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ABSTRACT

Lattice Subdivisions and Tropical Oriented Matroids

Featuring ∆n−1 ×∆d−1

LindsayCPiechnik

Subdivisions of products of simplices, and their applications, appear across

mathematics. In this thesis, they are the tie between two branches of my re-

search: polytopal lattice subdivisions and tropical oriented matroid theory.

The first chapter describes desirable combinatorial properties of subdivisions

of lattice polytopes, and how they can be used to address algebraic questions.

Chapter two discusses tropical hyperplane arrangements and the tropical ori-

ented matroid theory they inspire, paying particular attention to the previ-

ously uninvestigated distinction between the generic and non-generic cases.

The focus of chapter three is products of simplices, and their connections

and applications to ideas covered in the first two chapters.
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Chapter 1 1

Chapter 1

Idealic Triangulations

1.1 Introduction

There are many connections between combinatorial properties of lattice poly-

topes and properties of algebraic objects. A direct translation for these ties

is provided by the coordinate/degree map taking a lattice point to a corre-

sponding Laurent monomial.

Laurent monomial lattice point

xn := xn1

1 · . . . · xnd

d ∈ [x±1
1 , . . . , x±1

d ] ←→ vn = (n1, . . . , nd) ∈ Z
d

For example,

x3y4 ←→ (3, 4) ∈ Z
2

This map allows commutative algebraists to study various algebraic ob-

jects via lattice polyhedral complexes, particularly lattice polytopes and their
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decompositions. Figure 1.1 shows such a correspondence, the lattice polyhe-

dron corresponding to the ideal generated by x3y4 ⊂ k[x, y].

Figure 1.1.1: This shows the lattice polyhedron corresponding to the ideal

generated by x3y4. I =< x3y4 > corresponds to the staircase diagram con-

sisting of a positive orthant positioned at the point (3, 4).

These algebraic applications include investigating properties of the graded

semigroup ring RP = [σP ∩ Zd+1], where P is a lattice polytope and σP is

the pointed polyhedral cone obtained by embedding P ⊂ Zd at height one

⊂ Zd+1 as P × 1 ⊂ Rd+1. Figure 1.1 depicts an example, in which P is the

1-dimensional line segment [0, 1]. In this context, the polytope P is integrally

closed if and only if the domain RP is generated in degree one. I will say

more about how RP is obtained from P in Section 1.2.1.

People also examine the closely related notion of normality. For normality,

one considers the subring R̃P ⊆ RP generated by the degree one piece, and

calls P normal if R̃P is normal (i.e. integrally closed in its quotient field).

That is, P is normal if [σP ∩Λ] is generated in degree one, where Λ ⊆ Zd+1

is the sublattice generated by (P × {1})∩Zd+1 [9, Def. 2.59]. A hierarchy of

properties on both sides of this bijection can be found in Section 1.5.1.

My primary research interest in this area is the tie between the Gröbner
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Figure 1.1.2: Here we see a 1-dimensional polytope P , the segment [0, 1], on

the numberline and the 2-dimensional pointed cone σP in the plane.

basis of the defining ideal IP of R̃P = [x1 . . . xr]/IP (where r = |P ∩Zd|) and

regular triangulations of P . In particular, the Gröbner basis corresponding

to a regular unimodular triangulation consists of binomials corresponding to

minimal non-faces of the triangulation. I will explain this correspondence

in more detail, but most simply stated, the degree of each binomial in the

Gröbner basis is equal to the size of the corresponding non-face. Therefore,

triangulations provide degree bounds for Gröbner bases, and the existence of

such a triangulation guarantees the existence of a quadratic Gröbner basis,

which makes the search for quadratic triangulations of particular interest.

However, there is a hierarchy of other combinatorial covering and triangu-

lation properties corresponding to algebraic properties via this degree map.

This hierarchy also offers a rich source of research questions and correspond-

ing techniques for addressing them when quadratic triangulations can not be

found.
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1.2 Background

1.2.1 Algebraic Basics

While my work focuses on the combinatorial side of the correspondence be-

tween special triangulations and algebraic properties, it is good to have a

basic understanding of the algebraic objects being discussed. Therefore, I

will give the algebraic objects of interest an independent introduction. (For

more on related algebraic topics discussed here, see [16], [19], [29].)

Take a field (for example C) and consider [x1, ..., xn] the ring of poly-

nomials with coefficients in . An ideal in [x1, ..., xn] is a subset I of

[x1, ..., xn] which is closed under addition of elements in I and closed under

multiplication by polynomials in the ring (i.e. g + f ∈ I for all f, g ∈ I and

fg ∈ I for all f ∈ I and g ∈ k[x1, ..., xn]).

The Hilbert basis theorem states that any ideal can be obtained by taking

all linear combinations of polynomial multiples of some finite set of polyno-

mials, g1, ...gk, meaning linear combinations of the form f1g1 + ... + fkgk

where the fi are arbitrary polynomials in [x1, ..., xn]. The resulting ideal,

generated by g1, ...gk, is denoted 〈g1, ..., gk〉.

In a one-variable polynomial ring there is a natural ordering of monomials

according to degree. However, determining relative order of monomials in a

multivariable setting is not obvious. The question of determining the leading

term of a polynomial requires having some such ordering. Having such an

ordering is also useful for dividing polynomials in the multivariable setting.

In the multivariable case there are many potential term orders, and defining

leading terms and divisibility between polynomials requires making a choice.

Often a weight vector ω is used to define an order on the monomials in a
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multivariable polynomial ring. This ordering is used to determine leading

terms and to define the special ideal Iω, known as the initial ideal. Given an

integer vector u ∈ Zd, the notation xu denotes the monomial xu1

1 xu2

2 ...xud

d . In

general, a total order+ on Nn is a term order on the monomials of [x1, ..., xn]

given by xu < xv for all u < v ⊂ Nn if 0 is the unique minimal element and

u < v implies u+ a < v + a for all a,u, v ∈ Nn.

Common examples of term orders, which will appear in coming sections,

include lexicographic, degree lexicographic, and graded reverse lexicographic.

In lexicographic order, the variables are ordered by x1 > x2 > ... > xn and

xi > xk
j for all k whenever i < j. For degree lexicographic order, the variables

are ordered in the same manner, but monomials are first sorted by total

degree and then by their variable composition within degree. For example, in

purely lexicographic order x1x3
2x3 > x2

2x
4
3 because the first monomial contains

x1 and the second does not. However, in degree lexicographic order, x2
2x

4
3 >

x1x3
2x3 as x2

2x
4
3 has total degree 6 and x1x3

2x3 has total degree 5. Graded

reverse lexicographical order again first compares monomials by total degree,

but the smallest degree is taken first and ties are broken with a reverse

ordering of the variables (this is often described as sorting from right to left

rather than left to right).

A total order +ω can be defined by a real weight vector ω = (ω1, ...,ωd) ∈

Rd on the set of monomials in [x1, ..., xn] by declaring xu +ω xv if 〈u,ω〉 >

〈v,ω〉 breaking ties by lexicographical order (i.e. a component-wise compar-

ison of u and v where the greater of the first non-equal position determines

the greater monomial).

Having an ordering on the monomials of a multivariable polynomial ring

is not just a nice tool for determining a preferred order for the terms of

a polynomial and deciding when one polynomial divides another, it is also
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fundamental for defining Gröbner bases. Gröbner bases are generating sets of

ideals which satisfy special properties with respect to a given term order, and

have many applications. Their fundamental use is determining membership

in a monomial ideal. However, they can also be viewed as a multivariable

non-linear generalization of the Euclidean algorithm, 1 Gaussian elimination,

2 and integer programming problems.

Given an ordering +ω, the initial term of a polynomial f, denoted in"ω
(f)

is the maximal term of the monomials of f with respect to the term or-

der +ω. The initial ideal of an ideal I in [x1, ..., xn] with respect to a

term order +ω , denoted in"ω
(I), can be defined as the ideal generated

by the initial monomials of polynomials in I. A finite set of polynomials

G = {g1, ...gk} ⊂ I is a Gröbner basis of I with respect to +ω if in"ω
(I)

is generated by {in"ω
(g1), ..., in"ω

(gk)}. Monomials of [x1, ..., xn] not con-

tained in in"ω
(I) are called standard. These standard monomials form a

basis for R/I.

Monomials needn’t be contained in G to be in in"ω
(I); in particular, we

see that G is just a set of monomials such that the leading term of every

polynomial in I with respect to +ω is divisible by some monomial in G.

Note that I have made no claim that G’s cardinality is minimal. In general,

Gröbner bases are not unique. However, for every ideal I and term order

+ there is a unique reduced Gröbner basis [43]. A reduced Gröbner basis

is a Gröbner basis G such that for each g ∈ G, the coefficient of in"(g) is

1Recall that the Euclidean algorithm is used to compute greatest common divisors in

the single variable setting. Gröbner bases calculations take on this role in the multivariable

setting.

2Gaussian elimination is used to simplify systems of linear equations. Gröbner bases

calculations generalize this to the non-linear case.
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1, the set {in"(g) : g ∈ G} minimally generates in"(I) (i.e. nothing can

be removed), and for each g ∈ G the only term of g appearing in in"(I) is

in"(g). 3 My interest is in the properties of the terms of the polynomials

g ∈ G.

Of particular relevance to my work is the case of toric ideals. To define a

toric ideal, consider a d×n integer matrix A with columns a1, ...an, a vector

u = (u1, ...un) ∈ Zn, and Au = u1a1+ ...+unan. For any vector u ∈ Zn the

support of u is supp(u) = {i | ui ,= 0}, and u can be expressed uniquely as

u = u+−u−, where u+ and u− are non-negative and have disjoint support.

The toric ideal of A is given by:

IA = 〈xu+

− xu−

| Au = 0〉

Thinking ofA as a point (or vector) configuration, the binomials xu+

−xu−

in IA correspond to dependencies u = u+ − u− of A.

Gröbner bases of toric ideals can also be interpreted in terms of lattice

points of the polyhedra given by Au = b for u ≥ 0. This wonderful transla-

tion is the tie to my work in triangulations.

1.2.2 Necessary Triangulation Information

Making use of the connections between triangulations of lattice polytopes and

algebraic properties of associated rings and ideals requires some background

in lattice polytopes and their triangulations.

A lattice polytope in Rd is the convex hull of finitely many points in the

lattice Zd. Two lattice polytopes are said to be lattice equivalent if they

3There are algorithms for obtaining a reduced Gröbner basis of an ideal I given a term

order + (see [43]).
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are related by a lattice preserving affine map. That is, a map of the form

x → Ax + c, which preserves the lattice. Up to this equivalence, one can

assume the lattice polytopes discussed here are d-dimensional. There are

books devoted to the study of convex and lattice polytopes, including [48]

and [6].

A d-dimensional lattice simplex is the convex hull of d + 1 points in Zd.

The standard simplex ∆d is the convex hull of the origin 0 and each of the

standard unit vectors ei (1 ≤ i ≤ d). A unimodular simplex is a lattice

simplex which is lattice equivalent to the standard simplex. Equivalently, a

unimodular simplex can be described as a d-dimensional lattice polytope of

minimal possible Euclidean volume, 1/d! .

For my purposes, a lattice subdivision of a d-dimensional lattice poly-

tope P is a finite collection of lattice polytopes S satisfying the 3 following

properties:

1. every face of a member of S is itself a member of S,

2. any two elements of S intersect in a common face (possibly empty),

3. the union of the polytopes in S is P .

The d-dimensional polytopes in S are called the cells of the subdivision.

A triangulation of a lattice polytope is a subdivision in which each cell

is a simplex, and a triangulation is unimodular if every cell (i.e. simplex) is

unimodular. Figure 1.2.1 depicts three triangulations of the 9-point square.

The first is not unimodular, but the other two are.

A full triangulation is a lattice triangulation that uses every lattice point

in P . The right and center triangulations in Figure 1.2.1 are full, but the

triangulation on the left is not. Any subdivision can be refined to a full
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Figure 1.2.1: A non-unimodular triangulation and two unimodular ones.

They are all regular, but only the last is quadratic.

triangulation. One procedure for obtaining such a refinement is pulling,

which is discussed various places including Section 1.3.

Every unimodular triangulation is full, and in dimension ≤ 2 it is also true

that every full triangulation is unimodular. 4 However, this nice property

already fails in 3 dimensions, where there are polytopes which fail to admit

any unimodular triangulation. The tetrahedron in Figure 1.2.2 contains only

its vertices as lattice points. Therefore, its only lattice triangulation is the

trivial one, and since its Euclidean volume is q/6, this simplex does not have

a unimodular triangulation when q > 1.

conv
[

0 1 0 1
0 0 1 1
0 0 0 q

]

Figure 1.2.2: This family of Reeve’s tetrahedra is credited to John Reeve.

[35]. This class of examples demonstrates the existence of empty tetrahedra

of arbitrarily large volume.

Formally, a subdivision is regular if the cells are the domains of linearity

of a convex piecewise linear function (see [24, Section 14.3]). Less formally, an

4This two-dimensional case can be viewed as a result of, or evidence for, Pick’s formula,

which says that the area of a polygon is one less than its number of interior lattice points

plus half the number of lattice points on its boundary.
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intuitive notion of a regular triangulation (or subdivision) can be achieved

by thinking of a regular triangulation (or subdivision) as one that can be

obtained via a convex “folding” of the polytope (Figure 1.2.3 on the left).

The 3 triangulations in Figure 1.2.1 are all regular, but the one on the right

in Figure 1.2.3 is not.

Figure 1.2.3: The image on the left provides a visual of how a regular subdi-

vision can be obtained via a lifting or “folding.” The image on the right is a

two-dimensional example of a non-regular unimodular triangulation.

One way of constructing a regular subdivision of P is to specify heights (or

weights) ω ∈ RA where A = P ∩ Zd is the set of lattice points in P . Letting

the polyhedron P̃ = conv(a× [ω,∞) : a ∈ A) in Rd+1, the lower/bounded

faces of P̃ project to a subdivision of P . These are the domains of linearity

of the function x 1→ min{h : (x, h) ∈ P̃}. This lifting procedure is depicted

in Figure 1.2.3.

A set of lattice points whose convex hull does not form a face of a given

triangulation is called a non-face of that triangulation. Of particular interest

are minimal non-faces. These are collections of points that do not form faces

themselves, but for which every proper subset of the set does form a face.

Like the list of cells (typically described by the sets of points that form them),

the list of minimal non-faces completely characterizes a triangulation.

If all minimal non-faces of a triangulation contain two elements, it is a flag
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Figure 1.2.4: This shows a triangulation of the 6-point rectangle. Its mini-

mal non-faces are {A,D}, {A,E}, {A,C}, {B,D}, {B,F}, {C,A}, {C,E},

{C, F}, and {D,F}. The triangulation can be reconstructed from this list

of non-faces alone.

triangulation. A quadratic triangulation is defined to be one which has all of

these nice properties, meaning a triangulation that is regular, unimodular,

and flag. The rightmost triangulation in Figure 1.2.1 is quadratic. However,

in the center triangulation, the 3 white vertices form a minimal non-face, so

that triangulation is not quadratic. As already noted, the triangulation on

the left isn’t unimodular, so it too fails to be quadratic.

1.3 Constructing Nice Triangulations

As I will explain further in the next section, having these nice, special trian-

gulations is desirable. This is why people look for them and have techniques

for constructing and searching for them.
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1.3.1 Pulling

One useful technique for constructing regular triangulations is known as

pulling. Two different versions of pullings are used and appear in publi-

cation. The first is known as strong and the second is known as weak, but

both have desirable properties.

Given a subdivision S of a polytope P and lattice point m ∈ P ∩ Zd,

the strong pulling refinement pullmS is obtained from S by replacing every

face F ∈ S containing m by the pyramids conv(m, F ′) where F ′ runs over

all faces of F not containing m. The following properties of strong pulling

refinements make them a useful tool for constructing nice triangultaions.

Lemma 1.3.1. [21]

(1) Strong pulling preserves regularity.

(2) Strongly pulling all lattice points in P in some order results in a full

triangulation.

(3) If only vertices of P are pulled, then every maximal cell is the join

of the first pulled vertex v1 with a maximal cell in the pulling subdivisions of

the facets not containing v1.

The important message of this lemma is that every regular lattice subdi-

vision of a lattice polytope has a regular refinement which is a full triangu-

lation. If you start with the trivial triangulation, strong pulling can be used

to construct a full regular triangulation of any lattice polytope.

Proof. (1) Take a regular subdivision S of P , given by weights ω ∈ RA,

where (A = P ∩ Zd) and P̃ = conv(a× [ωa, inf) | a ∈ A), and m ∈ A. Set

ω′
m = min{h | (m, h) ∈ P̃}− ε and ω′

a = ωa for all a ∈ A \ {m}. For small

enough ε > 0, the strong pulling pullm(S) is induced by the weights ω′.
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(2) Each face of pullm containing m is a pyramid with apex m. Given

Q ∈ S with apex n, any face of pullm contained in Q that contains n still

has n as an apex. Strongly pulling all lattice points makes all lattice points

vertices of the subdivision. Each cell has each of its vertices as apices. This

makes them all simplices, and we have a full triangulation.

(3) Applying the argument used in the proof of (2) to the trivial subdi-

vision of P yields a subdivision with v1 as an apex of each cell.

The second notion of pulling comes up when considering subdivisions of

point configurations. Basically, in such settings each face F ∈ S remembers

which points yield F as their convex hull, which may or may not be all lattice

points in F .

To illustrate the difference between weak and strong pullings, consider

two regular subdivisions S1 and S2 of A = {1, 2, 3, 4} ⊂ Z1. Let S1 and

S2 be the subdivisions realized by the weight vectors ω1 = (0, 0, 0, 1) and

ω2 = (0, 1, 0, 1) respectively. Both consist of the segments [1, 3] and [3, 4]. In

S1 [1, 3] is the convex hull of 1, 2, and 3, but in S2 it appears as the convex

hull of just 1 and 3. When considering all subdivisions of A, it makes sense

to differentiate between S1 and S2, since S1 is not a triangulation and S2 is a

triangulation that refines S1. Weak pullings do this by removing all points in

the pyramid conv(m, F ′), but not the points in the base F ′ itself, from the

list of points to be pulled in the future when pulling at m. In the context of

toric algebra (described in 1.2.1), the weak pulling triangulation corresponds

to taking the reverse lexicographic term order. Figure 1.3.1 illustrates an

example of a strong and a weak pulling.

Like strong pullings, weak pullings also preserve regularity, and pulling
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m1 m2

m3

m1 m2

m3

Figure 1.3.1: The left pulls m1, then m2, then m3 strongly, and the right

pulls them weakly in the same order. Since m2 is contained in a face con-

taining m1, pulling it weakly after m1 has no impact. This is not the case

with m3, since m3 is not contained in a proper face also containing m1.

all lattice points of a polytope weakly results in a regular triangulation. In

fact, when all lattice points of P are vertices of the subdivision S, weak and

strong pullings agree. In Figure 1.3.1, the fact that m2 and m3 were not

vertices of the original subdivision (the empty 6-point rectangle) explains

why their weak and strong pullings do not agree. When this is the case (as

in the remainder of the work presented here), the term pulling can and will

be used unambiguously without specification.

Not all full triangulations obtained by pulling are unimodular, so poly-

topes for which every weak pulling triangulation is unimodular have a name.

They are called compressed [21]. This definition of compressed is from Stan-

ley [42], but there are other equivalent descriptions of such polytopes. Given

the usefulness of the property and the fact that more classes of polytopes

satisfy this condition than one would expect, it is worth saying a bit more.

Another useful characterization of compressed polytopes is based on their

“width,” a notion that will appear again later. Given a lattice polytope P

with facet defining inequalities 〈yi,x〉 ≤ ci, for primitive integral yi, the

width of P with respect to the i-facet of P is max〈yi, P 〉 − min〈yi, P 〉.

This can also be referred to as the width with respect to yi. A polytope

is width one with respect to a given facet if it lies entirely between the
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hyperplane containing that facet and the next parallel lattice hyperplane in

that direction. Armed with this definition, 3 equivalent characterizations of

compressed polytopes can be stated.

Theorem 1.3.2. [Santos MSRI 1997 (unpublished)] [31] [45] 5

Given a lattice polytope P , the following are equivalent.

1. P is compressed.

2. P has width one with respect to each of its facets.

3. P is lattice equivalent to the intersection of a unit cube Cn with some

affine space.

Proof. For the purposes of the proof, I introduce formal notation for the

P ’s minimal linear description, P = {x ∈ Rd : aT
i x ≥ bi, i = 1, .., n} and

name the lattice L. With this description 2 can be restated more technically

by saying that for each i there is at most 1 non-zero mi ∈ R such that

{x ∈ L : aT
i x = bi +mi} ∩ P is non-empty.

For (1) → (2) let P be compressed and assume that there is some i for

which both m and m′ satisfy the condition. That is both {x ∈ L : aT
i x =

bi +m} ∩ P and {x ∈ L : aT
i x = bi +m′} ∩ P are non-empty. With out loss

of generality, assume m > m′. Take pm ∈ {x ∈ L : aT
i x = bi +m} ∩ P and

pm′ ∈ {x ∈ L : aT
i x = bi +m′} ∩ P . Consider the two pulling triangulations

obtained by pulling pm first and by pulling pm′ first, and taking the same

ordering of the lattice points of the facet F = {x ∈ Rd : aT
i x = bi} ∩ P .

Given a simplex σ in the pulling triangulation of F , since m > m′ the ratio

5This theorem has 3 sources. It was first an unpublished result of Santos’s from MSRI

in 1997, but the version of the proof presented here is closer to Sullivant’s in [45].



CHAPTER 1. IDEALIC TRIANGULATIONS 16

of volumes Vol(pm ∪ σ) / Vol(pm′ ∪ σ) must be greater than 1. This means

the pulling triangulation of P that pulls pm first can not be unimodular.

This contradicts the assumption that P was compressed.

For (2) → (3) assume P satisfies 2. P is a lattice polytope, so this

condition ensures that each lattice point in P is in fact a vertex of P . It

is clear that, to have a proper interior lattice point, P would have to have

lattice width greater than one in some direction. Having a non-vertex lattice

point on some facet of P would imply that the facet itself was not lattice

width one in some direction, but clearly by induction, if P is facet width

one, then each of its facets must be as well. This means that each lattice

point of P is a vertex of P . To prove that P is lattice equivalent to an

intersection of a unit cube with some affine space, it is only necessary to

consider the case where P does not lie in an affine subspace. For if P does

lie in an affine subspace, a unimodular change of coordinates projecting to

a lower dimensional space would do the job. Assuming P does not lie in an

affine subspace implies that in the technical description of 2 there is exactly

1 non-zero mi for each i. These mi’s are used in the linear transformation.

Consider ϕ : Rd → Rn defined by

ϕ(x) = ((aT
1 x− b1)/m1, ...., (aT

nx− bn)/mn).

Since ϕ maps every vertex of P to a 0/1 vector, ϕ(P ) is a 0/1 polytope. ϕ

sends each of the facet defining inequalities aT
i x ≥ bi to yi ≥ 0. Therefore,

a point p ∈ ϕ(P ) if and only if p is contained in the n-cube and in the affine

span of the image of P ’s vertices, and 3 is satisfied.

For (3)→ (1) assume lattice polytope P satisfies 3 and let ϕ(P ) = Q be

the image of the corresponding affine transformation. Since the transforma-

tion maps lattice points of P to integer points in Q, and P and Q are other-
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wise isomorphic, P is compressed if and only if Q is. Therefore, it is enough

to show that any integral polytope Q of the form Q = Cn ∩ {x : Ax = b}

is compressed. The proof follows by induction on Q’s dimension. When

dim(Q) = 0 there is nothing to show. For dim(Q) = d, choose an ordering

of Q’s vertices. Take the first vertex p and construct the pulling triangula-

tion, by taking the pulling triangulation of each facet of Q not containing

P and coning these triangulations over p. We know that the orthogonal

distance between each simplex σ of the facet triangulations and p is 1, so

the normalized volume of each p ∪ σ is the normalized volume of σ. Each

facet of Q is a (d − 1)-polytope of the form Cn ∩ {x : Ax = b, xi = 0} for

some i, and therefore by induction compressed. Each triangulation of each

facet is unimodular, meaning each simplex σ has normalized volume 1. This

means each simplex of the pulling triangulation of Q has normalized volume

1, and is hence unimodular. Since the choice of pulling triangulation was ar-

bitrary, every pulling triangulation of Q must be unimodular, which means

Q is compressed.

Some well-known classes of polytopes are compressed (see [21]). Their

nice properties also prove useful in triangulating some larger polytopes. For

example, facet unimodular polytopes are an example class of polytopes which

can be subdivided into compressed polytopes with nice results.

A matrix comprised of vectors in Zd for which every (d × d) -minor is

−1, 0, or 1 is called unimodular. Let A = {n1, ...nr} be a collection of

vectors spanning Rd that form such a matrix. This set subdivides Rd into

regular lattice polytopes by inducing an infinite arrangement of hyperplanes,

{x ∈ Rd | 〈ni,x〉 = k} for i ∈ [1, r] and k ∈ Z. Lattice subdivisions of
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Rd that can be obtained this way are called lattice dicings [15]. A polytope

P whose primitive facet normals 6 form a unimodular matrix is called facet

unimodular. Induction shows that each face of a facet unimodular polytope

is itself facet unimodular in its lattice. The lattice dicing via the described

hyperplanes subdivides P into what is known as the canonical subdivision of

a facet unimodular polytope. As one would hope, this canonical subdivision

subdivides faces canonically as well, yielding the following straightforward

result.

Theorem 1.3.3. [21]

Every facet unimodular polytope, P ⊂ Rd has a regular unimodular tri-

angulation.

Proof. By construction, each dicing cell is width one with respect to each

facet direction, so each cell is compressed and any pulling refinement of this

canonical subdivision must be unimodular.

Similar methods have been used to find unimodular triangulations for a

number of classes of polytopes (see [21] for more examples). We will see it

again in Section 3, where it is applied to triangulate dilated polytopes.

6A vector is primitive if the greatest common divisor of its entries is 1. A primitive

facet normal is a vector orthogonal to the facet scaled to satisfy this condition.
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1.4 Push-Forward and Pull-Back Subdivisions

Projections are another powerful tool in the search for triangulations. When

applicable, push-forward and pull-back subdivsions can simplify the search

for a triangulation of a given polytope to a lower dimensional question of

triangulating a projection of the polytope. This is a useful technique, as

the complexity of searching for triangulations increases greatly as dimension

increases.

1.4.1 Chimney Polytopes and Pull-Back Subdivsions

Chimney polytopes and pull-back subdivisions offer a method for recursively

constructing a unimodular triangulation of a polytope, by finding unimodular

triangulations of prisms over a unimodular triangulation of a projection of

the original polytope. Explaining this requires definitions of both chimney

polytopes and pull-back subdivisions.

Given a lattice polytope Q ⊂ Rd, and linear functionals l and u such that

l ≤ u on Q, the chimney polytope associated with Q, l, and u is

P (Q, l,u) = {(x, y) ∈ R
d × R | x ∈ Q, l(x) ≤ y ≤ u(x)}.

Q is called the base of P , and is itself a lattice polytope. Figure 1.4.1 offers

a visual. The key to using projections to find unimodular triangulations is

the fact that a chimney polytope has a unimodular triangulation if its base

has one. This is where the pull-back subdivision is needed.

To define the pull-back subdivision, consider a lattice polytope P ⊂ Rd,

a projection π : Rd → Rd′ , with P ′ = π(P ), and a subdivision S ′ of P ′.

Intersecting the infinite prism π−1(σ) over each cell σ ∈ S ′ with P gives the

pull-back subdivision π∗S ′ of P .
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P

u

π

Q

l

Figure 1.4.1: This shows a chimney construction for which l = 0 and u(x) =

3− x on Q = [0, 2].

Theorem 1.4.1. [21] Given integral linear functionals l,u such that l ≤ u

along Q and the corresponding chimney polytope P = P (Q, l,u), P has a

(regular) unimodular triangulation if Q does.

Proof. Let T be the triangulation of Q. This defines a pull-back subdivision

of P into chimney polytopes over the simplices of T . Weights demonstrating

that this pull-back subdivision is regular can be obtained by “pulling-back”

the ω that showed T was regular in Q to P . This is done by assigning each

lattice point (a, h) in P the weight that its projection, a, had in Q.

Any maximal triangulation of such a prism is unimodular, so subdividing

each prism π∗T of P in this way yields a unimodular triangulation of P , and

using pullings for this ensures that regularity can be preserved.

This theorem means that if there is a unimodular transformation taking

a lattice polytope P to a chimney polytope as described above, projecting

to Q and searching for a unimodular triangulation of Q is a way of looking

for a regular unimodular triangulation of P . Iterations of this process can

be used to prove the existence of regular unimodular triangulations of high-

dimensional polytopes by examining their low-dimensional projections.

This inductive pull-back subdivision method has direct application to the
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class of Nakajima polytopes. Their recursive definition says that a polytope

P ⊂ Rd is Nakajima if P is a single lattice point in Zd or

P = {(x, xd) | 0 ≤ xd ≤ &(x) ∀x ∈ F},

where F is a facet of P , and itself a Nakajima polytope, and & is an integral

linear functional on Zd−1 that takes non-negative values on F ∩ Zd−1.

Theorem 1.4.2. [21] Every Nakajima polytope has a regular unimodular

triangulation.

Proof. Let P be a Nakajima polytope. If dim(P ) ≤ 2 the statement is clear.

Consider d = dim(P ) ≥ 3. In this case, projecting P in its last coordinate

yields a Nakajima polytope of dimension d − 1. Induction says that this

projection has a regular unimodular triangulation T ′, and so the pull-back

of T ′ gives a regular unimodular triangulation of P .

1.4.2 Push-Forward Subdivision

This method of pulling-back triangulations of projections to find regular uni-

modular triangulations of higher dimensional lattice polytopes can be gen-

eralized for polytopes with multiple functionals bounding them from above

and/or below. The difference in this case is that care must be taken in the

triangulation of Q to make sure that it respects the projection of the ridges

formed by the intersection of upper and/or lower facets of P . This process

is formally described using the push-forward subdivision.

Given a lattice polytope P ⊂ Rd with subdivision S and a projection

π : Rd → Rd′ , the push-forward subdivision π∗S of P ′ = π(P ) is the common

refinement of all faces of S. With this definition, the formal generalization

of Theorem 1.4.1 can be stated.
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y

Figure 1.4.2: This figure shows the projections Pxyz and Pxy in the example

described in 1.4.1.

Theorem 1.4.3. [21]

If P is a lattice polytope defined by

P = {(x, y) ∈ Q× R : li(x) ≤ y ≤ uj(x), for 1 ≤ i ≤ r, 1 ≤ j ≤ s}

where l1, . . . , lr and u1, . . . ,us are integral linear functionals such that li ≤

uj for 1 ≤ i ≤ r, 1 ≤ j ≤ s along the lattice polytope Q, and S is a (reg-

ular) subdivision of P whose push-forward to Q has a (regular) unimodular

refinement, then S has a (regular) unimodular refinement.

For an example of this, consider the 4-dimensional polytope P defined by

the following inequalities in x, y, z, and w.

0 ≤ x

0 ≤ y ≤ 3− x

0 ≤ z

x− 1 ≤ z

0 ≤ w ≤ 2 + x− z

w ≤ 4− y − z

(1.4.1)

The inequalities have been ordered so that each variable is bounded from

above, or below, by integral linear functions in the previous variables. P can
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be projected to 3-dimensional Pxyz with defining inequalities:

0 ≤ x

0 ≤ y ≤ 3− x

0 ≤ z ≤ 2 + x

x− 1 ≤ z ≤ 4− y .

This projection is the image on the left in Figure 1.4.2. Note that the facets

z ≤ 2 + x and z ≤ 4 − y do not pull-back to facets of P . These inequalities

are implied by 0 ≤ w and w ≤ 2+x− z and w ≤ 4− y− z. Pushing-forward

the trivial subdivision of P subdivides Pxyz along the plane x+ y = 2, which

is the projection of the ridge formed by the intersection of the upper bounds

of w in P ’s defining inequalities:

0 ≤ w ≤ 2 + x− z

w ≤ 4− y − z

}

x+ y = 2 .

The intersection of this hyperplane with Pxyz is the convex hull of the lattice

points (1, 1, 0), (0, 2, 0), (0, 2, 2), and (2, 0, 1), so this is a lattice subdivision.

Theorem 1.4.3 says that finding a regular unimodular triangulation of

Pxyz will yield one of P as well. However, Pxyz can be projected again,

and finding regular unimodular triangulations in 2-dimensions is a much

nicer task. Projecting Pxyz to the x-y-plane results in Pxy with defining

inequalities:

0 ≤ x

0 ≤ y ≤ 3− x.
(1.4.2)

Pxy is depicted on the right in Figure 1.4.2, where the push-forward subdiv-

sion of Pxyz along x+y = 2 is shown. In order to obtain a regular unimodular

triangulation of P , it is only necessary to find one of this lattice triangle that

respects its lattice subdivision along the lines x + y = 2 and x = 1 (which



CHAPTER 1. IDEALIC TRIANGULATIONS 24

themselves intersect in the point (1, 1)). Thus, Theorem 1.4.3 has reduced the

search for a regular unimodular triangulation of this 4-dimensional polytope

to a manageable hand computation.

This method of pull-back and push-forward subdivisions has been par-

ticularly successful on the class of smooth reflexive polytopes. A reflexive

lattice polytope is a lattice polytope P which contains exactly one interior

lattice point and for which each facet is lattice distance one from that lone

interior point. Without loss of generality, the interior point can be assumed

to be the origin. A lattice polytope is smooth if every cone in its normal fan

is unimodular. 7 Given a polytope P ⊂ Rd such that 0 ∈ int(P ), the polar

polytope P ∨ of P is defined as

P ∨ = {u ∈ R
d | 〈x,u〉 ≥ −1 ∀x ∈ P} .

When P is reflexive, P ∨ is also a lattice polytope, and if P is simplicial and

reflexive, P ∨ is smooth.

I first used the notion of allowing multiple upper and lower bounds in

the pull-back and push-forward subdivision, as described here, with Haase

to show that all smooth reflexive d-polytopes have regular unimodular trian-

gulations for d ≤ 4. I initially did this by hand computation using Batyrev’s

classification and descriptions of all 4-dimensional cases [7]. Thanks to

Øbro [28], there are explicit representations (up to lattice equivalence) of

all simplicial reflexive polytopes of dimension ≤ 8. There are 5, 18, 124, 866,

7622, 72256, and 749892 in dimensions 2, 3, 4, 5, 6, 7, and 8 respectively.

Haase and Paffenholz used a computer implementation of the pull-back and

7Recall that the normal fan to a polytope P ⊂ Rd is the fan that partitions Rd into

cones in bijection with the faces of P . The cones of this fan correspond to the cones normal

to each face of P .
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push-forward subdivisions (together with my visual inspection of some 2-

dimensional projection’s subdivisions) to confirm the existence of regular

unimodular triangulations for all but 108 of the examples of dimension ≤ 8.

These results are summarized in the following theorem.

Theorem 1.4.4. [21]

• All smooth reflexive polytopes in dimensions d ≤ 6 admit a flag regular

unimodular triangulation.

• All but at most 3 (out of 72256) of the 7-dimensional smooth reflexive

polytopes have a flag regular unimodular triangulation.

• All but at most 105 (out of 749892) of the 8-dimensional smooth reflex-

ive polytopes have a regular unimodular triangulation.

The remaining 108 cases may have such triangulations as well; however,

this approach has thus far been unable to construct them. Some of these

cases have been successfully projected to 3-dimensional subdivisions, which

were unable to be projected further. There is no reason to believe that

these projected 3-dimensional subdivisions may not admit nice triangulations

themselves, but this has not been confirmed.

1.5 Unimodular Triangulations and Gröbner

Bases

Armed with some background in triangulations and algebra, I turn our atten-

tion to how special triangulations of lattice polytopes can be used to study

properties of algebraic objects, and why people care so much about finding

these desirable triangluations.
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To this end, I recall the setup of a toric ideal described earlier, with

notational adjustments to reflect that which will be used in triangulation

discussions. Given a field and the homogenized set of lattice points in

polytope P , A = (P × {1})∩Zd+1), consider the polynomial ring S = [xa :

a ∈ A] with one variable for each lattice point. There is a canonical ring

homomorphism φP from S to the Laurent polynomial ring [t±1
1 , . . . , t±1

d , td+1]

which maps each variable to the corresponding, homogenized, t-monomial:

φP (xa) = ta = ta11 · . . . · tadd · td+1
d+1. The toric ideal IP = ker φP corresponding

to this map encodes affine dependencies among the lattice points in P [44,

Lemma 4.1]

IP =

〈

xm − xn : m,n ∈ Z
A

≥0 ,
∑

a∈A

maa =
∑

a∈A

naa

〉

where xn =
∏

a∈A xna

a .

A generic choice of weights ω ∈ RA induces a regular triangulation Tω of

P , as described earlier. Such an ω also induces an ordering of the monomials

in S: xm ≺ xn ⇐⇒ 〈ω,m〉 < 〈ω,n〉. Given a polynomial f ∈ S, the

leading term inω f is the monomial deemed greatest in this ordering with a

non-zero coefficient in f , and the initial ideal inω I = 〈inω f : f ∈ I〉 of

an ideal I is the collection of leading terms for all polynomials in I. A set

of polynomials in I whose leading terms generate this initial ideal, inω I, is

called a Gröbner basis of I with respect to ω.

For a simplicial complex, such as Tω, the ideal generated by monomials

corresponding to minimal non-faces of the complex is known as the Stanley-

Reisner ideal (see example in Figure 1.5.1). The correspondence between

inω IP and Tω tells us whether this triangulation induced by ω is unimodular.
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Figure 1.5.1: This image shows an example of a triangulation and its corre-

sponding Stanley-Reisner ideal.

Lemma 1.5.1. [21] Let Tω be a regular unimodular triangulation Tω of P .

Then

inω IP =

〈

∏

a∈N

xa : N is a minimal non-face of Tω

〉

.

Proof. Given a subset N of A, consider the incidence vector of N , n(N) ∈

{0, 1}A. The resulting squarefree monomial
∏

a∈N xa will be abbreviated as

xn(N).

For any non-face N , the sum b(N) =
∑

a∈N a is a lattice point in the

cone σP (this is true whether or not N is a minimal non-face). Therefore, b

belongs to exactly one cone over some face F = F (N) of Tω (this is true in

general of lattice points in the cone σP ). This means b can be written as a

non-negative and integral linear combination
∑

a∈F ma(N)a = b(N) of the

vertices of the unimodular simplex F . This yields fN = xn(N) − xm(N) ∈ IP

with leading term inω fN = xn(N). This would fail if N was a face because

in that case b(N) would lie in the cone over the face N defining it, and the

construction would produce fN = xn(N) − xn(N), also known as zero.

Conversely, consider a binomial f = xn−xm ∈ IP , such that inω f = xn.

I argue that the support of N , n, is a non-face. By the definition of the
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regular triangulation Tω, the exponent vector m of a monomial
∏

a∈F xma

a

has the least ω-weight among all exponent vectors n with
∑

a∈A maa =
∑

a∈A naa. No such monomial, supported on a face F of Tω, can ever be the

initial term of a binomial in IP , so N contains a minimal non-face and xn(N)

divides xn.

The constructive nature of this lemma’s proof demonstrates how Tω can

be recovered from inω IP and conversely how inω IP can be determined from

Tω, as faces of Tω correspond to the standard monomials of inω IP . Further,

a Gröbner basis can be obtained from the triangulation by considering the

binomial xn(N) − xm(N) for each for each minimal non-face N where n(N)

and m(N) are as described in the proof.

However, when Tω is not unimodular, the formula must be modified. In

this case, the correspondence is not with the ideal itself, but the radical of

the ideal. Given a ring S and ideal I ∈ S, Rad(I) = {r ∈ S | rn ∈ I for

some positive n ∈ Z }. For the non-unimodular case, Lemma 1.5.1 must be

modified to:

Rad(inω IP ) =

〈

∏

a∈N

xa : N is a minimal non-face of Tω

〉

.

While Tω can still be recovered from inω IP , the reverse is not true.

Theorem 1.5.2. [44] Given that A generates the lattice Zd+1, the initial

ideal inω IP is squarefree if and only if the regular triangulation Tω of P is

unimodular.

This appears as Corollary 8.9 in [44], and follows from [22, Thm. 5.3].

Proof. When Tω is unimodular, the inω IP is squarefree by the last lemma

(since a monomial whose exponents are given by an incidence vector is always

squarefree).
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Consider the case where Tω is not unimodular. We know some face of

the triangulation, F = conv(a0, . . . ,ad) ∈ Tω, is a simplex of determinant

D > 1. Let the sublattice of Zd+1 generated by the vertices of this face F be

denoted by Λ. Note that for any m ∈ Zd+1 we will have Dm ∈ Λ.

We construct a vector b as a non-negative integral linear combination

of A such that b ∈ coneF ∩ Zd+1 \ Λ . Start by taking b′ ∈ Zd+1 \ Λ. b′

is an integral linear combination of A, by construction. Add a multiple of

D
∑

a∈A a large enough that the resulting coefficients are non-negative; then,

add a big multiple of
∑

a∈F a so the result is a point in coneF .

Now, consider all n ∈ ZA
≥0 such that

∑

a∈A naa = b and pick the one

whose ω-weight is minimal. We know b ,∈ Λ, by construction, so xn is not

supported on F , but xn is still never a leading term (i.e. xn ,∈ inω IP ).

However, Db ∈ coneF ∩Λ, so there is some m such that Db =
∑d

i=0miai

and xDn − xm ∈ IP . Since it is supported on the face F , xm can’t be the

leading term, which means we must have (xn)D ∈ inω IP . Clearly (xn)D

can’t be squarefree for D ≥ 1. Therefore, inω IP is not squarefree.

This theorem yields a construction for regular unimodular triangulations,

and shows how the regular unimodular triangulations in my research yield

Gröbner bases of their corresponding toric ideals.

Lemma 1.5.1 also implies the correspondence between quadratic triangu-

lations and quadratic Gröbner bases that I referenced earlier. (The version

presented here combines Corollaries 8.4 and 8.9 in [44]. )
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Theorem 1.5.3. [21] If P has a quadratic triangulation T , then the defining

ideal IP of the projective toric variety XP ⊂ Pr−1 has a quadratic Gröbner

basis.

In which case, the corresponding initial ideal is :

in(IP ) = 〈xaxb | ab is not an edge in T 〉 .

This is a powerful tool. For example, combined with Theorem 1.4.4,

it guarantees that all toric fano d-folds of dimension ≤ 6 have quadratic

triangulations.

1.5.1 Covering Properties

The results seen in Section 1.5 are not the only ties between combinatorial

properties of polytopes and properties of corresponding algebras. There are

many links appearing in hierarchies connecting properties of convex geometry

and algebra [21].

The combinatorial properties include, in decreasing strength:

1. P ∩ Zd is totally unimodular

2. P is compressed

3. P has a regular unimodular triangulation

4. P has a unimodular triangulation

5. P has a unimodular binary cover (a Z2 cycle generating Hd(P, ∂P ;Z2)

formed by unimodular simplices)

6. P has a unimodular cover
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7. C has a free Hilbert cover (every lattice point is a Z≥0-linear combina-

tion of linearly independent lattice points in P × {1})

8. C has the integral Carathéodory property (every lattice point is a Z≥0-

linear combination of dimC many lattice points in P × {1})

9. P is integrally closed

Most of these properties translate directly into an algebraic language

expressing facts about RP and IP , but there are other properties of interest

which do not fit as neatly into the larger hierarchy.

(1’) P has a quadratic triangulation

(2’) IP has a quadratic Gröbner basis

(3’) RP is a Koszul algebra ( has a linear free resolution as an RP -module)

(4’) IP is generated by quadrics

The two hierarchies are related by the fact that a quadratic triangulation

is, in fact, a regular unimodular triangulation. Both hierarchies appear in

the forthcoming survey of triangulation results: [21].

Though not all of these properties appear directly in my work, their rel-

ative position and relevance in the hierarchy make them worth noting. The

quadratic triangulation defined earlier has the nicest properties. The desir-

ability of such a triangulation combined with the fact that understanding

them requires unimodularity, regularity, and triangulations, all of which ap-

pear in the hierarchy, make them a worthy destination in the first string of

definitions I gave. However, that doesn’t mean the covering properties should

be ignored. When a quadratic triangulation does not exist, the search for

nice covers becomes a next target.
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1.5.2 Covering Background

Covering properties are typically discussed in terms of cones. A cone is

the space of all positive linear combinations of its set of generating vectors

{a1,a2, ...am}; C = cone {a1,a2, ...am} = {λ1a1 + λ2a2 + ... + λmam ∈ Rn

: λi ∈ R, λi ≥ 0 for i = 1, 2, ...m}. Here I am interested in the cone over the

polytope being investigated. When discussing a d-dimensional polytope the

“cone over P”, σP is the cone whose intersection with its height one plane is

the polytope P . Taking a1,a2, ...am ∈ R such that {0} is the largest linear

subspace of C ensures that C will be rational, pointed, and polyhedral. This

is clearly the case in the cone over the polytopes discussed in this work.

A Hilbert basis of C is a finite set of integral vectors h1,h2, ...hk such

that each integral vector of C can be expressed as a non-negative integral

combination of { h1,h2, ...hk} meaning:

C ∩ Z = { λ1h1+λ2h2+ ...+λkhk ∈ Rn : λi ∈ Z, λi ≥ 0 for i = 1, 2, ...k}.

A minimal Hilbert basis is the finite set of integral vectors in C that cannot

be expressed as a sum of 2 other integral vectors in C. The fact that every

cone has a Hilbert basis is a result dating to Grodan (1873), but the fact

that the minimal Hilbert basis for every pointed cone was unique was shown

by van der Corput (1931). This is further discussed in Schrijver’s Theory of

Linear and Integer Programing [39].

Covers of a cone C refer to properties of a collection C = {C1, C2, ...Cs}

of subcones of C. Such a collection C is a cover of C if every point of C is

contained in some subcone Ci. That is, if the union of the cones of C is C.

The difference between a triangulation and a cover is that in a cover each

point may be contained in more than one cell. In a cover, one can consider

interior facets and generic points of the cover. A facet F of a subcone Ci is
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said to be an interior facet if F is not contained in the boundary of C. The

set of interior facets of the cones in C is denoted F = {F1, F2, ...Fr }. A point

g0 ∈ int(C) is said to be generic with respect to C if it is not contained in the

boundary of any of the cones of C. This is to say it is not on the boundary

of C nor is it contained in any interior facet of a cone in C. Triangulations

correspond to covers in which each generic point is contained in exactly 1 of

the Ci and each interior facet Fi is a facet of exactly 2 of the Ci. With this

terminology, C is said to be a binary cover of C if every generic point g0 ∈ C

is contained in an odd number of the subcones Ci and every interior facet Fj

is a facet of an even number of the Ci. In this context unimodularity refers to

the unimodularity of each of the cones of C. Here, rather than looking for a

proper triangulation of a polytope, the search is for a collection of unimodular

simplices contained in the span of the polytope satisfying the desired overlap

properties. Triangulations are also binary covers. While points can still be

in multiple cones, binary covers are nicer than general covers in that their

cells match up along interior (and exterior) facet boundaries.

There are infinite classes of cones of dimension ≥ 4 that do not have uni-

modular triangulations, but do have binary covers [17]. Unfortunately, most

explicitly known examples are too involved for me to provide a simple visual

here. 8 However, an example of a binary cover that does not correspond

to a triangulation can be obtained by considering a 3-sheeted cover where

each sheet is itself a triangulation. In this case each generic and boundary

point will be contained in 3 ∗ 1 cones, and each interior facet point will be

contained in 3 ∗ 2 cones.

8For example, the 4-dimensional simplicial cone c[14, 31, 34, 39] has a binary cover, but

does not have a unimodular cover [17]. Its binary cover contains 161 facet unimodular

cones.
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Generally, the lower levels of the hierarchy are only investigated for a

polytope or class of polytopes when the more desirable properties can not be

confirmed.

1.6 Polytopal Dilations, The KMW Theorem,

and 2S(p, q)

One class of polytopes for which there is interest in binary covers is the class

of dilated simplices, 2S(p, q). In general, interest in dilations of polytopes ties

back to an early result on unimodular triangulations by Knudsen, Mumford,

and Waterman [23]. It may not be surprising that, given a polytope P ,

dilations cP of P inherit desirable properties regarding nice triangulations.

However, it is actually true that all polytopes P , even those who fail to

have nice triangulations themselves, have dilations with nice triangulations.

The statement of their theorem itself is important, but it also raised many

interesting questions and sparked further research, including the discussion

of 2S(p, q) seen here.

1.6.1 Polytopal Dilations

Before discussing how to triangulate a dilated polytope, it is useful to know

what happens when a triangulation is dilated. Given a polytope P with a

(regular) unimodular triangulation T , dilating each simplex of T results in a

triangulation of cP made up of dilations of unimodular simplices. The dilated

standard simplex is c∆d = {x ∈ R
d+1
≥0 :

∑

xi = c}. Slicing this simplex

along hyperplanes parallel to its facets (i.e. xi = k for i = 1, ..., d+1 and k =

1, .., c− 1) divides it into hypersimplices. This is a regular subdivision, and
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no desirable properties are lost by mapping this subdivision of the standard

dilated simplex to a dilation of an arbitrary simplex. Further, the natural

nature of this subdivision guarantees that the simplices line up properly

on their boundaries. As a result, this canonical subdivision of cT yields a

triangulation of cP which will be regular if T is.

Theorem 1.6.1. [21]

If a lattice polytope P has a (regular) unimodular triangulation T , then

for every positive integer c, cP also has a regular unimodular triangulation.

Proof. All cells (the hypersimplices) of the described canonical subdivision

of cT are facet width one with respect to all faces, by construction. There-

fore, any pulling refinements of its vertices, yields a (regular) unimodular

triangulation.

In fact, conditions on non-faces can also be preserved under dilation.

Theorem 1.6.2. [21]

If a lattice polytope P has a quadratic triangulation, then so does its

dilation cP for every positive integer c.

Constructing these triangulations requires taking a little more care choos-

ing weights which will induce a triangulation with the desired properties, and

the overall proof is a bit more involved. It has been omitted as it draws on

results regarding classes of polytopes that have not been discussed here.

These theorems guarantee that dilations of polytopes with nice triangu-

lations will have nice triangulations, but in fact it is also true that for large

enough c, cP will have nice triangulations even when the original polytope

P does not.
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1.6.2 The KMW Theorem

The fact that sufficiently large dilations of any polytope have nice triangula-

tions is the content of Knudsen, Mumford, and Waterman’s theorem.

Theorem 1.6.3. [23]

For every polytope P , there is a factor c = c(P ) ∈ Z>0 such that the

dilation cP admits a regular unimodular triangulation.

c(P ) is called a KMW-number of P .

The proof of this theorem depends on Knudsen-Mumford triangulations

of d-space, which are not discussed here. It is based on induction on the

“size” of the polytope with respect to the lattice. Clearly if the polytope is

itself a unimodular simplex there is no work to be done. The work of the

proof is broken into two cases. The first case is where P ’s size with respect

to the lattice is composite, the second is where it is prime. The full proof,

along with necessary background on unimodular triangulations of Rd can be

found in [10].

This theorem has been a jumping-off point for much research to answer

the many questions it inspires, including:

• What is the minimum c(P ) for a given polytope P ?

• Is there a c(P ) such that it is a KMW-number for every polytope of

dimension d?

• What is the structure of the set of KMW-numbers of a given P — in

particular if it is a monoid? 9

9Theorem 1.6.1 makes it clear that the set is closed under multiplication, but it is not

clear whether it is closed under addition. No polytope and integer pair P , c are known for

which c is a KMW-number for P but c+ 1 is not. It is not clear that this is not possible.
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The search for answers to these questions is an active area of research.

This work often focuses on specific classes of polytopes whose structure makes

them particularly manageable and/or useful. It is known that every line

segment and lattice polygon has a regular unimodular triangulation. In the

case where dim(P ) = 1 or 2, P has a KMW-number c(P ) = 1, but other

dimensions are not so straightforward.

The 3-dimensional case is relatively well understood in comparison to

higher dimensions, but there are still open questions. In particular, the

following has been established (for more on the proofs of these results see

[21]):

• There are 3-dimensional polytopes for which 1 and 2 are not KMW-

numbers.

• c = 4 and c ≥ 6 are KMW-numbers of every 3-dimensional polytope.

Whether 3 and 5 are KMW-numbers for all 3-dimensional polytopes re-

mains an open question. Proofs in this area are based largely on finding

nice, compatible triangulations of dilated simplices, so the search for trian-

gulations of dilated simplices is of particular interest. I have examined the

case of 2S(p, q).
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1.6.3 2S(p, q)

White’s Theorem [38, 46, 27] says that any empty tetrahedron in R3 is width

one with respect to some (not necessarily a facet normal) lattice direction,

meaning it fits between some pair of adjacent hyperplanes. 10 This means

every empty 3-simplex is unimodularly equivalent to

S(p, q) = conv
[

0 0 1 p
0 0 0 q
0 1 0 1

]

for some pair of integers 0 ≤ p ≤ q with gcd(p, q) = 1. Since unimodular-

ity is of such interest, note that the volume of S(p, q) is q.

S(p, q) is an empty simplex, as shown in Figure 1.6.1, but dilations

cS(p, q) clearly aren’t. However, we know exactly where cS(p, q)’s non-vertex

lattice points are and can determine how many non-vertex lattice points a

given cS(p, q) contains. The lattice points of cS(p, q) lie on the bottom edge,

top edge, and on the c − 1 horizontal lattice planes between the top and

bottom edges. In particular, the intersection of each of the intermediate

planes with cS(p, q) form parallelograms that can be tiled by translates of

the intersection of 2S(p, q) with the plane z = 1, C(p, q) = 2S(p, q) ∩ {z =

1} =conv{(0, 0, 1), (1, 0, 1), (p, q, 1), (p+ 1, q, 1)}. Understanding the lattice

points of C(p, q) is sufficient for understanding lattice points of arbitrary

cS(p, q). Further, since the case of 2S(p, q) is the focus of my work, under-

standing C(p, q) is particularly worthwhile.

C(p, q) has q + 3 lattice points, 4 vertices and exactly one in each of the

c− 1 lattice lines intersecting C(p, q) in the direction (1, 0, 0), and in each of

the c − 1 lattice lines in the direction (0, p, q). These labelings can be used

to create distinct orderings of these q − 1 interior lattice points, referred to

10More on width can be found in Section 1.3.1.
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Figure 1.6.1: This shows S(p, q), the empty tetrahedron sandwiched between

the z = 1 and z = 0 planes with vertices (0, 0, 0), (1, 0, 0),(0, 0, 1), and

(p, q, 1).

as the Y-order and the X-order [21].

Given that these simplices are 3-dimensional, it is known that c = 4 and

c ≥ 6 are KMW numbers for S(p, q). It is clear that these simplices are not

unimodular for q > 1, so the cases of c = 2, 3, 5 are of interest. Something is

known for the c = 2 case.



CHAPTER 1. IDEALIC TRIANGULATIONS 40

Figure 1.6.2: This figure shows 2S(p, q). Its 4 vertices, (0, 0, 0),

(2, 0, 0),(0, 0, 2), and (2p, 2q, 2), as well as the 4 other lattice points on its

boundary (1, 0, 0), (0, 0, 1),(p−1, q, 1), and (p, q, 1), are labeled. Its intersec-

tion with the z = 1 plane is indicated by the shaded parallelogram.

Theorem 1.6.4. [21]

2S(p, q) has a unimodular triangulation if and only if p = ±1 mod q;

further, this unimodular triangulation is always regular (and can be chosen

to have standard boundary).

The standard boundary comment is not particularly interesting for the

triangulation of 2S(p, q) itself or where it falls on the corresponding hierarchy

of algebraic properties. However, this is very useful in the search for nice tri-
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angulations of other 3-dimensional polytopes with regular subdivisions whose

cells are of the form 2S(p, q). The existence of regular unimodular triangula-

tions with standard boundary for each cell guarantees that such a subdivision

can be refined to a regular unimodular triangulation, and that each cell can

be triangulated in a manner that will match consistently on their boundaries.

However, there is also value in knowing more about the properties of

2S(p, q) itself. What happens in the case where there is no unimodular

triangulation? I considered this case, implementing a computer search for

binary covers of 2S(p, q) for examples where gcd(p, q) = 1 and p ,= ±1

mod q. As described in 1.5.1, the existence of a binary cover, while not as

powerful a property as regular unimodular triangulations, is itself desirable,

and computer programs can be written to search for them. An algorithm for

this is given in [18]. However, my search used a different method.

The code I have was designed to offer a yes or no answer to the question

of whether a given (p, q) pair’s 2S(p, q) has a binary cover. However, it

could be altered to actually produce a sample cover when the answer is

yes. Since the question is only of interest when gcd(p, q) = 1 and p ,=

±1 mod q, the code first checks these properties on each (p, q) pair and

moves on to the next pairing when the conditions are not satisfied. Once a

suitable (p0, q0) pair has been determined, the code finds all lattice points

in the corresponding 2S(p0, q0). It then checks all 4-tuples of these points

to construct a list of all full dimensional unimodular simplices contained

in 2S(p0, q0). The faces of these simplices are checked for containment in

the boundary of 2S(p0, q0). A system of linear equations over Z2 is then

formed. The equations indicate the incidence relations between triangles and

the unimodular siplicies of which they are facets. This provides a context for

asking whether there is a collection of the simplices (i.e. a cover) such that
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each boundary facet occurs an odd number of times, and each interior facet

appears an even number (possibly zero) number of times. If the answer to

that question is yes, and each point of 2S(p0, q0) is covered, then 2S(p0, q0)

has a unimodular cover. In this case, the code prints “(p0, q0), yes,” and

moves on to the next (p, q) pair. If the answer is no, the code prints, “(p0, q0),

no,” and stops.

After running for 2 days, all (p, q) pairs through (3, 49), in lexicographical

order, had been checked and confirmed to have binary covers. I conjecture

that all 2S(p, q) have binary covers for (p, q) pairings satisfying this gcd

condition. Producing a general proof of this is among my current projects.
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Chapter 2

Tropical Hyperplanes, Meet

Matroids

2.1 Introduction

Tropical oriented matroids were introduced by Federico Ardila and Mike

Develin. Their paper aims to establish ties between tropical hyperplane ar-

rangements and oriented matroids, much like those between standard hyper-

plane arrangements and traditional matroids. There is even discussion of the

notion of realizable tropical oriented matroids. Their seminal paper on the

subject addresses many properties seen in the traditional setting discussing

their tropical analogues. Their conjectures about tropical hyperplane ar-

rangements and tropical oriented matroids themselves, together with ties to

products of simplices, make it clear that there is more interesting work to be

done with the ideas they introduced. My research has looked at properties of

such objects as well as closely related ones. This includes what distinguishes

between generic and non-generic cases, as these differences are not discussed
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in Ardila and Develin’s work. I also address other ideas that are of interest

moving forward, such as understanding and modeling the structure of the

space of all tropical oriented matroids.

2.2 Tropical Hyperplanes Background

2.2.1 Tropical Basics

Working with tropical hyperplane arrangements requires some familiarity

with tropical mathematics. (For a complete introductions to the field see [36],

[41], and [26]). Tropical geometry is done over the tropical semiring. The

tropical semiring is the ring R = {R,⊗,⊕}, where ⊗ is standard addition and

⊕ is taking maximums. To avoid confusion, I will use ⊗ and ⊕ to represent

tropical multiplication and addition, allowing traditional multiplication and

addition notation to be used without ambiguity. 1

ex.

2⊗ 3 = 2 + 3 = 5

2⊕ 3 = max{2, 3} = 3

Alternatively, this ring can also be realized as the image of traditional

arithmetic in a power series ring under a degree map sending a power series

in t(−1) to its leading exponent. This makes the definition of ⊗ and ⊕ seem

more natural, as the operations can be thought of as the logs of traditional

multiplication and addition. The resulting tropical geometry is like a piece-

wise linear version of algebraic geometry. Here, geometric questions about

1 The convention of taking addition to be the max operation rather than the min

operation is not universal. However, the resulting rings are equivalent, and the convention

I use here matches that of Ardila and Develin’s paper.
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algebraic varieties can be translated into polyhedral questions about polyhe-

dral fans. The niceness of this perspective has been a driving force behind

the recent growth in the field, which has found applications in many areas,

including commutative algebra, topology, and phylogenetics. References for

these include [4], [13], [26], [36], [41], [12], [2], [14], [40], [32], [25], and [47] .

Given its semiring structure, tropical arithmetic has many of the proper-

ties of traditional arithmetic. Both addition and multiplication are commu-

tative,

ex.

2⊕ 3 = max{2, 3} = max{3, 2} = 3⊕ 2

2⊗ 3 = 2 + 3 = 3 + 2 = 3⊗ 2

and the distributive law holds for multiplication over addition.

ex.

5⊗ (2⊕ 3) = 5+ max{2, 3} = 8

(5⊗ 2)⊕ (5⊗ 3) = max{(5 + 2), (5 + 3)} = 8

What is different is that the additive identity is −∞ rather than 0, and

there are no additive inverses. This means that there is no notion of subtrac-

tion. However, there are multiplicative inverses. The tropical multiplicative

identity is 0. This means, for example, that every row of Pascal’s triangle

is all 0’s and the coefficients of each term of all binomial expansions are 0’s.

As a result, Freshmen’s Dream holds for all powers. I demonstrate this with

the cubic example.

(x⊕ y)3 = (x⊕ y)⊗ (x⊕ y)⊗ (x⊕ y)

= 0⊗ x3 ⊕ 0⊗ x2y ⊕ 0⊗ xy2 ⊕ 0⊗ y3
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Since 0 is the multiplicative identity, the coefficients can be ignored, leav-

ing

(x⊕ y)3 = x3 ⊕ x2y ⊕ xy2 ⊕ y3

3(max{x, y}) = max {3x, 2x+ y, x+ 2y, 3y} = max{3x, 3y}

and so,

(x⊕ y)3 = x3 ⊕ y3

Monomials and polynomials in the tropical semiring are defined analo-

gously to the traditional setting; however, they behave differently. Given a

set of variables x1, x2, ..., xn representing elements of the tropical semiring, a

tropical monomial is defined to be any product of these variables (allowing

positive and negative integer exponents). Each such monomial represents a

function from Rn to R. When evaluated, these monomials behave like linear

functionals in traditional arithmetic.

ex.

x1 ⊗ x1 ⊗ x2 ⊗ x3 ⊗ x3 ⊗ x3 ⊗ x3 = x2
1 ⊗ x2 ⊗ x4

3

x2
1 ⊗ x2 ⊗ x4

3 = 2x1 + x2 + 4x3

A tropical polynomial is then defined as a finite linear combination of

tropical monomials, meaning they are of the form

p(x1, x2, ..., xn) = ⊕
∑

a1 ⊗ xi11
1 ⊗ xi12

2 ...⊗ xi1n
n

where each of the aj are real numbers and each of the ijk are integers. These

tropical polynomials also represent functions from Rn to R. Such polynomials

p are evaluated at a point x ∈ Rn by taking the maximum over the values of

each of the monomials of p evaluated at x. That is to say
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p(x1, x2, ..., xn) = ⊕
∑

a1 ⊗ xi11
1 ⊗ xi12

2 ...⊗ xi1n
n

= maxn
1 {(aj + ij1x1 + ...+ ijnxn)}

This shows that tropical polynomials are continuous piecewise-linear func-

tions (with a finite number of pieces). Figure 2.2.1 shows the graph of the

cubic polynomial p(x) = 3⊗ x3 ⊕ 4⊗ x2 ⊕ 7 ⊗ x⊕ 11. The graph of p(x) is

segments of the graphs of the 4 lines: y = 3x+3, y = 2x+4, y = x+7, and

y = 11. Note that for a general cubic, p(x) = a⊗x3⊕ b⊗x2⊕ c⊗x⊕ d only

when a, b, c, and d satisfy

d− c ≤ c− b ≤ b− a

do all four lines, y = 3x + a, y = 2x + b, y = x + c and y = d, actually

contribute to the graph.

I explain this to demonstrate how the tropical world differs from standard

geometry. However, in the tropical setting, evaluating polynomials at points

and graphing their values is not nearly as useful as understanding their roots.

Roots of tropical polynomials are not zero sets. In fact, considering any

tropical polynomial with a positive constant term, one sees the zero set for

many tropical polynomials is empty. For example, the tropical polynomial

x⊕ 3 = 0 does not have a solution since max{x, 3} ≥ 3 for all x.

Armed with the definition of tropical polynomials, roots of a tropical

polynomial and tropical curves can be defined. As described above, a tropical

polynomial p(x) : Rn → R is the maximum of a finite set of linear functionals.

Given such a p(x), the roots of p(x), making up the set of points in the

hypersurface H(p), are defined as all points x ∈ Rn for which the maximum

is achieved at least twice by the monomials of p. 2 This definition of vanishing

2This is also called the nonlinearity locus, as it is the set of points where the function

does not behave linearly – the set of points where distinct linear components meet.
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Figure 2.2.1: The image on the left shows the 3 lines contributing to the

piecewise linear function given by the tropical quadratic polynomial p(x) =

0⊗x⊕4⊗x⊕7. The figure on the right is the graph of p(x)’s values given by

the maximum of the 3 lines for each x value. Note that the roots of p(x) are

the values for which this graph is non-linear, {3, 4}. These are the points,

indicated in black, where there is a “tie” for the maximal value of the lines

in the image on the left.
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is more natural when thinking of tropical operations as the logs of ordinary

operations. From this perspective, roots are the points where the leading

terms cancel. This is to say that H(p) is the set of points x ∈ Rd such

that p is not linear at x; informally, this is where the linear functionals

defining p meet. For the abstract cubic described earlier this would be the set

H(p) = {b−a, c−b, d−c}, and for the specific example p(x) depicted in Figure

2.2.1 H(p) = {1, 3, 4}. For polynomials in two variables the tropical curve

H(p) is a finite piecewise-linear graph with both bounded and unbounded

edges. For example, the graph of the general tropical line

p(x, y) = a⊗ x⊕ b⊗ y ⊕ c,

with a, b, c ∈ R, is the curve H(p) consisting of all (x, y) for which

p : (x, y)→ max (a + x, b+ y, c)

is not linear. It is made up of the 3 rays emanating left, down, and diagonally

up in the x = y directions from the point (x, y) = (c− a, c− b). Figure 2.2.1

depicts an example, the tropical line p(x, y) = 3⊗ x⊕ 4⊗ y ⊕ 1.

Tropical lines are 2-dimensional tropical linear spaces. In general, a trop-

ical hyperplane is a subset H(&) ⊂ Rn such that l is a tropical linear form in

n unknowns,

&(x) = a1 ⊗ x1 ⊕ a2 ⊗ x2 ⊕ ...⊕ an ⊗ xn.

These tropical hyperplanes are the focus of my tropical work.
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Figure 2.2.2: This is the graph of the tropical line p(x, y) = 3⊗x⊕4⊗y⊕1.

Its apex is located at (1 − 3, 1 − 4) = (−2,−3). The rays of the curve

are labeled according to which of the terms they simultaneously maximize.

Green depicts where 3 + x = 4 + y > 1, blue where 4 + y = 1 > 3 + x and

red where 3 + x = 1 > 4 + y.

2.2.2 Tropical Hyperplane Arrangements

Tropical d-space Rd is formed much like ordinary Euclidean geometry. How-

ever, it is interpreted differently. Here vector addition is taking coordinate-

wise maximums, and scalar multiplication is now realized by adding a con-

stant to each vector. Often in the study of tropical hyperplane arrangements,

one benefits from considering tropical projective (d−1)-space, TPd−1. This is

obtained from tropical Rd by modding out by tropical scalar multiplication.

The result is the traditional vector quotient space Rd/(1, ..., 1)R, and can

be visualized as real (d − 1)-space. This is where the tropical hyperplanes

discussed here live. Notice that without projectivizing, (1, ..., 1) would be in

the lineality space of every tropical hyperplane.

Like traditional hyperplanes, a tropical hyperplane is determined by the

roots of a linear functional, & = ⊕
∑

ci ⊗ xi. However, in tropical geometry
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this linear functional is evaluated by taking the maximum over the set {c1 +

x1, ..., cd + xi}, and a function vanishes when this maximum, whatever that

may be, is achieved at least twice on the set. The example of evaluating a

linear tropical polynomial at the point (0, 0, 0) seems natural.

ex.

&(x, y, z) = 4x⊕ y ⊕ 3z

↓

&(0, 0, 0) = max{4 + 0, 1 + 0, 3 + 0} = 4

However, in the projective tropical setting the point (0, 0, 0) is no more

interesting than (7, 7, 7) and since 4 is a unique maximum value, it is not a

root. The point (1, 4, 0) is of interest in this example, as here the maximum

value of 5 is achieved twice, making it a root of f(x, y, z) = 4x⊕ y ⊕ 3z.

ex.

&(x, y, z) = 4x⊕ y ⊕ 3z

↓

&(1, 4, 0) = max{4 + 1, 1 + 4, 3 + 0} = 5

The graph of a tropical hyperplane in Rd is a union of (d+1) traditional

hyperplanes truncated by their intersections. That is, they form a fan polar to

the standard simplex (the simplex formed by the convex hull of {e1, ....ed}).

For &(x) =
∑

cixi, the apex of this fan is located at (−c1, ... − cd). Two

such fans are shown in Figure 2.2.3. Notice that while the coefficients of

f(x, y, z) are (1, 1, 1) its apex appears to be the origin. This is a result

of the projectivization, which identifies all points that vary by a multiple

of (1, 1, 1). Convention is to represent the point (x1, ...xd), by its x1 = 0

equivalent, (0, x2 − x1, ..., xd − x1) in Rd−1, as done in 2.2.3.
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Figure 2.2.3: This shows the graphs of two tropical hyperplanes, g(x, y, z) =

x⊕ y ⊕ z and f(x, y, z) = 4x⊕ y ⊕ 3z, in TP3−1 = TP2.

Unlike traditional hyperplanes whose half-spaces can be labeled by sign,

positive or negative, a tropical hyperplane divides TPd−1 into d full dimen-

sional sectors. However, there is a natural labeling of both the full dimen-

sional sectors and their lower dimensional intersections that form the fan

that is the tropical hyperplane. The cones of the fan are indexed by the

subset of [d] corresponding to the ci + xi terms in the defining linear form

&(x) =
∑

ci ⊗ xi that it maximizes. For the full dimensional sectors this is a

single element, as there the maximum is only achieved once. For each d− k

dimensional cone this is a k element set, with the apex labeled by the entire

set [d]. Equivalently, one can think of indexing each cone by the basis vectors

corresponding to the face of the standard simplex to which it is polar.

Positions within a tropical hyperplane arrangement are given by ordered

tuples of these [d]-subsets, just as tuples of {+,−, 0} can be used to describe

positions in traditional hyperplane arrangements. Some examples are shown

in 2.2.6. This similarity between traditional and tropical hyperplane arrange-

ment notation as subset collections foreshadows notational and descriptive

parallels that will appear in the discussion of tropical matroid representation.
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Figure 2.2.4: This shows a tropical hyperplane in TP2 whose cones have been

labeled by 1-tuples corresponding to the faces of the standard tetrahedra to

which each is dual.

Just as traditional polytopes can be given as the convex hull of their

vertex sets or by a collection of defining hyperplanes [48], tropical polytopes

can also be described by either a tropical convex hull of a finite point set,

or a union of regions bounded by a set of tropical hyperplanes. However,

this requires appropriate definitions of a tropical convex hull and a tropical

polytope, as well as understanding how to choose the set of defining tropical

hyperplanes.

The tropical convex hull of a point set V = {v1, ...vn} in TPd−1 is the set

of all tropical linear combinations ⊕
∑

(ci ⊗ v1) such that ci ∈ R, where the

scalar multiplication (ci ⊗ vi) is defined tropically component-wise. Notice

that unlike standard polytopes, where the coefficients defining a convex hull

of points are taken to be non-negative and summing to one, in the tropi-

cal version all real linear combinations are allowed. (For more on tropical

convexity and tropical polytopes see [13].)

A tropical polytope can now be defined as the tropical convex hull of a

finite point set. These tropical polytopes are, as one would hope, bounded
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Figure 2.2.5: Here are images of combinatorially equivalent tropical poly-

topes (in particular triangles). The first is defined as the convex hull of a finite

point set {v1, v2, v3}. The second is defined as the bounded polyhedral com-

plex obtained by placing a tropical hyperplane at each of −v1,−v2, and−v3.

polyhedral complexes, and are explored further along with other aspects of

tropical convexity by Develin and Sturmfels in their paper by the same name.

There they also establish the relationship between the point set defining a

tropical polytope and the tropical hyperplane arrangement determining the

same polyhedral complex.

Theorem 2.2.1. [13]

If P is a tropical polytope given by the tropical convex hull of a finite point

set V ={ v1, ...vn} in TPd−1, then P is the union of the bounded regions of

the polyhedral decomposition of TPd−1 given by putting an inverted hyperplane

at each point, v1, ...vn.

This inverted hyperplane arrangement is combinatorially equivalent to a

tropical hyperplane arrangement with apices {v1, ..., vn}.

Their relationship to tropical hyperplane arrangements alone makes them

relevant, but tropical polytopes relate even more closely to the relationship

between tropical hyperplane arrangements and products of simplices, which
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will be examined more in Section 3.3. However, these tropical polytopes

themselves are not the focus of my work. Therefore, I will return to a more

general discussion of properties of tropical hyperplane arrangements.

Figure 2.2.6: This shows a partially labeled arrangement of 3 tropical hyper-

planes in TP2.

Points in a specific tropical hyperplane arrangement can be described by

their projective coordinates. However, like traditional hyperplane arrange-

ments, often one is only interested in the relative position of a point with

respect to each of the hyperplanes. In the traditional setting the relative

position of a point in an arrangement of n hyperplanes is described by an

n-tuple of {+,−, 0} indicating whether the point lies on the positive side, the

negative side, or on the hyperplane itself for each of the hyperplanes in the

arrangement. In the tropical setting, hyperplanes do not divide d-space into

2 pieces, positive and negative, but into d+ 1 regions. As a result {+,−, 0}

is not a sufficient set of choices for describing a point’s location with respect

to a particular hyperplane. However, there is a tropical analogue to the tra-
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ditional n-tuple used to indicate the relative position of a point in a tropical

hyperplane arrangement.

When one is interested in the purely combinatorial properties of such an

arrangement, points are described by their types. The type of a point x ∈

TPd−1 with respect to a tropical hyperplane arrangement H1, ..., Hn ∈ TPd−1

is the n-tuple (A1, ...An), where each Ai is the subset of [d] corresponding to

the closed sectors of the hyperplane Hi in which x is contained. With respect

to algebraic coordinates, for the hyperplane Hi with vertex vi = (vi1, ...vid),

Ai indicates which among the xj − vij are maximized. It is clear that every

point on a face of a given arrangement has the same type. Therefore, these

types do not distinguish points within a face, but they do encode all relative

information about the faces of the arrangement. Accordingly, the type of any

point in a face of the arrangement is called the type of the face. The collection

of types of an arrangement determines the arrangement up to combinatorial

equivalence (i.e. their relative positions). Figure 2.2.6 depicts a partially

labeled arrangement of 3 tropical hyperplanes in TP2 (see Figure 2.2.4 to

recall the standard sector labelings). For reasons that will become obvious

in the discussion of tropical oriented matroids, particularly in Section 2.4,

I am generally only concerned with distinguishing arrangements up to this

equivalence.
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2.3 Properties of Tropical

Hyperplane Arrangements

Many aspects of the correspondence between tropical hyperplane arrange-

ments and tropical matroid theory have direct analogues in the relationships

between standard hyperplane arrangements and traditional matroid theory.

However, there is an important difference between traditional hyperplane

arrangements and tropical ones. Traditional hyperplanes in d-space either

intersect in a (d − 2)-dimensional linear space (as the planes themselves are

(d−1)-dimensional linear spaces of d-space), or they are parallel. This is not

the case in the tropical setting. All tropical hyperplanes intersect, but they

do not all intersect the same way.

Generally, the intersection of two hyperplanes in TPd−1 is a (d − 3)-

dimensional cone. This is not true when an apex of one of the tropical

hyperplanes, say Hi, occurs on a proper face of the fan determined by one of

the other hyperplanes, say Hj, in the arrangement. The result is that some

of the cones in the fan determined by Hi will be proper subsets of Hj’s. Ar-

rangements in which this occurs are called non-generic. Arrangements that

aren’t non-generic are called generic. The behavior of non-generic tropical

hyperplane arrangements differs from that of generic hyperplane arrange-

ments.

In the case of two tropical hyperplanes, the only way an arrangement

can fail to be generic is to have a non-generic apex. A non-generic apex

A of a tropical hyperplane arrangement is an apex of a tropical hyperplane

arrangement which is located on a proper face of the fan given by one of the

other hyperplanes of the arrangement. Figure 2.3.1 shows two arrangements
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of three tropical hyperplanes in TP2, one generic and one non-generic.

Figure 2.3.1: Here are two arrangements of three tropical hyperplanes in

TP2. The one on the left is generic; the one on the right is non-generic. (The

non-generic hyperplane is bold.)

When a tropical hyperplane arrangement includes three or more hyper-

planes, the arrangement can be non-generic in another way. In general, any

time d hyperplanes in d-space intersect, their intersection will be a point,

which is a vertex of an arrangement. An arrangement of tropical oriented

hyperplanes in d-space can be non-generic without containing a non-generic

apex if there is a vertex of the arrangement determined by the common in-

tersection of d+ 1 tropical hyperplanes. This behavior is no different than a

traditional arrangement of three lines intersecting in a common point in the

plane. A tropical example of this is depicted in Figure 2.3.2.

Figure 2.3.2: This is an example of a non-generic arrangement of 3 tropical

hyperplanes in 2-space, one without a non-generic apex.
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Any zero-dimensional face of a tropical hyperplane arrangement is a ver-

tex of the arrangement, not only the apices. This means there is a defini-

tion of non-generic tropical hyperplane arrangements that covers both cases

and remains consistent with the definition of the generic tropical hyperplane

arrangements stated above. In general, a non-generic tropical hyperplane

arrangement is a tropical hyperplane arrangement with a non-generic vertex,

apex or otherwise. Fortunately, there is a quality that all non-generic vertices

have in common.

Lemma 2.3.1. For a non-generic apex A, in an arrangement of n tropical

hyperplanes in TPd−1, the total number of elements summed over its Ai’s will

be strictly greater than n + d− 1.

Proof. Let M be an arrangement of n tropical hyperplanes in TPd−1 with a

non-generic hyperplane. Without loss of generality, assume H1 is this non-

generic hyperplane. By definition, its non-generic apex A occurs on a proper

subface of the polyhedral fan given by one of the other hyperplanes, say Hi

of M . This means the coordinates (actual coordinates, not type) of A must

satisfy equality on at least two of the
∑

cjxj = max{c1 + x1, ..., cd + xd}

defining Hi, say this includes j and k, then Ai contains at least j and k.

Since A is H1’s apex, we know A1 = [d]. That gives us at least d+ 2 entries

from 2 positions in A’s type. We know there are n − 2 positions remaining,

and that none of them are empty. Therefore, A’s type contains at least

n+ d > n+ d− 1 elements.



CHAPTER 2. TROPICAL HYPERPLANES, MEET MATROIDS 60

Lemma 2.3.2. Given a generic tropical hyperplane arrangement M of n

hyperplanes in TPd−1, the type A of each apex in M has a total of n+ d− 1

elements summed over its d coordinate sets (the Ai’s). In particular, the ith

hyperplane will have Ai = [d] and Aj will be a singleton for all j ,= i.

Proof. Without loss of generality, assume that A is the apex of the ith hy-

perplane. Therefore, by definition, Ai = [d]. This means it remains to show

that there are exactly (n− 1) entries among the (n− 1) Aj , such that j ,= i.

Suppose there are less than (n− 1) entries in the remaining Aj . This guar-

antees the existence of some k such that Ak = {}. That would mean A failed

to define the position of the apex point with respect to Hk. Therefore, A

would not actually be the type of the apex. This is a contradiction, so there

must be at least (n − 1) entries among the remaining Aj ’s. Suppose there

are more than (n − 1) entries among the remaining Aj ’s. This means there

is some position, say k such that Ak is not a singleton. That means that the

apex with type A maximizes at least two terms of the linear functional, fk

defining Hk. In other words, A describes a root of fk, and as such, lies on

a proper face of Hk. This contradicts the fact that A was a generic apex.

As a result, there can not be more than (n− 1) entries in the remaining Aj .

This proves that there are exactly (n− 1) entries in the Aj , j ,= i positions,

ensuring exactly (d+ n− 1) total entries in type A.

As mentioned earlier, the apices of a hyperplane arrangement are not

its only vertices. Any zero-dimensional intersection of fans given by the

hyperplanes of the arrangement is a vertex. The dimension of a face of a

hyperplane arrangement in TPd−1 can be defined as a geometric object with

respect to the fans of the arrangement.
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Lemma 2.3.3. For a generic vertex A in an arrangement of n tropical hy-

perplanes in TPd−1, the total number of elements summed over its Ai’s will

be n + d− 1.

Proof. The case where A is an apex was handled in Lemma 2.3.2. It remains

to consider the case where A is not an apex. I now consider the general

case, where A is not necessarily an apex. No Ai can be empty. This means

there are at most d − 2 elements remaining. An Ai which is a singleton

corresponds to the point A lying in a full (d-1)-dimensional chamber of the

fan determined by Hi. The presence of a second entry in Ai tells us that A

must be contained in some (d − 2)-dimensional face of Hi. Each additional

entry reduces the dimension of the face of Hi containing A (this is consistent

with the fact that Ai = [d] when A is the apex of A). This is true for each

position Aj in A.

Now recall that the intersection of a k-dimensional linear space and an

l-dimensional linear subspace of (d − 1)-space in general position is a ((d −

1)− ((d−k)+ (d− l)))-dimensional linear subspace of d-space. For example,

the intersection of two lines in the plane (1-dimensional linear subspaces

intersecting in 2-space) is a point (a 0-dimensional linear subspace), and the

intersection of two planes (2-dimensional linear subspaces) in 3-space is a line

(a 1-dimensional linear subspace). More generally, the intersection of a set of

m linear subspaces of (d− 1)-space in generic position, where the dimension

of the subspaces are k1, ..., and km respectively, is a ((d−1)− (d−k1)− (d−

k2) − ... − (d − km))-dimensional linear subspace of (d − 1)-space. For this

intersection to be a point, the dimension of linear spaces being intersected

must satisfy (d − k1) + (d − k2) + ... + (d − km) = (d − 1). Considering

this, together with the way the number of entries in a position Aj describes
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the dimension of the face of Hi containing A, we find that for a point in

a generic arrangement of tropical hyperplanes to be a vertex, it must have

exactly (d − 1) more entries than a point in a full dimensional chamber, or

precisely (n+ d− 1) entries as desired.

This pigeonhole characterization of vertices is highly useful when creating

programs enumerating all tropical oriented matroids of type (n, d).

2.3.1 Enumeration and Visualization

For reasons that will become more apparent in Section 3.3, understanding

the “space” of all arrangements of n tropical hyperplanes in d-space has

become a point of increasing interest. To this end, I have code that takes

n and d as input and computes, up to combinatorial equivalence, all generic

arrangements of n tropical hyperplanes in d-space. The output is a list of

the types of all vertices for each distinct arrangement, together with a set

of apex coordinates in d-space that realize the arrangement. Clearly, actual

coordinate values for apices completely determine an arrangement of tropical

hyperplanes, as a tropical hyperplane is completely determined by its apex.

However, the types of the apices alone are not enough to determine, even

up to combinatorial equivalence, the arrangement. Figure 2.3.1 shows two

arrangements of 3 tropical hyperplanes whose apices have the same types,

but for which the types of the other vertices differ.

I am also interested in understanding what this space looks like and visu-

alizing what it means for arrangements to be adjacent. Here I define arrange-

ments of tropical hyperplanes to be adjacent if there is a unique (non-generic)

arrangement “separating” them. That is, a unique arrangement that is real-
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Figure 2.3.3: These are two arrangements of tropical hyperplanes, both of

whose apex types are (123, 3, 3), (2, 123, 2), and (1, 1, 123). However, the

types of their other vertices differ. The arrangement on the left can be

realized by positioning the apices at (3, 4), (4, 3) and (1, 2), while in the

figure on the right the third apex is located at (2, 1).
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ized by moving one of the hyperplanes towards another in the arrangement

in a direction normal to one of the (d−1)-dimensional faces of another hyper-

plane in the arrangement until a non-generic intersection is achieved. This

was the inspiration for code that enables me to create rotatable visuals of

3-dimensional arrangements of n tropical hyperplanes. Each hyperplane is

colored distinctly, and the planes are truncated by a sphere “at infinity.” This

allows users to see the 2-dimensional arrangements obtained by projecting

in any basis direction, as well as making it easier to distinguish between the

hyperplanes determining any given chamber as they use the arrow keys to

rotate the image on screen, changing the angle from which the arrangement

is viewed.

2.4 Tropical Oriented Matroid Axioms

Tropical oriented matroids are defined via axioms on types, analogous to

how traditional oriented matroids can be defined in terms of axioms on their

covectors. Ardila and Develin’s definition was inspired by both tropical ori-

ented hyperplanes and traditional matroid theory. As such, their discussion

of the relationship between tropical hyperplane arrangements and tropical

oriented matroids draws many parallels to properties of the relationship be-

tween traditional oriented hyperplane arrangements and standard oriented

matroid theory.

Understanding the axioms defining a Tropical Oriented Matroid requires

a few preliminary definitions.

An (n, d)-type is an n-tuple A = (A1, .., Ad) of non-empty subsets of

[d] = {1, ...d}. The Ai are called the coordinates of A; their indices 1, ..., n are

called the positions ; and the potential entries 1, ..., d are called the directions.
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The comparability graph of two (n, d) types A and B, CGA,B is a semi-

directed graph on the vertex set [d]. For each position i ∈ [n], there is an

undirected edge between j and k if j, k ∈ Ai ∪ Bi (i.e. both j and k are in

position i of both types A and B), and there is an edge directed from j to k

if j ∈ Ai and k ∈ Bi.

Figure 2.4.1: These are the comparability Graphs CGB,C on types B and C

and CGA,C on types A and C seen in Figure 2.2.6.

Generally, a semi-directed graph, known as a semidigraph, is a graph in

which some edges are directed and some are undirected. A directed path

from a to b in a semidigraph is a collection of vertices v0 = a, v1, ..., vk = b

and a collection of edges e1, ..., ek, such that the ei are edges, directed or

undirected, from vi−1 to vi, at least one of which is directed. A directed

cycle in a semidigraph is a directed path from a to itself. A semidigraph

is acyclic if it has no directed cycles (it may have undirected cycles). This

notion of acyclic semidigraphs will be used with comparability graphs in the

appropriately named comparability axiom.

Given a type A = (A1, .., Ad), a refinement of A with respect to an ordered

partition P = (P1, .., Pr) of [d] is AP = (A1∩Pm(1), ..., An∩Pm(n)) where m(i)

is the largest index for which Ai∩Pm(i) is non-empty. AP is a total refinement

if each entry of AP is a singleton.
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A tropical oriented matroid M with parameters (n, d) can now be de-

fined as a collection of (n, d)-types which satisfy the boundary, elimination,

comparability, and surrounding axioms.

Boundary Axiom: for each j in [d], j = (j, j, ..., j) is a type in M .

Elimination Axiom: For any two types A and B in M and any position

j ∈ [n], there is a type C inM such that Cj = Aj∪Bj , and Ck ∈ {Ak, Bk, Ak∪

Bk} for each k ∈ [n].

Comparability Axiom: For any two types A and B inM the comparability

graph CGA,B is acyclic.

Surrounding Axiom: If A is a type of M then every refinement of A is

also a type of M .

The spirit of these axioms is natural even if their wording isn’t entirely

transparent. I will describe the idea of each before moving on to results

regarding the properties of these objects. However, I first justify my use of

tropical hyperplane arrangements as a valid context for this discussion.

Theorem 2.4.1. [3] The collection of types in a tropical hyperplane arrange-

ment forms a tropical oriented matroid.

Proof. The proof considers the axioms in the order presented above for a

tropical hyperplane arrangement with apices {v1, ...vn}.

For the boundary axiom, a point with xj large enough to ensure that

xj − xi < vkj − vki for all k ∈ [n] and i ,= j ∈ [d] will have the desired type.

For elimination, consider points x and y with types A and B respectively

and a position j ∈ [n]. The idea is to construct the tropical line segment

containing x and y. Each point on this line will satisfy Ck ∈ {Ak, Bk, Ak∪Bk}

for all k. The intersection of this line with the maximal cone of Hj will have

Cj = Aj∪Bj, thus satisfying the axiom. Take a ∈ Aj and b ∈ Bj. Add copies
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of (1, ..., 1) to obtain coordinates of x and y, such that xa−vja = yb−vjb = 0.

Now consider the point z = x+y. This is the coordinatewise maximum of x

and y. Therefore, xi − vij = 0 for i ∈ Aj , maximizing this difference over all

i. Similarly, yi− vij = 0 for i ∈ Bj, also maximizing this difference over all i.

As a result, zi−vij = 0 for all i ∈ Aj∪Bj , and yi−vij < 0 for all other i. Call

the type of z C. Here we have Cj = Aj ∪Bj . Now consider k ,= j. We must

determine which i maximize zi−vki = max{xi−vki, yi−vkj}. The maximum

value of this is max{maxi{xi−vki}, maxi{yi−vki}}. If that maximum comes

from max{xi−vki}, then zi−vki’s max comes from x and Ck = Ak. Similarly,

if it comes from max{yi − vki}, Ck = Ak. If the maximums are the same,

then Ck = Ak ∪Bk. In any case, we have constructed the desired C.

For comparability, we again consider points x and y with types A and B.

An edge in their comparability graph CGA,B from i to j means that for some

k ∈ [n] i ∈ Ak and j ∈ Bk, so xi − vki ≥ xj − vkj and yj − vkj ≥ yi − vki.

Combining these inequalities gives xi−yi ≥ xj−yj. In the case of a directed

edge, one of these inequalities is strict, so xi − yi > xj − yj. Continuing this

process along a cycle in CGA,B yields an inequality 0 > 0, which is not valid.

Therefore, CGA,B must be acyclic.

For surrounding, take a point x with type A and a partition P = (P1, ..., Pr).

Let f(i) be the value of j such that i ∈ Pj and take ∆x = ε(f(1), ..., f(d)).

The idea is that for small enough ε, x+∆x will have type AP . Pick an index,

k. The elements of the kth coordinate of the type of x + ∆x correspond to

i maximizing (x+∆x)i − vki. For small enough ε the only candidate i’s are

those for which xi − vki is maximized for this i, which means i ∈ Ak. From

these possible i’s (x+ ∆x)i − vki is maximized if and only if ∆xi = εf(i) is

maximized, meaning i is maximal among the Ak with respect to P .
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Armed with a concrete, visualizable, class of examples of tropical oriented

matroids, I now offer a more intuitive description of the ideals presented in the

formally stated axioms, in the context of tropical hyperplane arrangements.

It may not seem obvious that any specific type would appear in a tropi-

cal oriented matroid. However, all tropical hyperplanes are translates of each

other. This means that traveling far enough in any basis direction will even-

tually land one in the sector corresponding to that direction with respect to

each hyperplane. More concretely, heading to infinity in any basis direction,

say i, one can reach a position where the ith coordinate maximizes the linear

equation determining each of the hyperplanes in the arrangement. The type

of such a position is (i, ...., i). This idea is captured in the boundary axiom.

The elimination axiom describes what happens as one walks from one

point to another within a tropical hyperplane arrangement. In a traditional

hyperplane arrangement traveling along the line containing two points whose

corresponding covectors differ at a position, one having a + and the other a−,

you must pass through a point whose corresponding covector has a 0 in that

position. Geometrically, this corresponds to crossing the hyperplane in whose

position in which they differ. The idea is a bit more notationally complicated

in the tropical case due to the existence of more than two directions, but the

idea is the same. To travel between two tropical points whose coordinates

differ in some position on the tropical line connecting the two points one must

cross through a point whose coordinates at that position are the union of the

two points. This is the equivalent of crossing the tropical hyperplane that

separates them. If we consider the two direction case, letting our directions

be denoted by + and − and letting the union {+,−} be represented by 0 we

replicate the condition we are accustomed to in the traditional case. Figure

2.4.2 offers an example of this.
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Figure 2.4.2: This illustrates the tropical line connecting points whose second

coordinates differ and where the tropical segments containing them cross

faces of the arrangement whose second coordinate is the union of their second

coordinates, thus depicting how the arrangement satisfies the elimination

axiom with respect to these points.

The comparability axiom may be the least intuitively stated of the axioms.

An edge from j to k in the comparability graph CGA,B corresponds to the

idea that if A has a j in its ith position, and B has a k in its ith position

you must travel more in the k direction than in the j direction to get from

A to B. A cycle in this graph would amount to contradictory information

regarding which direction to travel in order to move from A to B.

The surrounding axiom captures the idea that given a type A for which

not all entries are singletons, a refinement of A can be obtained by moving

infinitesimally away from A. In particular, if both j and k appear in the ith

coordinate of A’s type, then a refinement of A can be obtained by moving

infinitesimally in the j direction, or the k direction, thus breaking the tie,

xj−vij = xk−vik. Figure 2.4.3 illustrates an example of a vertex C in TPd−1

and how moving infinitesimally in all possible directions results in points

whose types realize all refinements of C.
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Figure 2.4.3: This image shows how all refinements of C can be obtained by

moving infinitesimally in the appropriate direction.

Having both a technical and colloquial understanding of what the axioms

are saying, together with a class of examples that can be explicitly writ-

ten down and played with, is helpful when exploring properties of tropical

oriented matroids.

2.5 Characterizations of Tropical Matroids

As traditional matroids can be described by their maximal independent sets

or their minimal dependent sets, tropical oriented matroids can be given by

either their topes or their vertices alone. The following results establish this.

While the properties are nice on their own, they are also practically useful.

They provide a straightforward inductive approach to proving properties of

arbitrary tropical oriented matroids, namely that a property can be proved

by showing that it holds for all vertices of a tropical oriented matroid, and

that if that property holds for a type it holds for any refinement of that type.
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Lemma 2.5.1. [3]

Refinement is transitive: if C is a refinement of B and B is a refinement

of A, then C is a refinement of A.

Proof. Given a refinement B ofA with respect to ordered partition (P1, ..., Pr),

and a refinement C of B with respect to ordered partition (Q1, ...Qs), let

Xij = Pi ∩ Qj. C is a refinement of A with respect to this order partition

(X11, X12, ...X1s, X21, ....Xrs).

Lemma 2.5.2. [3]

If A and B are types of a tropical oriented matroid such that Bi ⊆ Ai for

all i ∈ [n], then B is a refinement of A.

Proof. Suppose this is not true, that there exists some tropical oriented ma-

troid M with types A and B such that Bi ⊆ Ai for all i ∈ [n], but B is

not a refinement of A. This means we can’t break ties in each Ai in a way

that makes the elements in Bi maximal among those in Ai. Algebraically,

this says that we can’t solve the system of equations given by xj = xk for

j, k ∈ Bi and xj > xk for j ∈ Bi, k ∈ Ai\Bi. Linear duality tells us that

this means that the system must be inconsistent; that is, that some linear

combination of them yields 0 > 0. However, a collection of such inequalities

would produce a cycle in the comparability graph CGA,B. This would mean

A and B couldn’t be types of the same oriented matroid, contradiction.

These refinement properties are particularly useful when working with

vertices of tropical oriented matroids. Before presenting results regarding

minimal and maximal dimensional faces of tropical oriented matroids, it must
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be clear what is meant by the dimension of a face in a tropical oriented

matroid.

The dimension of a face of a tropical oriented matroid has an abstract

definition that agrees with the geometric intuition given by tropical hyper-

plane arrangements. Given a type A of a tropical oriented matroid, consider

the undirected graph GA, with vertex set [d] and an edge between i and j

if there is some coordinate Ak such that i, j ∈ Ak. The dimension of type

A is one less than the number of connected components of GA. A vertex

of a tropical oriented matroid is a type A for which GA is connected (i.e.

a type of dimension 0). 3 A tope of a tropical oriented matroid is a type

A = {A1, A2, ..., An} such that each Ai is a singleton, making GA edge-free.

A tope is a (d− 1)-dimensional type.

One would hope that this definition of dimension would be consistent

with the intuition of dimension offered by the case of tropical hyperplane

arrangements, where one identifies vertices as zero-dimensional faces of the

arrangement. However, the proof that tropical hyperplane arrangements are

tropical oriented matroids does not make it entirely obvious why that is true.

So I present a separate statement and justification here.

Lemma 2.5.3. Zero-dimensional faces of tropical hyperplane arrangements

are vertices of the corresponding tropical oriented matroid.

3The proofs and counting arguments presented in Section 2.3 can be phrased with re-

spect to this dimension graph. Some find that approach more intuitive; however, since the

results do not depend on the additional structure, I decided to present them independent

of the matroid terminology.
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Proof. Let A be a zero-dimensional face of a tropical hyperplane arrange-

ment.

I first address the generic setting. There are two cases to consider; first,

when a zero-dimensional face is an apex, second when it is not.

First consider the case where A is an apex of the arrangement. Without

loss of generality, say A is the apex of Hi. We know Ai = [d]. The other

Aj are non-empty. Let k be an element of Aj. Each of the d vertices of GA

will have an edge to k. This guarantees that GA is connected, making A a

vertex.

Now consider the non-apex case. Given the generic setting, we know the

number of elements summed over the n positions of A is (n+ d− 1). For GA

to not be connected would mean that there is at least one element of [d] that

does not appear in any position of A. This means that there must be two

positions with two common elements. However, if this is the case then the

point is contained in parallel linear spaces, as corresponding faces of tropical

hyperplanes are translates of each other. This means that the point can not

be a generic zero-dimensional face, as it lies in overlapping parallel faces of

different hyperplanes. Since the arrangement was assumed to be generic, this

is a contradiction. Therefore, every element of [d] must appear and GA must

be connected, making A a vertex.

To finish the proof, I explain that the non-generic setting is fundamentally

the same.

First, notice that nothing about the argument for the apex case depended

on genericity, so it is still valid.

For the non-apex non-generic case, again the key to showing that GA

is connected is proving that all elements of [d] appear over the more than

(n + d − 1) entries in the positions of A. There are two subcases here. The
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first is when A is a zero-dimensional face that is not non-generic because it

lies in (overlapping) parallel faces of multiple hyperplanes, say Hi and Hj .

This means Ai ⊆ Aj . In this case, it is enough to consider the subgraph of GA

obtained by replacing Ai (by any element k ∈ Ai. This subgraph of GA will

be connected if and only if GA was. However, since this subgraph corresponds

to the generic tropical hyperplane arrangement obtained by moving A just

slightly in the k direction, proving that this subgraph is connected follows

from the generic case. The remaining type of non-generic zero-dimensional

face of an arrangement of n tropical hyperplanes in d-space is where A is an

intersection of d+1 or more (d−1)-dimensional linear subspaces (without loss

of generality, assume an intersection of exactly d+1 iterating the construction

if necessary for the case of > d+ 1). In particular, this says A is a common

intersection of d + 1 hyperplanes, when a common intersection of any d of

them would determine the same zero-dimensional face. In this case, it is

again enough to consider a subgraph of GA. This time take the subgraph

obtained by replacing one of the d+1 2-element sets indicating which of the

d+1 hyperplanes A lies on a proper face of, say Aj , by either element of Aj .

Again this graph will be connected if GA is and it is, like the previous case,

connected by the generic argument, completing the proof that A is a vertex.

Theorem 2.5.4. [3]

A tropical oriented matroid M is completely determined by its topes. In

particular, a type A is in M if and only if A satisfies the following conditions:

-A satisfies the compatablity axiom with every tope of M (i.e. given a

tope T of M CGA,T is acyclic).

-Every total refinement of A is a tope of M .
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Proof. The comparability axiom requirements are addressed first by noting

that if A satisfies the conditions, then every refinement B of A will as well.

This means the set of total refinements of B is a subset of the set of total

refinements of A, and for each T the comparability graph CGB,T is a subgraph

of the comparability graph CGA,T . Consider a minimal counterexample to

refinement, an n-tuple A such that each refinement of A is in M , but A itself

is not in M . Since A has a non-trivial refinement, some element of A is

not a singleton. Without loss of generality, assume {1, 2} ⊂ A1. Consider

the subgraph GA\1 of A’s dimension graph GA obtained by deleting vertex

1 and all edges incident to it. Some component of this graph contains 2.

Without loss of generality, let this subset of [d] be S = {2, ..., r} and let

T = {r + 1, ..., d}. Take the refinements B and C of A given respectively by

the ordered partitions (S, 1∪T ) and (1∪T, S). S1 ,= A1 and T1 ,= A1, so B and

C are proper refinements of A and hence inM , by the minimality assumption.

Eliminating 1 between B and C yields some element D ∈ M . Showing that

D = A confirms that A ∈ M . This is done by position. In position 1,

D1 = B1 ∪ C1 = 1 ∪ (A1\1) = A1, and for i ,= 1, Di ∈ {Bi, Ci, Bi ∪ Ci}.

S and T don’t overlap and Ai cannot contain elements from both S and

T . If Ai ⊂ S or Ai ⊂ 1 ∪ T , then Bi = Ci = Ai and Di = Ai as desired.

The remaining case is where Ai contains 1 together with a subset X ⊂ S.

The proof that this also guarantees Di = Ai is a lemma by Ardila and

Develin, whose proof follows from constructing a tope refinement of D for

which CGA,U contains a cycle, giving the desired contradiction.
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Theorem 2.5.5. [3]

A tropical oriented matroid is completely determined by its vertices. In

particular, all types of an oriented matroid are refinements of its vertices.

Notice that this does not say that the apices determine a tropical oriented

matroid. As I showed in 2.2.2, while specific coordinates for apices in TPd−1

do determine an arrangement, in general the types of apices alone do not.

For an example, see Figure 2.3.1 in Section 2.3.1.

Ardila and Develin provide proof of Theorem 2.5.5 by example. I sketch

the idea.

Proof. (sketch)

The idea is to show that any type A = (A1, ..., An) ∈ M that is not a

vertex is a refinement of some type in M . Lemma 2.5.2 shows that it is

enough to find a type in M strictly containing A. The fact that A is not a

vertex means that its dimension graph GA is not connected. There are two

cases to consider.

The first case is when all numbers appearing in any of the Ai are contained

in one connected component of GA, with some element, say i ∈ [d] contained

in none of them. In this case, eliminating A with i = {i, ..., i} in position

1 yields a type B = {A1 ∪ i, B2, ..., Bn} where each Bj is i, Aj ∪ i or Ai. If

no Bj = i, A is a refinement of B ∈ M ; otherwise, there is some k such

that Bk = i. In this case, eliminate B with A in position k and repeat this

process as many times as necessary to obtain some type C such that Cj is

Aj or Aj ∪ i for all j.

In the second case, elements of the Ai appear in multiple components of

GA. This case is again an inductive construction, but it first uses elimination

with multiple i = [i, ..., i] to build a type D that agrees with A’s intersection
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with one of the components of GA. That is to say, each Dj is equal to Aj ’s

intersection with the numbers contained in one connected component of GA.

This type is then “connected” to numbers appearing in other components of

GA via the approach taken in case one. This results in a type E such that

Ej ⊂ Aj for all j such that Ej is connected. This construction guarantees

that E ∈M and A is a refinement of E.

In light of Theorem 2.4.1 and Lemma 2.5.5, I define generic and non-

generic abstract tropical oriented matroids based on the combinatorial prop-

erties of their vertices. A generic vertex of a type-(n, d) tropical oriented

matroid is a vertex with exactly n + d − 1 entries summed over its Ai’s. A

vertex of a type-(n, d) tropical oriented matroid is non-generic if the number

of entries summed over its Ai’s is ≥ n + d. A non-generic tropical oriented

matroid is a tropical oriented matroid containing a non-generic vertex. A

tropical oriented matroid is generic if each of its vertices is generic.

These definitions lead to the following corollary of Theorem 2.4.1.

Corollary 2.5.6. Non-generic tropical hyperplane arrangements are non-

generic tropical oriented matroids and generic tropical hyperplane arrange-

ments are generic tropical oriented matroids.

2.6 Tropical Oriented Matroid Duals

Duality properties are central to traditional matroid theory. Before defining

the dual to a tropical oriented matroid, I need to introduce some definitional

support structure.
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A semitype, with parameters (n, d), is given by an n-tuple of subsets of

[d], possibly empty. The completion M̃ of a tropical oriented matroid M

consists of all semitypes which can be obtained from types of M by changing

some of the subsets of the coordinates to the empty set. The reduction of a

collection of semitypes is the subset of all actual types in the collection.

Given a semitype A with parameters (n, d), the transpose AT of A is a

semitype with parameters (d, n) with i ∈ AT
j if j ∈ A. You can interpret an

(n, d)-type A as an n × d 0/1 matrix with a 1 in position ij if j ∈ Ai and

a 0 otherwise. In this context, AT is obtained by taking the transpose of

the matrix corresponding to A and reading off the resulting (d, n)-type (a d-

tuple of subsets of [n]). Figure 2.6.1 depicts a type (specifically a vertex), its

associated 0/1 matrix, and the semitype (in this case itself a type) obtained

by taking its transpose. As I will show in Lemma 2.6.2, the semitype obtained

by taking the transpose of a vertex is an actual type.

Figure 2.6.1: This illustrates the 0/1 matrix associated to a vertex type

A = {3, 123, 1} of a tropical oriented matroid M , and the matrix obtained

by taking the transpose of A, which yields the type {23, 2, 12} in M̃ .

Given these definitions, the dual of a tropical oriented matroid can be

defined. The dual of a tropical oriented matroid M is the reduction of the

collection of semitypes given by the transposes of semitypes in M̃ . Figure

2.6.2 shows an arrangement of three tropical hyperplanes in the tropical plane
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and the arrangement obtained by taking its dual matroid.

In theory, this may seem like a daunting process, but in practice, the

following lemma makes the procedure for finding an oriented matroid’s dual

quite manageable.

Corollary 2.6.1. Given a tropical oriented matroid M , its dual is made up

of all refinements of the transposes of the vertices of M .

This tells us that to find the dual of a tropical oriented matroid, one must

only worry about taking the transpose of the vertices and that refinements

of those alone will be enough to produce all types in the reduction of the

transposes of M̃ . This result follows from the following lemma and Theorem

2.5.5.

Figure 2.6.2: The image on the left is the tropical hyperplane arrangement

corresponding to a tropical oriented matroid M . The image on the right is

the arrangement corresponding to M ’s dual. The vertices of the dual have

been labeled to show which vertex of M ’s transpose they represent.

Lemma 2.6.2. Given a tropical oriented matroid M , the transpose of any

vertex of M will be a vertex in M ’s dual.



CHAPTER 2. TROPICAL HYPERPLANES, MEET MATROIDS 80

Proof. First notice that by Lemma 2.3.3 we know that the only candidates

for vertices of M ’s dual are transposes of vertices of M . Translated into the

matrix interpretation of types, 2.3.3 says that any vertex of M ’s dual must

have (d+ n− 1) non-zero matrix entries. This means it must be a transpose

of a type of M with (d+n−1) = (n+d−1) non-zero entries or a refinement

of a type with at least (n + d) non-zero entries. Since no types of M have

more than (n + d − 1) non-zero entries, the second option does not occur.

Therefore, the vertices of M ’s dual must come from the transposes of M ’s

vertices. Therefore, it is enough to check that each of these transposes is an

honest to goodness type and not just a semitype.

The only way the transpose AT of a type A of M could fail to be a type is

if some row of its d×n matrix is empty. This would mean that some column

of A’s matrix was empty, and would imply that there was some i ∈ [d] such

that i was not contained in any of the Aj . I offer two proofs that this does

not occur. The second is sleeker, but the first might be more intuitive.

The first proof is based on the incidence matrix presentation of tropical

matroid types and has two cases. The first case is where A is an apex of M .

In this case we know Aj = [d] for some j ∈ [n]. Therefore, we know i ∈ Aj for

all i ∈ [d], and each i is represented. The second case is when A is not an apex

of M . Assume that i is the unrepresented element of [d]. We know that the

(n+ d− 1) non-zero elements of the matrix are spread over the other (d− 1)

columns of the matrix. We also know that none of the n rows of the matrix

are empty (since A was a type in M). This means that there are (d − 1)

non-empty elements to spread over the (d − 2) remaining positions of the

rows. We know the ith position of each row is empty and some other position

of each row is already occupied, so by the pigeonhole principle, there is some

k ∈ [d] that occurs as a non-singleton entry of at least two rows. This means
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that these types are not generic with respect to that direction, meaning the

point would fail the surrounding axiom. Therefore, A could not be a vertex

of a tropical oriented matroid, and the non-zero entries of the rows must be

spread over all columns.

The second proof is based on the dimension graph. Again suppose there

is some i ∈ [d] that does not occur in any of the Aj ’s. That means there

is no edge of GA containing i, guaranteeing that GA is not connected. This

tells us the dimension of A is greater than 0, contradicting the fact that A

is a vertex of M .

Figure 2.6.2 illustrates an example of how vertices in the original corre-

spond to vertices in the dual. This shows that it is not generally the case

that apices in the original will correspond to apices in the dual. However,

it is possible to predict which vertices will correspond to apices in the dual

when looking at a tropical hyperplane arrangement.

Taken with the definition of generic and non-generic vertices, a straight-

forward counting argument offers the following immediate corollary to this

lemma.

Corollary 2.6.3. The transpose of a generic vertex of a tropical oriented

matroid M will be a generic vertex in M ’s dual, and the transpose of a non-

generic vertex will be a non-generic vertex in the dual.

As a direct result of Lemma 2.6.2 and Corollary 2.6.1 I state the following

corollary.

Corollary 2.6.4. To prove that the dual to a tropical oriented matroid M is

itself a tropical oriented matroid, it is enough to show that the transposes of

the vertices of M satisfy the tropical oriented matroid axioms.
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Taken together, Corollaries 2.6.3 and 2.6.4 yield the following:

Corollary 2.6.5. The dual to a tropical oriented matroid M is generic if

and only if M is a generic tropical oriented matroid.

The fact that the dual to any tropical oriented matroid is again a tropical

oriented matroid seems a requirement for an object to have the word matroid

in its name, but this is not so obvious. In fact, it appeared as a conjecture

in Ardila and Develin’s work. It also follows directly from their primary

conjecture on tropical oriented matroids.

Conjecture 1. [3] There is a one-to-one correspondence between the sub-

divisions of the product of simplices ∆n−1 × ∆d−1 and the tropical oriented

matroids with parameters (n, d).

Understanding this perspective on tropical oriented matroids and their

relationship to tropical hyperplane arrangements requires some background

on ∆n−1 ×∆d−1.
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Chapter 3

Products of Simplices

3.1 Introducing Products of Simplices

The product of two polytopes P ⊂ Rd and Q ⊂ Rn is P ×Q = {(v,w) | v ∈

P, w ∈ Q} ∈ Rd+n. This is what is meant by product when discussing a

product of two simplices ∆n×∆d. These products are studied by many peo-

ple for a variety of reasons. While some are interested in them for their own

merits, [5], [8], [20], [34], they also have applications to Schubert calculus,

[2], hom-complexes, [33], growth series of root lattices, [1], transportation

polytopes and Segre embeddings, [43]. They appear here due to their use-

fulness as building blocks of triangulations and their relationship to tropical

oriented matroids.

It is probably not surprising that there is significant interest in products of

simplices for their potential applications to triangulating product polytopes.

However, it may initially be less obvious how these simplicial products relate

to tropical oriented matroids. Ardila and Develin conjectured the existence

of a one-to-one correspondence between subdivisions of products of simplices
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∆n−1 × ∆d−1 and tropical oriented matroids with parameters (n, d). Oh

and Yoo established that triangulations of ∆n−1×∆d−1 correspond to tropi-

cal oriented matroids by confirming that they satisfy the elimination axiom.

Armed with the generic and non-generic matroid distinction, one sees that

the proof of the bijection they originally claimed between triangulations of

∆n−1×∆d−1 and tropical oriented matroids failed because it does not hold for

non-generic cases. Here, I provide some background in simplicial products

and subdivisions along with an application to triangulating product poly-

topes before clarifying the correspondence between generic and non-generic

tropical oriented matroids and subdivisions of ∆n−1 × ∆d−1 in Section 3.3

and introducing a distinction between the regular and non-regular cases.

3.2 Triangulating ∆n−1 ×∆d−1

3.2.1 Representing ∆n−1 ×∆d−1 and its Triangulations

It would be nice if a product of two triangulations was itself a triangula-

tion; however, this is not the case. This is why triangulating products of

simplices is so important. While a product of triangulations is not itself a

triangulation, a product of two triangulations is a subdivsion into products

of simplices. Therefore, understanding products of simplices is important

for understanding subdivisions and triangulations of product polytopes. The

product of two subdivsions, and hence the product of two triangulations,

is defined analogously to a product of polytopes. In particular, given ∆n−1

and ∆d−1 with vertices {v1, ..., vn} and {w1, ...,wd} respectively, the vertices

of ∆n−1 × ∆d−1 are given by the nd points (vi,wj) where i = 1, ..., n and

j = 1, ..., d.
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There are two ways to model these graphically: a grid representation and

a bipartite graph representation. Figure 3.2.1 depicts the product ∆2 × ∆3

along with both its grid and bipartite graph representations.

Figure 3.2.1: The product of simplices ∆2−1 × ∆3−1 is a triangular prism.

It is shown here along with its corresponding complete bipartite graph k2,3

and 2 by 3 grid.

In the grid representation, the product is represented by an n by d grid

with a column for each vi and a row for each wj. The vertices of the product

correspond to the boxes of the grid, and faces of the product correspond

to the sub-grids that result from deleting some rows and/or columns from

the grid. A cell in a subdivision of the product is represented by marking

the boxes corresponding to the included vertices. Thus, a triangulation can

be represented by a set of such marked grids, each of which corresponds

to a simplex in the subdivision. In the translation between subdivisions

of ∆n−1 × ∆d−1 and tropical oriented matroids, this grid representation is

equivalent to the incidence matrix representation discussed in 2.

Recall that the complete bipartite graph Kn,d is the graph on the vertex

set V1 ∪ V2 where V1 = [n] and V2 = [d] with an edge connecting each vertex

in V1 with each vertex in V2, but no edges between vertices of V1 or V2. In
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the bipartite graph representation, vertices of ∆n−1 × ∆d−1 are represented

by edges in the bipartite graph kn,d. In this setting, faces of ∆n−1 × ∆d−1

correspond to induced subgraphs Kn,d, and facets correspond to subgraphs

induced by removing one vertex. A cell C of a sudivision of ∆n−1 ×∆d−1 is

represented by a subgraph of kn,d consisting of edges corresponding to the

vertices of C. Therefore, a triangulation T can be represented by a collection

of subgraphs of kn,d, one for each simplex in T . Figure 3.2.1 shows an example

of a product of simplices and the corresponding complete bipartite graph and

grid representations. Figures 3.2.2 and 3.2.3 depict a triangulation of that

polytope together with both the subgraphs of the bipartite graph and marked

grids corresponding to each simplex.

Figure 3.2.2: This shows a triangulation of the product of simplices from

Figure 3.2.1.

Further, in the bipartite graph representation, we have the following re-

sults regarding properties of the point configuration ∆n−1 × ∆d−1 and sub-

graphs of Kn,d.



CHAPTER 3. PRODUCTS OF SIMPLICES 87

Figure 3.2.3: This shows both the subgraphs of k2,3 and the marked grids

corresponding to each simplex of the triangulated prism seen in 3.2.2.

Theorem 3.2.1. [11]

In the bipartite graph representation of ∆n−1 ×∆d−1:

(1) A subset of ∆n−1 × ∆d−1 is affinely independent if and only if the

corresponding subgraph has no cycles (this means it is a forest). So affine

bases correspond to spanning trees.

(2) A subset of ∆n−1×∆d−1 is affinely spanning if and only if the corre-

sponding subgraph is connected and spanning.

(3) A subset of ∆n−1 ×∆d−1 is a circuit if and only if the corresponding

subgraph is a cycle.

Proof. Consider a subgraph G ofKn,d and the corresponding subset of∆n−1×

∆d−1, call it C. For the forward direction of (1), the fact that G, being

an acyclic subgraph, corresponds to an independent subset of vertices of

∆n−1×∆d−1 follows from an inductive argument on the size of the set (recall

that the number of edges in G corresponds to the number of vertices of C).

Any acyclic graph is guaranteed to have at least 1 degree 1 vertex. The

subgraph of Kn,d that results from deleting this vertex corresponds to a facet

of ∆n−1 ×∆d−1 containing all but one point of C. The inductive hypothesis

tells us that the intersection of this facet with C is an independent set, which
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implies that C is itself independent. The converse statement amounts to the

fact that a cycle in Kn,d corresponds to an affinely dependent set. We can

see this by taking the vertices of ∆n−1 × ∆d−1 corresponding to the edges

in the cycle of Kn,d and labeling them with alternating coefficients of +1

and −1. This construction yields the desired dependence, as each (vi, ∗) will

occur with both positive and negative coefficients, as will each (∗,wj), so

everything will cancel.

Both (2) and (3) follow from (1).

To see (2), recall that a set is affinely spanning if and only if it contains

an affine basis, meaning a full dimensional simplex, and that subgraphs are

connected and spanning if and only if they contain a spanning tree. So

connected spanning subgraphs correspond to sets containing an affine basis

of ∆n−1 ×∆d−1 and are hence affinely spanning.

(3) follows from the fact that minimal dependent sets correspond to cir-

cuits. Minimal dependent sets correspond to subgraphs containing cycles for

which the result of removing any edge is an acyclic graph. This is only true

when the subgraph itself is a cycle, so circuits of ∆n−1×∆d−1 correspond to

cycles in Kn,d.

This circuit terminology clearly has ties to traditional matroid theory.

However, it also has connections to results in tropical matroid theory. In

light of the translation between tropical oriented matroids and products of

unimodular simplices, which will be discussed further in 3.3, Lemma 2.3.3 is

equivalent to the following statement.
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Lemma 3.2.2. [11]

A subset of the grid corresponds to a spanning subset of ∆n−1 × ∆d−1 if

and only if it meets all rows and columns of the grid. In particular, bases are

the subsets of cardinality n + d− 1 that meet every row and column.

Proof. Theorem 3.2.1 says that spanning subsets correspond to connected

spanning subsets in the bipartite graph representation. This means they

correspond to subgraphs meeting every vertex of the graph. Vertices of the

graph correspond to rows and columns of the graph, so the translation shows

that spanning corresponds to meeting each row and column of the grid.

3.2.2 Nice Triangulations of ∆n−1 ×∆d−1

It should not be surprising that people are interested in not only products

of subdivisions and triangulations themselves, but also whether properties of

subdivisions are “inherited” in their products. To demonstrate ties between

these products of simplices and my work with triangulations of lattice poly-

topes, I consider the case of products of unimodular simplices. This offers

a context in which to introduce staircase triangulations, which are particu-

larly useful for proving a more general result regarding the existence of nice

triangulations in product polytopes.

A product of unimodular simplices corresponds to the undirected edge

polytope of a complete bipartite graph, and hence is itself totally unimodular.

To understand this statement it is helpful to know what an edge polytope is.

Let G be a finite connected graph, on a vertex set V (G) = {1, ..., d}, such

that G has no loops or multiple edges. Given an edge e = {i, j} of G joining

vertices i ∈ V (G) and j ∈ V (G), define ρ(e) ∈ Rd as ρ(e) = ei + ej , where
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ei is the ith unit coordinate vector in Rd. The edge polytope of G, PG, is the

convex hull of {ρ(e) | e is an edge of G } ⊂ Rd.

Results from Section 1 ensure that a general edge polytope PG has a

regular unimodular triangulation if and only if there is a squarefree initial

ideal of the toric ideal IPG
of K[PG]. In the special case of a product of

simplices, we know that there is in fact a quadratic triangulation, and hence

we know we can obtain a quadratic Gröbner basis for the corresponding ideal.

Such a nice triangulation can be obtained for the product ∆n−1 × ∆d−1 via

a staircase triangulation.

The name of the staircase triangulation fits nicely with its visual repre-

sentation via grids. A monotone staircase in the n × d grid is a subset of

n + d− 1 boxes, beginning with (1, 1) and ending with (n, d), where each is

directly above or to the right of the one that came before it. Another way

to describe this is to consider the vertices of ∆n−1 ×∆d−1 = {(vi,wj) | 1 ≤

i ≤ n, 1 ≤ j ≤ d} and think of paths from (v1,w1) to (vn,wd), where each

step increases either the index of v or the index of w by one. Every path

of this type will contain n + d − 1 vertices of ∆n−1 × ∆d−1, and hence will

determine an (n+d−2)-dimensional simplex. The collection of all such paths

corresponds to the staircase triangulation. In fact, this is the same triangula-

tion obtained by pulling the vertices in lexicographical order. 1 Figure 3.2.4

depicts the collection of simplices, each given by the grid indicating which

vertices are contained in it, comprising the monotone staircase triangulation

of ∆3 × ∆4. A straightforward counting argument demonstrates that the

n× d grid has
(

n+d−1
n−1

)

monotone staircases [11] [24].

1 For more on pulling triangulations and lexicographical order see Sections 1.3.1 and

1.2.1.
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Staircase triangulations can also be described algebraically. Let ≺ be a

component-wise partial order on the vertices of ∆n × ∆d given by ordering

the vertices of the factors v0 ≺ v1 ≺ ... ≺ vn and v′0 ≺ v′1 ≺ ... ≺ v′d.

The collection of totally ordered subsets of this partial ordering agrees with

the quadratic triangulation known as the staircase triangulation. This tri-

angulation can be constructed by pulling the vertices (vi, v′j) of ∆n ×∆d in

lexicographical order. [21]

These nice properties of simplicial products extend in the following, more

general, theorem.

Theorem 3.2.3. [21] If P and P ′ are lattice polytopes such that each ad-

mits a (regular) unimodular triangulation, then P × P ′ also has a (regular)

unimodular triangulation. The set of minimal non-faces will be the lifts of

the minimal non-faces from the triangulations of P and P ′, together with

additional non-faces of cardinality two.

The first sentence tells us that a unimodular triangulation will “lift” to

a unimodular triangulation in the product, and that if the original’s were

regular, the product’s will be as well. The second sentence guarantees that

no new non-faces of cardinality greater than two will appear in the product.

As a result, if we have quadratic triangulations of P and P ′, we can construct

one in the product P × P ′ as well.

Proof. The product of a triangulation is a subdivision into a product of

simplices; if each of these simplices in the product is unimodular, then any

refining triangulation of the subdivision will be unimodular. Further, the

non-face condition follows from ordering the lattice points of each of P and

P ′ completely, v1 ≺ ... ≺ pr and p′1 ≺ ... ≺ p′s, and pulling the lattice points
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(pi, p′j) in P×P ′ lexicographically. One can then consider a non-face N: either

it was a non-face in P or P ′, or it is a non-face in the staircase triangulation.

This result is a powerful tool in the search for quadratic triangulations

of lattice polytopes discussed in Chapter 1. However, as mentioned earlier,

these products of simplices also have direct ties to tropical oriented matroids,

so I now return to discussion of their role in my tropical work.

3.3 Tropical Oriented Matroids

Meet ∆n−1 ×∆d−1

Armed with some background on ∆n−1 ×∆d−1, we turn our attention again

tropical oriented matroids. Oh and Yoo initially claimed that a collection

of (n, d)-types is a tropical oriented matroid if and only if it corresponds

to a triangulation of ∆n−1 × ∆d−1. However, they have since revised this

statement, offering instead only the backwards direction of the bijection.

Theorem 3.3.1. [30] A collection of all trees in a triangulation of ∆n−1 ×

∆d−1 forms a tropical oriented matroid.

Oh and Yoo’s proof uses, and is phrased with respect to, the bijection

between products of the form ∆n−1×∆d−1 and the complete bipartite graph

kn,d, and appears in [30]. The fact that this statement is not a bijection cor-

responds to the fact that non-generic tropical oriented matroids correspond

not to triangulations of ∆n−1 ×∆d−1, but to other subdivisions.

Theorem 3.3.2. Non-generic tropical oriented matroids do not correspond

to triangulations of ∆n−1 ×∆d−1.



CHAPTER 3. PRODUCTS OF SIMPLICES 93

The translation between triangulations of ∆n−1 ×∆d−1 and tropical ori-

ented matroids is a map between simplices of the triangulation and vertices

of the matroid. The proof of Theorem 3.3.2 shows that this correspondence

fails in the case of non-generic matroids.

Proof. To show that vertices of a non-generic tropical oriented matroid do

not correspond to the simplices of a triangulation of ∆n−1 × ∆d−1, recall

the grid notation for a product of ∆n−1 ×∆d−1, and a triangulation thereof.

In particular, a simplex in this grid notation is represented by a grid with

exactly n + d − 1 entries. Translating the (n, d)-types of the vertices of a

tropical oriented matroid into this grid notation shows that a non-generic

vertex will have at least n+ d entries and hence not correspond to a simplex

in the map taking grids to grids, which provides the translation between

simplices of triangulations and vertices of triangulations in the generic case.

2 The grid representation of a type A in a tropical oriented matroid of type-

(n, d) is defined as follows. There is an entry in the ith position of the jth row

of the grid if i ∈ Aj. Now consider a non-generic tropical oriented matroid

M and take B to be a non-generic vertex of M . By definition, B has at least

n+ d entries in its grid representation. This means B can not correspond to

a simplex of a triangulation of ∆n−1×∆d−1. Therefore, the vertices of M do

not correspond to a triangulation of ∆n−1 ×∆d−1.

Oh and Yoo’s original proof claiming a bijection between tropical oriented

matroids and triangulations of ∆n−1 × ∆d−1 holds in the generic case, and

could be restated with the generic qualification as follows.

2An empty entry in this grid is equivalent to a 0 in the incidence matrix representation

of type A, and an entry in the grid corresponds to a 1 in this matrix.
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Theorem 3.3.3. A collection of (n, d)-types is a generic tropical oriented

matroid if and only if it corresponds to a triangulation of ∆n−1 ×∆d−1.

3.3.1 The Regular Case

When all triangulations of ∆n−1 × ∆d−1 are regular, a model for the space

of all triangulations is offered by the secondary polytope. Taken with the

definition of the secondary polytope, Theorem 3.3.3 leads to the following

lemma.

Lemma 3.3.4. When all triangulations of ∆n−1×∆d−1 are regular, generic

tropical oriented matroids of type-(n, d) correspond to vertices of the sec-

ondary polytope of ∆n−1 ×∆d−1.

The bijection between generic tropical oriented matroids of type-(n, d)

and products of simplices ∆n−1 × ∆d−1 has ties to non-generic tropical ori-

ented matroids as well. In particular, the fact that tropical oriented matroids

are in bijection with triangulations of products of simplices means that non-

generic tropical oriented matroids do not correspond to triangulations of

products of simplices. Such non-generic matroids exist instead as the limit

of two or more such triangulations— in the case of two, these are triangu-

lations separated by a “flip.” The non-generic nature of the arrangement

corresponds to the fact that the flip remains unspecified.

Combining Theorem 3.3.3 and Lemma 3.3.4 with the relationship between

generic and non-generic tropical oriented matroids, we obtain the following

statement:

Theorem 3.3.5. When all triangulations of ∆n−1 ×∆d−1 are regular, non-

generic type-(n, d) tropical oriented matroids correspond to faces of dim > 0

of the secondary polytope of ∆n−1 ×∆d−1.
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Proof. Regular triangulations of ∆n−1 × ∆d−1 correspond to vertices of the

secondary polytope of ∆n−1×∆d−1. As noted above, when all triangulations

of ∆n−1 × ∆d−1 are regular, this means that tropical oriented matroids of

type-(n, d) also correspond to vertices of the secondary polytope. Edges be-

tween vertices in this polytope correspond to flips between triangulations. In

particular, a subdivision that does not make a choice of flip is only a subdi-

vision, not a triangulation, corresponding to an edge (or higher dimensional

face of the polytope, if it fails to make a choice on multiple flips). A generic

tropical oriented matroid M corresponds to a triangulation of ∆n−1 ×∆d−1,

and hence a vertex of the secondary polytope of ∆n−1 × ∆d−1. I abuse no-

tation by also labeling this M . Consider an apex A of this arrangement

changing relative position with respect to some other position, i. Without

loss of generality, say it moves from sector k to sector l (taking you from A

with Ai = {k} to A′ with A′
i = {l}). This move results in a new tropical ori-

ented matroid, corresponding to a different vertex of the secondary polytope

of ∆n−1 ×∆d−1, call it M ′. The elimination axiom guarantees the existence

of some Ã such that Ãi = {k, l}. The tropical oriented matroid containing

this Ã is a non-generic tropical oriented matroid, and corresponds to the face

of the secondary polytope containing M and M ′.

In [11], Santos explains that the only cases of ∆n−1 × ∆d−1 for which n

and d are > 1 and all triangulations are regular are: ∆2 × ∆2, ∆3 × ∆2,

∆4 × ∆2, ∆2 × ∆3, and ∆2 × ∆4. The reason this result does not hold for

other ∆n−1 ×∆d−1 is that non-regular triangulations are not represented by

the secondary polytope. It remains true that any non-generic tropical hyper-

plane arrangement corresponds to a subdivision “between” triangulations, in
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particular the triangulations corresponding to its neighboring generic trop-

ical oriented matroids. This statement does suggest that there is a space

of all possible tropical oriented matroids of a given size and that the non-

generic ones represent the boundaries separating the generic ones. This is

the more general case that is modeled here by the secondary polytope. These

preliminary results demonstrate not only an important distinction between

the generic and non-generic tropical oriented matroids, but also that the

non-generic case merits further investigation.

3.3.2 The Non-Regular Case

The case of non-regular subdivisions and triangulations merits some indepen-

dent discussion. Personal communication with Develin suggests that non-

regular subdivisions of ∆n−1×∆d−1 are in bijection with what he and Ardila

defined as tropical pseudohyperplane arrangements. In their paper, Ardila

and Develin define a tropical pseudohyperplane arrangement as a subset of

TPd−1 that is PL-homeomorphic to a tropical hyperplane, and offer the fol-

lowing conjecture of a “tropical representation theorem.”

Conjecture 2. [3]

Every tropical oriented matroid can be realized by an arrangement of trop-

ical pseudohyperplanes.

The idea here is to use the Cayley trick that puts triangulations of prod-

ucts of simplices of ∆n−1 ×∆d−1 in bijection with mixed subdvisions of the

dilated simplex n∆d−1. The details of this bijection are outlined in [37]. For

example, one can consider the tiling of ∆1 ×∆2 depicted on the left in Fig-

ure 3.3.2. The tetrahedra in this subdivision have types (123, 1), (23, 13),

and (2, 123), which are mapped under the bijection to the Minkowski sums
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123 + 1, 23 + 13, and 2 + 123. This corresponds to the mixed subdivision of

2∆2, seen on the right in the same figure. (This example corresponds to the

actual tropical hyperplane arrangement seen in Figure 3.3.2.)

Obtaining a tropical pseudo (or actual) hyperplane arrangement from a

subdivision of n∆d−1 requires taking the combinatorial dual of each chamber

of the mixed subdivsion. In the 2-dimensional case there are four possible

chambers in the mixed subdivision, 3 rhombuses and 1 triangle. The geo-

metric realization of their duals are depicted in Figure 3.3.2. 3 The lower

dimensional faces of this subdivision fit together to form a tropical pseudo-

hyperplane arrangement. The simplices in the mixed subdivision (i.e. the

triangles in the 2-dimensional examples seen here) correspond to the apices

of the pseudo-arrangement, while the other cells indicate how these pseudo-

hyperplanes interact throughout the arrangement.

This process allows one to visualize tropical pseudohyperplane arrange-

ments corresponding to triangulations of ∆n−1×∆d−1 which are not regular.

An example of this is shown in Figure 3.3.2. It shows a tropical pseudohyper-

plane arrangement corresponding to a non-regular triangulation of ∆2×∆5,

and hence a tropical oriented matroid of type-(3, 6) that should not be real-

izable by any actual tropical hyperplane arrangement.

Understanding the role of these pseudo arrangements in the space of all

tropical oriented matroids is among my current projects. It offers another

application of computer code. I could compare the output of code enumer-

ating all tropical oriented matroids of a given (n, d)-type to existing lists of

all tropical hyperplane arrangements with parameters n, d. This should help

3These geometric realizations are known as their mixed Voronoi subdivions. The mixed

Voronoi subdivision of a k-simplex divides it into k regions, where regions are defined by

associating each point to the nearest vertex of the simplex.
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me see how pseudo arrangements fit between actual tropical hyperplane ar-

rangements, allowing me to better model the space of all tropical oriented

matroids.
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Figure 3.2.4: This depicts the collection of simplices, each given by the grid

indicating which vertices it contains, comprising the monotone staircase tri-

angulation of ∆3×∆4. (Note that covering relationships in the poset, implied

by this visual, correspond to adjacency of simplices in the triangulation.)
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Figure 3.3.1: The image on the left shows a triangulation of ∆1 × ∆2.

Tetrahedron (123, 1) is shown in green. Tetrahedron (2, 123) is shown in

purple. The tetrahedron (23, 13) is the convex hull of the edge contained

in both and the edge contained in neither. The representation of the same

triangulation via a mixed subdivision of 2∆2 is on the right. The cells are

color coded to match their corresponding tetrahedra in the image on the left.

Figure 3.3.2: This shows the 4 possible cells in a mixed subdivision of 2∆2,

3 rhombuses and 1 triangle.
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Figure 3.3.3: The image on the left shows the geometric dual of the mixed

subdivision of 2∆2 corresponding to the triangulation in Figure 3.3.2. The

edges indicating the faces of the 2 tropical pseudohyperplanes in the corre-

sponding arrangement of tropical pseudohyperplanes are highlighted in red

and blue. There is an arrangement of actual tropical hyperplanes with the

same types (and hence representing the same tropical oriented matroid), on

the right.

Figure 3.3.4: The image on the left depicts a mixed subdivision of 6∆2

corresponding to a non-regular triangulation of ∆2 ×∆5. The image on the

right shows the corresponding arrangement of 6 tropical pseudohyperplanes

in the plane. This corresponds to a tropical oriented matroid of type-(3, 6).



Chapter 3 102

Bibliography

[1] Federico Ardila, Matthias Beck, Serkan Hosten, Julian Pfeifle, and Kim

Seashore. Root polytopes and growth series of root lattices. 2008. [Cited

on page 83]

[2] Federico Ardila and Sara Billey. Flag arrangements and triangulations

of products of simplices. Adv. Math., 214(2):495–524, 2007. [Cited on

pages 45 and 83]

[3] Federico Ardila and Mike Develin. Tropical hyperplane arrangements

and oriented matroids. Math. Z., 262(4):795–816, 2009. [Cited on pages

66, 71, 74, 76, 82, and 96]

[4] Federico Ardila and Caroline J. Klivans. The Bergman complex of a

matroid and phylogenetic trees. J. Combin. Theory Ser. B, 96(1):38–

49, 2006. [Cited on page 45]

[5] E. K. Babson and L. J. Billera. The geometry of products of minors.

Discrete Comput. Geom., 20(2):231–249, 1998. [Cited on page 83]

[6] Alexander Barvinok. A course in convexity, volume 54 of Graduate

Studies in Mathematics. American Mathematical Society, Providence,

RI, 2002. [Cited on page 8]



BIBLIOGRAPHY 103

[7] Victor V. Batyrev. On the classification of toric fano 4-folds. J. Math.

Sci. (New York), 94(1):10211050, 1999. [Cited on page 24]

[8] Margaret M. Bayer. Equidecomposable and weakly neighborly poly-

topes. Israel J. Math., 81(3):301–320, 1993. [Cited on page 83]

[9] Winfried Bruns and Joseph Gubeladze. Polytopes, Rings, and K-Theory.

Monographs in Mathematics. Springer-Verlag, 2009. XIV, 461 p. 52 illus.

[Cited on page 2]

[10] Winfried Bruns and Joseph Gubeladze. Polytopes, Rings, and K-Theory.

Springer Monographs in Mathematics part 1. Springer., New York, NY,

2009. [Cited on page 36]
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