A[I], ∗′, ι′, C) if I prime to Σ.

Also we have
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Lemma 2.3.19. The group W̃ is a finitely generated Abelian group.

Denote W̃ \SΣ by S+
Σ . Similarly we have that the F -points of S+

Σ give isogeny classes

of F -virtual Abelian varieties of GL2(E)-type.

Theorem 2.3.20. Every F -point on the Shimura variety S+
Σ gives an F -virtual Abelian

variety of GL2(E)-type. Conversely for any F -virtual Abelian variety A of GL2(E)-type s.t.

End0A = D there is an isogenous Abelian variety A′ of GL2(E)-type which corresponds to

an F -rational point on S+
Σ , a quotient of Shimura variety of PEL-type, where Σ is given

above.

2.4 Field of Definition

Now we consider the field of definition of F -virtual Abelian varieties of GL2-type. Even

though they are not necessarily defined over F we will show that in their isogenous class

there exist ones that can be defined over some polyquadratic field extension of F . Here we

follow essentially [6] except in the quaternion algebra case.

Proposition 2.4.1. Let A be an F -virtual Abelian variety. Let c be the associated 2-cocycle

on GF . If c is trivial in H2(GF ′ , L
×), then A is isogenous to an Abelian variety defined

over F ′.

Proof. Suppose c(σ, τ) = α(σ)α(τ)
α(στ) where σ and τ are in GF ′ . Let νσ = µσα

−1(σ). Let K

be Galois over F ′ such that A is defined over K, that all the isogenies involved are defined

over K as we did in the proof of Thm 2.1.13 and α is constant on GK . Let B = ResK/F ′ A.

Then the assignment σ 7→ νσ is a D-linear algebra isomorphism between D[GK/F ′ ] and

End0B. Consider the D-algebra homomorphism D[GK/F ′ ]→ D where σ is sent to 1. Since

D[GK/F ′ ] is semisimple, D is a direct summand of D[GK/F ′ ]. Since e = 1
[K:F ′]

∑
σ∈GK/F ′

σ

is an idempotent of D[GK/F ′ ] which splits off D, then if we let A′ = Ne(B) where N is

chosen so that Ne is an endomorphism of B, then A′ is defined over F ′ and is isogenous to

A.

Proposition 2.4.2. The two cocycle c is of 2-torsion in H2(GF , L
×) and c is trivial in

H2(GF ′ , L
×) where F ′ can be taken as a polyquadratic extension.
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Proof. First consider the case when D is a quaternion algebra. Let Λ be the lattice in Cg

that corresponds to A. Then Λ ⊗ Q is isomorphic to D as left D-modules. Fix such an

isomorphism. For σA we get an induced isomorphism between σΛ ⊗ Q and D as left D-

modules. Then a D-linear isogeny f between σA and τA induces a D-module isomorphism

D → D which is just right multiplication by an element in D×. Let d(f) denote the reduced

norm of that element from D to L. Obviously d(f) = d(σf), for σ ∈ GF . Furthermore

d(f ◦ g) = d(f)d(g). Thus d(c(σ, τ)) = c2(σ, τ) = d(µσ)d(µτ )
d(µστ ) , which shows that c2 is a

coboundary.

Second consider the case when D = E = L. Then the lattice Λ corresponding to A is

isomorphic to E2 as E-vector space after tensoring with Q. Fix such an isomorphism and

correspondingly isomorphisms between σΛ⊗Q and E2. An E-linear isogeny f between σA

and τA then induces linear transformation. Let d(f) denote the determinant of the linear

transformation. Still d is multiplicative and d(f) = d(σf). Thus d(c(σ, τ)) = (c(σ, τ))2 =

d(µσ)d(µτ )
d(µστ ) , which shows that c is 2-torsion in H2(GF , L

×).

Now all that is left is to show that c is trivial after a polyquadratic extension of F .

Consider the split short exact sequence of GF -modules

0→ µ2 → L× → P → 0

where P ∼= L×/µ2. We get that H2(GF , L
×) ∼= H2(GF , µ2)×H2(GF , P ). Since H2(GF , µ2)

corresponds to those quaternion algebra elements in Br(F ) it can be killed by a quadratic

extension of F . To kill the 2-torsion elements in H2(GF , P ), consider the short exact

sequence:

0→ P
×2−−→ P → P/2P → 0

where group multiplication is written additively. We get a long exact sequence:

Hom(GF , P )→ Hom(GF , P/2P )→ H2(GF , P )
×2−−→ H2(GF , P )→ · · ·

Since P is torsion-free Hom(GF , P ) is trivial, we find Hom(GF , P/2P ) ∼= H2(GF , P )[2].

After a polyquadratic extension of F to F ′ we can make Hom(GF ′ , P/2P ) as well as
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H2(GF , µ2) trivial. Thus c is trivial in H2(GF ′ , L
×).

2.5 Classification of Hilbert Modular Surfaces

We will focus on the case where E is a real quadratic field with narrow class number 1 and

study the Hilbert modular surfaces Y +
0 (p) where p is a prime ideal of E. We have shown

in Section 2.3 that the F -points of Y +
0 (p) represent F -virtual Abelian varieties. Suppose

E = Q(
√
D) where D is the discriminant. Because of the narrow class number 1 assumption,

necessarily D is either a prime congruent to 1 modulo 4 or D = 8. We fix an embedding of

E into R. The conjugate of an element a in E is denoted by ac. Since the class group of E is

trivial, the group W̃ in Definition 2.3.13 is just W , a group of order 2. The group WΓ0(p) is

in fact the normalizer of Γ0(p) in PGL+
2 (E) and Y +

0 (p) is isomorphic to WΓ0(p) \H2 where

Γ0(p) =


a b

c d

 ∈ PSL2(O) : c ≡ 0 (mod p)


In our case PSL2(OE) = PGL+

2 (OE). Let X+
0 (p) denote the minimal desingularity of

WΓ0(p) \H2∪P1(E). The classification done in [28] does not cover our case. We will follow

the line of [28] and show that most surfaces in question are of general type and will give

examples of surfaces not of general type. Our method relies on the estimation of Chern

numbers. To do so we must study the singularities on the surfaces.

2.5.1 Cusp Singularities

Obviously for Γ0(p) \H2 ∪ P1(E) there are two inequivalent cusps 0 and ∞. They are

identified via the Atkin-Lehner operator wp =
(

0 1
−$p 0

)
, where the prime ideal p is equal

to ($p) and $p is chosen to be totally positive. This is possible as we assumed that the

narrow class number of E is 1. The isotropy group of the unique inequivalent cusp ∞ in

WΓ0(p) is equal to that in PSL2(OE), as WΓ0(p) contains all those elements in PSL2(OE)

that are of the form
(
a b
0 d

)
. Thus the type of the cusp singularity is the same as that for
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PSL2(O) and the isotropy group is equal to


ε µ

0 ε−1

 ∈ PSL2(E) : ε ∈ O×E , µ ∈ OE


∼=


ε µ

0 1

 ∈ PGL+
2 (E) : ε ∈ O×+

E , µ ∈ OE


∼= OE oO×+

E .

(2.5.1)

By [28, Chapter II] we have the minimal resolution of singularity resulting from toroidal

embedding and the exceptional divisor consists of a cycle of rational curves.

2.5.2 Elliptic Fixed Points

Now consider the inequivalent elliptic fixed points of WΓ0(p) on H2. More generally we

consider the elliptic fixed points of PGL+
2 (E). Suppose z = (z1, z2) is fixed by α = (α1, α2)

in the image of PGL+
2 (E) in PGL+

2 (R)2. Then

aj bj

cj dj

 .zj = zj

for j = 1 or 2 where αj =
( aj bj
cj dj

)
. Solving the equation we get

zj =
aj − dj

2cj
+

1

2|cj |

√
tr(αj)2 − 4 det(αj).

Tranform zj to 0 via möbius transformation ζj 7→ ζj−zj
ζj−z̄j then the isotropy group of (z1, z2)

acts as rotation around 0 on each factor. For αj the rotation factor is rj = e2iθj where

cos θj =
tr(αj)

2
√

det(αj)
, cj sin θj > 0. (2.5.2)

The isotropy group of an elliptic point is cyclic.

Definition 2.5.1. We say that the quotient singularity is of type (n; a, b) if the rotation

factor associated to a generator of the isotropy group acts as (w1, w2) 7→ (ζanw1, ζ
b
nw2) where
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ζn is a primitive n-th root of 1.

Remark 2.5.2. We require that a and b are coprime to n respectively and we can make a

equal to 1 by changing the primitive n-th root of 1. The method of resolution of singularity

in [28, Section 6, Chapter II] depends only on the type.

Definition 2.5.3. Let a2(Γ) denote the number of Γ-inequivalent elliptic points of type

(2; 1, 1). Let a+
n (Γ) denote the number of Γ-inequivalent elliptic points of type (n; 1, 1). Let

a−n (Γ) denote the number of Γ-inequivalent elliptic points of type (n; 1,−1).

From the expression for θj we get:

Lemma 2.5.4. Assume D > 12. Then the elliptic elements of Γ0(p) can only be of order

2 or 3.

2.5.3 Estimation of Chern Numbers

Now we estimate the Chern numbers of X+
0 (p). We will use the following criterion (Prop.

2.5.5) found on page 171 of [28] to show that most of our surfaces are of general type. Let χ

denote the Euler characteristic and ci be the i-th Chern class. The Chern class of a surface

S, ci(S), is the Chern class of the tangent bundle.

Proposition 2.5.5. Let S be a nonsingular algebraic surface with vanishing irregularity.

If χ > 1 and c2
1 > 0, then S is of general type.

Definition 2.5.6. Let S be a normal surface with isolated singular points and let S′ be its

desingularization. Suppose p is a singular point on S and the irreducible curves C1, . . . , Cm

on S′ form the resolution of p. Then the local Chern cycle of p is defined to be the unique

divisor Z =
∑m

i=1 aiCi with rational numbers ai such that the adjunction formula holds:

ZCi − CiCi = 2− 2pa(Ci).

Remark 2.5.7. For quotient singularity of type (n; 1, 1), the exceptional divisor consists

of one rational curve S0 with S2
0 = −n and the local Chern cycle is (1 − 2/n)S0. For

quotient singularity of type (n; 1,−1), the exceptional divisor consists of n − 1 rational
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curves S1, . . . , Sn−1 with S2
i = −2, Si−1.Si = 1 and the rest of the intersection numbers

involving these rational curves are 0. The local Chern cycle is 0. For cusp singularity,

the exceptional divisor consists of several rational curves S0, . . . , Sm such that Si−1.Si = 1,

S0.Sm = 1, S2
i ≤ −2 and the rest of the intersection numbers involving these rational curves

are 0. The local Chern cycle is
∑

i Si.

We will make frequent comparison to the surface associated to the full Hilbert modular

group PSL2(O). As is computed on page 64 of [28] we have the following with a slight

change of notation:

Theorem 2.5.8. Let Γ ⊂ PGL+
2 (R)2 be commensurable with PSL2(O) and let XΓ be the

minimal desingularization of Γ \H2. Then

c2
1(XΓ) = 2 vol(Γ \H2) + c+

∑
a(Γ;n; a, b)c(n; a, b), (2.5.3)

c2(XΓ) = vol(Γ \H2) + l +
∑

a(Γ;n; a, b)(l(n; a, b) +
n− 1

n
) (2.5.4)

where

a(Γ;n; a, b) =#quotient singularity of Γ \H2 of type (n; a, b),

c =sum of the self-intersection number of the local Chern cycles of

cusp singularities,

c(n; a, b) =self-intersection number of the local Chern cycle of a quotient

singularity of type (n; a, b),

l =#curves in the resolution of cusps,

l(n; a, b) =#curves in the resolution of a quotient singularity of type

(n; a, b).

Lemma 2.5.9.

vol(PSL2(OE) \H2) = 2ζE(−1). (2.5.5)

Now we will estimate the chern numbers under the assumption that D > 12. This
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ensures that we only have (2; 1, 1) or (3; 1,±1) points for Γ0(p) and hence only (2; 1, 1),

(3; 1,±1), (4; 1,±1) and (6; 1,±1) points for WΓ0(p). From [28, II. 6] as summarized in

Remark 2.5.7, we know how the elliptic singularities are resolved and can compute the self-

intersection number of local chern cycles. Thus after we plug in the values equation (2.5.3)

reads

c2
1(X(WΓ0(p))) =

1

2
[PSL2(O) : Γ0(p)]4ζE(−1) + c− 1

3
a+

3 − a
+
4 −

8

3
a+

6 ;

c2(X(WΓ0(p))) =
1

2
[PSL2(O) : Γ0(p)]2ζE(−1) + l + (1 +

1

2
)a2 + (1 +

2

3
)a+

3 + (2 +
2

3
)a−3

+ (1 +
3

4
)a+

4 + (3 +
3

4
)a−4 + (1 +

5

6
)a+

6 + (5 +
5

6
)a−6 .

(2.5.6)

We quote some results in [28, Section VII.5].

Lemma 2.5.10. For all D a fundamental discriminant ζE(−1) > D3/2

360 .

This is equation (1) in [28, Section VII.5].

As a2, a±3 , a±4 , a±6 and l are non-negative, c2(WΓ0(p)) > (N p + 1)D
3/2

360 . Thus if

(N p + 1)
D3/2

360
> 12 (2.5.7)

then c2(WΓ0(p)) > 12.

Now we estimate c2
1(X(WΓ0(p))). Let n denote the index of Γ0(p) in PSL2(OE), which

is equal to N p + 1. First the self-intersection number of the local Chern cycle at the cusp,

c, is equal to that for PSL2(O) as the isotropy group for the unique cusp in WΓ0(p) is the

same as that in PSL2(O).

Lemma 2.5.11. The local Chern cycle

c =
1

2

∑
x2<D,x2≡D (mod 4)

∑
a>0,a|D−x2

4

1. (2.5.8)

and if D > 500,

c ≥ −1

2
D1/2

(
3

2π2
log2D + 1.05 logD

)
. (2.5.9)
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This is [28, Lemma VII.5.3].

Definition 2.5.12. Let h(D) denote the class number of the quadratic field Q(
√
D) where

D is a fundamental discriminant.

Lemma 2.5.13. If D > 0 is a fundamental discriminant then h(−D) ≤
√
D
π logD.

This is [28, Lemma VII.5.2].

Lemma 2.5.14. If D > 12 and Cl+(Q(
√
D)) = 1, then

a2(PSL2(O)) =h(−4D)

a+
3 (PSL2(O)) =

1

2
h(−3D)

(2.5.10)

Combining the above two lemmas we get:

Lemma 2.5.15.

a2(PSL2(O)) ≤
√

4D

π
log 4D

a+
3 (PSL2(O)) ≤ 1

2π

√
3D log(3D).

(2.5.11)

Lemma 2.5.16. If D > 12 and Cl+(Q(
√
D)) = 1 then

a2(Γ0(p)) ≤ 3
√

4D

π
log 4D

a+
3 (Γ0(p)) ≤ 3

2π

√
3D log(3D).

(2.5.12)

Proof. Let z be an elliptic point of PSL2(OE) with isotropy group generated by g =
(
a b
c d

)
.

We have coset decomposition of SL2(OE) = ∪αΓ0(p)δα ∪ Γ0(p)δ∞, where δα =
(

1 0
α 1

)
with

α ∈ OE running through a set of representatives of OE/p and δ∞ =
(

0 1
−1 0

)
. For each δα

we need to check if δαgδ
−1
α is in Γ0(p), i.e., if c+ (a− d)α− bα2 is in p. In Fp, the equation

c+ (a− d)α− bα2 = 0 has at most two solutions unless c, a− d, b ∈ p. This cannot happen

if g is elliptic. Indeed from ad − bc = 1 we get a2 ≡ 1 (mod p) and thus a ≡ ±1 (mod p).

Replace g by −g if necessary we suppose that a ≡ 1 (mod p). Suppose a+ d = t with t = 0
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or ±1 and suppose a = 1 + v with v ∈ p. Then

1 = ad− bc

= a(t− a)− bc

≡ a(t− a) (mod p2)

≡ t− 1 + (t− 2)v (mod p2).

(2.5.13)

We find that (t−2)(1+v) (mod p2). By assumption D > 12 is a prime so (2) or (3) cannot

ramify. We always have that 1 + v ≡ 0 (mod p), which is impossible.

Thus the number of elliptic points of any type increases to at most threefold that for

PSL2(OE).

Lemma 2.5.17. Suppose D > 12 and Cl+(Q(
√
D)) = 1. Then a+

6 (WΓ0(p)) = 0 unless (3)

is inert in OE and p = (3) and

2a+
3 (WΓ0(p)) + a+

6 (WΓ0(p)) ≤ 2

3π

√
3D log(3D); (2.5.14)

and a+
4 (WΓ0(p)) = 0 unless (2) is inert and p = (2) and

a+
4 (WΓ0(p)) ≤ 3

√
4D

π
log 4D. (2.5.15)

Proof. We check the rotation factor

cos θj =
tr(αj)

2
√

det(αj)
(2.5.16)

associated to an elliptic element α. In order to have a point with isotropy group of order 4

in WΓ0(p) we must have cos θj = ±
√

2
2 . As D > 12, we need det(αj) = $p in 2O2

E and also

p = (2). In order to have a point with isotropy group of order 6 in WΓ0(p) we must have

cos θj = ±
√

3
2 . As D > 12, we need det(αj) = $p in 3O2

E and also p = (3).

The Atkin-Lehner operator exchanges some of the Γ0(p)-inequivalent (3; 1, 1)-points

which result in (3; 1, 1)-points and fixes the rest of the points which result in (6; 1, 1)-points.



38

All (3; 1, 1)- and (6; 1, 1)-points for WΓ0(p) arise in this way. We have

2a+
3 (WΓ0(p)) + a+

6 (Γ0(p)) = a+
3 (Γ0(p)). (2.5.17)

The Atkin-Lehner operator exchanges some of the Γ0(p)-inequivalent (2; 1, 1)-points which

result in (2; 1, 1)-points and fixes the rest of the points which result in (4; 1, 1)-points. All

(4; 1, 1)-points for WΓ0(p) arise in this way, but we may get (2; 1, 1)-points not arising in

this way. We have

a+
4 (Γ0(p)) ≤ a+

2 (Γ0(p)). (2.5.18)

Combining with Lemma 2.5.16 we prove this lemma.

Lemma 2.5.18. Suppose D > 12 and Cl+(Q(
√
D)) = 1. Then

1

3
a+

3 (WΓ0(p) + 8a+
6 (WΓ0(p)) ≤ 8

3
a+

3 (Γ0(p)) (2.5.19)

if (3) is inert and p = (3). If p 6= (3) then

1

3
a+

3 (WΓ0(p)) =
1

6
a+

3 (Γ0(p)). (2.5.20)

Combining all these inequalities we find

Lemma 2.5.19. Suppose D > 500 and Cl+(Q(
√
D)) = 1. Then

c2
1(X+

0 (p)) >
nD3/2

180
− 1

2
D1/2(

3

2π2
log2D + 1.05 logD)

−


1

4π

√
3D log(3D) if p 6= (3)

4
π

√
3D log(3D) if p = (3)

−


0 if p 6= (2)

3
π

√
4D log(4D) if p = (2).

(2.5.21)

Now it is easy to estimate for what values of D and n we have c2
1(WΓ0(p)) > 0. For

small D we just compute c precisely by using Equation 2.5.8 instead of using the estimates.
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Theorem 2.5.20. Suppose D > 12, D ≡ 1 (mod 4) and Cl+(Q(
√
D)) = 1. Then the

Hilbert modular surface X+
0 (p) is of general type if D or n = N p + 1 is suffiently large or

more precisely if the following conditions on D and n are satisfied:

D ≥ 853 or D = 193, 241, 313, 337, 409,

433, 457, 521, 569, 593, 601, 617, 641,

673, 769, 809

n can be arbitrary

D = 157, 181, 277, 349, 373, 397, 421,

509, 541, 557, 613, 653, 661, 677, 701,

709, 757, 773, 797, 821, 829

n 6= 5, i.e., p 6= (2)

D = 137, 233, 281, 353, 449, n 6= 10, i.e., p 6= (3)

D = 149, 173, 197, 269, 293, 317, 389, 461 n 6= 5, 10, i.e., p 6= (2), (3)

D = 113 n ≥ 8 and n 6= 10

D = 109 n ≥ 6

D = 101 n ≥ 6 and n 6= 10

D = 97 n ≥ 5

D = 89 n ≥ 6

D = 73 n ≥ 7

D = 61 n ≥ 10

D = 53 n ≥ 12

D = 41 n ≥ 17

D = 37 n ≥ 20

D = 29 n ≥ 28

D = 17 n ≥ 62

D = 13 n ≥ 93

Proof. First we note that the condition for (2) to split is that D ≡ 1 (mod 8) and for (3)

to split is that D ≡ 1 (mod 3). We check for what values of D and n the inequality 2.5.7

is satisfied and the right hand side of the inequaltiy in Inequality 2.5.21 is greater than 0

by using a computer program. Then we have c2
1(X+

0 (p)) > 0 and c2(X+
0 (p)) > 12 and thus

χ(X+
0 (p)) > 1. The surface is of general type by Prop. 2.5.5.
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Remark 2.5.21. There are some values that, a priori, n cannot achieve.

2.5.4 Examples

The first two examples give rational surfaces and the third example is neither a rational

surface nor a surface of general type.

2.5.4.1 D = 5

Consider the Hilbert modular surface PSL2(OE) \H2 where E = Q(
√

5). The cusp resolu-

tion is a nodal curve. We will focus on quotient resolutions to study the configurations of

rational curves on the surface. Following the method in [5], we can locate all the PSL2(OE)-

inequivalent elliptic points.

p = (2) The Γ0(p)-inequivalent elliptic points and their types are summarized in the

following table. As the coordinates of the points themselves are not important we only list

a generator of the isotropy groups.

Type Generator of Isotropy Group

(2; 1, 1)

1 −1

2 −1


(2; 1, 1)

 −1 −1+
√

5
2

−1−
√

5 1


(3; 1, 1)

1+
√

5
2 −1

2 1−
√

5
2


(3; 1, 1)

 3+
√

5
2 −1

3 +
√

5 −1+
√

5
2


(3; 1,−1)

 1−
√

5
2

−1+
√

5
2

−1−
√

5 1+
√

5
2


(3; 1,−1)

 −1+
√

5
2

−1+
√

5
2

−4− 2
√

5 3+
√

5
2


The Atkin-Lehner operator fixes the two (2; 1, 1)-points respectively and exchanges the

two (3; 1, 1)- (resp. (3; 1,−1)-) points. We get one (4; 1, 1)-, one (4; 1,−1)-, one (3; 1, 1)-



41

, one (3; 1,−1)- and possibly some new (2; 1, 1)-points. We consider the (4; 1,−1)-point

represented by ( 1+i
1+
√

5
, 1−i

1−
√

5
) and the (3; 1,−1)-point represented by (

√
5+i
√

3
2(1+

√
5)
,
√

5+i
√

3
−2(1−

√
5)

).

Consider the curve FB on WΓ0(p) \H2 defined as the image of the curve

F̃B =

(z1, z2) :

(
z2 1

)
B

z1

1

 = 0

 (2.5.22)

and let F ′B denote the strict transform of FB in X+
0 (p), the desingularity of WΓ0(p) \H2 ∪

P1(E). Let B =
( 0

(1−
√
5)
√
5

2
(1+
√
5)
√
5

2
0

)
. Then the two elliptic points noted above lie on FB.

The stabilizer ΓB of B in Γ0(p) is a degree 2 extension of the group

{(
a b
c d

)
∈ Γ0(p) : a, d ∈ Z, c ∈ (1 +

√
5)
√

5Z, b ∈ (1−
√

5)
√

5

2
Z

}
(2.5.23)

generated by
( √

5
√

5−1
1+
√

5
√

5

)
. The stabilizer of B in WΓ0(p) is a degree 2 extension of ΓB

by
( 2

−(1−
√
5)
√
5

2

−(1+
√

5)
√

5 −4

)
. We find that the image of F̃B in WΓ0(p) \H2 is a quotient of

Γ0(10Z) \H and thus F ′B is a rational curve in X+
0 (p). Consider the intersection of F ′B

with the local Chern cycles. Following the method in [28, V.2] we find that the intersection

number of F ′B with the cusp resolution is 2. Thus we have

c1(X+
0 (p)).F ′B = −2 · 1

6
· 18

4
+ 2 +

1

3
· n3 +

1

2
· n4 (2.5.24)

where n3 is the number of (3; 1, 1)-points that F ′B passes through and n4 is the number of

(4; 1, 1)-points that F ′B passes through. As intersection number is an integer, we are force

to have n3 = 0 and n4 = 1 and thus c1(X+
0 (p)).F ′B = 1. By Adjunction formula, F ′2B = −1.

We get a linear configuration of rational curves with self-intersection numbers −2, −1, −2,

where the (−2)-curves come from desingularity of the (3; 1,−1)- and the (4; 1,−1)-points

mentioned above. After blowing down FB we acquire two intersecting (−1)-curves and this

shows that the surface X+
0 (p) is a rational surface.
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2.5.4.2 D = 13

Consider the Hilbert modular surface PSL2(OE) \H2 where E = Q(
√

13). The cusp reso-

lution is of type (5; 2, 2) and the rational curves are labelled as S0, S1 and S2. Following

the method in [5], we can locate all the PSL2(OE)-inequivalent elliptic points.

It is easy to find the Γ0(p)-inequivalent elliptic points from right coset decomposition

PSL2(OE) = ∪αΓ0(p)gα∪Γ0(p)g∞ where gα =
(

1 0
α 1

)
and g∞ =

(
0 1
−1 0

)
with α running over

a set of representatives of OE/p.

D = 13, p = (4 +
√

13) Suppose p = (4 +
√

13). Then we list one generator of isotropy

group for each Γ0(p)-inequivalent elliptic point:

Type Generator of Isotropy Group

(3; 1, 1)

−1 1

−3 2


(3; 1, 1)

(−1 +
√

13)/2 −2

(5−
√

13)/2 (3−
√

13)/2


(3; 1,−1)

 2 (−1 +
√

13)/2

−(1 +
√

13)/2 −1


(3; 1,−1)

(5 +
√

13)/2 (3 +
√

13)/2

−(1 +
√

13) −(3 +
√

13)/2


Since there cannot be any elliptic points with isotropy group of 6 for WΓ0(p) acting on

H2. The Atkin-Lehner operator exchanges the two (3; 1, 1)-points (resp. (3; 1,−1)-points).

Now consider the curve FB onWΓ0(p) \H2 defined as in (2.5.22) and setB =
(

0 4−
√

13
−4−

√
13 0

)
.

Still let FB denote the closure of FB in WΓ0(p) \H2 ∪ P1(E) and let F ′B denote the strict

transform of FB in X+
0 (p), the desingularity of WΓ0(p) \H2 ∪ P1(E).

The elements of WΓ0(p) that stabilize F̃B are of the form
(
a b
c d

)
with a, d ∈ Z, c ∈

(4 +
√

13)Z and b ∈ (4 −
√

13)Z and determinant 1. Thus we find that F ′B
∼= Γ0(3Z) \H

which is of genus 0. Furthermore c1(X+
0 (p)).F ′B = 2 vol(F ′B) +

∑
Zx.F

′
B where Zx is the

local Chern cycle at x a singular point. We compute that

c1(X+
0 (p)).F ′B = −2 · 1

6
· 4 + 2 +

1

3
· n (2.5.25)
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with n the number of (3; 1, 1)-points that F ′B passes through. As there is just one (3; 1, 1)-

point, we are forced to have n = 1 and thus c1(X+
0 (p)).F ′B = 1. By Adjunction formula

F ′2B = −1. We also find that F ′B intersects with the cusp resolution: F ′B.S1 = F ′B.S2 =

1. Note that S1 and S2 have self-intersection number −2. After blowing down F ′B we

get two intersecting (−1)-curves. Again by an algebraic geometry criterion, the surface

WΓ0((4 +
√

13)) \H2 is a rational surface.

D = 13, p = (2) Suppose p = (2). We have two inequivalent (2; 1, 1)-points namely

((i+ 1)/2, (i+ 1)/2) and ((i+ 1)/(3 +
√

13), (i− 1)/(−3 +
√

13)), four inequivalent (3; 1, 1)-

points and four inequivalent (3; 1,−1)-points. The Atkin-Lehner operator fixes the (2; 1, 1)-

points and exchanges (3; 1, 1)-points (resp. (3; 1,−1)-points). It is easy to check that we get

one (4; 1, 1)-, one (4; 1,−1)-, two (3; 1, 1)- and two (3; 1,−1)-points and some new (2; 1, 1)-

points. We compute that c1(X+
0 (p))2 = 2 · 2 · 1

6 ·
5
2 −

1
3 · 2 − 1 = −3 and c2(X+

0 (p)) =

2 · 1
6 ·

5
2 + (1 + 1

2)a2 + (1 + 2
3)2 + (2 + 2

3)2 + (1 + 3
4)1 + (3 + 3

4)1 = 18 + 3
2a2. The Euler

characteristic χ(X+
0 (p)) = (c1(X+

0 (p))2 + c2(X+
0 (p)))/12 = (15 + 3

2a2)/12 ≥ 2. Thus X+
0 (p)

cannot be a rational surface.

Consider the curve F ′B with

B =

 0 4−
√

13

−4−
√

13 0.

 (2.5.26)

The stabilizer ΓB of F̃B in Γ0(p) consists of elements of the form
(
a b
c d

)
with a, d ∈ Z,

c ∈ (2(4 +
√

13))Z and b ∈ (4−
√

13)Z and determinant 1. The stabilizer of F̃B in WΓ0(p)

is a degree 2 extension of ΓB generated by
( 2 4−

√
13

−2(4+
√

13) −2

)
. Thus we find that Γ0(6Z) \H

is a degree 2 cover of F ′B. Thus F ′B is of genus 0. We compute that

c1(X+
0 (p)).F ′B = −2 · 1

6
· 12

2
+ 2 +

1

3
· n3 +

1

2
· n4 (2.5.27)

where n3 is the number of (3; 1, 1)-points that F ′B passes through and n4 is the number of

(4; 1, 1)-points that F ′B passes through. As there are two (3; 1, 1)-points and one (4; 1, 1)-

point on X+
0 (p) we are forced to have that n3 = 0 and n4 = 0. Thus c1(X+

0 (p)) = 0. By
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Adjunction formula, F ′2B = −2. We have the configuration of (−2)-curves consisting of F ′B,

S1 and S2 such that F ′B.S1 = F ′B.S2 = S1.S2 = 1. This cannot occur on a surface of general

type by [28, Prop. VII.2.7]. Hence in this example we find a surface which is birationally

equivalent to a K3, an Enrique surface or an honestly elliptic surface.
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Chapter 3

Rallis Inner Product Formula

In this chapter we study the case of the Rallis inner product formula that relates the pairing

of theta functions to the central value of Langlands L-function. We study the Siegel-Weil

formula first, as it is a key ingredient in the proof.

We consider the dual reductive pair H = O(V ) and G = Sp(2n) with n the rank of the

symplectic group. We use G̃(A) to denote the metaplectic group which is a double cover of

G(A). Let V be a vector space over a number field k with the quadractic form Q and let m

be the dimension of the vector space and r its Witt index. Set s0 = (m−n−1)/2. Form the

Siegel Eisenstein series E(g, s, fΦ) and the theta integral I(g,Φ) for g ∈ G̃(A) and Φ in the

Schwartz space S0(V n(A)). The Eisenstein series can be meromorphically continued to the

whole s-plane. The theta integral is not necessarily convergent and we will use Ichino’s[8]

regularized theta integral IREG(g,Φ). Please see Sec. 3.1 for further notations. Roughly

speaking, the Siegel-Weil formula gives the relation between the value or the residue at s0

of the Siegel Eisenstein series and the regularized theta integral.

When the Eisenstein series and the theta integral are both absolutely convergent, Weil[30]

proved the formula in great generality. In the case where the groups under consideration

are orthogonal group and the metaplectic group, Weil’s condition for absolute convergence

for the theta integral is that m− r > n+ 1 or r = 0. The Siegel Eisenstein series E(g, s, fΦ)

is absolutely convergent for Re s > (n + 1)/2, so if m > 2n + 2, E(g, s, fΦ) is absolutely

convergent at s0 = (m − n − 1)/2. Then assuming only the absolute convergence of theta

integral, i.e., m− r > n+ 1 or r = 0, Kudla and Rallis in [15] and [16] proved that the ana-
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lytic continued Siegel Eisenstein series is holomorphic at s0 and showed that the Siegel-Weil

formula holds between the value at s0 of the Siegel Eisenstein series and the theta integral.

In [17] Kudla and Rallis introduced the regularized theta integral to remove the require-

ment of absolute convergence of the theta integral. The formula then relates the residue of

Siegel Eisenstein series at s0 with the leading term of the regularized theta integral. How-

ever they worked under the condition that m is even, in which case the metaplectic group

splits. The regularized theta integral is actually associated to V0, the complementary space

of V if n + 1 < m ≤ 2n and m − r ≤ n + 1 with V isotropic. In the case m = n + 1 the

Eisenstein series is holomorphic at s0 = 0 and the formula relates the value of Eisenstein

series at s0 to the leading term of the regularized theta integral associated to V . Note that

in the above summary we excluded the split binary case for clarity.

Form odd Ikeda in [10] proved an analogous formula. However his theta integral does not

require regularization since he assumed that the complementary space V0 of V is anisotropic

in the case n+ 1 < m < 2n+ 2 or that V is anisotropic in the case m = n+ 1. The method

for regularizing theta integral was generalized by Ichino[8]. Instead of using differential

operator at a real place as in [17], he used a Hecke operator at a finite place and thus did

away with the assumption that the ground field k has a real place. In Ichino’s notation

the Siegel-Weil formula is a relation between the residue at s0 of the Siegel Eisenstein

series and the regularized theta integral IREG(g,Φ) itself. He considered the case where

n + 1 < m ≤ 2n + 2 and m − r ≤ n + 1 with no parity restriction on m. The interesting

case m = n+ 1 with m odd, however, is still left open.

The case of Rallis inner product formula we are concerned with involves the orthogonal

group O(V ) with V a quadratic space of dimension 2n′+1 and the symplectic group Sp(2n′)

of rank n′. Via the doubling method, to compute the inner product we ultimately need to

apply the Siegel-Weil formula with m = 2n′ + 1 and n = 2n′. Note that m is odd here. We

show that the pairing of theta functions is related to the central value of an L-function.

The idea of proof originates from Kudla and Rallis’s paper[17]. We try to show the

identity by comparing the Fourier coefficients of the Siegel Eisenstein series and regularized

theta integral. By showing that a certain representation is nonsingular (c.f. Section 3.5) we

can find a Schwartz function on Symn(kv) for some finite place v of k to kill the singular
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Fourier coefficients of the automorphic form A which is the difference of E(g, s,Φ)|s=s0 and

2IREG(g,Φ). The constant 2 is with respect to some normalization of Haar measures. Then

via the theory of Fourier-Jacobi coefficients we are able to show the nonsingular Fourier

coefficients of A actually vanish. Then by a density argument we show that A = 0.

Finally via the new case of Rallis inner product formula we show the relation between

nonvanishing of L-value and the nonvanishing of theta lifts.

3.1 Notations and Preliminaries

Let k be a number field and A its adele ring. Let U be a vector space of dimension m over

k with quadratic form Q. We view the vectors in U as column vectors. The associated

bilinear form on U is denoted by 〈, 〉Q and it is defined by 〈x, y〉Q = Q(x+y)−Q(x)−Q(y).

Thus Q(x) = 1
2〈x, x〉Q. Let r denote the Witt index of Q, i.e., the dimension of a maximal

isotropic subspace of U . Let H = O(U) denote the orthogonal group of (U,Q) and G =

Sp(2n) the symplectic group of rank n. Let G̃(A) be the metaplectic group which is a double

cover of G(A) and fix a non-trivial additive character ψ of A/k and set ψS(·) = ψ(S·) for

S ∈ k. Locally the multiplication law of G̃(kv) is given by

(g1, ζ1)(g2, ζ2) = (g1g2, c(g1, g2)ζ1ζ2).

where ζi ∈ {±1} and c(g1, g2) is Rao’s 2-cocycle on G(kv) with values in {±1}. The

properties of c can be found in [24, Theorem 5.3]. There the factor (−1,−1)
j(j+1)

2 should

be (−1,−1)
j(j−1)

2 as pointed out, for example, in [14, Remark 4.6].

Via the Weil representation ω, G̃(A) × H(A) acts on the space of Schwartz functions
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S(Un(A)). Locally it is characterized by the following properties (see e.g., [14, Prop. 4.3]):

ωv((

A
tA−1

 , ζ))Φ(X) = χv(detA, ζ)|detA|m/2v Φ(XA),

ωv((

1n B

1n

 , ζ))Φ(X) = ζmψv(
1

2
tr(〈X,X〉QvB))Φ(X),

ωv((

 −1n

1n

 , ζ))Φ(X) = ζmγv(ψv ◦Qv)−nFΦ(−X)

ω(h)Φ(X) = Φ(h−1X)

where Φ ∈ S(Un(kv)), X ∈ Un(kv), A ∈ GLn(kv), B ∈ Symn(kv), ζ ∈ {±1} and h ∈ H(kv).

Here γv is the Weil index of the character of second degree x 7→ ψv ◦Qv(x) and has values

in 8-th roots of unity. The matrix 〈X,X〉Qv has 〈Xi, Xj〉Qv as ij-th entry if we write

X = (X1, . . . , Xn) with Xi column vectors in U(kv). The Fourier transform of Φ with

respect to ψv and Qv is defined to be

FΦ(X) =

∫
Un(kv)

ψv(tr〈X,Y 〉Qv)φ(Y )dY

and

χv(a, ζ) = ζm(a, (−1)
m(m−1)

2 det 〈 , 〉Qv)kv ·


γv(a, ψv,1/2)−1 if m is odd,

1 if m is even.

(3.1.1)

for a ∈ k×v and ζ ∈ {±1}. Here ( , )kv denote the Hilbert symbol and det 〈 , 〉Qv is the

determinant of the symmetric bilinear form on U(kv).

Define the theta function

Θ(g, h; Φ) =
∑

u∈Un(k)

ω(g, h)Φ(u)
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where g ∈ G̃(A), h ∈ H(A) and Φ ∈ S(Un(A)) and consider the integral

I(g,Φ) =

∫
H(k) \H(A)

Θ(g, h; Φ)dh.

It is well-known that this integral is absolutely convergent for all Φ ∈ S(Un(A)) if either

r = 0 or m− r > n+ 1. Thus in the case considered in this paper we will need to regularize

the theta integral unless Q is anisotropic.

Let P be the Siegel parabolic subgroup of G, N the unipotent part and K̃G the standard

maximal compact subgroup of G̃(A). For g ∈ G̃(A) write g = m(A)nk with A ∈ GLn(A),

n ∈ N and k ∈ K̃G. Set a(g) = detA in any such decomposition of g and it is well-defined.

The Siegel-Weil section associate to Φ ∈ S(Un(A)) is defined to be

fΦ(g, s) = |a(g)|s−s0ω(g)Φ(0),

where s0 = (m− n− 1)/2. Then the Eisenstein series

E(g, s, fΦ) =
∑

γ∈P (k) \G(k)

fΦ(γg, s)

is absolutely convergent for Re(s) > (n + 1)/2 and has meromorphic continuation to the

whole s-plane if Φ is K̃G-finite. In the case where m = n+ 1, E(g, s, fΦ) is holomorphic at

s = (m− n− 1)/2 = 0[8, Page 216].

Let S0(Un(A)) denote the K̃G-finite part of S(Un(A)). We will show, under some

normalization of Haar measures, the following

Theorem 3.1.1. Assume that m = n+ 1 and exclude the split binary case. Then

E(g, s, fΦ)|s=0 = 2IREG(g,Φ)

for all Φ ∈ S0(Un(A)).

Remark 3.1.2. The regularized theta integral IREG will be defined in Section 3.2.
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3.2 Regularization of Theta Integral

The results concerning the regularization of theta integrals summarized in this section are

due to Ichino[8, Section 1]. We consider the case where the theta integral is not necessarily

absolutely convergent for all Φ ∈ S(Un(A)) i.e., if Q is isotropic and m− r ≤ n+ 1.

Take v a finite place of k and temporarily suppress it from notation. If 2 - q then there is

a canonical splitting of G̃ over KG, the standard maximal compact subgroup of G. Identify

KG with the image of the splitting. Let HG and HH denote the spherical Hecke algebras

of G̃ and H:

HG = {α ∈ H(G̃//KG)|α(εg) = εmα(g) for all g ∈ G̃},

HH = H(H//KH)

where ε = (12n,−1) ∈ G̃.

Proposition 3.2.1. Assume m ≤ n + 1 and r 6= 0. Fix Φ ∈ S(Un(A)) and choose a

good place v for Φ. Then there exists a Hecke operator α ∈ HGv satisfying the following

conditions:

1. I(g, ω(α)Φ) is absolutely convergent for all g ∈ G̃(A);

2. θ(α).1 = cα.1 with cα 6= 0.

Remark 3.2.2. For the definition of good place please refer to [8, Page 209]. Here θ is

an algebra homomorphism between the Hecke algebras HGv and HHv such that ωQ(α) =

ωQ(θ(α)) as in [8, Prop 1.1]. The trivial representation of H is denoted by 1 here.

Definition 3.2.3. Define the regularized theta integral by

IREG(g,Φ) = c−1
α I(g, ω(α)Φ).

Remark 3.2.4. Also write IREG(g,Φ) = I(g,Φ) for Q anisotropic. The above definition is

independent of the choice of v and α.
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Let S(Un(A))abc denote the subspace of S(Un(A)) consisting of Φ such that I(g,Φ) is

absolutely convergent for all g. Then I defines an H(A)-invariant map

I : S(Un(A))abc → A∞(G)

where A∞ is the space of smooth automorphic forms on G̃(A) (left-invariant by G(k))

without the K̃G-finiteness condition.

Proposition 3.2.5. [8, Lemma 1.9] Assume m ≤ n + 1. Then IREG is the unique H(A)-

invariant extension of I to S(Un(A)).

3.3 Siegel Eisenstein Series

Now we define the Siegel Eisenstein series. Let χ be a character of P̃ (A). Let I(χ, s) denote

the induced representation Ind
G̃(A)

P̃ (A)
χ|det |s. A function f(g, s) on G̃(A)×C is said to be a

holomorphic section of I(χ, s) if

1. f(g, s) is holomorphic with respect to s for each g ∈ G̃(A),

2. f(pg, s) = χ(p)|a(p)|s+(n+1)/2f(g, s) for p ∈ P̃ (A) and g ∈ G̃(A) and

3. f(·, s) is K̃G-finite.

For f a holomorphic section of I(χ, s) we form the Siegel Eisenstein series

E(g, s, f) =
∑

γ∈P (k) \G(k)

f(γg, s).

Note that G̃(A) splits over G(k).

We will specialize to the case where χ is the character associated to the χ in (3.1.1):

(p, z) 7→ χ(a(p), z). (3.3.1)

Still denote this character by χ. For Φ ∈ S(Un(A)) set

fΦ(g, s) = |a(g)|s−
m−n−1

2 ω(g)Φ(0).
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Then fΦ is a holomorphic section of I(χ, s). The Eisenstein series E(g, s, fΦ) is absolutely

convergent for Re(s) > (n+ 1)/2 and has meromorphic continuation to the whole s-plane.

From [8, Page 216] we know that if m = n+ 1, E(g, s, fΦ) is holomorphic at s = 0.

The following definition will be useful later.

Definition 3.3.1. A holomorphic section f ∈ I(χ, s) is said to be a weak SW section

associated to Φ ∈ S(Un(A)) if f(g, m−n−1
2 ) = ω(g)Φ(0).

Define similarly Iv(χv, s) in the local cases. Fix one place v. For w 6= v, fix Φw ∈

S(Un(kw)) and let f0
w(gw, s) be the associated holomorphic sections where we suppress the

subscript Φw. Then if m = n+ 1 we have the map

Iv → A

fv 7→ E(g, s, fv ⊗ (⊗w 6=vf0
w))|s=0.

(3.3.2)

Then by [16, Prop. 2.2] this map is G̃v-intertwining if v is finite or (gv, K̃v)-intertwining if

v is archimedean.

3.4 Fourier-Jacobi Coefficients

A key step in the proof of Siegel-Weil formula is the comparison of the B-th Fourier coef-

ficients of the Eisenstein series and the regularized theta integral where B is a nonsingular

symmetric matrix. It is easy to show that the B-th Fourier coefficient of the Eisenstein

series is a product of Whittaker functions. In the case where m is even by [29] and [11]

the Whittaker functions can be analytically continued to the whole complex plane. Also

true is the case where n = 1 and m arbitrary. However in the case m odd this is not fully

known. To work around the problem Ikeda[10] used Fourier-Jacobi coefficients to initiate an

induction process. The B-th Fourier coefficients can be calculated from the Fourier-Jacobi

coefficients from lower dimensional objects.

We generalize the calculation done in [8] and in [10]. First we introduce some subgroups

of G, describe Weil representation realized on some other space and then define the Fourier-
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Jacobi coefficients. The exposition closely follows that in [8]. Put

V =


v(x, y, z) =



1 x z y

1n−1
ty

1

−tx 1n−1



∣∣∣∣∣∣∣∣∣∣∣∣∣
x, y ∈ kn−1, z ∈ k


,

Z = {v(0, 0, z) ∈ V } ,

W = {v(x, y, 0) ∈ V } ,

L = {v(x, 0, 0) ∈ V } ,

G1 =





1

a b

1

c d



∣∣∣∣∣∣∣∣∣∣∣∣∣

a b

c d

 ∈ Spn−1


,

N1 =





1

1n−1 n1

1

1n−1



∣∣∣∣∣∣∣∣∣∣∣∣∣
n1 ∈ Symn−1


.

Then V = W ⊕ Z is a Heisenberg group with centre Z and the symplectic form on W is

set to be 〈v(x1, y1, 0), v(x2, y2, 0)〉W = 2(x1
ty2 − y1

tx2). Here the coefficient 2 is added to

facilitate later computation. We set 〈x, y〉 = 2xty, for x and y row vectors of length n− 1.

Sometimes we identify L with row vectors of length n− 1. The Schrödinger representation

ω of V (A) with central character ψ can be realized on the Schwartz space S(L(A)):

ω(v(x, y, z))φ(t) = φ(t+ x)ψ(z + 〈t, y〉+
1

2
〈x, y〉)

for φ ∈ S(L(A)). By the Stone-von Neumann theorem, ω is irreducible and unique up to

isomorphism. Moreover the Schrödinger representation ω of V (A) naturally extends to the

Weil representation ω of V (A)o G̃1(A) on S(L(A)). Let K̃G1 denote the standard maximal

compact subgroup of G̃1(A) and S0(L(A)) the K̃G1-finite vectors in S(L(A)).
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For each φ ∈ S(L(A)) define the theta function

ϑ(vg1, φ) =
∑
t∈L(k)

ω(vg1)φ(t)

for v ∈ V (A) and g1 ∈ G̃1(A). Suppose that A is an automorphic form on G̃(A). Then

define a function on G1(k) \ G̃1(A) by

FJφ(g1;A) =

∫
V (k) \V (A)

A(vg1)ϑ(vg1, φ)dv.

For β ∈ Symn−1(k), let FJφβ(g1;A) be the β-th Fourier coefficient of FJφ(g1;A).

Suppose that the bilinear form 〈 , 〉Q is equal to 〈 , 〉S + 〈 , 〉Q1
where S and Q1 are

quadratic forms of dimension 1 and n− 1 respectively. Decompose accordingly U = k⊕U1.

Note that 〈x, y〉S = 2Sxy. Let H1 = O(U1). With this setup we will use the character ψS

in the Schrödinger model instead of ψ.

Lemma 3.4.1. [8, Lemma 4.1] Let S ∈ k× and β ∈ Symn−1(k). Let A be an automorphic

form on G̃(A), and assume that FJφβ(g1; ρ(f)A) = 0 for all φ ∈ S0(L(A)) and all f ∈

H(G̃(A)). Then AB = 0 for

B =

S
β.


Proof. For n ∈ N we set b(n) to be the upper-right block of n and set b1(n) to be the
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lower-right block of size (n− 1)× (n− 1) of b(n). We compute

FJφβ(g1, A)

=

∫
N1(k) \N1(A)

∫
V (k) \V (A)

A(vn1g1)ϑ(vn1g1, φ)ψ(− tr(b1(n1)β))dvdn1

=

∫
L(k) \L(A)

∫
N(k) \N(A)

A(nxg1)ϑ(nxg1)ψ(− tr(b1(n)β))dndx

=

∫
L(k) \L(A)

∫
N(k) \N(A)

∑
t∈L(k)

A(nxg1)ω(tnxg1)φ(0)ψ(− tr(b1(n)β))dndx

=

∫
L(k) \L(A)

∑
t∈L(k)

∫
N(k) \N(A)

A(ntxg1)ω(ntxg1)φ(0)ψ(− tr(b1(n)β))dndx

=

∫
L(A)

∫
N(k) \N(A)

A(nxg1)ω(nxg1)φ(0)ψ(− tr(b1(n)β))dndx

=

∫
L(A)

∫
N(k) \N(A)

A(nxg1)ω(g1)φ(x)ψS(z)ψ(− tr(b1(n)β))dndx

=

∫
L(A)

∫
N(k) \N(A)

A(nxg1)ω(g1)φ(x)ψ(− tr(b(n)B))dndx

=

∫
L(A)

AB(xg1)ω(g1)φ(x)dx.

Since FJφβ(g1, A) = 0 for all g1 ∈ G̃1(A) we conclude that AB(g1) = 0 for all g1 ∈ G̃1(A).

Then we apply a sequence of fi ∈ H(G̃(A)) that converges to the Dirac delta at g ∈ G̃(A)

to conclude that AB(g) = 0 for all g ∈ G̃(A).

3.4.1 Fourier-Jacobi coefficients of the regularized theta integrals

Now we consider the Fourier-Jacobi coefficients of the regularized theta integrals

FJφ(g1; IREG(Φ)) = c−1
α

∫
V (k) \V (A)

∫
H(k) \H(A)

Θ(vg1, h;ω(α)Φ)ϑ(vg1, φ)dhdv.

Put

Ψ(Φ, φ;u) =

∫
L(A)

Φ

1 x

0 u

φ(x)dx
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for u ∈ Un−1
1 (A). Then the map

S(Un(A))⊗ S(L(A))→ S(Un−1
1 (A))

Φ⊗ φ 7→ Ψ(Φ, φ)

is G̃1(A)-intertwining, i.e.,

ω(g1)Ψ(Φ, φ) = Ψ(ω(g1)Φ, ω(g1)φ)

for g1 ∈ G̃1(A). Notice that on S(Un(A)) and S(Un−1
1 (A)) the Weil representations are

associated with the character ψ and on S(L(A)) the Weil representation is associated with

the character ψS . Then we have:

Proposition 3.4.2. Suppose that β ∈ Symn−1(k) with det(β) 6= 0. Then

FJφβ(g1; IREG(Φ))

is equal to the absolutely convergent integral

∫
H1(A) \H(A)

IREG,β(g1,Ψ(ω(h)Φ, φ))dh.

Proof. We need to compute the following integral.

FJφβ(g1; IREG(Φ))

=c−1
α

∫
N1(k) \N1(A)

∫
V (k) \V (A)

∫
H(k) \H(A)

θ(vn1g1, h0, ω(α)Φ)ϑ(vn1g1, φ)

× ψ(− tr b1(n1)β)dh0dvdn1.

(3.4.1)

First we consider

∫
V (k) \V (A)

θ(vg1, h0,Φ)ϑ(vg1, φ)dv. (3.4.2)
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Suppose v = v(x, 0, 0)v(0, y, z). Then

θ(vg1, h0,Φ)

=
∑

t∈Un(k)

ω(vg1, h0)Φ(t)

=
∑

t∈Un(k)

ω(v(0, y, z)g1, h0)Φ(t

1 x

1

)

=
∑

t∈Un(k)

ω(g1, h0)Φ(t

1 x

1

)ψ(
1

2
tr

〈t
1 x

1

, t
1 x

1

〉
Q

z y

ty


)

=
∑

t=
(
t1 t2
t3 t4

)ω(g1, h0)Φ(t

1 x

1

)ψ(
1

2

〈t1
t3

,
t1
t3

〉
Q

(z + 2xty))

× ψ(

〈t1
t3

,
t2
t4

〉
Q

ty)

where t1 ∈ k, t2 ∈ kn−1, t3 ∈ U1(k) and t4 ∈ Un−1
1 (k). Also we expand

ϑ(vg1, φ)

=
∑
t∈L(k)

ω(g1)φ(t+ x)ψS(z + 〈x, y〉+ 〈t, y〉)

=
∑
t∈L(k)

ω(g1)φ(t+ x)ψS(z + 2xty + 〈t, y〉).

Thus if we integrate against z the integral (3.4.2) vanishes unless

〈t1
t3

,
t1
t3

〉
Q

= 2S.

By Witt’s theorem there exists some h ∈ H(k) such that

t1
t3

 = h−1

1

0

 .
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Note that the stabilizer of ( 1
0 ) in H(k) is H1(k). After changing

(
t2
t4

)
to h−1

(
t2
t4

)
we find

that (3.4.2) is equal to

∫
W (k) \W (A)

∑
h∈H1(k) \H(k)

∑
t2,t4

∑
t∈L(k)

ω(g1)ω(α)Φ(h−1
0 h−1

1 t2

0 t4


1 x

1

)

× ω(g1)φ(t+ x)ψ(tr

〈1

0

,
t2
t4

〉
Q

ty)ψS(−〈t, y〉))dxdy

=

∫
W (k) \W (A)

∑
h∈H1(k) \H(k)

∑
t2,t4

∑
t∈L(k)

ω(g1)Φ(h−1
0 h−1

1 t2

0 t4


1 x

1

)

× ω(g1)φ(t+ x)ψ(2St2
ty)ψS(−〈t, y〉))dxdy.

Now the integration against y vanishes unless t = t2 and we get

=

∫
L(A)

∑
h∈H1(k) \H(k)

∑
t4

ω(g1)Φ(h−1
0 h−1

1 t

0 t4


1 x

1

)ω(g1)φ(t+ x)dx

=
∑

h∈H1(k) \H(k)

∑
t∈Un−1

1 (k)

ω(g1)Ψ(t,Φ, φ).

Then we consider the integration over N1(k) \N1(A) in (3.4.1). This will kill those terms

such that 〈t, t〉Q1
6= β. Thus (3.4.1) is equal to

c−1
α

∫
H(k) \H(A)

∑
h∈H1(k) \H(k)

∑
t∈Un−1

1 (k),
〈t,t〉Q1

=β

ω(g1)Ψ(t, ω(hh0)ω(α)Φ, φ)dh0.

We assume that 2Q1 represents β, since otherwise the lemma obviously holds. As

rkβ = n − 1, {t ∈ Un−1
1 (k)|〈t, t〉Q1

= β} is a single H1(k)-orbit. Fix a representative t0 of

this orbit. Since the stabilizer of t0 in H1(k) is of order κ = 2, FJφβ(g1; IREG(Φ)) is equal to

κ−1c−1
α

∫
H(k) \H(A)

∑
h∈H(k)

ω(g1)Ψ(ω(hh0)ω(α)Φ, φ; t0)dh0.

The convergence Lemma in [8] holds also form = n+1 which is recorded here as Lemma 3.4.3.
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Thus we can exchange the orders of integration in FJφβ(g1; IREG(Φ)) and continue the com-

putation to get

κ−1c−1
α

∫
H(A

ω(g1)Ψ(ω(h)ω(α)Φ, φ; t0)dh

=κ−1c−1
α

∑
γ∈H1(k)

∫
H1(k) \H(A

ω(g1)Ψ(γt0, ω(h)ω(α)Φ, φ)dh

=c−1
α

∫
H1(k) \H(A)

∑
〈t,t〉Q1

=β

ω(g1)Ψ(ω(γh)ω(α)Φ, φ; t)dh

=c−1
α

∫
H1(A) \H(A)

∫
H1(k) \H1(A)

∑
〈t,t〉Q1

=β

ω(g1, h1)Ψ(ω(h)ω(α)Φ, φ; t)dh1dh

=

∫
H1(A) \H(A)

IREG,β(g1,Ψ(ω(h)Φ, φ))dh.

Lemma 3.4.3. 1. Let t ∈ Un(k). If rk t = n then
∫
H(A) ω(h)Φ(t)dh is absolutely con-

vergent for any Φ ∈ S(Un(A)).

2. Let t1 ∈ Un−1
1 (k). If rk t1 = n− 1 then

∫
H(A)

Ψ(ω(h)Φ, φ; t1)dh =

∫
H(A)

∫
L(A)

ω(h)Φ

1 x

0 t1

φ(x)dxdh

is absolutely convergent for any Φ ∈ S(Un(A)) and φ ∈ S(L(A)).

Proof. The argument in [17, pp. 59-60] also includes the case m = n+ 1 and it proves (1).

For (2) consider the function on Un(A)

ϕ(u) =

∫
L(A)

Φ(u

1 x

1n−1

)φ(x)dx.

This integral is absolutely convergent and defines a smooth function on Un(A). Furthermore

ϕ ∈ S(Un(A)). Then we apply (1) to get (2).
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3.4.2 Fourier-Jacobi coefficients of the Siegel Eisenstein series

Now we compute the Fourier-Jacobi coefficients of the Siegel Eisenstein series

FJφ(g1, E(f, s)) =

∫
V (k) \V (A)

E(vg1, f, s)ϑ(vg1, φ)dv.

Let χ1 be the character associated to ψ and Q1 defined similarly as in (3.1.1).

Proposition 3.4.4. For φ ∈ S0(G̃1(A)) we have

FJφ(g1, E(f, s)) =
∑

γ∈P1(k) \G1(k)

R(γg1, f, s, φ)

where

R(g1, f, s, φ) =

∫
V (A)

f(wnvwn−1h)ω(vwn−1h)φ(0)dv.

is a holomorphic section of Ind
G̃1(A)

P̃1(A)
(χ1, s) for Re s >> 0. Furthermore R(g1, f, s, φ) is

absolutely convergent for Re s > −(n−3)/2 and can be analytically continued to the domain

Re s > −(n− 2)/2.

Proof. This was proved in [9, Theorem 3.2 and Theorem 3.3].

Now we will relate R(g1, fΦ, s, φ) to Ψ(g1,Φ, φ). First we need a lemma.

Lemma 3.4.5. Let n = 1 and S ∈ k×. Assume m ≥ 5 or (m, r) = (4, 0), (4, 1), (3, 0) or

(2, 0). Let w =
(

0 1
−1 0

)
and s0 = m

2 − 1. Then

∫
A
fΦ(w

1 z

0 1

 , s)ψS(z)dz (3.4.3)

can be meromorphically continued to the whole s-plane and is holomorphic at s = s0. Its

value at s = s0 is 0 if Q does not represent S. If Q =
(
S
Q1

)
then its value at s = s0 is

equal to the absolutely convergent integral

κ

∫
H1(A) \H(A)

Φ(h−1

1

0

)dh
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where κ = 2 for (m, r) = (2, 0) and κ = 1 otherwise.

Proof. The cases excluded are those where the Eisenstein series has a pole at s = s0 or when

the theta integral is not absolutely convergent. Then (3.4.3) is the S-th Fourier coefficient

of E(g, s, f) and ∫
H1(A) \H(A)

Φ(h−1

1

0

)dh

is the S-th Fourier coefficient of I(g, s). Thus the lemma follows from the known Siegel-Weil

formula for n = 1. Please see [10] for details.

Proposition 3.4.6. Assume m = n+ 1. Also assume that m ≥ 5 or (m, r) = (4, 0), (4, 1),

(3, 0) or (2, 0). Let φ ∈ S0(L(A)) and fΦ(s) be a holomorphic section of I(χ, s) associated

to Φ ∈ S(Un(A)). If Q does not represent S then R(g1, fΦ, s, φ) = 0. If

Q =

S
Q1


then

FJφ(g1;E(s, fΦ))|s=0 =

∫
H1(A) \H(A)

E(g1, fΨ(ωQ(h)Φ,φ)(s))dh.

Proof. First we simplify R(g1, fΦ, s, φ). We will suppress the subscript Φ. Suppose v =

v(x, 0, 0)v(0, y, z). Then R(g1, f, s, φ) is equal to

∫
V (A)

f(wnv(0, y, z)wn−1g1, s)ω(wn−1g1)φ(x)ψS(z + 〈x, y〉)dv

=

∫
V (A)

∫
L(A)

f(wnv(0, y, z)wn−1g1, s)ω(g1)φ(t)ψS(〈−x, t〉)ψS(z + 〈x, y〉)dtdv.

Integration against x vanishes unless y = t. Thus we continue

=

∫
A

∫
L(A)

f(wnv(0, y, z)wn−1g1, s)ω(g1)φ(y)ψS(z)dydz.
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Embed Sp(2) into G = Sp(2n) by

g0 =

a b

c d

 7→


a b

1n−1 0n−1

c d

0n−1 1n−1



and denote this embedding by ι. Also denote the lift S̃p(2) → S̃p(2n) by ι. Then as a

function of g0 ∈ S̃p(2),

f(ι(g0)wn−1


1n

0 y

ty 0n−1

0n 1n

wn−1g1)

is a weak SW section associated to

u 7→ ω(wn−1


1n

0 y

ty 0n−1

0n 1n

wn−1g1))Φ(u, 0),

a Schwartz function in S(U(A)). Then by lemma 3.4.5, if Q does not represent S then

R(g1, f, 0, φ) = 0. If Q =
(
S
Q1

)
then by Lemma 3.4.5 R(g1, f, 0, φ) is equal to

∫
H1(A) \H(A)

∫
L(A)

ω(wn−1


1n

0 y

ty 0n−1

0n 1n

wn−1g1)Φ(h−1

1 0

0 0

)ω(g1)φ(−y)dydh.

Note the part

ω(wn−1


1n

0 y

ty 0n−1

0n 1n

wn−1g1)Φ(h−1

1 0

0 0

) = ω(g1)Φ(h−1

1 −y

0 0

).
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Thus we find

R(g1, f, 0, φ) =

∫
H1(A) \H(A)

ω(g1)Ψ(0, ω(h)Φ, φ)dh.

The calculation relies on the Siegel-Weil formula in the case n = 1 and m− r > 2 or r = 0

arbitrary. Thus we have to exclude certain cases where the Eisenstein series may have a

pole at s0 = (m− 2)/2.

Remark 3.4.7. The cases not covered above are (m, r) = (4, 2), (3, 1) and (2, 1). The

anisotropic cases and the m even cases of the Siegel-Weil formula were dealt with in [17].

Thus we cannot go down only when we reach the (m, r) = (3, 1) case.

3.5 Some Representation Theory

Now we want to study irreducible submodules of the induced representations and show

that it is nonsingular in the sense of Howe[7]. In Section 3.6 we will interpret the difference

A(g,Φ) = E(g, s, fΦ)|s=0−2I(g,Φ) as an element in an irreducible nonsingular submodules.

This forces the B-th Fourier coefficients of A to vanish if B is not of full rank.

Fix v a finite place of k and suppress it from notation. Thus k is a nonarchimedean

local field for the present. We consider the various groups over k. Let χ be a quasicharacter

of P̃ trivial on N and form the normalised induced representation I(χ) = IndG̃
P̃

(χ). Define

maximal parabolic subgroups of GLn:

Qr =


a ∗

0 b


∣∣∣∣∣∣∣a ∈ GLn−r, b ∈ GLr

 .

Here r is not related to the Witt index of Q.

Lemma 3.5.1. The Jacquet module of I(χ)N has an M̃ -stable filtration

I(χ)N = I0 ⊃ I1 ⊃ · · · ⊃ In ⊃ In+1 = 0

with successive quotients

Zr(χ) = Ir/Ir+1 ∼= IndG̃Ln
Q̃r

(ξr)
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where ξr is the quasicharacter of Qr given by

ξr



a ∗

0 b

 , ζ


 = χ


m


a

tb−1


 , ζ


 | det a|

n+1−r
2 | det b|

r+1
2 .

Proof. We follow the proof in [18]. Choose double coset decomposition representatives wr

for P̃ \ G̃/P̃ : for 0 ≤ r ≤ n, let

wr =





1n−r 0 0 0

0 0 0 1r

0 0 1n−r 0

0 −1r 0 0


, 1


.

Then the relative Bruhat decomposition holds G̃ = qnj=0P̃wjP̃ . Let J0 = I(χ) and for

1 ≤ r ≤ n + 1, set Jr =
{
f ∈ J0

∣∣∣f = 0 on P̃wr−1P̃
}

. Alternatively set Jn+1 = 0 and

Jr =
{
f ∈ I(χ)

∣∣∣supp(f) ⊂ qnj=rP̃wjP̃
}

. Also define

Nr =

n
0 0

0 a


∣∣∣∣∣∣∣a ∈ Symr(k)

 .

We check that we have a P̃ -intertwining map

Jr → IndG̃Ln
Q̃r

(ξr),

Φ 7→
{

Ψ : (m(a), ζ) 7→
∫
Nr

Φ(wrn(m(a), ζ))dn

}
.

Obviously the map factors through Jr+1 if the above is well-defined. Notice that the

properties of Rao’s 2-cocycle[24, Theorem 5.3] implies that wrn(m, ζ) = (m′, ζ)wrn
′ for

some other elements m′ ∈ M and n′ ∈ N . Standard computation then shows that Ψ is in

the space of IndG̃Ln
Q̃r

(ξr).

Gustafson checked in Spn case that the integral converges and that the map is surjective

and that the kernel of the map Jr/Jr+1 → IndG̃Ln
Q̃r

ξr is Jr/Jr+1(N). By exactness of
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Jacquet functor we get an M̃ -module isomorphism of JrN/J
r+1
N with the space IndG̃Ln

Q̃r
ξr.

Setting Ir = JrN for each r finishes the proof.

We are interested in the case where χ(m(a), ζ) is the one in (3.3.1).

Lemma 3.5.2. Suppose that π ⊂ I(χ) is a G̃-submodule. Then

dim Hom
G̃

(π, I(χ)) ≤ 2.

In particular, I(χ) has at most two irreducible submodules.

Proof. The centre Z̃ of G̃Ln consists of elements of the form

(aIn, ζ).

Also note that we can view χ as a character on G̃Ln. Given π

Hom
G̃

(π, I(χ)) = Hom
G̃Ln

(πN , χ| |(n+1)/2).

Now we consider the generalized eigenspaces of πN and of I(χ)N with respect to the action

of Z̃, where the eigencharacter of interest is

µ(aIn, ζ) = χ(aIn, ζ)|a|n(n+1)/2.

On the other hand the central characters of the successive quotients Zr(χ) of I(χ)N are

(aIn, ζ) 7→ χ


aIn−r

aIr

 , ζ

 |a|n2+n−2nr−2r
2 .

If r = 0 then one of these coincides with µ. If r = n and since χ(an, ζ) = χ(a−n, ζ) we get

one more solution. Thus we get the bound

dim Hom
G̃

(π, I(χ)) ≤ 2.
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Let Rn(U) denote the image of the map

S(Un)→ I(χ)

Φ 7→ ω(g)Φ(0).

This map induces an isomorphism S(Un)H ∼= Rn(U) by [22]. Let U ′ be the quadratic space

with the same dimension and determinant with U but with opposition Hasse invariant.

Lemma 3.5.3. The G̃-modules Rn(U) and Rn(U ′) are irreducible. Furthermore I(χ) ∼=

Rn(U)⊕Rn(U ′),

Proof. We have an intertwining operator

M : I(χ)→ I(χ)

f 7→ (g 7→
∫
N
f(wnng)dn).

Thus I(χ) is unitarizable and hence completely reducible. Also by [16, Prop. 3.4] we

know that Rn(U) and Rn(U ′) are inequivalent and by [16, Lemmas 3.5 and 3.6] it cannot

happen that one is contained in the other. These combined with Lemma 3.5.2 force I(χ) ∼=

Rn(U)⊕Rn(U ′) with Rn(U) and Rn(U ′) irreducible.

Lemma 3.5.4. Assume m = n + 1. Then Rn(U) is a nonsingular representation of G̃ in

the sense of Howe[7].

Proof. This follows from [16, Prop 3.2(ii)].

3.6 Proof of Siegel-Weil Formula

Combining the results above we are ready to show the Siegel-Weil formula. Note the

assumption that m = n+ 1. We will focus on the cases where metaplectic double cover of

Sp(2n) must be considered so in the proofs we only deal with the cases where m is odd.

For the cases where m is even please refer to [17]. Set A(g,Φ) = E(g, s, fΦ)|s=0 − 2I(g,Φ).
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Proposition 3.6.1. Assume m ≥ 3 or m = 2 and V anisotropic. Then for B ∈ Symn(k)

with rank n, the Fourier coefficients AB = 0.

Proof. Without loss of generality suppose B =
(
S
β

)
for some S ∈ k× and some nonsingular

β ∈ Symn−1(k). First we prove the anisotropic case. The base case m = 2 and n = 1 was

proved in [23, Chapter 4]. Now for m = n + 1, if Q does not represent S then by Prop.

3.4.2 and Prop. 3.4.6 we obviously have AB = 0. If Q represents S then we can just assume

that Q =
(
S
Q1

)
. Note that Q1 is still anistropic. Again by Prop. 3.4.2 and Prop. 3.4.6

and the induction hypothesis we conclude that AB=0.

Secondly we assume Q to be isotropic and m ≥ 4, so Q represents S. We can just

assume that Q =
(
S
Q1

)
.

From Section 3.4 we get by Prop. 3.4.2 and Prop. 3.4.6 and the m even case FJφβ(A) = 0

for all φ ∈ S(L(A)) if the rank of β is n − 1. Then by Lemma 3.4.1, AB vanishes for

B ∈ Symn(k) such that detB 6= 0.

Finally assume that Q is isotropic and m = 3. By the expression for EB(g, s, fΦ) in

Remark 4.1 of [23] we know that EB(g, s, fΦ) is analytic at s = 0. Thus Prop 4.2 of [23]

holds: EB(g, 0, fΦ) = cIB(g,Φ) where c does not depend on Φ or B. Now we consider

objects in dimension m = 4 and n = 3. Here EB(g, 0, fΦ) = 2IB(g,Φ). By Prop. 3.4.2 and

Prop. 3.4.6 and the independence of c on Φ we conclude that c = 2 and this finishes the

proof of the lemma.

Remark 3.6.2. For the split binary case please refer to [17] and note that the Eisenstein

series vanishes at 0, so the Siegel-Weil formula takes a different form.

In the above proof we the argument dealing with the case (m, r) = (3, 1) can also be

used to prove other cases. We use two methods for the record.

Proof of Theorem 3.1.1. Fix a finite place v of k and fix for each place w not equal to v a

Φ0
w ∈ S0(Un(A)). Consider the map Av which sends Φv ∈ S0(Unv ) to A(g,Φv ⊗ (⊗w 6=vΦ0

w)).

By invariant distribution theorem Rn(Uv) ∼= S(Unv )Hv . Thus Av is a G̃v-intertwining oper-

ator

S(Unv )→ A
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which actually factors through Rn(Uv). As Rn(Uv) is nonsingular in the sense of [7] by

Lemma 3.5.4 take f ∈ S(Symn(kv)) such that its Fourier transform is supported on non-

singular symmetric matrices. Then for all g ∈ G(A) with gv = 1 and all B ∈ Symn(k) we

have

(ρ(f).A(Φ))B(g) =

∫
Symn(k) \Symn(A)

∫
Symn(kv)

f(c)A(Φ)(ngn(c))ψ(− tr(Bb))dcdb

=

∫
Symn(k) \ Symn(A)

∫
Symn(kv)

f(c)A(Φ)(nn(c)g)ψ(− tr(Bb))dcdb

=

∫
Symn(k) \ Symn(A)

∫
Symn(kv)

f(c)A(Φ)(ng)ψ(− tr(B(b− c)))dcdb

= f̂(−B)A(Φ)B(g).

The above is always 0, since f̂(B) = 0 if rkB < n and A(Φ)B ≡ 0 if rkB = n. Thus

ρ(f)A(Φ) = 0 as G(k)
∏
w 6=v Gw is dense in G(A). Since f does not act by zero and Rn(Uv)

is irreducible we find that in fact A(Φ) = 0 and this concludes the proof.

3.7 Inner Product Formula

We will apply Theorem 3.1.1 to show a case of Rallis Inner Product formula via the doubling

method. We will also deduce the location of poles of Langlands L-function from information

on the theta lifting.

Let G2 denote the symplectic group of rank 2n, P2 its Siegel parabolic and G̃2(A) the

metaplectic group. Let H = O(U,Q) with (U,Q) a quadratic space of dimension 2n + 1.

Let π be a genuine irreducible cuspidal automorphic representation of G̃(A). For f ∈ π and

Φ ∈ S(Un(A)) define

Θ(h; f,Φ) =

∫
G(k) \ G̃(A)

f(g)Θ(g, h; Φ)dg.
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Consider the mapping

ι0 : G̃(A)× G̃(A)→ G̃2(A)

((g1, ζ1), (g2, ζ2)) 7→ (



a1 b1

a2 b2

c1 d1

c2 d2


, ζ1ζ2)

if gi =
(
ai bi
ci di

)
. For g ∈ G set

ǧ =

1n

−1n

 g

1n

−1n

 .

Then let ι((g1, ζ1), (g2, ζ2)) = ι0((g1, ζ1), (ǧ2, ζ2)). In fact we are just mapping ((g1, ζ1), (g2, ζ2))

to

(



a1 b1

a2 −b2

c1 d1

−c2 d2


, ζ1ζ2).

With this we find Θ(ι(g1, g2), h; Φ) = Θ(g1, h; Φ1)Θ(g2, h; Φ2) if we set Φ = Φ1 ⊗ Φ2 for

Φi ∈ S(Un(A)). Suppose the inner product

〈Θ(f1,Φ1),Θ(f2,Φ2)〉

=

∫
H(k) \H(A)

∫
(G(k)×G(k) \(G̃(A)×G̃(A))

f1(g1)Θ(g1, h; Φ1)f2(g2)Θ(g2, h; Φ2)dg1dg2dh
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is absolutely convergent. Then it is equal to

∫
(G(k)×G(k) \(G̃(A)×G̃(A))

f1(g1)f2(g2)

(∫
H(k) \H(A)

Θ(g1, h; Φ1)Θ(g2, h; Φ2)dh

)
dg1dg2

=

∫
(G(k)×G(k) \(G̃(A)×G̃(A))

f1(g1)f2(g2)

(∫
H(k) \H(A)

Θ(ι(g1, g2), h; Φ)

)
dg1dg2

=

∫
(G(k)×G(k) \(G̃(A)×G̃(A))

f1(g1)f2(g2)I(ι(g1, g2); Φ)dg1dg2.

Thus we define the regularized inner product by

〈Θ(f1,Φ1),Θ(f2,Φ2)〉REG

=

∫
(G(k)×G(k) \(G̃(A)×G̃(A))

f1(g1)f2(g2)IREG(ι(g1, g2); Φ)dg1dg2. (3.7.1)

We could apply the Siegle-Weil formula now, but then we would not be able to use

the basic identity in [20] directly. Thus we will follow Li[19] to continue the computation.

Now consider G to be the group of isometry of the 2n-dimensional space V with symplectic

form ( , ) and suppose V = X ⊕ Y with X and Y maximal isotropic subspaces. Then

the Weil representation ω considered up till now is in fact realised on S(U ⊗ X(A)). Let

V2 = V ⊕V be endowed with the split form ( , )− ( , ). The space U ⊗V2 has two complete

polarizations U ⊗ V2 = (U ⊗ (X ⊕X))⊕ (U ⊗ (Y ⊕ Y )) and U ⊗ V2 = (U ⊗ V d)⊕ (U ⊗ Vd),

where V d = {(v, v)|v ∈ V } and Vd = {(v,−v)|v ∈ V }. There is an isometry

δ : S((U ⊗ (X ⊕X))(A))→ S((U ⊗ Vd)(A))

intertwining the action of G̃2(A). We have as in [19, Eq. (13)]

δ(Φ1 ⊗ Φ2)(0) = 〈Φ1,Φ2〉.

Then (3.7.1) is equal to

∫
(G(k)×G(k) \(G̃(A)×G̃(A))

f1(g1)f2(g2)IREG(ι(g1, g2); δΦ)dg1dg2.
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Note here the theta function is associated to the Weil representation realised on S(U ⊗

Vd)(A)). Now we apply the regularized Siegel-Weil formula and get

2−1

∫
(G(k)×G(k) \(G̃(A)×G̃(A))

f1(g1)f2(g2)E(ι(g1, g2), s, FδΦ)|s=0dg1dg2

where to avoid conflict of notation we use FδΦ to denote the Siegel-Weil section associated

to δΦ.

Set the zeta function to be

Z(f1, f2, s, F ) = 2−1

∫
(G(k)×G(k) \(G̃(A)×G̃(A))

f1(g1)f2(g2)E(ι(g1, g2), s, F )dg1dg2 (3.7.2)

and we will deduce some of its properties.

By the basic identity in [20] generalized to the metaplectic case and by [19, Eq. (25)]

Z(f1, f2, s, F ) is equal to

2−1

∫
G̃(A)

F (ι(g, 1), s)

∫
G(k) \ G̃(A)

f1(g2g)f2(g)dg2dg

= 2−1

∫
G̃(A)

F (ι(g, 1), s).〈π(g)f1, f2〉dg

=

∫
G(A)

F (ι(g, 1), s)〈π(g)f1, f2〉dg.

The last equation holds since we are dealing with genuine representations.

Suppose F and fi are factorizable. Then the above factorizes into a product of local

zeta integrals

Z(f1,v, f2,v, s, Fv) =

∫
Gv

Fv(ι(gv, 1), s)〈πv(gv)f1,v, f2,v〉dgv.

Let S be a finite set of places of k containing all the archimedean places, even places,

outside which πv is an unramified principal series representation, fi spherical and normal-

ized, F normalized spherical Siegel-Weil section and ψv unramified. Notice πv ⊗ χv can be

viewed as a representation of Gv rather than G̃v. Then by [19, Prop. 4.6] the local integral
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Z(f1,v, f2,v, s, Fv) is equal to

L(s+ 1
2 , πv ⊗ χv)

d̃G2,v(s)

where L(s+ 1
2 , πv ⊗ χv) is the Langlands L-function associated to π ⊗ χ and

d̃G2,v(s) = ζv(s+
1

2
) ·

n∏
i=1

ζv(2s+ 2i).

Note here we normalize the Haar measure on G̃v so that KGv has volume 1.

Proposition 3.7.1. The poles of LS(s, π⊗χ) in Re(s) > 1/2 are simple and are contained

in the set

{1, 3

2
,
5

2
, · · · , n+

1

2
}.

Proof. By [17, Prop. 7.2.1] we deduce that the poles of LS(s + 1
2 , π ⊗ χ) are contained in

the set of poles of d̃SG2
(s)E(s, ι(g1, g2), F ). The poles of the Eisenstein series in Re(s) > 0

are simple and are contained in {1, 2, . . . , n}, c.f. [8, Page 216]. From this we get the

proposition.

Our result combined with that of Ichino’s[8] gives an analogue of Kudla and Rallis’s [17,

Thm. 7.2.5]. Let m0 = 4n+ 2−m be the dimension of the complementary space U0 of U .

Theorem 3.7.2. 1. The poles of LS(s, π ⊗ χ) in the half plane Re s > 1/2 are simple

and are contained in the set

{
1,

3

2
,
5

2
, . . . ,

[
n+ 1

2

]
+

1

2

}
.

2. If 4n+ 2 > m > 2n+ 1 then suppose LS(s, π⊗χ) has a pole at s = n+ 1− (m0/2). If

m = 2n+ 1 then suppose LS(s, π ⊗ χ) does not vanish at s = n+ 1− (m0/2) = 1/2.

Then there exists a quadratic space U0 over k with dimension m0 and χU0 = χ such

that ΘU0(π) 6= 0 where ΘU0(π) denotes the space of automorphic forms Θ(f,Φ) on

OU0(A) for f ∈ π and Φ ∈ S(U0(A)n).

Proof. Consider the residue of LS(s, π ⊗ χ) at s0 + 1
2 with s0 ∈ {1, 2, . . . , n}. Then it

vanishes if the residue of Z(f1, f2, s, FδΦ) vanishes at s0. Note that for some choice of
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Schwartz function Φ, F is the normalized spherical standard Siegel-Weil section. We apply

the Siegel-Weil formula of Ichino’s[8] and ours and get

Ress=s0 Z(f1, f2, s, FδΦ) =

∫
(G(k)×G(k) \(G̃(A)×G̃(A))

f1(g1)f2(g2)IREG(ι(g1, g2),Φ)dg1dg2

or

Z(f1, f2, 0, FδΦ) =

∫
(G(k)×G(k) \(G̃(A)×G̃(A))

f1(g1)f2(g2)IREG(ι(g1, g2),Φ)dg1dg2

which is exactly the regularized pairing of theta liftings Θ(f1,Φ1) and Θ(f2,Φ2). Then if

the residue of LS(s, π ⊗ χ) at s0 + 1
2 does not vanish or LS(s, π ⊗ χ) does not vanish at 1

2

then the space of theta lifting does not vanish and we prove 2).

On the other hand the space of theta lifting vanishes if m0 < n by [17, Lemma 7.2.6].

This means s0 > (n + 1)/2, so LS(s, π ⊗ χ) can only have poles for s ≤ n+2
2 and we prove

1).

Finally we set s to 0 in the zeta function and get the Rallis inner product formula:

Theorem 3.7.3. Suppose m = 2n+ 1. Then

〈Θ(f1,Φ1),Θ(f2,Φ2)〉REG =
LS(1

2 , π ⊗ χ)

d̃SG2
(0)

· 〈π(ΞS)f1, f2〉

where

ΞS(g) = 〈ωS(g)Φ1,S ,Φ2,S〉.
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