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Abstract

Bounds for the Spectral Mean Value

of L-functions at s = 1

Qing Lu

We prove two results about the boundedness of spectral mean value of Rankin—Selberg
L-functions at s = % which is an analogue for Eisenstein series of X. Li’s result for Hecke—

Maass forms.
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Chapter 1

Introduction

1.1 Background

L-functions are fundamental objects in number theory which carry rich arithmetic information such
as geometric invariants (for instance, the Birch and Swinnerton-Dyer conjecture for elliptic curves).
Bounds for L-functions on the critical line (Re(s) = %) are related to interesting problems like
the problem of equidistribution of integer points on surfaces [[18]] and Hilbert’s eleventh problem
(i.e. which integers are integrally represented by a given quadratic form over a number field) [[18,43].

Sharp upper bounds for central values for an individual L-function could be easily derived from
the Riemann hypothesis, but strong unconditional bounds are much more difficult to obtain. Impor-
tant works in this field for GL(1) and GL(2) L-functions have been done by Weyl [48]], Burgess [5]],
Good [[15]], Meurman [35]], Duke, Friedlander and Iwaniec [9-11]], Sarnak [44]], Kowalski, Michel
and Vanderkam [26]], Michel [36], Harcos and Michel [[19], Michel and Venkatesh [37,,38]], Lau, Liu
and Ye [31]], to name a few. Much less is known for higher rank groups.

Conrey and Iwaniec developed a spectral method to find the currently best known unconditional
bounds for GL(1) L-functions in a landmark paper [6]]. Instead of a single L function, they consid-
ered a family of L-functions and find the upper bound for their (weighted) mean value by harmonic
analysis (Petersson—Kuznetsov trace formula). With a suitable choice of the weight, they proved
that L (%, )() < q%” for a Dirichlet L-function with character y (mod g).

Recently X. Li found new methods to obtain exciting results on Rankin—Selberg convolutions

of GL(3) X GL(2) Maass forms including non-vanishing of central values [33]] and subconvexity



bounds [34]. A remarkable technique in her work is the application of the Voronoi formula [[13}[14]]
for S L(3, Z) which was first discovered by S. D. Miller and W. Schimid [40,/41].

In this thesis we apply Li’s method to a different situation that she suggested. Instead of the
Rankin—Selberg convolution for Hecke—Maass forms, we consider that of a GL(3) Eisenstein series
and a spectral family of GL(2) forms. In this case, the Rankin—Selberg convolutions split into third
powers of L-functions for GL(2) forms, or sixth powers of the shifted Riemann zeta function, or
products of such L-functions. As a consequence we establish bounds for these L-functions, as well

as obtain a new proof of [6] for the untwisted case with a better bound.

1.2 Main theorems

Theorem 1.2.1. Let {u j} be an orthonormal basis of even Hecke—Maass forms for S L(2,7Z) cor-
responding to the Laplacian eigenvalue (i + t?) with tj > 0. Then for € > 0, large T and
T5+ < M < T%, we have

Zl _(lj_;)z ‘L 1 3 1 0 _(f—Tz)z
e M (— u)’ + — e M
2°7
dr J_o

7(5- iz)’6 dt <. T""*M (1.2.1)

where ' means summing over the orthonormal basis of even Hecke—Maass forms.

11
Corollary 1.2.2. L(},uj) < 2"

1
Remarks. Ivié¢ [21]] proved the stronger bound L(%, u j) < t; ** which is currently the world
record.
1
In a paper by Iwaniec [23]], he also proved L(%, u j) < t; ' but conditionally. This proof can

now be made unconditional.

Corollary 1.2.3. |{ (% + it)| < tR*E,

Remark. We include the bound for (% + it) only because it follows directly from the Main The-
orem. Much stronger results are known. [20].

Theorem 1.2.4. Let  be an even Hecke—Maass form for S L(2,7Z), {u ; }j an orthonormal basis

of even Hecke—Maass forms for S L(2,Z) corresponding to the Laplacian eigenvalue (% + tf) with



tj > 0. Then for & > 0, large T and T5+ < M < T%, we have

¢(L+it) Lk + i, w)r di

;@2 . : 1 =12
Z e M L(E,uj)L(i,zﬁxuj) + — e M
- dr J_o

<, T'""*M

(1.2.2)

where ' means summing over the orthonormal basis of even Hecke—Maass forms.

Corollary 1.2.5. L(% uj)L(%, /84 uj) < t;?us

Corollary 1.2.6. |§ (% + it) L(% + it, (//)| < 116,

1.3 A review of the GL(2) spectral decomposition

Since the proof of the main theorems is based on a spectral method, let us recall some standard facts
about the spectral decomposition of L2(S L(2, Z)\b?).

Let b2 = {x + iy e C| x e R,y € R, } be the classical upper half plane. The S L(2, Z)-invariant

i 9?
_ 2
2= 52+ 5)

Laplace operator

has a spectral decomposition on [? (S L(2, Z)\bz) as follows:
LX(SLQ2,Z)\h) = Co C(SLQ2.Z)\) © E(S L2, Z)\D?),

where C is the space of constant functions, C (S L(2, Z)\bz) is the space of Hecke—Maass cusp forms
and & (S L(2, Z)\bz) is the space of Eisenstein series.

Let U = {u g | j= 1} be an orthonormal basis for the space C (S L2, Z)\b2), where u;’s are
Hecke—Maass cusp forms with Laplacian eigenvalues (% + t?) (t; > 0) and with Hecke eigenvalues
Aj(n).

Each u(z) has the Fourier expansion

uj@) = Y pimWi,(n2)

n#0



where
1
Wi(2) = 2Iy|2KS_%(27TIyI)€(X) (1.3.1)

is the Whittaker function. Here K(y) is the K-Bessel function, and e(x) = e>™*.

Furthermore, for n > 0, we have

pi(&n) = p (£ DA (mn"7.

A Maass form ¢ € C(S L(2, 7Z)\b?) is called even if it satisfies #(-2) = ¢(z), and is called odd if
it satisfies ¢(—2) = —@(2).

The space & (S L(2, Z)\bz) is spanned by Eisenstein series {E(z, % + it) | teR }

In the following we will write E(z, s) as Eg(z).

We will also use u (Re(u) = %) instead of s as the parameter of the family of Eisenstein series,
as the letter s will be reserved for the complex variable for Rankin—Selberg L-functions.

E,, has Fourier expansion of the form

_ 1 _1
Eu@ = ¥+ ey ™+ oo D il - W) (1.32)
EQu)
where £(u) = n*T(1/2)¢ () is the complete Riemann zeta function, c(u) = %
Ty = "
dln
is the divisor function and
1
Wu(2) =2|yI2K, _%(Zﬂlyl)e(nx) (1.3.3)

is the Whittaker function. (See Theorem 3.1.8 in [[12].)

and write

We will also write /lfis(n) = 01-24(n) to denote the n-th Hecke eigenvalue of E Lyip

pES(n) = EQu) " o1-u(n) "% to denote the n-th Fourier coefficient of E 1., for simplicity.



1.4 Outline

In Chapter[2] we prepare the theory of the Rankin—Selberg convolution for a GL(3) Eisenstein series
(minimal parabolic or maximal parabolic twisted by a GL(2) Maass form) with another GL(2) form,
either an Eisenstein series or a Maass form.

In Chapter 3] we give the proof of Theorem[1.2.1] We first prepare all the lemmas needed in the
proof, especially the Voronoi formula and the approximate functional equation for GL(3) Eisenstein
series. Then we bring out the estimation in details and obtain the desired bound. The proof of

Theorem [1.2.4]is similar and we omit the details.



Chapter 2

Rankin-Selberg convolution of a GL(3)

Eisenstein series with a GL(2) form

We shall define the Rankin—Selberg convolution of a GL(3) Eisenstein series (minimal parabolic or
maximal parabolic, respectively) with a GL(2) form (a Hecke-Maass form or an Eisenstein series,
respectively) by Dirichlet series constructed from the Fourier coefficients of the two forms (where

the constant terms are discarded).

2.1 GL(3) minimal parabolic Eisenstein series

We shall use the same notations as in [[12]. Let the generalized upper half plane b* associated to

GL(3,R) be the set of all 3 x 3 matrices of the form z = x - y where

I x x3 y1y2
x=l0 1 x|, y= ol 2.1.1)

0 0 1

1

with x; € R for 1 <i <3 andy; > 0. By [12], p* = GL(3,R)/(O(3,R) - R*.

Pin ::{[ * *]}HSL(?),Z)

Let



Let v = (v1,v2) € C2. For z € ), define

vi+2va 2vi+vs

1,(2) = I Yy

We define the GL(3) minimal parabolic Eisenstein series émin, by

Sminy@ = D L) (2.12)
Y€Pmin\S L3(Z)

&min,y 1s well-defined, converges absolutely and uniformly on compact subsets of PtoaSL3,2)
invariant function provided Re(v{) and Re(v,) sufficiently large. (c.f. [[12])

It is well-known that &pin,, has Fourier expansion of the form

(g)min,v(z) = C(,v)+ Z i i Ay(m,n) - Wiacquet (( el Imy X ) : (y 1 )z, v, lpl’llr%\) .

yeUy(Z)\T m=1 n=1
(2.1.3)

Here C(z,v) denotes the degenerate terms in the Fourier expansion associated to m; = 0 or

my = 0, and for a character ¢ of U3(R),
WJacquet(Z, u, ) = f f f L(wouz)y(u) dvidvodvs

1 vy va
and wy = (1 -1 ), u= ( 1 v ) See Theorem 10.8.1 in [12].
1

In the case of vy = (%, %), we have

Agm 1) = > 1 = dy(m) = Og(m°),, (2.1.4)
A(Lim) = Aym 1) = ds(m), (2.1.5)
Anlmm) = > (@ A (1) 40 (1.5)

d|(m,n)

_ d%;n) u(d) ds (%)dg (g) (2.1.6)



where u denotes the Mobius u-function

if n is a square-free positive integer with an even number of prime factors,

um) =1{-1

if n is a square-free positive integer with an odd number of prime factors,

0  if nis not square free.

2.2 GL(3) maximal parabolic Eisenstein series

Py ::{[* * *]}ﬂSL@,Z).

Let

*

-
=

For z € h3, we define

1 X1,2 0 Y1 0 0
mp, (2):=[0 1 0||0 y O0f.
0o 0 1)lo 0 1

Let  be a GL(2) Hecke-Maass form of type w’ whose Fourier expansion is

@) = Y bun T Wi (). 22.1)

n#0

For z € b, A € C with Re(1) sufficiently large, we define the GL(3) maximal parabolic Eisen-
stein series &max,y,4 twisted by the GL(2) Maass form ¢ by

Empa@ = D Det) - ymp,, (2) (2.22)
YEPZ,] \S L(3,Z)

where Det(z)! = (2y2) . (. §10.5in [12])

Then according to Proposition 10.9.3 in [12], the (n, 1)-th Fourier coefficient of &iaxy,1 is

Aw,/l(”l, 1) — n—l Z bkl 2+/l k—2/1+2 Z b n/1+1 k3/l
kiko=n kin



where by is the k-th Fourier coefficient of y/(z), as in (2.2.1).

2.3 L-functions associated to &iin,ys Smaxy,15 £, and ¢

Let &nin,y and &maxy,a be the GL(3) Eisenstein series defined in (2.1.2) and (2.2.2)) with Fourier
expansions (2.1.3) and (2.2.3)), respectively.

Let E, be a GL(2) Eisenstein series with Fourier expansion

Ef@) = ¥ +c(uy™ + oo 3 G m) a2 - Wy (n2) 23.1)
#0

L
£Q2p) 4

and ¢ be an even GL(2) Hecke—Maass form of type w with Fourier expansion

#(2) = Z ann_% W,,(nz).

n#0

Then we define the L-functions associated to &nin,y and Emax, ., E, and ¢ as follows:

L(s.Gniny) = D Av(n 1) 0™, (23.2)
n=1
L(s, mag ) = D Agaln, D) n, (2.3.3)

1

S
Il

L(s,E,) = Zm-z,l(n)-n“, (2.3.4)
n=1
Lis,¢) = ) am™ (2.3.5)

3
1l
—_

They have Euler products due to the Hecke theory, and as shown in Sections 3.13, 3.14 and 10.8

in [12],

L(s, Eminy) = L(s+vi+2va = DL(s = 2vi —va + DL(s + vy = 2),

L(s, gmax,w,/l)

{(s—vy— I)L(S—V1 + %w)

L(s, E,)

1 1
§(S+V—§)§(S—V+§),

Lisg) = | |a-ap™[[a-gp™7"
p p
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Here we only prove the second equality as an example:

> by k343
L(s, éamax,lp,/l) = ZZ nst2a-1

n=1 kin

(n/)s+211 [5+24-1-(32-3)

n’=1

1
= {(s+2/l—1)L(s—/l+§,w).
Now we choose v = vy = (3, 3) so that L(s, &nin,v,) takes the following simple form:
3 1\
L(s, (O@min,vo) = {3(8) = l_[ 1_[ (1 - ];) ’
p =l
Similarly, we choose A = % so that L(s, &max,y,1) takes the following simple form:
L(s. Gy ) = (OLs ) = [ [ =p) (1= app™) " (1-8p7).
p

2.4 Rankin-Selberg convolutions

We shall study the following Rankin—Selberg convolutions

L(S, Eminy X Ey) = Z Z AV(mE:,)z(,:;SZV(n)’ 2.4.1)
m=1 n=1
N Avim, n)ay
L(s, Eminy X ) = — (2.4.2)
’; ; (m%n)
= - A u s )
L(s, Cgamax,z//,/l X E,u) = Z Z % (24.3)
m=1 n=1
(o) () A " , .
L(S, @@max,l//,/l X ¢) = Z Z % (244)

3
I
—_
S
I
—_

They are convergent for Re(s) sufficiently large. See Section 12.2 in [12].

Theorem 12.3.5 in [[12]] implies that if f and g are S L(3,Z) and S L(2,Z) forms, respectively,



with Euler products

An, 1
Lf(S)—Z (n )

n=1

B(n)

Ly(s) = Z b

n=1

then

Lyxg(s) = Z Z

]_[ ]_[a apip™)
=11 ]_I(l ~Bpip™) ",

p =

m=1 n=

has the Euler product

1

A(n,m)B(n)

(m?n)s

3 2
LfXg(s) = 1_[ l_l l_l(l ap, lﬁp jp_g)_
p

i=

1

j=1

11

Now we apply this theorem to di and (2.4.2), and take the special choice vy = (%, %) We

have

L(s, Eminyy X Ey) = 1—[ 1—[ [1 -
P

3
i=1
3

-2

i=1

L(s, éarnin,vo X ¢)
If we further take v = % + it (t € R), then
L(s,E}

Lyir)

and hence
L(S, éamin,vo X E%
Therefore,

1
L (59 éamin,vo X E)

+it)

3 1 .
Lyt g §+lt

L(s +ind(s —it),

= Os+ind(s—in).

6
This explains how |§ (% + it)| and [L(s, )]’ enter the main theorem naturally.

(2.4.5)

(2.4.6)

(2.4.7)

(2.4.8)

(2.4.9)
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Similarly, we have

L(s, gmax,w,/l X Ey)

|
=
—
—_
|
le
N
~
+
=
]
|
=
|
—
—_—
|
EI
N
~
¥
’.BI
o=
+
=
|

{(s+2/l+,u—§)§(s+2/l—,u—%)L(s—/l+,u,(,//)L(s—/l—/1+l),

(2.4.10)

p
L(s, éamax,(p,/l X ¢) = l_[ (1 -
p

, _1 _1.0\"1 , _1 _1.n\"1
{l_ﬁp-lﬂ“-ap-p2+”} [1_ p'p”z-ﬁp-pﬁ“J
pS

L(s+21 - 1,¢)L(s—/1+%,¢/><¢). 2.4.11)

Choose 1 = % and u = % + it, we have

L(s, @@max’d/’% X E%m) = ((s+in){(s—it) L(s + it,¥)L(s — it, ¥),
= |{(s+inL(s +it,Y)?, (2.4.12)
L(S, Gyt X9) = LS. )L(s.4 X §). (2.4.13)

The analytic properties of the Rankin—Selberg L-function on the left sides, such as meromorphic
continuation and functional equations follow from the right sides. Moreover, we also obtain the
nonnegativity of these Rankin—Selberg L-functions at s = % in the same way.

For an even Hecke-Maass form ¢ with Laplacian eigenvalue le + 12 (t > 0), we define

A(S, Eming X $) = 70T (%”)ﬁ (s ; ”) L(S, Eminyy X D). (2.4.14)

By (2.4.6) and Proposition 3.13.5 in [12], it is easy to see that A(s, Sminy, X @) is an entire



13
function and satisfies the following functional equation:
A(s, @@min,vo x¢)=A -, @Qmin,v() X ).

(Remark: This is only true for even Maass forms. If ¢ were an odd Maass form, there should be
a (—1) factor on the right side of the functional equation.)

For a GL(2) Eisenstein series £ , .., define

5 +it?

— it + it
= 173 (u)ﬁ (u)L(s, Erminny % E

ACS, Eminyy X E 1 > >

§+it)

(2.4.15)

+it)‘
By li we see that A(s, &miny, X E 1 +;;) s entire and has functional equation

A(S’ é()min,\/() X E%+it) = A(l =5, éamin,vo X E%+it)'



14

Chapter 3

Proof of the Main Theorems

3.1 Outline of the proof

The left side of (I.2.1)) in Theorem [I.2.1]is “a spectral sum” over S L(2,Z) forms. This suggests
using a kind of trace formula to transform the spectral sum into a kind of “geometric” sum. In this
case, we will use the Kuznetsov trace formula for § L(2, Z) (Proposition [3.4.1).

The “geometric side” thus obtained would be a weighted sum of the product of the Fourier
coefficients A(n, m) of the S L(3,7Z) Eisenstein series and Kloosterman sums. We will estimate the

sum term by term. Various analytic tools are utilized, especially the Voronoi formula.

3.2 Preliminaries

In this section, we establish some lemmas needed for the proof of the main theorems and the corol-

laries.

Lemma 3.2.1. (Nonegativity of the Rankin-Selberg L-functions)

Let yy be a GL(2) Maass—Hecke form. Let &y, and &,

max,y,

1 be the GL(3) Eisenstein series defined

as before (see (l2.1.2|) and (|2.2.2|)), where vy = (%, %)

(i) Let ¢ be a GL(2) even Maass form. Then

1
L(E, Eninyy X ¢) > 0, L(E, Sy} ¢) > 0.
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(ii) Let E 1 be the GL(2) Eisenstein series defined as before. Then

+it
1 1
L E,gmin’yo XE%H'Z 20, L E’éamax,l//,% XE%_'_” > 0.

Proof. (1) The nonnegativity of L (%, Eminyy X ¢) follows from li together with the facts
L(%.¢) > 0and L%,y x ¢) > 0 by [17,29,30].

(i) The nonnegativity of L(%,éamin,,,o X E 1 H.t) and L(%,éamax’w’ 1 X ¢) follows from (2.4.5) and

(2.4.9) directly.

O

Lemma 3.2.2. Let &in,, be the GL(3) Eisenstein series defined in Section Let A,(m,n) be the

(m, n)-th Fourier coefficients of &pin.y (see . Then we have

> IAvm, )P < N. GB.2.1)

m2n<N
Proof. See [34,39,42]. O

Corollary 3.2.3. Let A,(m,n) be the Fourier coefficients of &pin,y (see[2.1.3). Then we have

DAy (m, m)| < Niml. (32.2)
n<N
Proof. Applying Cauchy’s inequality to Lemma [3.2.2]and the result follows. i

3.3 Approximate functional equations

We first quote Theorem 5.3 in [25] which is a general result about approximations to L-functions
in the critical strip, and then apply it to the Rankin-Selberg L-functions, resulting in Theorem [3.3.2]

below.

Theorem 3.3.1. Let L(f, s) be an L-function (as defined in [125|]) with root number &(f), conductor

q(f) and gamma factor y(f, s), and

1 1 -
o(f, 5) = s( gt L= 331
v(f, s)
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Let A(f, s) = q( f)%y( [, S)L(f, s) be the completed L-function for L(f, s).
Let F(u) be any function which is holomorphic and bounded in the strip —4 < Re(u) < 4, even,

and normalized by F(0) = 1. Let Vs(y) be a smooth function defined by

1 tico u y(f,s +u) du
Vi(y) = oy ﬁ_im y F(M)W - 3.3.2)

Then for X > 0 and s in the strip 0 < o < 1 we have

T
L(f, )—Z o, (X'z/_)+ a(f, )Z Wy (%)+R. (3.3.3)

The last term R = 0 if A(f, s) is entire, otherwise

A(f, s+ u) F(u)

R = (Res,=;_s + Res,—_y) (s u

(3.3.4)

Proof. See Section 5.2 in [25]]. O

The theorem above only applies to L(f, s) which has only one pole at s = 1. For our purpose
of studying the Rankin—Selberg L-functions (2.4.1H2.4.4), which may have more than one pole, a
slight modification is needed. Following the same idea of the proof of Theorem [3.3.1] we see that

in the general case the residue term should be changed to

A(f, s+ u) F(u)

R = Z (Res,=;;—s + Resy—1175) s u (3.3.5)
where z; run over the poles of L(f, ).
Now we apply the modified version of Theorem to
B Ay (m,n)A,
L(S, Eminyy X §) = Z Z oy (3.3.6)

m=1 n=1
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and take s = %,X: 1. We get

L(%, @(dmin,vo x ¢) — Z Z IM\% (mzn) + Z Z IM‘% (mzn) + R¢ (%,l)

(3.3.7
By (2.4.6), (2.4.14) and (3.3.5)), we know A(s, &min,y, X ¢) is entire and hence
Ry(s,t) = 0. (3.3.8)
Similarly, for
& & Ayy(m, ) AES(n)
L(S, éomin,vo X E%_H‘t) = n; nZ:: (mzn)s s
we obtain (in the case ¢ = 1 and &(f) = 1)
1 o o Ay (m,m) ABS(m)
L G x By = 513 A AT o
2 l ;1 nzz; (m?n)2
Sy K Ay (m, n) A (n
+Z —VO( ) f ( )V(mzn, t)
m=1 n=1 (mzn)i
1
where
Rgis(s,1) = (ReS,=1—g+ir + Resy=_g1jr + Res,—1_s_ir + Res,—s_ir)
A(S + u, éamin”o X E%+it) F(u)
13573 (s;it)r3 (%tt) u
I lt) (s+lt)
= r I
d ( 2 2
'(Resuzl—s+it + Resu:—s+it + Resu:l—s—it + ReSu:s—it)
3F
e+ u—inecs +u+ in) @ (3.3.10)
u

Using the computational software program Mathematica to compute Rg;s (%, t), it can be shown
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that Rg;; is relatively small (due to the asymptotic behavior of I'(s/2){(s) for s = 1 + it as t — +o0)

and can be omitted. The residues are listed explicitly as follows:

Res

3
16ﬂ%+3il

1
u=5+it

|

§(§+u—lt) §(§+u+lt)
1\ 1\
16«y2r(5 + it) Z(1+2i)° + nzr(5 + it) Z(1 +2ir)?
1 3 1 3
—48yT’ (5 + it) log(m)¢(1 + 2if)® + 24T (5 + it) log(m)*¢(1 + 2ir)?
1V (1 I 1
+247F(— + it) o (—)4(1 +2ir)? — 24r(— + it) log(m)vg (—)4(1 + 2it)}
2 2 2 2
1Y (1) 1
+6r( + n) ¢0(—) (1 +2it)° + 24«yr(5 + n) Lpo( + n) Z(1 +2ir)?
3
—24r( + zt) log(n)wo( + n) Z(1 +2ir)?
1 3
+12F(§ + it c/ro( );ﬁo( + zt) (1 + 21t)
1 1\
+6F( + n) ¢0( + n) (1 +2it)’
1 1
+2I (5 + lt) U ( + zt) (1 + 2it)?
1 3
—16F( + zt) yi£(1 + 2ir)?
1 3
+48yT" (5 + it) L1+ 2i (1 + 2if)
3
—48T (% + it) log(m)¢(1 + 2i)*¢' (1 + 2ir)

3
+24TI° ( + it

b
B

3
+8F(2 + n) L1+ 2i2" (1 + 2it) ) (3.3.11)

( )§(1 + 2it)? (1 + 2ir)

+241°

3

it| £(1+2i (1 + 2it)?

3
t) Yo ( +zt)§(1 +2lt) (1 + 2ir)
+16I" )



Res

_1_=
u=5-—it

3
16m2
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1 1
£ +u- it)3§(§ +u+ir)
1oa 1 3 5.2 (1 3
16«y2nz+3”r(E - it) (1 =2ir’ + 7rz+3”r(5 - it) Z(1 = 2ir)?
Lsine (1 ’ 3 Lsine 1 ’ 2 3
—48ym2* ”r(5 - it) log(m)¢(1 = 2it)® + 24m2* ”r(5 - it) log(m)*¢(1 — 2if)

3

+24yn%+3”r(% - it)3 Yo (%) Z(1 = 2it)® - 247r5+3"’r(% - it) log(m)vo (%)4(1 - 2ir)’
+67r%+3"’r(% - it)3 o (1)2 Z(1 = 2in)® + 24y7r%+3"’r(% - it)3 o (% - it) (1 = 2in?
247'(2+3”F( zz)3 log(m)o (— - zt) Z(1 = 2ir)’

+12772+3”F( — it Zp ( )wo(— —zt)g“(l - 2ir)’

+67r%+3"’r(; )3 o (% - zt)2 (1 = 2in?

+27r%+3"'r(% - it)3 e (% - it) Z(1 = 2it?

—16n%+3”r(% - it)3 y1£(1 = 2if)?

+48ynz+3”r( )3 Z(1=2it)* (1 - 2if)
48nz+3”r( zt) log(m)¢(1 = 2it)*¢’ (1 = 2if)

+2arbeip (L zt)3 o ( ) (1 =2it)* (1 - 2if)

3

+16772+3”F —it] ¢(1 =2ind’(1 - 2ir)?

3
+24x 23 ( n) zpo(——zt)g(l—Zzt)zg“(l 2if)

3
+8n%+3i'r(% - zt) £ =2iry*2" (1 = 2ir) ) ; (3.3.12)



Res

S
u=—x5+it

71.—31[

ale

Res

—_1_;
u=—5-it

3l
—_
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g(% +u-— it)3§(% +u+ it)?

22T (it) ¢ Qit) — n®T(ir)* ¢ ir)?

—8I(ir)* log(2)*¢(2ir)* — 24T (ir)* log(m)¢ (2ir)?

—16I(ir)* 10g(2) log(m)¢ (2it)* — 32I(ir)® log(m)* ¢ (2i)? + 24T (ir)* log(27)¢ (2it)?
+48T(it)> log(n) log(2m) ¢ (2if)* — 16I(ir) log(2n)* ¢ (2ir)?

+129T(it) Yo (i) (2ir)* + 24T (i) log(m)wo(it) ¢ (2it)?

—24T(it)> log2m)o(it), (2it)® — 6T (ir)> o (ir)* ¢ (2it)°

—20(ir)* Y1 (i) (2it)* + 16L(ir)>y1£(2ir)?

+2M4yT(it) £ (2ir)* ¢ (2ir) + 48T (i) log(m)¢ 2it) > (2it)

—48T(it)* log(2m)¢ (2ir)* ¢ (2ir) — 24T (ir)> o (i) (2if)* ¢’ (2if)

—16L(ir)> ¢ i’ (2it)* — 8T (if)> £ (2ir)*¢” (2ir) ) , (3.3.13)

g(l +u— iz)3§(l +u+ i)

2 2
—? (=it} (=200 + 292 (i) ¢ (-2ir)?
-8 (—it)* log(2)*¢(-2it)? - 24ym®'T(-it)® log(n)¢ (—2ir)?
— 1673 (=ir)? log(2) log(m) (—2it)* — 3273 (~ir)* log(n)* £ (-2ir)°
+24ym¥T (—if)? log(2m) (<2if)* + 4873 (~it)* log(rr) log(2m) (—2it)
— 167" (=ir)? log(2n)* ¢ (=2it)* + 12yn T (=it)> wo(—it)Z (—2ir)?
+2473 T (—if)? log(m)o(—in)( (=2it) — 2473 T(—it) log2m)o(—if) L (<2it)?
—6m T (—it) o (—it)* ¢ (=2it)° — 23T (=it) w1 (=it (—2ir)?
+167 T (=it) >y £(=2it) + 24ym T (—it) ¢ (=2if)* ¢ (<2ir)
AT (—if)? log(m)(=2ir)* ¢ (<2if) — 4873 (—ir)* log(2m)¢ (=2ir)* ¢ (<2if)
2473 (—if) Yo (—it) (=2if)* ¢ (=2if) — 167> T (—if)> £(=2it) (<2it)?

_87T3itl—*(_it)3{(_Zit)ZérN(_zl't) ) . (3314)



Here

Un (2)

Vn

n+1

dzn+1

In[I'(2)],

, N (Ink)" (Inm)™!
Wlll_r)rgo(z Kk n+l |

n=1

where vy, is known as Stielje’s constant.
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In summary, we obtain the desired approximate functional equations for L (%, Emin,yy X ¢) and

1 .
L(E’ (gomm’yo X E%+il‘)'

Theorem 3.3.2. Let &y,

E%H-t be the Eisenstein series as defined in and (??). Let F(u) be

any function which is holomorphic and bounded in the strip —4 < Re(u) < 4, even, and normalized

by h(0) = 1. Let X > 0. Then for s in the strip 0 < o < 1 we have

Ll
2’

1
L (_ s éamin,vo X Eé+it)

2

where

and

éamin,vo X uj)

V(.0

5 Z A(n m)A(n)

m>1 n>1 (mZn) 2

Eis
23 Y R AL M, nt)+RE,-S(%,t)

m>1 n>1 (m n)z

1 _ Y du
— f Y UF ) ————
270 JReu=3 y(— t) u

o = )

Here Rpis (3.1) is the sum of (3.3.11), (3.3.12), (3.3.13) and (3.3.14).

(m n, t])’

(3.3.15)

(3.3.16)

(3.3.17)

(3.3.18)

The following is Lemma 2.3 in [[34]] which describes the growth of V(y,f) which appears in

Theorem [3.3.1] Since it is needed to effectively bound the terms in (3.3.15) and (3.3.16)), we include

it here.
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Lemma 3.3.3. Set
T34
F = —
(u) (cos 1 )

forIm¢t < 1000, where A is a positive integer, and

y(% "‘”af)du

1 —u
V(y, 1) = z—f y F(u)f—. (3.3.19)
7L JRe u=1000 y(j,t) u

Here

Ys) = n‘“r(s_”_“)r(s_it‘ﬁ)r(s—if—v)

2 2 2
F(s+it—a)r(s+it—ﬂ)l_(s+it—y)
2 2 2
for some constants a, 8 and vy.
Then fory>0,t>0,i=1, 2,
(i) the derivatives of V(y,t) with respect to y satisfy

0° y A
‘F—Vy, D)< |l+=| |, 3.3.20
Y oy 0,1 ( Itl3) ( )

0* v\
I—Vy,1) =6, +0||—=]| | 3.3.21
Yy V) = 0 ((ltP)) G320

where 0 < ¢ < é, 0o =1 fora=0and 6 =0 fora # 0, and the implied constants depend only

onc, a, A.

(ii) If 1 <y < 3%, then as t — oo, we have

_ 1 £\ piImu) pu-tmu) - pymu)\| du
V(y,t) = % (é)(%) F(l/t) 1+7+“‘+ tn—l +0( m ):|7
+O(78)
(3.3.22)

where p; are polynomials and B is arbitrarily large.

Proof. The same as in [34]. ]
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3.4 The Kuznetsov trace formula for GL(2)

The Kuznetsov trace formula ( [27]]) is a special form of relative trace formula. It plays a key role
here since it transforms the spectral sum into a sum of weighted Kloosterman sums which we have
tools to estimate.

We adopt the same notation as in Section Let { uj } be the GL(2) Hecke—Maass eigenforms
spanning C (S L(2, Z)\bz) with Laplacian eigenvalues 7; and Hecke eigenvalues A;(n). Let { E, Lt }
be the GL(2) Eisenstein series spanning & (S L(2, Z)\bz) with Hecke eigenvalues /lf:is(n).

Next, we take a test function /4(#) which is even and is assumed to satisfy the following condi-

tions:
(i) h(?) is holomorphic in [Im#] < 1 + &;
(i) h(r) < (|f| + 1)">7¢ in the above strip.

We set

wj = 4nalp;(*/coshnt;,

wt) = 4nlpP (D) cosh™ at,

2 00
H = - f h(t) tanh(rtt)tdt,
T Jo

H' () = 2i f LU
oo cosh it
H(x) = ; f Koir(x) sinh(et)h(0)edt. (3.4.1)

In the above, J,(x) and K, (x) are the standard J-Bessel function and K-Bessel function respec-

tively.

Proposition 3.4.1. With the above notations, for any m, n > 1, we have the following Kuznetsov

formula

/ L[ ~Ei s
7 h(tpwijm)d;n) + o f AW (m) A5 (n) dt

j=1 -
1 1 ot [ATmn
= 56(m, nH + Z % {S(m,n,c)H ( -

>0

) + S(—m,n;c)H” (47T\C/%)}

(3.4.2)
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where Z’ is restricted to the even Maass forms, 5(m, n) is the Kronecker symbol, and

S(a,b;c) _ Z e(da+c7b)

_ c
dd=1(mod c)
is the classical Kloosterman sum.

Proof. See [6]. O

3.5 The Voronoi summation formula for a GL(3) Eisenstein series

The Voronoi summation formulae are generalizations of the Poisson summation formula. The sums
are weighted by Fourier coefficients of automorphic forms, possibly with twists. The Voronoi for-
mula for GL(2) has served as a fundamental analytic tool to study the subconvexity problem. For a
survey, see [22].

The Voronoi formulae relate sums of the form

D ane(na)f(n) = ) a8 (n,@)F(n)

nez nez

where a, are Fourier coefficients of an automorphic form, and @ € Q. On the right side, S (m, @)
is an exponential sum. (For the GL(2) case, S (m, @) is a single exponential, while for GL(3) it is a
Kloosterman sum.) Finally, f and F are a pair of test functions related by an integral transform, an
analogue of the Fourier transform in the Poisson summation formula.

The formula is useful for estimating the sum on the left side, since the right side is a sum of
integral transforms of functions which decay rapidly (c.f. [40], Section 1).

A classical approach to prove the Voronoi formula for GL(2) is to apply Mellin inversion to the
functional equation of the standard L-function with twists. In other words, the starting point of the
proof is the modularity with respect to z — —1/z of the automorphic forms in concern.

The Voronoi formula for GL(3) Maass forms with twists by additive characters was first proven
by Miller and Schmid using the theory of automorphic distributions [41]. Goldfeld and Li developed
a purely analytic proof in [[13]] and [[14]] in the spirit of taking Mellin inversion of functional equation

of certain L-functions.
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The main result of this section, the Voronoi formula for GL(3) Eisenstein series (Proposi-
tion @]}, can be derived in a similar manner, yet one needs to take care of the residue terms
coming from the pole of Eisenstein series. In an unpublished notes by X. Li [[32f], the Voronoi for-
mula for the triple divisor function is established by using a minimal GL(3) Eisenstein series. Here

we closely follow her idea with minor modifications.

In the following, we will sketch the proof in [[13]] for the Voronoi formula for GL(3) Maass
forms. Then we modify the proof to obtain the Voronoi formula for GL(3) Eisenstein series.

Let us introduce some notations first.

Notations. Let

-1 1
wi 2[ 1 J, wo 2{1 J, (351)
1 1

and for v = (v;,v2) € C2, set
V= (Vl,Vl), a = —-V] — 21/2 +1, ﬁ ==vVi+V, VY= 21/1 + vy — 1. (352)

For s € C, k € Z, Define

(1 s+2k+a) (1 v+2k+ﬂ) (1 v+2k+y>
r)r()r ()

Let f be a GL(3) Maass form or an Eisenstein series of type v = (v, v») for S L(3, Z). We define

G(s, k,v) = (3.5.3)

the dual form f by
F@ = fon'z ). (3.5.4)

Now we restrict to the case where f is a GL(3) Maass form. Then f has Fourier expansion

f@ = ) ZMWMCW(M(V1)z,v,‘1'1,1), (3.5.5)

yeUx(Z) mi=1 Irmyma|
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where Uj(Z) is the group of unipotent 2 X 2 upper triangular matrices with coefficients in Z, and

M = diag(m|my|, my, 1).

Proposition 3.5.1. (The Voronoi formula for GL(3) Maass forms)
Let f be a GL(3) Hecke—Maass form of type v = (vi,V2) € C2. Suppose A(n,m) is the (n,m)-th
Fourier coefficient of f. Leta, a, c, 6 € Zwithd >0, c #0, (a,c) =1, andaa =1 (mod c).

Let ¢(x) € C°(0, o) be a test function, & its Mellin transform, and

Op(x) = f (%) G(=52, k, v)(—s2 — k) ds2,
Re sp=0

-3.3¢3
D) (1) = Do(x)+ - D) (x),
mymai
| -3 353
Dy (x) = Do(x)— D) (x). (3.5.6)
mymyl
Then
> A, m)e( )¢(m)
m>0
_3 2
cn2 A(my, my) g [
= Z Z EP— S(6a,my;6cmy )@ a5
miy|cé my>0 1112
5 2
A(my, npm
L2 =2 A M) ¢ 52~y Sem DY ( = 1). (3.5.7)
mi|cé my>0 it ¢’o

Proof. For details, see [14]. A sketch of the proof by Goldfeld and Li will be given below, to inspire

the proof for the case of GL(3) Eisenstein series. O

Proposition 3.5.2. (The Voronoi formula for GL(3) Eisenstein series)

Let &yinyv(2) be a GL(3) Hecke—Maass form of type v = (vi,v2) € C2, Suppose A,(n,m) is the
(n, m)-th Fourier coefficient of &in(2). Leta, a, ¢, 6 € Zwithé >0, ¢ #0, (a,c) =1, and aa = 1
(mod ¢). Let vo = (%, %)

Let ¢(x) € C°(0, 00) be a test function, é its Mellin transform, and ®y(x), @8 (), d)(l) L (x) the
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same as in (3.5.6). Then

> Ay @.mye(™2) gt

m>0
2

= dcn 2 ZZ 1 )33 Z Z (— m)S(m éa;ocn” 1)CI)01 ((’:51”)23)

nléc m>0 niln n2| n

+dcm2 ZZ 1 )3% Z Z (— m)S( m,déa;dcn” 1)@()1((175111)23)

n|ldc m>0 niln n2| 1
3¢(1) 3.3 1 . -1
Tk T (5) %" 1S (0, 6a; sen™Horo(n). (3.5.8)

Here oop(n,m) .= 3\ a,jm 2. bl 1 forn meZ

di>0 400
(dr,n)=1

Remark. Compared to the Voronoi formula for Maass forms, the Voronoi formula for Eisenstein

series contains an extra term. This comes from the residue of the Eisenstein series.

Before we start proving the Voronoi formula for Eisenstein series, we first sketch the proof for
Maass forms by Goldfeld and Li [[14].

Since f is automorphic, for any z € h3, we have

f(Auz) = f(w)'(Auz)™), (3.5.9)

where

00 1 0 us
1 of, u=| 1 wl. (3.5.10)
0 1

ORI =

Denote

h q
o0 :=(h,q)), hs == =, ==
(h,q) 6= 5=
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Fork =0, 1, let

Fir(y,h,q) —((9 ) f f f(Auz)e(—qu1) duy dus , (3.5.11)

x1=x2=0
with y = diag(y;y2,y1, 1). Sometimes we also write it as Fr(y1,y2,h, ).

For Re s large, define the “double Mellin transform” of F(y, i, g) by

s-2dy1 dys

Fi(h,q,5) —f f Fi1,y2.h, @y} '3 " (3.5.12)

which can be proved to be absolutely convergent for all s, € C and entire in s».

Furthermore, it has the following series expansion for Re s, large and — Re s, large, respectively:

Lemma 3.5.3. For Re s; large,

. k -
. Gi(s1,52,V) 2rimy | A(6,mp) [mah
Fi(h,q,s) = —5—=— ( - 2) | |522 e| == (35.13)
qu o5t 320 q(S niyp qs
with
dy; d
Gl(Sl,Sz,V):f f Wiaequers vo 01)YS 52 1yy1 yy22 (3.5.14)

Lemma 3.5.4. For —Re s; large,
(—27riq)k7r¥
oo (22)

Z Z (lmz) A(ma, my) _ S(h,mz;qul) (3.5.15)

|m2| |m1|2k+1—2sz|m2|k+l K

Fk(h,q,s) = Ga(s,v, k)

mylg mpy#0

with

Ga(s,v, k) = f f Wlacquet(y, v, '7”1,1 )KS1+52—1—2k (27Ty2)
0 0

2k 1
Dersi—sy 2= dyt dyz

Y Y, S~ (3.5.16)

Proof. These two lemmas follow from the modularity equation (3.5.9) and the Fourier expansions
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of f(Auz) and f (Auz), where f (z) is the dual Maass form of f. For details, see [|13]. O

For Re s, > 3, we take the “series parts” of (3.5.13) and (3.5.13)), and define two series:

(here hshs = 1 (mod gs))

. A(6. h h
Lih,q,5) = ) (;fj) [e(’"2 6)+(—1)ke(—m2 5)] (3.5.17)
ms0 M5 qs 45
- A(mp, my) - -
L) = 3 ), g 1S (st + (1S (= g )

mil|g mpy>0

(3.5.18)

It follows from (3.5.13) and (3.5.15)) that these series have analytic continuation to the whole

complex plane and satisfy the functional equation:
Li(h,q, 52) = Li(h, g, 1 = sp)i*q 35+ 1433233 5290012 G oy k), (3.5.19)

where

r ( l—sz;2k+a) r ( 1—S2;2k+ﬁ) r ( 1—52-!2—2k+7)

()T (59)r ()

Take a test function ¢(x) € C°(0, c0) and let P(s) = fooo d(x)x* d;’“ be its Mellin transform. For

G(s2,k,v) =

(3.5.20)

o > 3, by Mellin inversion, we have

> At [e( "2 -2 g

qs

1 - _
Py @(s2 — k)Li(h, q, 52) ds3. (3.5.21)

2mi Re sp=0

Now moving the line of integration of the right side of (3.5.21) to Re s, = —o and applying the
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functional equation (3.5.19)), we obtain

> A@.m) [e (m2h5 ) +(-1fe (— mahs
qs

oo

my€eZ q6
1 N )
= — d(sy —k)Ly(h,q, s2)ds
2mi Re so=—0
= Zi Bls2 = Li(h, g, 1 = sp)i g3 133kgdn—33 2012 G, & vy ds,
L JRe Sy=—0
(s20252) g f (=51 — KL (h, q, 1 + 52)q> 2326722 G (=52, k, v) ds
2ﬂ3k+%i1+k51+2k Re sa=or 2 e : > 2
@318) q' 3k

= -t B(—sr — K2 r 3525722 G (- k,
2ﬂ3k+%i1+k51+2k jl;eszzo—(p( 52 )CI d ( 52 V)

A(my, my) _ _

mylg mpy>0
143k sk
_ g9 Z A(ma, my)
- 3k+3 4k 2k+1 k+1
2pkra i+ s w0 M= ma

— _ mom
S s, ma; 6gsm") + (~1)5S (Shs, —ma; Sqom, 1>]<Dk[ : 1]

q36

where

Op(x) = f (12 X) "2 G (=52, k, V)P(—s2 — k) ds5.
Re sp=0

Recall that 6 = (h, g), h = 6hs and g = dgs. Now we set a = hs and ¢ = gs. Hence (a,c) = 1.

To write the formula in a neater way, let

-3.3

n2c’d 338
DY | (x) = Do(x) + ——D1(x), Dy ;(x) = Po(x) — —— Dy (x).
mimal mimal

Then we obtain the Voronoi formula for GL(3) Maass forms (Proposition [3.5.1) as desired.

The proof for the Voronoi formula for an Eisenstein series is similar to that for a Maass form.

Instead of doing Fourier analysis on &y, (z), one does that only for the non-degenerate terms of
&miny(2). The L-functions thus constructed will have poles and hence extra residue terms will appear

in the Voronoi formula. Let us elaborate on this as follows.

For all v and v;, except those on the complex lines v; = % %pl orvy, = % %pz where py, ps run
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through all nontrivial zeros of {(s), we have the Fourier expansion of &pin,(z) where each term can

be written in the form of (c.f. [46])
() or ¢(y) - (K-Bessel function) - (a character of x).

When the character of x involves all x;, x,, x3, we say that the term is non-degenerate. Denote

the sum of all non-degenerate terms by &"°"(z). Then

min,v

nondae; 2
L A TE T I PIDIPIP)

(c,d)=1 n=1 m#0 ni|n "2|ﬁ

—2+v|+2v —242vi4vy —3v=3v+2_1-3w, n
n T m) n, Ny "0 1-3v2-3v,-3v, n,lml
112

nlmlyiy»
lcz+d| azp +b
’WJacquet ny1|czz + d| ,vie (n(CJC3 + dxl) + mRe 2 ) .
! cz+d
(3.5.22)

Remark. To be precise, the Fourier expansion of &pin,(z) can be written explicitly as follows:
éminvy(z) = (degenerate terms) + (non-degenerate terms),

where

(Z) + éoll

_ 00
(degenerate terms) = & miny

@) + & (),

in,v
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and

B0 (@) = Yy
e (3_;’1)yi—vl+y2yzl R (3_;/2)y;+v|—1/2y?v1+1/2
N (%)6(3"1 + ;Vz - 1)yi+v2—v1y£v2—2v1+3
e (%) . (3V1 + ;Vz -1 )y%—vl—Zsz;Hﬂ—Vz
+c (3%) c (322) c (_3V1 + ;"2 -1 )y%_yl_zvzyé—ZVl—vz,

Zlml =0y =3, (M) K1 (2rlmly2 )e(mxz)
m#0

My, %
éall ( ) _ 2()’%)’2)1 2 V2y22 ¢ % c 3vi + 3vy —
min,v §(3V1) 2 2

143 0mmy) 3
2()/%y2)2+4("2 Vl)yé 3v; 3vy+3vy-2
+ c Z |m|

£Gv) - T 043y, -3n, (IMDK 2 (2nlmly2)e(mx,),

m#0

z(yZyz)l—%l—vzy% By o

! 2 ml T 20 sy, (DK svpmr (2rlmlyn)e(mxa)
EBv) 4 :

and

2ytyp)itintan

3
i@ = Gv1) "oy,
§@n (ed)=1 n<l
3Vl+ V- y%yz
-ufd 4K3vl 1| 27n " e((cx3 +dx)n),
e
2. 33—ty -1y,
2(y1y2)4 2704 (3V1) (31/1 + 3vp — 1)
c — —
§G3v2) 2 2 (ed)=1 n>1
3_1 3-3y1-3w, Y%)’Z
‘n2 o 31,2(11)u4 2 szz 1 | 2nn e ((cx3 + dx)n),
Ued
2()’%)’2)%4—%(1’1_1/2) 3vy 3vi#3vp-l
+ cl= n— 7
§(3V1 + 3V2 - 1) (el n=1
l+ vi— Vz y%y2
O3y, - 3,,2+2(n)u2 v K3V1+;v2 =2 | 2nn " e((cx3 +dxy)n).
C,

The non-degenerate term 5;:?; (Vleg (z) is given above explicitly.
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Fork =0, 1, let

k 1
Fu(y,v) = (i) fo f EnmE (Auz)e(—quy) duy du , (3.5.23)

8)(2 x1=x2=0

withy = diag(y1y2, y1, D
Notice that (3.5.23) is an analogue of (3.5.11)) but here we use the non-degenerate part of the

Eisenstein series instead.

From ([3.5.22)) and (2.1), one can see that Fy(y, v) defined above has rapid decay as y, — oo, so

the following integration can be defined for Re(w,) large and for k = 0, 1:

« d
Li(y1, w2,v) = f Fily, vy — 2 (3.5.24)
0 y2

This is the Mellin transform of F(y, v) with respect to y,.
Lemma 3.5.5. Let Lo(y, wa,v) and Li(y1,wn, v) be defined as above. Fixy; >0, v € C2, then
(i) Li(y1,wa,V) is entire as a complex function of wo;

(ii) Lo(y1,wn, V), as a complex function of wa, has a meromorphic continuation to C with 6 simple
poleswy =2 —vi =2vy, 2vi+vo, L +vo — vy, 1 — vy — 2w, 2vi + vo — 1 and vy — vy, unless

we are in the cases that some of the poles coincide.

Proof. We break the integral into two parts:

1
dy> d 2
Lk()’l,WZ,V)zf Fk(y,V)yW21 Y +f Fi(y, V)yw21 Y
Y2 1 yz

Since [ F (v, v)yw2 dn s entire in wy, it suffices to consider the first term.
¥2

It is easy to check that the Eisenstein series &min,(2) satisfies the following modularity relation:

mm v(WZ (Auz)” ) = &hin V(AMZ) (3.5.25)

-1

where &, (2) = Eminy(wi'z”'wy) is the dual Eisenstein series.
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Recall that gr?l?;lieg = Eniny — 60— &N £12 Together with (3.5.25)), we have

min,v l’Illl’l v IIlll’l v

1
dy;
fo Fr(y,v)y5>~ 14y f (Fr1(»v) + Fio(,))yy> ly—z

where

Friy,v) = ( )fffn:?;ieg ’(AMZ)_I)E(—qul)duld%
x1=x2=0

0
) (_) f f (E; ~Ey-E' - E‘EZ) (WZI(A“Z)_I) e(—quy) duidus
8)(2 0 0

x1=x2=0

which has rapid decay as y, — 0, and hence fo Fra(,vys> ldy)z

is holomorphic for all w, € C;

and

Fk,Z(y’ V) = (axz) f f [ min,v + é{)rrluln y T éanluzn v) (WZI(AMZ)_I’ ) (éargm v + (g‘)rrlnln y T (g)rrlnzn v)(AuZ’ V):|

-e(—quy) duydus

x1=x2=0

Direct computation shows that the contribution from é?o ,and & n:nln to Fi.1(y,v) is 0. There-

fore,

k A1 pl
Fra(y,v) = (aixz) j; jo‘ [Eéz(wzt(Auz)_) é"rfnzm(Auz)] e(—quy) dudus

x1=x2=0
Now we discuss F,(y, v) for the cases k = 0 and k = 1 separately:
e When k =0:
For Re wy large, by direct computation one gets
: wy—1 dy2
Foo(y1,w2,v)y, n G111, v/ (w2 +2v2 +vi = 2) + Go(y1, V) /(w2 = va = 2v1)
0

+G3(y1,v)/ (W2 = v2 +vi = 1) + Ga(y1,v)/ (w2 + 2vo + v — 1)

+Gs(y1,v)/ (w2 = 2va —vi + 1) + Ge(y1, V) /(W2 — v2 + V1),

where G;(y1,v) are functions which do not involve w,. The expressions of G;(y1,v) can be

explicitly written down, but since they are complicated and irrelevant, let us omit them here.
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Therefore, the integration above, viewed as a complex function in the variable w,, has mero-

morphic continuation with poles at wp = 2vy +v2, 2 — vy = 2w, 1 + v3 — vy, 1 — v — 2y,

2vi +vo — 1 and v, — vy. These are exactly the poles of Ly(y, wa, v).
e When k = 1: by direct computation one can prove that fo F12(1,wa, v)y

Combining the results, we see that L;(y, w;, v) is an entire function of wy.

Wo— 1d)2 -0

Now we further take the Mellin transform with respect to y;. To simplify notation, we will write

w = (w1, wp). For Re(w;) large, one defines

0 d
Ar(w,v) 3=f Ly, wa, vy~ P
0 Y1

Similar to the case of Maass forms, Ax(w, v) has series expansion as follows:

Lemma 3.5.6. For k =0, 1, Re(w,) large, we have

. k -
A, v) = 1 Z A6, mp) (mez) . (mZhé)Gl(W, "

wi1—2wo+1 W m w2 2
ds 0" Z0 I qs 4s

with

dy dy>
Gi(w,v) = f f Wiacquer(y, v, Y1, 1)yW] 1 ‘;2 1 yi 2

Lemma 3.5.7. For —Re(w,) large,

. k
Arwoy) = (- 27T161)k Z Z Ay (my, my) imy
kW, qW1+W2F w]+w2 |m1|2k+1—2wz|m2|k+l—wz |m2|

m1 |g ma#0
-8 (h, ma; gmy; " YGa(w, v, k)

with

Go(w, ¥, k)

f f WJacquet(ya v, le,l)KWl*WTl*Zk (27Ty2)
0 0

Shtsy—wy 2=l dyy dm
I & yir Y2

(3.5.26)

(3.5.27)

(3.5.28)

(3.5.29)

(3.5.30)
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Remark. By [3],

o r(wlg—a)r(w12+,3)r(w12+7)F(wzz—a)r(wzz—ﬁ)r(wzz—)’>
r(e)

Gw,v) = =«

’

for Re(w;) and Re(w) large. Recall that a, 3, v are defined in (3.5.2)).

By [16],

1 -3w +3wy—6k-3
Go(w, v, k) = Zn%r(wlz‘k“)F(W12+ﬂ)r(w12+7)

-F(l_W2;2k+a)1“(1_W2;2k+’8)r(1_wzgzk+7).

Proof. (i) For Lemma[3.5.7} Recall the notations in (3.5.10).

a bl 1 0 a+bh/q b a b

¢ d)\h/g 1 c+dh/q d ¢ d

By (3.5.22)), we have

1 pl
f(;Lé"rﬁ?;ljeg(Auz)e(—qul)duldu3
= A, (n,m) ( a'z2+b)
= e|lmRe

(c,d)=1 n=1 m#0

nlmly1ys
¢’ z2+d|

‘WJacquet nyi |’z + d| sV

1

1 pl
f f e(nc’ (x3 + u3) + nd(x, + uy))e(—quy) duydus.
0 Jo
(3.5.31)

Here zp = x, + iyz.

The integral over u; and u3 vanishes only when nd = ¢ and nc’ = n (c + %) = (. Together
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with the condition (c,d) = 1, these imply that n = § = (h, q). Let hs = h/d, gs = q/6. Then

1
[ [ g ctuce-qu
0

Slmly1y»
¢’ z2+d]

A, (6,m) adz+b
= Z Z Vél—le(m Re o+ b WJacquet oy1 |’z + d| »V
=m0 O c2

Now Lemma 3.5.6]easily follows.

(ii) For Lemma[3.5.7} Recall that in the proof of Lemma|[3.5.5] we have defined F,; and Fy .

Further

Ar(w,v)

f Ly, wa, vy~ 1
0 Y1

dy; d
f f [Fkl(y V) + Fro(y, v)] i~ yy ly};] y);z‘

Direct computation shows that when — Re(w»,) is large,

0 dy, d 2
f Fro(,v)yy*” 122 f Fio(y, vy 12n
1 Y2 )’2

0

Therefore,

dy d
Aelw. ) f f FraGoyy' ™y yll yyj

Recall that

Fri,v) = ((9)62) f f (g";?;“‘i/eg I(Auz)—l) e(—quy) duydus

x1=x2=0
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By direct computation, we have

1
f f EmndE (wy! (Auz) ™ Ve(—quy) duydus
0

njmlyy>
ez +d|
Ay(n,m) e I
nlml Jacquet T sV
(c,d)=1 n=1 m#0
1
nexa(uz +x3)  ndh ndxp az, +b
f f —NCUL = NCX| + —————— — —— — —— —qu; + mRe duidus.
|22l q |22 czy+d
Here 75 := xp + iyz and 2}, '= —u3 — x3 + iy |z2].
The u; integral vanishes unless nc + g = 0.
aztd _ a _ —
Note that od = ¢ C(CZ it Since (c,d) = 1, we may write d = Ic + r for some [ € Z and

1 < r < |c| with (r, ¢) = 1. After changing variables uz — u3 + [ — 3 we have

@@nondeg(w "Auz) ™ He(—qun) dui dus

min,v

nlmly1y»

( ) |z2]-lczy+d|
v, m nyslcz)| 5
= elgx) ), ) = S (hmign” ) Wiseque e N

nlg m#0 '
1
_m
I+=5 —qxo(us + x3) 1
~ Jim |z2] c°7)

Now we change variables successively:

uz = u3z — x3, uz = u3yilzal,



then the above becomes

1
E"ME () (Auz)Ve(—quy) duy duz
0

min,y

n?mly;
Ay(n, m) ol Vi +1
y\rt, . -1 , 2 ~
= elgrmilal ), ), = 2= S o an” ) Waasque o VET )y
2

nlg m#0

00 _ 2
[t ),
oo |2 *yilzal(u + 1)

Taking partial derivatives with respect to x, and setting x; = x» = 0, we get

Ay(n, m) _
Fr,(y,v) = ylyzZZ " S(h,myqn")

nlg m#0
f°° (—27riqy1u3 )k ( n*mus )
. e
oo »2 g*y1y2(u3 + 1)
n2|m|
qy2 \/u§+1
.WJacquet qy2 M% +1 sV dlxi3.
1
Finally, make the transformations
Vi n’|m|
e ——, P — "
q1/u§+1 q,/u§+1y1y2
and apply the formulas [47]] below for Re s > 0:
0 21* I
2 _ _1
f_m e(uy)w” + )7 du = mlyzls 2K, 12nlyaD),
* 2 -5 27 . s—3
e(uy)w” + 1) udu = iy2ly2" 2 K3 (2nly2)).
—oo I'(s) 2

We obtain Lemma[3.5.7] as desired.
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For k = 0, 1, Re(w,) being large, we define
Li(h, ¢, w2) = ¢ 2" 12k iR G T w, v AL (W, v). (3.5.32)

Though, a priori, the expression on the right side involves wy, it does not actually depend on w.

In fact, by Lemma[3.5.6)and Lemma[3.5.7] we have

Lihqwp) = ) A,(6.m2) [e("zé ) +(=1)e (—m—h‘s)] (3.5.33)

wo—k
m>0 |m2|

for Re(w,) large.

Then Ly (h, g, w») inherits analytic properties from A(w, v). It is easy to check that:
e Li(h, g, w») has analytic continuation to C;

e Ly(h, g, w>) has meromorphic continuation to C with poles at wy = 2 — v; — 2v3, 2v + 3,

1+vy—v, 1 —vy =2y, 2vy + v, — 1 and v, — vy; unless in the cases that some of the poles

coincide.

With the following two formulas [16] one can easily compute the residues explicitly:

fySKv(y)dy—y - 2*‘—2r(s+v)r(s_v), if Re(s) > |Re v,
0

2 2

- e |

K -w _ 1 —

[ w(u3 + D) Vdw = T if Re(w) > .

The residues are listed as follows:

I) The residue of Lo(h, g, w») at wy = —v1 — 2vs + 2 is:

3y
2£GvG™ I N 280, gn e, ()
nlq

3V2 3V1+3V2—1 1 —3V2+2 . —3V1—3V2+3 .
=) (B ()
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II) The residue of Lo(h, g, wa) at wy = 2v1 + v; is:

—6v,— M1
26(31/2)‘1 6V2 3V1+17T3V1+ > 7

) Z n3vl+3v2—15(0, h; qn_1)0'1—3v2(n)

nlq
! 3n ! 3vi+3m -1 :
2 2

IIT) The residue of Lo(h, g, w2) at wy = vo — vy + 1 is:

3vy 3y
26Gvy +3vy — Dg? P 2T T

80, gn)ors 3,30, ()
nlq
‘1_‘_1 & F_] _3V] + 2 7
2 2
IV) The residue of Lo(h, g, w2) at wa = —v| — 2vs — 1 is:

=0.

2 (e () (25

wr—a

Similarly, the residues at wp = 2v; + v, — 1 and at w, = v, — vy are all 0.

Now let ¢(x) € C.°(0, o) be a test function and o(s) = fooo gb(x)x“'ﬂ its Mellin transform.

X

By (3.5.33)) and the Mellin inversion formula, for o > 3 + |Re a| + |Re 8| + |[Re y|, we have

> Ae.m) [e (m—h‘s) +(=Dfe (—m—h‘s) } $(m)
4s 45

m>0
1

— {b(wz — k)Ly(h, g, w2) dw,.

2mi Rewr=0

This is the key identity for the derivation of the Voronoi formula.

Moving the line of integration to Re wy = 1—0, picking up the poles at wy = vy+2vy, —2vo—v1+2

and —v; + v, + 1 when k£ = 0 and applying Lemma we obtain the Voronoi formula for the
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Eisenstein series &pnin(2) as follows:

D AEm, v)[ ( )+( Dfe ( ’"hé)]mm)
qs

m>0
1 - _
= — d(wa = k)Ly(h, g, wa) dws
2mi Rewp=0
1 - -
= o d(wo — k)Li(h, g, wy) dwy + residue terms
Rewr=1-0
= MAIN TERM + RESIDUE TERMS, (3.5.34)
where
1 -
MAINTERM &2 o f Bws — K)g" =22k K G (4, ) Ag(w, v) dw)
Rewp=1-0
Lemm:a L f &(WZ _ k)qw1—2W2+]+2k(27n')—k
2mi Rewr=1-0
wi+w . k
_ (- 27rlq) o A,(m,n) im
G (w, -
L (w,y )qW1+W2F T %%| PR 2w g1z [
-S(h, m; qn_l)Gz(w, v, k) dw,
1+3k k Z Z V2+2V1—2k—2 2V2+2V1 k-2
= 2( l)
prg 4 £Bv1)EGBY2)EGBYL + 32 = 1)
Z Z —31/1 3V2+2 1- 3V10_] 3y 3v— 31/2( ,m )
mln nol e i
2
S Gm, by gn™) + (= 1S (=m, by gn™) | (%)
q
where
14+w+2k+a 1+w+2k+p 1+w+2k+y
1 r r r ~
Di(x) = — (mx) ™ (e r(=5)r(™ )¢(—w — k) dw.

2 e S ()
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and the residue terms are:

Ok0  _6v=3va+] 3vi+3va—l 3v143va—-1 -1
R, = 2 g vatl 3vitava—z 127180, qn= )0 1-3y,(n)
£Gv2) %: N

-1 -1
P gt s

00 5 3y 3,4 _ _
R2 — S q3v1+6vz 57‘[ 3V 3vz+2 Zn 3V2+2S(0, h; gn 1)0—1—3\/1(”)

EGBvy) o
o[32) (33— 1B+ 2 -1 p(T3i-3n+3
A2/ 2 2 2

P(=2vy — vy + 1),

-1

k0 3y —3vy—2_— 2Py 3 _
R = — Y el ng 0. h: 10__ )
’ EQBvy +3vy — l)q nzlql n28(0, h; qn " )o -3y, -3v,42(n)

SN

d(va —vi + 1),

where

1 ifk=0,
Or0 =

0 otherwise.

In the case of our concern, vi = v; = % and the poles are no longer simple. Yet by continuity,

the result above still holds. So we take the limit v; — % and v, — %

Recall that 6 = (h, g). We leta = h/6 and ¢ = g/, so (a,c) = 1, and we have

left side of G334) = ZAVO(é,m)[e(ma)+(—l)ke(—n%a)]gb(m),

C
m>0
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MAIN TERM = (6¢)"*3kn=3k=3 (j)k ZZT
nléc m>0 ( )

DI

mln nol

2
‘ ) _1 RN . -1 * ﬂ
[S (m, 6a;6¢n™") + (—=1)'S (=m, 6a; 5cn )](Dk((acﬁ)’

and the residue terms become:

3
Ok.0 1 - -1
Ry =Ry =R3 = —(6¢)” [ (—)] #(1) » nS(0,6a;6cn™ " )oo(n).

& 2 %
Recall that by functional equation of Riemann Zeta function, ¢ ( ) 1.

Finally, by taking £ = 0 and k = 1 respectively, we obtain the Voronoi formual for Eisenstein

series (Proposition[3.5.2)) as desired.

3.6 Proof of the main theorem

The proof of Theorem[I.2.4]is similar to that for Theorem[I.2.1] Therefore we only elaborate on the
first one.

We shall first employ the Kuznetsov trace formula and the approximate functional equation to
transform the left side (i.e., the spectral sum) of into a sum of products of Fourier coefficients
of the Eisenstein series, Kloosterman sums, and integral transforms of the test function. We shall

then estimate them term by term, applying analytic tools like the Voronoi formula, etc.

Recall that the inequality we are going to prove is

’ _('j_T)z 1 1 -T2 1 1+
Z e M L Eagmin,VoX”j +Ef M2 L= > éamin,voxE%m dt <. T "°M.

J —00

(For notations, see Section[I.2).

In order to be able to apply the Kuznetsov formula (c.f. Proposition [3.4.1)), we insert two factors



45

w;j and w(?) and define

TP 1 S 1
W = Z M2 wj ( é”mmoxuj)+4—f e M a)(t)L( mmVOXEl_HI) dt
T J-c
where
wj = 47r|pj(1)|2/cosh7rtj,
wt) = 4nlpB (D[ cosh™ nt
have been defined in (3.4.1).

Since w; > tj‘.’S and w(t) > ¢ for any &€ > 0 (c.f. [[24/45]), it suffices to show that
W<, T'"**M.

To use the Kuznetsov trace formula, the test function has to be even. Therefore, we replace W

by W defined below:

1 1
W = Zk(zj)wj( mmoxbtj)+ﬂf

—00

00

k(t)cu(t)L(l Sminyo X E 1, )dt

_a=1? _@+1)?
where k(1) =e¢ M2 +e M2,

Applying the approximate functional equations for L (%, Emin,yy X U j) and L (%, Eminyy X E 1 +i[)

(c.f. Proposition [3.3.2), we get:

V() A
= 22 k(tj)w,; Z Z ((’;::l))zj(n) V(mzn, 1)

m>1 n>1

e
o f Ko@) Y S D00 A M) o2 e

m>1 n>1 (mzn)z
© 1
+f REis (E, I) dr. (3.6.1)

Here Rgig (3.7) is the sum of (3.3.11), (3.3.12), (3.3.13) and (3.3.14). Tt is easy to see that

f_ 0; Reis ( %, t) is convergent. It does not depend on T or M and hence can be omitted.
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Using the method of smooth dyadic subdivision (partition of unity), it suffices to estimate

2
R = fw-g(ﬂ)

N
= 2 Ay (n, m) (m_2n)
m>1 n>1 (m2n)% N
k(t)w A (n)V(mPn, ) + ﬁ f ) k(t)w(HAZS(n)V (m?n, 1) dt (3.6.2)
j —00

where g is a fixed smooth function of compact support on [1,2] and N < T34, &£ > 0.
Viewing k(f)V(m?n, t) as the test function, we apply the Kuznetsov trace formula to the factor

[Zj’ cot 4% fooo . .dt] in R to transform R into a summation of three parts R = D + Rt + R™:

Ay (n,m) Ay, (1,m) 2 .
¢ D=3,51 Yust (”’?g(%)a(n DHpp = Lot ~57—¢ (%) Hni.  (Diagonal terms)

l’l

A, (n,m) 2 _ 4,
T = Y1 Zusl ( 02 )% g(_mNn) 2650 C 1S(I’l, 1; C)H;;w( ”C‘/;l)
m-n

where H ,(x) = 2i [% Ji(x) Xm0ty gy,

coshnt

Ay (n,m) 2 — —
= Dmz1 Zinz1 02 o (%) Ses0¢ 'S, 1:0H,,, (4716%)
where Hm’n(x) =2 ™ Kou(x)V(m*n, t)t sinh ntk(t) dt.

Now we shall estimate D, R* and R~ term by term.

3.6.1 Estimation for D

The estimation for D is just the same as in the case of Maass forms discussed in [34]. For complete-
ness, we include the proof here.

Recall that by definition

and

2 ([ _er? _ 1) 5
Hyy = - f e M +e M |V(m~,t)tanh(st)t dt
T Jo

2 00 = TZ _A
2 f SE V(m?, 1) tanh(enyt dr + O(T™)
T Jo

with A arbitrary large. Applying Lemma which gives the asymptotic behavior of V(m?,1),
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together with the bounds for ),y A, given in Lemma|(3.6.10|and the fact that tanh(r?) is bounded,

we get

D <.; T M.

3.6.2 Estimation for R*

Recall that

2
R = A—Vo(m m)g(m H)ZC_IS(n, l;c)H;qn(4ﬂ\/ﬁ)
’ c

c>0

where Hj () = 2i % Ji(x) X0t 1) gy

cosh rt

We will split the summation ) .. into > ¢, /m+ 2.0, Jm<e<C/m + 21e<Cs Jm and
W

Ti-eM*

estimate each part, where C1 = T and C, = To be precise,

R" = R +R; +Rj,
2 4
Ry = Y S o Av (. 1m) (ﬂ) > c—IS(n,1;c)H,;,n(”—l‘/ﬁ), (3.6.3)
m>1 n>1 (mZn)2 N c>Ci/m ¢
, 2 4
R, = M (ﬂ) c_lS(n,l;c)H:;l,n( ”‘/ﬁ), (3.6.4)
m>1 n>1 (m2l’l)§ N Cy/m<c<Ci/m ¢

Vo 2 _ + (4

m>1 n>1 (mzn)z c<Cy/m
Now we will estimate each term separately.

(i) The estimation for R} exactly follows Li’s method. We include it here for completeness.

We start by estimating

H () = 2i f ) Jz,,(x)v(’"s—}f”’k( .

Moving the line of integration to Re t = —100, we get

V(m*n, —100i + 1)(—~100i + 1)
cosh(—100i + 1)

H,, ,(x) = 2i f J2ir4200(x) k(=100 + ) dt.

To bound H,J;,’n(x), we study the bounds for J,;(x) and V(m?n,1).



According to the integral representation of J-Bessel function

4
(%) ) fﬂ/z sin?” cos(zcos 6)do
0

MO

for Rev > —%, we have

£ \200
J2iy200(x) < (—) e,
Iyl
Applying Stirling’s formula to (3.3.19), we get

|y|3 100
V(m*n, -100i + y) < (—2) .
m-n

Combining (3.6.6), (3.6.7) and (3.6.8)), we deduce that

H;,(x) < P07 002y~ 100T 0y,
By Section and Cauchy’s inequality, we know that

D A < N.

m2n<N

We also have Weil’s bound for the Kloosterman sum

1
Sn, 1;¢) <z c2™,
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(3.6.6)

(3.6.7)

(3.6.8)

(3.6.9)

(3.6.10)

(3.6.11)

Recall that g is a function supported in [1, 2], and that N < 73*¢ and T3+ < M < T3.
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Combining these, we get

1

Rt < Z Ayy (1, m) 100 =200-4 671002, 1007 10
1 =
N<mn<oN T2 >Ci/m

_ Z Ayy(n, m) Z C—zoo—%+aT100m—2ooTM

1
N<m2n<2N T2 e>Ciim

TlOOm—ZOO TM

AV()(n7 m) (Cl )—199—;+€
< _—

1
5 m
N<m?n<2y M2

Ay, (n, m)
N<m?n<2N W

<« T eNIiTM < 1. (3.6.12)

T3 2T M

IA

This concludes the estimation for Rf.

(i) We will show that R] is negligible. Let us first estimate H,, ,(x) for this case. We will write
H,, ,(x) appearing in the definition of R} as a double integral first, then apply techniques such
as extending the range of integral, changing the order of integration, asymptotic expansion,

stationary phase method, etc.

To estimate H, ,(x), we start with an integral representation [16]

cosh it Vg

Bt 2 [ sincecomore (£) de

(%)

Plugging this into

I =12 _(+7)?
H (x):=2i f 2”1§x)tV(m2n,t) [e W te M ]tdt,
’ _eo COShT

we get
4i (= (" _=n? t
H () = — f f te” V(mzn,t)sin(xcoshg)e(—g)dtd{+O(T_A)
’ T Ji=0 Jr=-T¢ s

=T N 4-M 00 Ts
(G- 4iM f f (T + tM)e™" V(m*n, tM + T) sin(x cosh ¢)
T t _% é’:—Tﬁ

(M)dm{ +OT

e
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for A arbitrarily large.

Now we split (T + tM) and extend the range of integral with negligible error:

H;} () = Hiph(x) + Hi(x) + O(T ™),

where
o 4iMT ¢=T* 7 Mo\ (T¢
Hm:n(x) = f f V(m n,tM + T) sin(x cosh ()e( )e( ) dtd(,
Tt t=—c0 J{=-T T
212 Te
H;,Z,zl(x) = HM f f te" V(m®n, tM + T) sin(x cosh ¢)e (%) e (E) drd?.
t= (=—T¢ T n

. 3 1 . . . .
By assumption, 7587 < M < T2. Hence it suffices to estimate H,J,;’,,ll(x) since H,J[,’ﬁ(x) is a lower

order term.
Define

K*(t) == e " V(mn, tM + T) (3.6.13)
and

P = f K (De(—10)di (3.6.14)

to be the Fourier transform of £*. Then

H,::}q(x) = 4i]7‘T/IT L_Tng K (—%) sin(x cosh )e ( {) d’
(_MTLHg) 4iT j;sz k*(¢) sin (xcosh %)e (—%)d{.

Since k* (¢) is Fourier transform of k and hence is a Schwartz function, the integral can be

extended to (—oo, c0) with a negligible error term.

Now let

T foo k*() sin (xcosh g—ﬂ)e(—%)d{,
o v

Wha(x) = Tf k*({)e(—ﬁ—z—co h{ )d{

Wm,n (x)
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Then
wr (—x) — W,*,m(x)

Wm,n (X) = el 2

and

Hij (%) = 4iW,,(x) + O(T ™)

with A arbitrarily large.

Notice that due to the factor e (_TT{) and the assumption 73/8+¢ < M < T%, the contribution
to W,,.,(x) coming from |£| > T? (here & > 0 arbitrarily small but fixed) is negligible. So we

need only consider || < T?.

We now use the method of stationary phase. The phase ¢ in the exponential of W, (x) is

_ e x {n
#(e) = M 27rC°ShM’
SO
oy L X T
@) = > smhM.

Then if |x| < T'"*M, W}, (x) is negligible. Therefore we may assume that T'~*M < |x| < M*.

In this case we need the asymptotic expansion of W, ,(x). By Lemma 5.1 of [31],

Proposition 3.6.1. 1) For |x| < T'=*M with & > 0,
Wi (%) <o T4

where A > 0 is arbitrarily large.

2) For T'"°M < |x| < MY, T3 < M < T% and L, L, > 1,

. TM [—x T2\ & Gl s
Wm,n<x>=—"(§+a)z 2L 2L Uk

|x] = !
=0 0<hi <20 Yy g,

~ Qi1 [ -2MT 27 - —-2MT
X |:k*(21 ll)( ) X (ka*(y))(Zl—ll)( )]

x| 1440M6 nx

TM T4 Lr+1 M 2L1+3 T|X|
O —=|— +T|—= +—
[ s )



(iii)

52

where ¢y, 1, are constants depending only on 1,11 and 15, especially coopo = L,

5

The above proposition implies that R} is negligible [34].

Now we shall estimate Rj. We apply Proposition again, with L, and L; chosen to be
sufficiently large. The contribution to R} from the error term in (3.6.15) can be checked to be
negligible [34].

To estimate the contribution to R;“ from the main term of (3.6.15)), it suffices to consider the

leading term when [ = [} = I, = 0. Therefore we are led to estimate

R = 33 Al

m>1 n>1 (m2n) 2

1 , 2
= \2ir 'MTe (_g) Mg(M)
m>1 n>1

4
S, 1;0H,, (”—‘/ﬁ)
’ C

)C<C2/m

3
mni N

2 T2¢c \ ~( MT
. Z c_;S(n,l;c)e( \/ﬁ > )k ( > ¢ )
c<Cy/m ¢ 4 \/_ 2 \/ﬁ

Let
where

K (1) = e " V(mPn, tM + T)
and

P = f K (De(—10) di

are defined as before.

Then

Rs

Vair Mre(-g) 3 3 20 S st 00

m>1 n>1 c<Cy/m

Vrtur Y S et 3 4o 3 A () g,

m>1c<Cy/m dd=1 (mod ¢) nx1
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Using the Voronoi formula for Eisenstein series, we get

> A Gmye( )¢<m)

m>0
m=3 mn?
= dcn 2 %’;0 Z1)7 %HZI; (— m)S(m éa; écn” 1)d)o1 ((6 )3)
% 2
+6cn 2 %;;) O ;lnnzl; (? m)S( m, da; dcn” 1)@()1((;;1;1)3)

+residue terms.

(3.6.15)
where the residue terms are
3&(1) 3.3 ( 1 ) -1
———n[ 7= mS (0, md; men; oo(m).
E(DHm?2c? 2 % !
So the contribution from the residue term to R; is
1\~
3V2rir3 (-) s (HMT
o‘o(m) s d 1 . .
Z > Z e(; - g) Z n1S (0, md; meny").
m1 c<Cr/m dd=1 (mod ¢) nylme
(3.6.16)

The main term can be estimated in the same way as in [34]. Now we first estimate the contri-

bution from the residue terms.

Since

Z e(%)S(O,md;mcnIl)

dd=1 (mod ¢)

_ > so1+ unl;c)e( i ) (3.6.17)
O men;
u (mod men ")

uin=1 (mod mcnl‘1 )
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and

SO.ae)= e(?) < (a,c¢), (3.6.18)

v (mod ¢)
v,0)=1

we deduce that (3.6.17)) is bounded by mc!*¢ with & > 0.

Therefore we have

Z o’zgn) Z c_§ Z e(g) Z nS (0, md, mcnl_l)

[N

m>1 c<Cy/m dd=1 (mod ¢) nilme
oo(m) d 1
= n e|l—1S(0, md; men
P i) IR DI ( ( R
m>1 c<Co/m nilme  dd=1 (mod c)
oo(m
< Z 0(2) Z o3 Z nymel e
m>1 m c<Cr/m nylme
oo(m 3
_ Z o(m) Z ¢ 2o (me). (3.6.19)

m
1<m<C, c<Cr/m

By [1]], we know that oy(n) = o(n®) for all € < 0.

Recall that

D=

. N<T3*, T3 <M<T:.

Combining all these, we see that (3.6.19)) is bounded by 7° and therefore (3.6.16) is bounded

by T**M.

3.6.3 Estimation for R~

We will split R~ into two parts for ¢ big and ¢ small:

_ Ay, (n,m) (mzn) 1 _ (471\/5)

Ry = RC A S, 1;0H,, =Y (3.6.20)
_ A, (n,m) (mzn) 1 ~ (471\/2)

R; = mn S, 1;0H,, |2, (3.6.21)
: ZZ(m) W) 2 S i |

c<C/m

where

C=VN+T.
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(i) To estimate R}, we shall find the bound for H,,, , first.

Recall that

H,,,(x) = % f ) Kair(x) sinh(m0)k(£)V(m®n, 1) dt.

Using the formula (c.f. [47])
1 1, =L@

K/(2)==m :
2 sin vrr

where 1,(2) is the /-Bessel function, we can write H,, , as

© T oi(x) — Iy;
H,,(x) = 2 f M sinh(m)k(t)V(mZn, Hrdt

’ oo sin 2itm

= —4 f ) Gek(t)V (Dt . (3.6.22)
_oo SIN2itm
By moving the line of integration to Im# = —o- = —100 we get
H,,(x) = —4f [sin (20 + 2iy)]_1 Do s2iy(x) sinh (=i + y)

k(=i + y)V(m*n, —oi + y) (=i + y)dy. (3.6.23)

Then we can use the fact that

| |2 100
V(m2n, —100i + y) < (y—z) . (3.6.24)
mn
On the other hand, from the formula (c.f. [[16])
G
L(x) = ——F—— f ¢ % sin> 96 (3.6.25)
I'(v+3)I(3) Jo
for Rev > —1, one derives that

2

2 -2
Di2iy(X) <o x|y e”.
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Combining (3.6.23), (3.6.24) and (3.6.23)), we have

H,,,(x) < x*7e"(m*n) " T+ M. (3.6.26)

Since g is compactly supported on [1, 2], we only need to take sum over m and n for m?*n < 2N,

i
and hence e« is bounded.

Plugging this into (3.6.20), and taking the trivial bound for S (n, 1;¢) < ¢, we see that

< ZZ Ay, (n, m)| (m;”) Z (#)ZCr ToH ()T M

m>1 n>1 (mzn)z c=C/m

< NAT>*pM « 1.

This concludes the estimation of Ry.

Recall that
_ A, (n,m) (m*n _ _ (4n+/n
R; = Zzo_lg(w) 3 e 1S(n,1;c)Hm’n(T\/_).

and

H, ,(x) = ; f " K (x) sinh(m)k(t)V(mzn, 1) dt.

To estimate R, we shall first estimate H,, ,. (The result will be given in Proposition )
We use the following integral representation of K-Bessel function [[16]:

00

Ky (x) = % cosh™ f cos(x sinh {)e (—%) d¢.
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It follows that (by integration by parts in { once) for A arbitrarily large,

4 [ _ =12
H, ,(x) = - f f tanhte M2 V(mzn, 1)t cos(x sinh ()
’ T Jo  Jisre
e (—%)d{dr +O(T™

Eo) 4M [
(o) 4M f f tanh 7(tM + T)e™" V(m*n, tM + T)
T J-g Jusre
M

-(tM + T) cos(xsinh {)e (—% - %)drd(

+O(T™).

Following the same trick as in the estimation of H,; ,, we split the factor (M + T) into two

terms, and extend the ¢ integral to (—oo, co) with a negligible error term, we have
- -1 -2 -A
H,, (x) = H,,(x) + H,,(x) + O(T™),

where

AMT [
H () f f ¢ V(m*n, tM + T) cos(x sinh O)e | - dtd¢
' n t=—co J||<T?

(_ (M + T), )
T

(tM + T)¢
T

AM? [
H2x) = — f f te™" V(m®n, tM + T) cos(x sinh ¢)e drd¢.
’ T Ji=—co JiI<1*

. 3 1 o 2. .

Since T3¢ < M < T2, the contribution from Hm:% is of lower order term, and it suffices to
. -1
estimate H,,,.

We adopt the same notation as in (3.6.13)) and (3.6.14). One sees that

How = 2T fM |STglé*(%)cosusinhg)e(—Tf)az

T v/

(%:H{) 4T L|SH_IMT£ k*(¢) cos (x sinh %)e(—%)df-

Since k* (¢) is Fourier transform of k and hence is a Schwartz function, the integral can be

extended to (—oo, co) with a negligible error term.



58

Now define
Yiun(x) =T [: I€*(§) cos (x sinh %)e(—%)d{
v =T [ oel-TE X nn &E
Yi () = TLok (g)e( o+ 2 sinh M)dg,
thus
Y: Y: (-
Fo () = 22 T2
and

Hiyh (%) = 4Y0(x) + O(T ™)

for A arbitrarily large.

Now we use the method of stationary phase again. Let

xsinh%r B E

@0 = 2n M

SO

xcosh & T
CO= =5 "

We consider the case x small, medium and large separately. Suppose |x| < ﬁT or x| > 1007

Then Q' ({) > % > T%. By integration by parts sufficiently many times, we have
Y0 < T

with A > 0 arbitrarily large.

Now we are left with the case W%OT < x < 100T. Recall that M > T%. So we have # < T‘%.



By taking the first a few terms of the Taylor series expansion of sinh, we have

. _ . § X 7T2x§3 n*x
V) = T[ £ @e( M oM M 240M5)d§

7
+0(T f Tk ""dg)

x[3 + b x[
12M3 240M5

Again, expanding e ( ) into a Taylor series of order L, gives

Ly

Vi, 0 = T f Qe ((x mg)

[ 3\J 5\!=J
S (1

=0

T Lr+1 T
+0( i +ﬂ)

=0

~.

M3L2+3 M7

where d; are constants coming from the Taylor expansion. Especially, doo = 1.

By direct computation,

L
N x—=2T _
=1 30 k5 (ST o

=0 j=0
+0 Tl + M
M3L2+3 M7 .

where k*(5/ — 2j) denotes the (5] — 2)’s derivative of k*.

We end up with the following proposition

LT,

Proposition 3.6.2. 1) For |x| > 100T or x < 106

Y0 < T4

where A > 0 is arbitrarily large and the implied constant depends only on A.

2) For 100T < |x] £ 1007, Ts* <M <T> and L, > 1,

T b x! PRCY) x—2T
ma(X) = ZZ /lMSI 2] oM

=0 j=0
+0 —T|X|L2+l + M
M3L2+3 M7 ’
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where bj; are constants depending only on j and l, especially by = 1.

Remark. Recall that Hy, = 4Y,,,(x) + O(T™) and Y, u(x) = 1 (¥;,,,(x) + ¥, ,(~)).

Therefore, this proposition actually finishes the estimation of H;,:,L.

Now we return to estimate RE . Recall that

R= ) S Anlm) Ay (n,m) (mTZn) 3 s tio) ,,1,1(4”2/5).

m>1 n>1 (m2n)2 c<C/m

VN

According to Part 1) of the proposition above, it can be seen that the contribution from ¢ < 55773

and ¢ > 10}) A\f/ can be omitted.

By §3.6.10| and the trivial bound for the Kloosterman sum, one sees that the contribution R;

from the error term O( |x|) in part 2) of the above proposition is O(T'**M).

Tix™2

For the error term O (W

), we may take L, sufficiently large such that it becomes negligible.
Now let us estimate the contribution from the main term of Y, , in part 2) of Proposition
It suffices to take the leading term / = 0 since all the other terms are of lower order and can be

similarly handled. Thus the problem reduces to the estimation of

R Yy Sl () )

-1 * 47{"/7 2T
S, ;o) | ————|.
m>1 n>1 (m2n)2

2M

If we apply Weil’s bound for the Kloosterman sum
1
S, 1;¢) <z 2™
and sum over # trivially, we can only obtain
D— L 34e g
R, < TN+ < T3+,

which is not sufficiently small for our purpose. To improve the bound, we shall sum over n nontriv-

ially with the help of Voronoi formula for GL(3) Eisenstein series (c.f.[3.5.2).
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Take A \f
m?y VW _or !
= k* R 2
() ( N ) A
to be the test function in the Voronoi formula. Then

> A, m)e( %) o)

n>1
V()(”lZ, n) —1\ 40 nzn%
Z Z ————S(ma,ny;men] )®y | | ——
niny ? m

_3
2

3
nilem ny>0 ¢

_3 2
2 Vo(n2’ nl) -1 0 n2n1
Z Z ———— S (ma, —ny;meny )P, -
niny \c’m

nilem ny>0

+residue terms. (3.6.27)

The residue term in the Voronoi formula

Z nS (0, md, mcn]l)ao(m)

nylme

3p(1) ;F_3(1)
2

dm” 2

only involves ¢(1), and hence does not essentially depend on the test function ¢. Therefore, it can
be estimated in the same way as the estimation for RY.
To estimate the main term, it suffices to bound first term on the right side of the Voronoi formula,

and we only consider ®y(x) since x~!®;(x) has similar asymptotic behavior as that of ®((x). Since

by Lemma 2.1 in [[34] for x =

© d 6
Dp(x) = 27 xi f qb(y)wdy + lower order terms.
0

(mxy)3

We will consider the large n, and the small n, separately.
l & ’
If np > %, we will have x3 y_%[¢ ]! > T?. By integration by parts many times, one
1

shows that the contribution to R; from such terms is negligible.
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1
N2
3

So we may assume 7, < 57

:%g Since k*(y) < (1 +]y|)™ for any A > 0, ¢(y) is negligible unless

2ﬂC\/§ _T
—| < T%
M

This implies that
1 2 1 2
m(Tc —T?Mc)" <y< H(Tc + T¢Mc)*,
and hence

5

N
Do(x) < x3 (_2) ST M, (3.6.28)
m
Combining (3.6.27), (3.6.27), (3.6.17) and (3.6.28)), we have

R§<<TZ% DY

m< VN VN .o logf nilem 1

007m =C= Ny << ]X/]é;%g
2\ s
|Ay, (1, n2)| nan N\ s
x0T et —31 (—2) T Mc?
ninyp c'm m

< NIM'T® <« T'**Mm

. 3
since M > Ts.

This concludes the estimation of R~ and hence the proof of the main theorem.

Remark.

The proof for Theorem [1.2.4]is almost the same as that for Theorem[1.2.1} so we omit it here.
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