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ABSTRACT

Monopole Floer Homology, Link Surgery, and Odd
Khovanov Homology

Jonathan Michael Bloom

We construct a link surgery spectral sequence for all versions of monopole Floer homology

with mod 2 coefficients, generalizing the exact triangle. The spectral sequence begins with

the monopole Floer homology of a hypercube of surgeries on a 3-manifold Y , and converges

to the monopole Floer homology of Y itself. This allows one to realize the latter group as

the homology of a complex over a combinatorial set of generators. Our construction relates

the topology of link surgeries to the combinatorics of graph associahedra, leading to new

inductive realizations of the latter.

As an application, given a link L in the 3-sphere, we prove that the monopole Floer

homology of the branched double-cover arises via a filtered perturbation of the differential

on the reduced Khovanov complex of a diagram of L. The associated spectral sequence

carries a filtration grading, as well as a mod 2 grading which interpolates between the delta

grading on Khovanov homology and the mod 2 grading on Floer homology. Furthermore,

the bigraded isomorphism class of the higher pages depends only on the Conway-mutation

equivalence class of L. We constrain the existence of an integer bigrading by considering

versions of the spectral sequence with non-trivial U† action, and determine all monopole

Floer groups of branched double-covers of links with thin Khovanov homology.

Motivated by this perspective, we show that odd Khovanov homology with integer coef-

ficients is mutation invariant. The proof uses only elementary algebraic topology and leads

to a new formula for link signature that is well-adapted to Khovanov homology.
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CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

Monopole Floer homology is a gauge-theoretic invariant defined via Morse theory on the

Chern-Simons-Dirac functional. As such, the underlying chain complex is generated by

Seiberg-Witten monopoles over a 3-manifold, and the differential counts monopoles over

the product of the 3-manifold with R. We review this construction in Section 1.1.

In [27], a surgery exact triangle is associated to a triple of surgeries on a knot in a

3-manifold (for a precursor in instanton Floer homology, see [11], [18]). In Chapter 2, we

construct a link surgery spectral sequence in monopole Floer homology, generalizing the

exact triangle. This is a spectral sequence which starts at the monopole Floer homology of

a hypercube of surgeries on Y along L, and converges to the monopole Floer homology of Y

itself. The differentials count monopoles on 2-handle cobordisms equipped with families of

metrics parameterized by polytopes called permutohedra. Those metrics parameterized by

the boundary of the permutohedra are stretched to infinity along collections of hypersur-

faces representing surgered 3-manifolds. The monopole counts satisfy identities obtained

by viewing the map associated to each polytope as a null-homotopy for the map associ-

ated to its boundary. Note that this can be seen as analogue of Ozsváth and Szabó’s link

surgery spectral sequence for Heegaard Floer homology [36]. There, the differentials count

pseudo-holomorphic polygons in Heegaard multi-diagrams, and they satisfy A∞ relations

which encode degenerations of conformal structures on polygons.

Our construction introduces a number of techniques that we hope will be of more gen-

eral use. In Sections 2.1 and 2.3, we couple the topology of 2-handle cobordisms arising
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from link surgeries to the combinatorics of polytopes called graph associahedra [12]. For

the chain-level Floer maps induced by 2-handle cobordisms, these polytopes encode a mix-

ture of commutativity and associativity up to homotopy. We hope this coupling, and its

relationship to finite product lattices, will be of independent interest to algebraists and

combinatorialists. As one application, in Chapter 3 we obtain a simple, recursive construc-

tion of realizations of certain graph associahedra (Theorem 3.0.7). This specializes to give

realizations of permutohedra as refinements of associahedra, which in turn refine hyper-

cubes (see Figures 2.13 through 3.4). Curiously, these realizations are predicted by the

“sliding-the-point” proof of the naturality of the U† action in Floer theory.

Our construction of polytopes of metrics was inspired by the pentagon of metrics in the

proof of the surgery exact triangle [27]. However, to make use of more general polytopes,

we must effectively organize the mix of irreducible and reducible moduli spaces in monopole

Floer theory. To this end, we systematize the construction of maps associated to cobordisms

equipped with certain polytopes of metrics, as well as the identities which count ends of

1-dimensional moduli spaces. This includes the construction of the usual monopole Floer

differentials, cobordism maps, and homotopies as special cases, as well as the operators

used in the proof of the surgery exact triangle, which we reorganize in Section 2.4. We also

prove that the filtered homotopy type of the link surgery spectral sequence is independent

of analytic choices, which may be viewed as a gauge-theoretic analogue of the invariance

of A∞ homotopy type in symplectic geometry [40]. In particular, the higher pages are

themselves invariants of a framed link in a 3-manifold.

In addition, we equip the spectral sequence with an absolute mod 2 grading, which coin-

cides with the absolute mod 2 grading on monopole Floer homology on the E∞ page. Fur-

thermore, the spectral sequence is defined for all three of the primary versions of monopole

Floer homology, to be reviewed momentarily. In Section 2.6, we introduce a fourth version

H̃M•, analogous to ĤF, before extending the spectral sequence to this version as well.

We now briefly describe the remaining chapters, referring the reader to the start of

each for detailed background and precise statements of theorems. Chapters 4 and 5 are

concerned with Khovanov homology, a bigraded invariant of links in the 3-sphere which

categorifies the Jones polynomial. In Chapter 4, we give an elementary proof that odd
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Khovanov homology is invariant under Conway mutation. In Chapter 5, we derive a new

formula for link signature that is well-adapted to Khovanov homology, and use it to recover

a simple formula for the signature of an alternating link. We also give a new proof that the

homological width of a k-almost alternating link is bounded above by k + 1.

In Chapter 6, we apply the link surgery spectral sequence to relate the Khovanov ho-

mology of a link L ⊂ S3 to the monopole Floer homology of the branched-double cover with

reversed orientation, −Σ(L). In particular, we prove that

̂

HM •(−Σ(L)) arises via a filtered

perturbation of the differential on the reduced Khovanov complex of a diagram of L. The

associated spectral sequence carries a filtration grading, as well as a mod 2 grading which

interpolates between the δ grading on Khovanov homology and the mod 2 grading on Floer

homology. Furthermore, the bigraded isomorphism class of the higher pages depends only

on the Conway-mutation equivalence class of L.

In Chapter 7, we discuss the relationship between Donaldson’s TQFT, Khovanov ho-

mology, and monopole Floer homology, from both an algebraic and geometric point of view.

By relating the module structure on Donaldson’s TQFT to that on monopole Floer homol-

ogy, we pin down the monopole maps associated to certain 0-framed 2-handle cobordisms

between positive scalar curvature 3-manifolds. These cobordisms include those arising in

the context of the spectral sequence from Khovanov homology to monopole Floer homology.

In Chapter 8, we use these maps to relate Khovanov homology to the other three versions

of monopole Floer homology with non-trivial U† action. This relationship is shown to

constrains the existence of an integer bigrading and determine all monopole Floer groups of

branched double-covers of links with thin Khovanov homology. We also reuse our proof of a

bound on homological width to show that, in a sense, the differentials on the H̃M• spectral

sequence decrease the δ grading. In the final section, we explain how the link surgery

spectral sequence allows one to realize the monopole Floer homology of any 3-manifold Y

as the homology of a complex over a combinatorial set of generators.

In Chapter 9, which serves as an Appendix, we review the model case of Morse homology

on a manifold with boundary. In particular, we introduce a path algebra formalism to

organize the contributions of interior and boundary trajectories. This formalism carries

over to monopole Floer theory and motivates many of the constructions in Chapter 2.
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Earlier versions of parts of this work appeared in [8] and [9].

1.1 Background on monopole Floer homology

In this section, we review those aspects most relevant to the construction and intuition in

subsequent chapters. We refer the reader to [24] for the full construction of the monopole

Floer groups (see also [27]) for an efficient survey). We will always work over the 2-element

field F2.

Formal structure. Let COB be the category whose objects are compact, connected,

oriented 3-manifolds and whose morphisms are isomorphism classes of connected cobor-

disms. Then the monopole Floer homology groups define covariant functors from the ori-

ented cobordism category COB to the category MOD† of modules over F2[[U†]], the ring of

power series in a formal variable U†: ̂
HM • : COB→ MOD†

ĤM• : COB→ MOD†

HM• : COB→ MOD† .

The module structure may be extended over the ring Λ∗(H1(Y )/torsion)⊗ F2[[U†]]. These

modules fit into a long exact sequence

· · · j∗−→ ĤM•(Y )
p∗−→ HM•(Y ) i∗−→

̂

HM •(Y )
j∗−→ · · · (1.1)

which is natural with respect to the maps induced by cobordisms. For Y = S3, the map j∗

is zero and the resulting short exact sequence of F2[[U†]]-modules is isomorphic to:

0 −→ F2[[U†]] −→ F2[[U†, U−1
† ] −→ F2[[U†, U−1

† ]/F2[[U†]] −→ 0. (1.2)

The monopole equations. We now describe the monopole equations underlying the

construction of these groups, following [24]. Let Y be a closed, oriented Riemannian 3-

manifold. A spinc structure s on Y is a pair (S, ρ) consisting of a unitary rank-2 vector

bundle S → Y and a Clifford multiplication:

ρ : TY → Hom(S, S).
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This map ρ identifies TY isometrically with the subbundle su(S) of traceless, skew-adjoint

endomorphisms equipped with the inner product 1
2tr(a∗b), and satisfies

ρ(e1)ρ(e2)ρ(e3) = 1

whenever the ei form an oriented basis. The action of ρ extends to cotangent vectors using

the metric, and to real (and complex) forms using the rule:

ρ(α ∧ β) =
1
2

(ρ(α)ρ(β) + (−1)deg(α)deg(β)ρ(β)ρ(α)).

The set of isomorphism classes of spinc structures on Y admits a free, transitive action of

H2(Y ; Z).

A unitary connection B on S is a spinc connection if ρ is parallel. The space of spinc

connections is an affine space over Ω1(Y ; iR). In particular, the difference between two

spinc connections, regarded as 1-forms with values in the endomorphisms of S, has the form

a⊗ 1S with a ∈ Ω1(Y ; iR). A section Ψ ∈ Γ(S) = C∞(Y ;S) is called a spinor. Let

C(Y, s) = {(B,Ψ) | B is a spinc connection and Ψ ∈ Γ(S)}.

The gauge gauge group G = C∞(Y ;S1) acts on this space by conjugation and multiplication:

u · (B,Ψ) = (B − u−1du⊗ 1S , uΨ).

Given a spinc connection B, let DB : Γ(S)→ Γ(S) denote the associated Dirac operator:

Γ(S) ∇B−−→ Γ(T ∗Y ⊗ S)
ρ−→ Γ(S).

Let Bt denote the associated connection on the complex line bundle Λ2S, with curvature

FBt regarded as an imaginary-valued 2-form. In particular, ρ(FBt) represents a trace-free

Hermitian endomorphism. Fix a reference connection B0 ∈ A. The Chern-Simons-Dirac

functional L : C(Y, s)→ R is defined by

L(B,Ψ) =
1
8

∫
Y

(Bt −Bt
0) ∧ (FBt + FBt0) +

1
2

∫
Y
〈DBΨ,Ψ〉d vol.

The domain of L is an affine space over the vector space

T(B,Φ)C(Y, s) = C∞(Y ; iT ∗Y ⊕ S).
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The formal gradient of L with respect to the L2 inner product vanishes precisely when the

following equations are satisfied:

1
2
ρ(FBt)− (ΨΨ∗)0 = 0

DBΨ = 0

Here (ΨΨ∗)0 ∈ Γ(i su(S)) denotes the trace-free part of the Hermitian endomorphism ΨΨ∗.

These are the 3-dimensional monopole equations, or Seiberg-Witten equations, on Y for the

spinc structure s. The solutions, regarded as critical points of L, are called monopoles, and

the action of the gauge group sends monopoles to monopoles.

Reducibles and the blow-up. A configuration (B,Ψ) is reducible if Ψ is zero. If (B, 0)

is a solution to the monopole equations, then Bt is flat and c1(s) is torsion. Conversely, if

c1(s) is torsion then there exists a reducible solution (B1, 0), and all others are of the form

(B, 0) with B = B1 + b⊗ 1S and b a closed element of Ω1(Y ; iR). The action of the gauge

group changes b by representatives of elements of 2πiH1(Y ; Z). In particular, the quotient

of the set of reducible solutions by the action of the gauge group is identified with the torus

T = H1(Y ; iR)/(2πiH1(Y ; Z)), and consists of a single point when b1(Y ) = 0.

The constant elements of the gauge group fix the reducible configurations. To obtain a

free action, we blow-up the configuration space C(Y, s) along the reducible locus to obtain

Cσ(Y, s) = {(B, r, ψ) | B is a spinc connection, r ≥ 0, and ‖ψ‖L2 = 1}

where blow-down sends (B, r, ψ) to (B, rψ). Here r is a real number and ψ is a spinor. As

discussed in Section 9 of [24], the completion (which we suppress) of Cσ(Y, s) with respect

to suitable Sobolev norms L2
k has the structure of a Hilbert manifold with boundary. The

same is true of the quotient

Bσ(Y, s) = Cσ(Y, s)/G(Y ).

with the boundary consisting of (equivalence classes of) configurations of the form (B, 0, ψ).

This quotient has the homotopy type of T×CP∞, and there is a canonical identification of

cohomology rings

H∗(Bσ(Y, s)) = H∗(T)⊗ F2[U ].
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giving rise to the module structure on monopole Floer homology, as we describe in Section

7.2.

The Chern-Simons-Dirac functional L is invariant under the identity component of the

gauge group (and the full gauge group when c1(s) is torsion). Its gradient gives rise to a

vector field (grad L)σ on Bσ(Y, s). The configuration (B, r, ψ) is a critical point of (grad L)σ

if and only if one of the following conditions holds:

(i) r 6= 0 and (B, rψ) is a critical point of grad L; or

(ii) r = 0, the point (B, 0) is a critical point of grad L, and φ is an eigenvector or DB.

Critical points of type (i) are called irreducible, while those of type (ii) are called reducible.

A reducible critical point is boundary stable (resp., boundary unstable) if the corresponding

eigenvalue is positive (resp., negative).

In finite-dimensional Morse homology, one may achieve the transversality needed to

apply Sard’s theorem by perturbing the Morse function. In the monopole setting, one may

similarly achieve the transversality necessary for Sard-Smale by perturbing the functional

L by a function q : Cσ(Y, s)→ R which is invariant under the full gauge group. Kronheimer

and Mrowka define a Banach space of perturbations q, a residual subset of which force all

critical points and moduli spaces of gradient trajectories between them to be regular in an

appropriate sense. Such perturbations are called admissible. In particular, for an admissible

perturbation, zero does not arise as the eigenvalue of a reducible critical point.

Monopole Floer complex. The construction of monopole Floer homology is modeled

on that of Morse homology for a manifold with boundary. The latter is described in the

Appendix and in Section 2 of [24]. In place of the downward gradient flow of a Morse

function on finite-dimensional manifold with boundary, we have the downward gradient flow

of the perturbed Chern-Simons-Dirac functional on the configuration space Bσ(Y, s) whose

boundary consists of reducible configurations. Having chosen an admissible perturbation,

let C(Y, s) denote the set of critical points in Bσ(Y, s). We may express this set as a disjoint

union

C(Y, s) = Co(Y, s) ∪ Cs(Y, s) ∪ Cu(Y, s)

where Co(Y, s) is the set of irreducible critical points, and Cs(Y, s) and Cu(Y, s) are the sets
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of boundary-stable and boundary-unstable critical points, respectively. We set

Č(Y, s) = Co(Y, s) ∪ Cs(Y, s)

Ĉ(Y, s) = Co(Y, s) ∪ Cu(Y, s)

C̄(Y, s) = Cs(Y, s) ∪ Cu(Y, s)

The monopole Floer complex Č(Y, s) is the F2-vector space over the basis ea indexed by

(irreducible or boundary-stable) monopoles1 a ∈ Č(Y, s). Given two such critical points a

and b, we may consider the moduli space M̆z(a, b) of unparameterized (downward) gradient

trajectories (mod gauge) from a to b in the relative homotopy class z of path from a to b in

Bσ(Y, s). The differential ∂̌ is defined to count isolated trajectories in such moduli spaces.

In particular, when a is irreducible, the coefficient of eb in ∂̌(ea) is the number of trajectories

in M̆z(a, b), summed over all z such that M̆z(a, b) is 0-dimensional. When M̆z(a, b) is 1-

dimensional, it has a compactification M̆+
z (a, b) formed by considering broken trajectories

as well. The composition ∂̌2 then counts the (even) number of boundary points, proving

that ∂̌ is a differential. The full construction of ∂̌, which is complicated by the presence

of reducible critical points, is given in Section 2.2 as the simplest case of a more general

construction.

We now set ̂

HM ∗(Y, s) = H∗(Č(Y, s), ∂̌)

and ̂

HM ∗(Y ) =
⊕

s

̂

HM ∗(Y, s)

where the sum is over all spinc structures on Y . The group

̂

HM ∗(Y ) is graded by the set

of homotopy classes of oriented 2-plane fields on Y . This set admits a natural action of

Z, the orbits of which correspond to the different spinc structures. The group

̂

HM •(Y ) is

defined as the completion of

̂

HM ∗(Y ) with respect to a decreasing filtration defined using

this Z action (see Definition 3.1.3 in [24] for details). The groups ĤM•(Y ) and HM•(Y )

1In [24], the notation [a] is used to denote the gauge equivalence class of the configuration a ∈ Cσ(Y, s).

We will always consider critical points on the level of the quotient Bσ(Y, s) and have dropped the brackets

to simplify notation.
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are defined similarly using Ĉ and C̄. Of the three versions, the group HM•(Y ) is both the

simplest to define and the best understood (see Section 35 of [24], especially Proposition

35.1.5). As all critical points and trajectories for C̄(Y, s) are taken to be reducible — that

is, in ∂Bσ(Y, s) — the model case reduces to Morse homology on a closed manifold (namely,

the boundary of a manifold with boundary).

Chain maps. There is a fundamental correspondence between gradient trajectories of

functional L in Bσ(Y, s) and solutions (mod gauge) to the 4-dimensional monopole equations

on Y × R for the corresponding spinc structure. The latter 4-dimensional interpretation of

trajectories underlies the construction of the chain map m̌(W ) : Č(Y0)→ Č(Y1) associated

to a general cobordism W . Having chosen a metric on W which is cylindrical near the

boundary, we denote by W ∗ the Riemannian manifold built by attaching the half-infinite

cylinders (−∞, 0] × Y0 and [0,∞) × Y1 to the ends of W . For monopoles a ∈ Č(Y0) and

b ∈ Č(Y1), and a relative homotopy class z from a to b in the configuration space Bσ(W ),

we consider the moduli space Mz(a,W ∗, b) of trajectories (mod gauge) on W ∗ asymptotic

to a and b and in the class z. The map m̌(W ) is defined to count isolated trajectories in

such moduli spaces. In particular, when a is irreducible, the coefficient of eb in m̌(W )(ea)

is the number of trajectories in Mz(a,W ∗, b), summed over all z such that Mz(a,W ∗, b) is

0-dimensional. When Mz(a,W ∗, b) is 1-dimensional, it has a compactification M+
z (a,W ∗, b)

formed by considering broken trajectories as well. The composite maps ∂̌m̌(W ) and m̌(W )∂̌

then count the (even) number of boundary points, so

∂̌m̌(W ) + m̌(W )∂̌ = 0,

and we conclude that m̌(W ) is a chain map.

Families of metrics. More generally, suppose we have a family of metrics on W ,

smoothly parameterized by a closed, oriented2 manifold P . The map m̌(W )P : Č(Y0) →

Č(Y1) is defined to count isolated trajectories in the union

M(a,W ∗, b)P =
⋃
z

Mz(a,W ∗, b)P (1.3)

2The orientation is irrelevant when working over F2.
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of fiber products

Mz(a,W ∗, b)P =
⋃
p∈P

Mz(a,W (p)∗, b), (1.4)

where W (p) denotes W with the metric over p. The compact fiber product M+
z (a,W ∗, b)P

is defined similarly. By counting boundary points of Mz(a,W ∗, b)P , we again conclude

∂̌m̌(W )P + m̌(W )P ∂̌ = 0.

On the other hand, if P is a compact manifold with boundary Q, then m̌(W )P is no

longer a chain map, because the boundary of Mz(a,W ∗, b)P now includes the fibers over Q.

Including these contributions, we have

∂̌m̌(W )P + m̌(W )P ∂̌ = m̌(W )Q. (1.5)

Thus, m̌(W )Q is null-homotopic and m̌(W )P provides the chain homotopy. That

̂

HM •(Y )

is independent of the choice of metric and perturbation follows by letting P be the interval

[0, 1] parameterizing a path between two such choices.

Composing cobordisms. If W : Y0 → Y2 is the composition of cobordisms W1 : Y0 →

Y1 and W2 : Y1 → Y2, then the corresponding maps satisfy the composition laŵ

HM •(W ) =

̂

HM •(W2) ◦

̂

HM •(W1). (1.6)

Indeed, this is part of what it means for

̂

HM • to be a functor. The composition law follows

from a “stretching the neck” argument, as do many of the results in this paper, so we

now take a moment to review the proof (see Proposition 4.16 of [27] for details over F2,

and Proposition 26.1.2 of [24] for details over Z). Keep in mind that the full argument is

complicated by the presence of reducibles. We deal with this issue in Section 2.2.

Returning to the composite cobordism

W : Y0
W1−−→ Y1

W2−−→ Y2,

fix a metric on W which is cylindrical near each Yi. For each T ≥ 0, we construct a new

Riemannian cobordism W (T ) by cutting W along Y1 and splicing in the cylinder [−T, T ]×Y1

with the cylindrical metric. We also define W (∞) as the disjoint union W1
∐
W2. In this
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way, P = [0,∞] parameterizes a family of metrics on W , where the metric degenerates

on Y1 at infinity. In other words, as T increases, the cylindrical neck stretches, and when

T =∞, it breaks.

We again define m̌(W )P to count isolated trajectories in the fiber productsMz(a,W ∗, b)P

of (1.3), where now

Mz(a,W (∞)∗, b) =
⋃

c∈Č(Y1)

⋃
z1,z2

Mz1(a,W ∗1 , c)×Mz2(c,W ∗2 , b), (1.7)

and the inner union is taken over homotopy classes z1 and z2 which concatenate to give

z. The compact fiber product M+(a,W ∗, b)P is defined similarly. By counting boundary

points, we conclude

∂̌m̌(W )P + m̌(W )P ∂̌ = m̌(W ) + m̌(W2)m̌(W1). (1.8)

Here m̌(W ) and m̌(W2)m̌(W1) count trajectories in the fibers over 0 and ∞, respectively.

Viewing m̌(W )P as a chain homotopy, the composition law now follows. Note that, while

formally similar, (1.5) does not imply (1.8) because the latter involves a degenerate metric.

The key analytic machinery behind this generalization consists of compactness and gluing

theorems for moduli spaces on cobordisms with cylindrical ends, as developed in [24] and

[27]. Our workhorse version of this machinery is Lemma 2.2.3 in Section 2.2.

Canonical gradings. Recall that the group

̂

HM •(Y ) is naturally graded by the set

of homotopy classes of oriented 2-plane fields. We will make use of two numerical gradings

which factor through this set. The first is an absolute mod 2 grading gr(2), as explained in

Sections 22.4 and 25.4 of [24]. If W is a cobordism from Y0 to Y1, then the degree of the

map

̂

HM •(W ) with respect to gr(2) is given by3

ι(W ) =
χ(W ) + σ(W )− b1(Y1) + b1(Y0)

2
(1.9)

3This agrees with [27], but in [24] the signs on b1(Y0) and b1(Y1) are switched. The value of −ι(W )

should be the index of the operator d∗ ⊕ d+ acting on weighted Sobolev spaces (see Section 25.4 of [24]).

The two formulas for ι correspond to the two choices for the sign of this weight δ. Different conventions

lead to mirror theories. We believe the formula (1.9) corresponds to the choice of a small, positive weight.

In any case, we take whichever convention is consistent with (1.9) and use it consistently throughout.
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where χ is the Euler characteristic and σ is the signature of the intersection form on

I2(W ) = Im
(
H2(W,∂W )→ H2(W )

)
.

If P parameterizes an n-dimensional family of metrics on W , then the map m̌(W )P shifts

gr(2) by ι(W ) + n.

The second numerical grading is only defined if c1(s) ∈ H2(Y ; Z) is torsion. In this casê

HM •(Y, s) is also endowed with an absolute grading grQ which takes values in a Z coset

of Q. If (W, t) : (Y0, t|Y0) → (Y1, t|Y1) is a spinc cobordism with c1(t)|∂W torsion, then the

degree of

̂

HM •(W, t) with respect to grQ is given by

d(W, t) =
c2

1(t)− σ(W )
4

− ι(W ).

By (1.9) we may also express this degree as

d(W, t) =
c2

1(t)− 2χ(W )− 3σ(W )
4

+
b1(Y1)− b1(Y0)

2
. (1.10)

Here the rational number c2
1(t) is defined by

c2
1(t) = (c̃ ∪ c̃)[W,∂W ]

where c̃ is any class in H2(W,∂W ; Q) whose image in H2(W ; Q) is the same as the image of

c1(t). If P parameterizes an n-dimensional family of metrics on W , then the map m̌(W, t)P

shifts grQ by d(W, t) + n.

The gradings gr(2) and grQ are also defined on ĤM•(Y, s), and there are modified versions

ḡr(2) and ḡrQ defined on HM•(Y, s). In each case, the degree of a cobordism map is given

by the above formulas. With respect to gr(2) and grQ (when the latter is defined), the

monopole Floer groups are graded modules over the graded ring F2[[U†]], with U† in degree

−2. In the exact sequence (1.1), the maps i∗ and j∗ have degree 0, while p∗ has degree −1.

For S3, the associated short exact sequence of grQ-graded F2[[U†]]-modules is isomorphic to

0 −→ F2[[U†]]{−1} −→ F2[[U†, U−1
† ]{−2} −→ F2[[U†, U−1

† ]/F2[[U†]]{−2} −→ 0

where {−k} shifts the degree of each generator down by k. In particular, the “top” generator

of ĤM•(S3), represented by 1, lies in degree −1, while the “bottom” generator of

̂

HM •(S3),

represented by U−1
† , lies in degree 0.
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Chapter 2

The link surgery spectral sequence

In order to motivate the statement of the link surgery spectral sequence, we first recall the

surgery exact triangle. Let Y be a closed, oriented 3-manifold, equipped with a knot K with

framing λ and meridian µ. Orient λ and µ as simple closed curves on the torus boundary

of the complement of a neighborhood of K, so that the algebraic intersection numbers of

the triple (λ, λ+ µ, µ) satisfy

(λ · (λ+ µ)) = ((λ+ µ) · µ) = (µ · λ) = −1.

Let Y (0) and Y (1) denote the result of surgery onK with respect to λ and λ+µ, respectively.

In [27], Kronheimer, Mrowka, Ozsváth, and Szabó prove that the mapping cone

Č(Y (0))
m̌(W (01))−−−−−−→ Č(Y (1))

is quasi-isomorphic to the monopole Floer complex Č(Y ), where m̌(W (01)) is the chain map

induced by the elementary 2-handle cobordism W (01) from Y (0) to Y (1). The associated

long exact sequence on homology is known as the surgery exact triangle. However, we can

also frame the result in another way. As in [36], if we filter by the index I in Y (I), then

the mapping cone induces a spectral sequence with

E1 =

̂

HM (Y (0))
⊕ ̂

HM (Y (1))

and

d1 =

̂

HM •(W (01)),
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which converges by the E2 page to

̂

HM (Y ).

The link surgery spectral sequence generalizes this interpretation of the exact triangle to

the case of an l-component framed link L ⊂ Y . For each I = (m1, . . . ,ml) in the hypercube

{0, 1}l, let Y (I) denote the result of performing mi-surgery on the component Ki. For

I < J , let W (IJ) denote the associated cobordism, composed of (w(J)− w(I)) 2-handles.

The (iterated) mapping cone now takes the form of a hypercube complex

X =
⊕

I∈{0,1}l
Č(Y (I))

with differential Ď given by the sum of components ĎI
J : Č(Y (I)) → Č(Y (J)) for all

I ≤ J . We filter X by vertex weight w(I), defined as the sum of the coordinates of I. The

component ĎI
I is the usual differential on Č(Y (I)), whereas for I < J , the component ĎI

J

counts monopoles on W (IJ) over a family of metrics parametrized by the permutohedron

of dimension w(J)−w(I)− 1. We define this family in Section 2.1 and construct (X, Ď) in

Section 2.2. In Section 2.5, we complete the proof of:

Theorem 2.0.1. The filtered complex (X, Ď) induces a spectral sequence with E1 page given

by

E1 =
⊕

I∈{0,1}l

̂

HM •(Y (I))

and d1 differential given by

d1 =
∑

I<J∈{0,1}l
w(J)−w(I)=1

̂

HM •(W (IJ)).

The spectral sequence converges by the El+1 page to

̂

HM •(Y ) and comes equipped with an

absolute mod 2 grading δ̌ which coincides on E∞ with that of

̂

HM •(Y ). In addition, each

page has an integer grading ť induced by the filtration. The differential dk shifts δ̌ by one

and increases ť by k.

The complex (X, Ď) depends on a family of metrics and an admissible family of pertur-

bations on the full cobordism from Y ({0}l) to Y ({1}l). For any two such choices, we produce

a homotopy equivalence which induces a graded isomorphism between the associated E1

pages.
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Theorem 2.0.2. For each i ≥ 1, the (ť, δ̌)-graded vector space Ei is an invariant of the

framed link L ⊂ Y .

Remark 2.0.3. While the preceding theorems are stated for

̂

HM •, they hold for ĤM• and

HM• as well, just like the underlying surgery exact triangle. In the case of HM•, we must

also replace gr(2) with ḡr(2) and similarly δ̌ with its analogue δ̄ defined using ḡr(2).

In Section 2.6, we introduce another version of monopole Floer homology, pronounced

“H-M-tilde” and denoted H̃M•. By analogy with ĤF in Heegaard Floer homology, we define

H̃M•(Y ) as the homology of the mapping cone of U† : Č(Y ) → Č(Y )[1], where U† is the

even endomorphism on

̂

HM •(Y ) given by the module structure. It follows that H̃M•(Y )

inherits a mod 2 grading, and we prove a version of Theorem 2.0.1 for H̃M• as well.

In fact, the group H̃M•(Y, s) agrees with the sutured monopole Floer homology group

SFH(Y −B3, s) relative to the equatorial suture. The latter is defined in [25] aŝ
HM •(Y#(S1 × F ), s#sc),

where F is an orientable surface of genus g ≥ 2 and sc is the canonical spinc-structure

with 〈c1(sc), [F ]〉 = 2g− 2. This equivalence follows from a Künneth formula for connected

sum in monopole Floer homology, to appear in joint work with Tomasz Mrowka and Peter

Ozsváth [10].

2.1 Hypercubes and permutohedra

This section involves no Floer homology whatsoever, but rather surgery theory and Kirby

calculus as described in Part 2 of [19]. In particular, with respect to a 2-handle D2 ×D2,

the terms core, cocore, and attaching region will refer to the subsets D2 × {0}, {0} × D2,

and ∂D2 ×D2, respectively.

Let Y be a closed, oriented 3-manifold, equipped with an l-component, framed link

L = K1∪· · ·∪Kl, and let Y ′ denote the result of (integral) surgery on L. There is a standard

oriented cobordism W : Y → Y ′, built by thickening Y to [0, 1]×Y and attaching 2-handles

hi to {1}×Y by identifying the attaching region of hi with a tubular neighborhood ν(Ki) in

accordance with the framing. The diffeomorphism type of W is insensitive to whether the
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handles are attached simultaneously as above, or instead in a succession of batches which

express W as a composite cobordism. Our goal in this section is to construct a family

of metrics on W , parameterized by the permutohedron Pl, which smoothly interpolates

between all ways of expressing W as a composite cobordism.

In order to keep track of the l! ways to build up W one handle at a time, we introduce the

hypercube poset {0, 1}l, with I = (m1, . . . ,ml) ≤ J = (m′1, . . . ,m
′
l) if and only if mi ≤ m′i

for all 1 ≤ i ≤ l. J is called an immediate successor of I if there is a k such that mk = 0,

m′k = 1, and mi = m′i for all i 6= k. We define a path of length k from I to J to be a

sequence of immediate successors I = I0 < I1 < · · · < Ik = J . The weight of a vertex I

is given by w(I) =
∑l

i=1mi. We use 0 and 1 as shorthand for the initial and terminal

vertices of {0, 1}l, which we call external. The other 2l − 2 vertices will be called internal.

A totally ordered subset of a poset is called a chain. A chain is maximal if it is not properly

contained in any other chain. In {0, 1}l, the maximal chains are precisely the paths from 0

to 1 , with each such path determined by its internal vertices.

To each vertex I, we associate the 3-manifold YI obtained by surgery on the framed

sublink

L(I) =
⋃

{i |mi=1}

Ki

in Y . Note that the remaining components of L constitute a framed link in YI .

Remark 2.1.1. The 3-manifold denoted Y (I) in the introduction and in [36] is obtained

from YI by shifting forward one frame in the surgery exact triangle for each component of

L. We will use YI throughout and address this discrepancy in Remark 2.2.12.

We regard {YI | I ∈ {0, 1}l} as a poset isomorphic to {0, 1}l, with Y0 and Y1 external

and the rest internal. To a pair of vertices (I, J) with I < J , we associate the 2-handle

cobordism

WIJ = YI × [0, 1] ∪
⋃

{i |mi=0,m′i=1}

hi

from YI to YJ . In particular, if J is an immediate successor of I, then WIJ is an elementary

cobordism, given by a single 2-handle addition. More generally, WIJ will be the composition

of w(J)− w(I) elementary cobordisms.
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In order to quantify how far two vertices are from being ordered, we define a symmetric

function ρ on pairs of vertices by

ρ(I, J) = min
{∣∣{i |mi > m′i}

∣∣ , ∣∣{i |m′i > mi}
∣∣} .

Note that ρ(I, J) = 0 if and only if I and J are ordered. In this case, YI and YJ are disjoint:

Lemma 2.1.2. The full set of 2l − 2 internal hypersurfaces YI can be simultaneously em-

bedded in the interior of the cobordism W so that the following conditions hold:

(i) the hypersurfaces in any subset are pairwise disjoint if and only if they form a chain.

In this case, cutting on YI1 < YI2 < ... < YIk breaks W into the disjoint union

W0I1

∐
WI1I2

∐
· · ·

∐
WIk1 .

(ii) distinct hypersurfaces YI and YJ intersect in exactly ρ(I, J) disjoint tori.

Remark 2.1.3. The reader who is convinced by Figure 2.1 may safely skip the proof.

Figure 2.1: Half-dimensional diagram of the cobordism W for the hypercube {0, 1}3.

Proof. We list all of the vertices as I0, I1, ..., I2l−1, first in order of increasing weight and

then numerically within each weight class. We express the full cobordism as

W = [0, 2l − 1]× Y ∪
l⋃

i=1

hi
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and embed Y0 and Y1 as the boundary. We then embed the interior hypersurfaces as follows.

For 1 ≤ q ≤ 2l − 2, define a slimmer 2-handle hqi as the image of D2 ×D2
q in hi, where D2

q

is the disk of radius q
2l

. Let νq(Ki) be the region to which hqi is attached, considered as a

subset of Y . Then we may regard

h̃qi = [q, 2l − 1]× νq(Ki) ∪
⋃

{2l−1}×νq(Ki)

hqi

as a longer 2-handle which tunnels through [q, 2l − 1] × Y in order to attach to [0, q] × Y

along {q} × vq(Ki). In this way, we embed W0Iq in W as

W0Iq = [0, q]× Y ∪
⋃

{i |mi=1}

h̃qi

and YIq as a component of the boundary.

Now consider two vertices Iq = (m1, ...,ml) and Iq′ = (m′1, ...,m
′
l) and assume without

loss of generality that q < q′. By construction, YIq ∩ YIq′ is confined to the union of the

thickened attaching regions [q, q′] × ν(Ki) in [q, q′] × Y with mi = 1. If m′i = 1 as well,

then h̃qi is contained in the interior of W0q′ . On the other hand, if mi > m′i then h̃qi and

∂W0q′ intersect in the solid torus {q′}× νq(Ki). It follows that YIq and YIq′ intersect in one

torus for each i such that mi > m′i. With q < q′, the number of such i is exactly ρ(Iq, I ′q),

verifying (ii). The first part of (i) immediately follows, since a subset of {0, 1}l forms a chain

if and only if ρ vanishes on every pair of vertices in the subset. In this case, W decomposes

as claimed by construction.

We are now ready to build a special family of Reimannian metrics on the cobordism

W . We first construct an initial metric g0 on W that is cylindrical near every YI simulta-

neously (for a less restrictive approach, allowing one to define metrics on each hypersurface

independently, see Remark 2.5.6). We build g0 inductively on strata, starting with an ar-

bitrary metric on each (transverse) intersection YI ∩ YJ . We then use a partition of unity

to piece together a metric on the union of the YI that is locally cylindrical near each in-

tersection YI ∩ YJ . Finally, we build a metric g0 on W that is cylindrical near each YI . In

particular, a neighborhood ν(T 2) ⊂ W of a torus T 2 ⊂ YI ∩ YJ is metrically modeled on

T 2×(−ε, ε)×(−ε, ε), with YI∩ν(T 2) = T 2×(−ε, ε)×{0} and YJ∩ν(T 2) = T 2×{0}×(−ε, ε).
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Now fix a path γ from 0 to 1 . By Lemma 2.1.2, γ corresponds to a maximal sub-

set of disjoint internal hypersurfaces YI1 < YI2 < ... < YIl−1
in W . So for each point

(T1, . . . , Tl−1) ∈ [0,∞)l−1, we may insert necks to express W as the Riemannian cobordism

Wγ(T1, . . . , Tl−1) given by

W0I1

⋃
YI1

([−T1, T1]× YI1)
⋃
YI1

WI1I2

⋃
YI2

· · ·
⋃
YIl−1

(
[−Tl−1, Tl−1]× YIl−1

) ⋃
YIl−1

WIl−11 .

(2.1)

We then extend this family to the cube [0,∞]l−1 by degenerating the metric on Yj when

Tj = ∞. As in the proof of the composition law in Seiberg-Witten theory (see Section 1.1

below), when Tj grows, the YIj -neck stretches, and when Tj =∞, it breaks. In particular,

Wγ(0, . . . , 0) has the metric g0, while Wγ(∞, . . . ,∞) is the disjoint union of l elementary

cobordisms which compose to give W with the metric g0.

In this way, we obtain l! families of metrics on W , each parameterized by a cube Cγ .

The facets of each cube fall evenly into two types. A facet is interior if it is specified

by fixing a coordinate at 0, and exterior if it is specified by fixing a coordinate at ∞.

Note that each almost-maximal chain YI1 < · · · < ŶIj < · · · < YIl−1
can be completed to

a maximal chain in exactly two ways. It follows that each internal facet has a twin on

another cube, in the sense that the twins parameterize identical families of metrics on W .

By gluing the cubes together along twin facets, we can build a single family of metrics

which interpolates between the various ways of expressing W as a composite cobordism. In

fact, this construction realizes the cubical subdivision of the following ubiquitous convex

polytope (see [50] for more background).

The permutohedron Pl of order l arises as the convex hull of all points in Rl whose

coordinates are a permutation of (1, 2, 3, . . . , l). These points lie in general position in the

hyperplane x1 + · · · + xl = l(l−1)
2 , so Pl has dimension l − 1. The first four permutohedra

are the point, interval, hexagon, and truncated octahedron (see Figure 2.3). The 1-skeleton

of Pl is the Cayley graph of the standard presentation of the symmetric group on l letters:

Sl = 〈σ1, · · · , σl−1 |σ2
i = 1, σiσi+1σi = σi+1σiσi+1, σiσj = σjσi for |i− j| > 1〉.

More generally, the (l − d)-dimensional faces of Pl correspond to partitions of the set
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{1, . . . , l} into an ordered d-tuple of subsets (A1, . . . , Ad). Inclusion of faces corresponds

to merging of neighboring Aj .

The connection between the permutohedron and the hypercube rests on a simple ob-

servation: the face poset of Pl is dual to the poset of chains of internal vertices in the

hypercube {0, 1}l. Namely, to each face (A1, . . . , Ad), we assign the chain I1 < · · · < Id−1,

where Ij has ith coordinate 1 if and only if i ∈ A1 ∪ · · · ∪Aj−1. For example, in the case of

the edges of the hexagon P3, the correspondence is given by:

({3}, {1, 2}) ({2, 3}, {1}) ({2}, {1, 3}) ({1, 2}, {3}) ({1}, {2, 3}) ({1, 3}, {2})

001 011 010 110 100 101

In particular, each path γ from 0 to 1 corresponds to a vertex Vγ of Pl.

Now in the cubical subdivision of Pl, we may identify the cube containing Vγ with the

cube of metrics Cγ so that twin interior facets are identified (see Figures 2.2 and 2.3). In

this way, the interior of Pl parameterizes a family of non-degenerate metrics on W , while

the boundary parameterizes a family of degenerate metrics. The parameterization can be

made smooth on the interior by a slight adjustment of the rate of stretching. We summarize

these observations in the following proposition.

Proposition 2.1.4. The face poset of the permutohedron Pl is dual to the poset of chains

of internal hypersurfaces in W . In particular, the facets of Pl correspond to the ways of

breaking W into a composite cobordism along a single internal hypersurface. The interior of

Pl smoothly parameterizes a family of non-degenerate metrics on W , which extends naturally

to the boundary in such a way that the interior of each face parameterizes those metrics

which are degenerate on precisely the corresponding chain.

Remark 2.1.5. We describe an alternative view of the above construction which is not

essential, but will be helpful in Section 2.3 when we consider more general lattices than the

hypercube. Recall that a directed graph Γ is transitive if the existence of edges from I to

J and from J to K implies the existence of an edge from I to K. The transitive closure of

Γ is the directed graph obtained from Γ by adding the fewest number of edges necessary to

achieve transitivity. A clique in an undirected graph is a subset of nodes with the property

that every two nodes in the subset is connected by an edge.
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Figure 2.2: At left, we consider the path γ given by 000 < 010 < 110 < 111 in {0, 1}3. The

corresponding square Cγ with coordinates (T010, T011) parameterizes a family of metrics on

the cobordism W ∗ which stretches at Y010 and Y110. We have one square for each non-

intersecting pair of hypersurfaces in Figure 2.1. These six squares fit together to form

the hexagon P3 at right. The small figures at the vertices and edges illustrate the metric

degenerations on W , read as composite cobordisms from left to right.

Figure 2.3: The cubical subdivision of the permutohedron P4 consists of 24 cubes, corre-

sponding to the 4! paths from 0000 to 1111 in {0, 1}4. Above, the cube corresponding to

the path 0000 < 0001 < 0011 < 0111 < 1111 is shown with its exterior faces in translucent

color. Each cube shares one vertex with P4 and has one vertex at the center.
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Consider the directed graph Γ associated to {0, 1}l, with an edge from I to J whenever

J is an immediate successor of I. Let Γ̄ be the transitive closure of Γ− {0 , 1}. The nodes

of Γ̄ correspond to internal hypersurfaces, and by Lemma 2.1.2, two nodes are joined by

an edge if and only if the corresponding internal hypersurfaces are disjoint. In fact, Γ̄ is

the 1-skeleton of a simplicial complex Cl, whose face poset is isomorphic to the poset of

non-empty cliques in Γ̄ (as an undirected graph) under inclusion. The complex Cl is dual

to the boundary of Pl.

2.2 The link surgery spectral sequence: construction

Let W be the cobordism associated to surgery on a framed link L ⊂ Y . In Section 2.1, we

constructed a family of metrics on W , parameterized by a permutohedron Pl and degenerate

on the boundary Ql. We now use such families to define maps between summands in a

hypercube complex X associated to the framed link. That these maps define a differential

will follow from a generalization of (1.5) similar in spirit to (1.8). The link surgery spectral

sequence is then induced by the filtration on the hypercube complex given by vertex weight.

Fix a metric and admissible perturbation on the cobordism W which are cylindrical

near every hypersurface YI . Let X be the direct sum of the monopole Floer complexes of

the hypersurfaces, considered as a vector space over F2:

X =
⊕

I∈{0,1}l
Č(YI)

We will define a differential Ď : X → X as the sum of maps ĎI
J : Č(YI) → Č(YJ) over all

I ≤ J , with ĎI
I the differential on the monopole Floer complex Č(YI). We now construct

the maps ĎI
J when I < J .

Fix vertices I < J and let k = w(J)−w(I). Regarding WIJ as the cobordism arising by

surgery on a k-component, framed link in YI , with initial metric induced by W , we apply

Proposition 2.1.4 to obtain a family of metrics on WIJ parameterized by the permutohedron

PIJ of dimension k − 1. Consider a pair of critical points a ∈ C(YI) and b ∈ C(YJ), and a

relative homotopy class z from a to b in the configuration space Bσ(WIJ). As in (1.7), we

must extend the definition of Mz(a,WIJ(p)∗, b) to the degenerate metrics over the boundary
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of PIJ . If p is in the interior of the face I1 < I2 < · · · < Iq−1, then an element γ of

Mz(a,WIJ(p)∗, b) is a q-tuple

(γ01, γ12, . . . , γq−1 q)

where

γj j+1 ∈M(aj ,W ∗IjIj+1
(p), aj+1)

a0 = a

aq = b

and the homotopy classes of these elements compose to give z. Here, the metric on

WIjIj+1(p) is the restriction of the metric on W (p). We then define Mz(a,W ∗IJ , b)PIJ as

the fiber product

Mz(a,W ∗IJ , b)PIJ =
⋃
p∈P
{p} ×Mz(a,WIJ(p)∗, b).

This space has a reducible analogue M red
z (a,W ∗IJ , b)PIJ which is defined by replacing each

moduli space of the form Mz(a,W ∗, b) with its reducible locus M red
z (a,W ∗, b).

In order to count the points in these moduli spaces, we define two elements of F2 by

mz(a,W ∗IJ , b) =

 |Mz(a,W ∗IJ , b)PIJ | mod 2, if dim Mz(a,W ∗IJ , b)PIJ = 0

0, otherwise,
(2.2)

m̄z(a,W ∗IJ , b) =

 |M red
z (a,W ∗IJ , b)PIJ | mod 2, if dim M red

z (a,W ∗IJ , b)PIJ = 0

0, otherwise.
(2.3)

Remark 2.2.1. When I = J , we replace Mz(a,W ∗IJ , b)PIJ in (2.2) by the moduli space

M̆z(a, b) of unparameterized trajectories on the cylinder R × Y (see the definition below).

We similarly replace M red
z (a,W ∗IJ , b)PIJ in (2.3) by M̆ red

z (a, b).

Recall that Co(Y ), Cs(Y ), and Cu(Y ) are vector spaces over F2, with bases ea indexed

by the monopoles a in Co(Y ), Cs(Y ), and Cu(Y ), respectively. We use the above counts

to construct eight linear maps Do
o(
I
J), Do

s(
I
J), Du

o (IJ), Du
s (IJ), D̄s

s(
I
J), D̄s

u(IJ), D̄u
s (IJ), D̄u

u(IJ),
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where for example,

Du
s (IJ) : Cu• (YI)→ Cs•(YJ) Du

s (IJ)ea =
∑

b∈Cu(YJ )

∑
z

mz(a,W ∗IJ , b)eb ;

D̄u
s (IJ) : Cu• (YI)→ Cs•(YJ) D̄u

s (IJ)ea =
∑

b∈Cu(YJ )

∑
z

m̄z(a,W ∗IJ , b)eb .
(2.4)

Note that the above two maps are distinct. We then define ĎI
J : Č(YI) → Č(YJ) by the

matrix

ĎI
J =

 Do
o(
I
J)

∑
I≤K≤J D

u
o (KJ )D̄s

u(IK)

Do
s(
I
J) D̄s

s(
I
J) +

∑
I≤K≤J D

u
s (KJ )D̄s

u(IK)

 , (2.5)

with respect to the decomposition Č(Y ) = Co(Y )
⊕
Cs(Y ). The motivation behind this

definition is explained in the Appendix. Finally, as promised, we let Ď : X → X be the

sum

Ď =
∑
I≤J

ĎI
J .

We now turn to proving that Ď is a differential. As in the proof of the composition law,

the argument proceeds by constructing an appropriate compactification of Mz(a,W ∗IJ , b)PIJ

and counting boundary points. We first consider the compactification of the space of un-

parameterized trajectories on Y , repeating nearly verbatim the definitions given in Section

16.1 of [24]. A trajectory γ belonging to Mz(a, b) is non-trivial if it is not invariant under

the action of R by translation on the cylinder R× Y . An unparameterized trajectory is an

equivalence class of non-trivial trajectories in Mz(a, b). We write M̆z(a, b) for the space of

unparameterized trajectories. An unparameterized broken trajectory joining a to b consists

of the following data:

• an integer n ≥ 0, the number of components;

• an (n+ 1)-tuple of critical points a0, . . . , an with a0 = a and an = b, the restpoints;

• for each i with 1 ≤ i ≤ n, an unparameterized trajectory γ̆i in M̆z(ai−1, ai), the ith

component of the broken trajectory.

The homotopy class of the broken trajectory is the class of the path obtained by concatenat-

ing representatives of the classes zi, or the constant path at a if n = 0. We write M̆+
z (a, b)
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for the space of unparameterized broken trajectories in the homotopy class z, and denote

a typical element by γ̆ = (γ1, . . . ,γn). This space is compact for the appropriate topology

(see [24], Section 24.6). Note that if z is the class of the constant path at a, then M̆z(a, a)

is empty, while M̆+
z (a, a) is a single point, a broken trajectory with no components.

We are now ready to define the compactification M+
z (a,WIJ(p)∗, b). If p is in the interior

of the face I1 < I2 < · · · < Iq−1, then an element γ̆ of M+
z (a,WIJ(p)∗, b) is a (2q+ 1)-tuple

(γ̆0, γ01, γ̆1, γ12, . . . , γ̆q−1, γq−1 q, γ̆q)

where

γ̆j ∈ M̆+(aj , aj)

γj j+1 ∈M(aj ,W ∗IjIj+1
(p), aj+1)

a0 = a

aq = b

and γ̆ is in the homotopy class z. The fiber product

M+
z (a,W ∗IJ , b)PIJ =

⋃
p∈P
{p} ×M+

z (a,WIJ(p)∗, b)

is compact for the appropriate topology (see [24], Section 26.1). We also writeM+
z (a,W ∗IJ , b)QIJ

for the restriction of M+
z (a,W ∗IJ , b)PIJ to the fibers over the boundary QIJ . We can sim-

ilarly define a compactification M red+
z (a,W ∗IJ , b)PIJ of M red

z (a,W ∗IJ , b)PIJ by only consid-

ering reducible trajectories. Recall that an unbroken trajectory from a to b is boundary-

obstructed if a is boundary-stable and b is boundary-unstable. Fix a regular choice of metric

and perturbation.

Remark 2.2.2. The intuition behind the following classification of ends comes from the

model case of Morse homology for manifolds with boundary. We encourage the interested

reader to see the Appendix at this time.

Lemma 2.2.3. If Mz(a,W ∗IJ , b)PIJ is 0-dimensional, then it is compact. If Mz(a,W ∗IJ , b)PIJ

is 1-dimensional and contains irreducibles, then M+
z (a,W ∗IJ , b)PIJ is a compact, 1-dimensional

space stratified by manifolds. The 1-dimensional stratum is the irreducible part of Mz(a,W ∗IJ , b)PIJ ,
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while the 0-dimensional stratum (the boundary) has an even number of points and consists

of:

(A) trajectories with two or three components. In the case of three components, the middle

one is boundary-obstructed.

(B) the reducibles locus M red
z (a,W ∗IJ , b)PIJ in the case that the moduli space contains re-

ducibles as well (which requires a to be boundary-unstable and b to be boundary-stable).

If M red
z (a,W ∗IJ , b)PIJ is 0-dimensional, then it is compact. If M red

z (a,W ∗IJ , b)PIJ is 1-

dimensional, then M red+
z (a,W ∗IJ , b)PIJ is a compact, 1-dimensional C0-manifold with bound-

ary. The boundary has an even number of points and consists of:

(C) trajectories with exactly two components.

Proof. This is essentially Lemma 4.15 of [27], which in turn is a generalization of the gluing

theorems in [24] leading up to the proof of the composition law (see Corollary 21.3.2,

Theorem 24.7.2, and Propositions 24.6.10, 25.1.1, and 26.1.6).

Remark 2.2.4. When I = J , Lemma 2.2.3 holds with Mz(a,W ∗IJ , b)PIJ , M+
z (a,W ∗IJ , b)PIJ ,

M red
z (a,W ∗IJ , b)PIJ , and M red+

z (a,W ∗IJ , b)PIJ replaced by M̆z(a, b), M̆+
z (a, b), M̆ red

z (a, b),

and M̆ red+
z (a, b), respectively.

We obtain a number of identities from the fact that these moduli spaces have an even

number of boundary points. We now bundle these identities into a single operator ǍIJ ,

constructed by analogy with ĎI
J . Fix a pair of critical points a ∈ C(YI) and b ∈ C(YJ), and

a relative homotopy class z from a to b in the configuration space Bσ(WIJ). We define two

elements of F2 by

nz(a,W ∗IJ , b)PIJ =

 |{trajectories in (A) or (B)}| mod 2, if dim Mz(a,W ∗IJ , b)PIJ = 1

0, otherwise,

n̄z(a,W ∗IJ , b)PIJ =

 |{trajectories in (C)}| mod 2, if dim M red
z (a,W ∗IJ , b)PIJ = 1

0, otherwise.

Remark 2.2.5. When I = J , we again replace Mz(a,W ∗IJ , b)PIJ and M red
z (a,W ∗IJ , b)PIJ

by M̆z(a, b) and M̆ red
z (a, b), respectively.
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Remark 2.2.6. Trajectories of type (A) necessarily have at least one irreducible compo-

nent. It follows that if Mz(a,W ∗IJ , b)PIJ is 1-dimensional and does not contain irreducibles,

then it can only have boundary points in strata of type (C). So the condition “if dim

Mz(a,W ∗IJ , b)PIJ = 1” is equivalent to the usual condition “if dim Mz(a,W ∗IJ , b)PIJ = 1

and Mz(a,W ∗IJ , b)PIJ contains irreducibles.” A similar remark holds for the definition of

mz(a,W ∗IJ , b).

By Lemma 2.2.3 and the above remark, nz(a,W ∗IJ , b)PIJ counts the boundary points of

Mz(a,W ∗IJ , b)PIJ when it is 1-dimensional and contains irreducibles, and is zero otherwise.

Similarly, n̄z(a,W ∗IJ , b)PIJ counts the boundary points of M red
z (a,W ∗IJ , b)PIJ when it is

1-dimensional, and is zero otherwise. Since the number of boundary points is even, we

conclude:

nz(a,W ∗IJ , b)PIJ and n̄z(a,W ∗IJ , b)PIJ vanish for all choices of a, b, and z. (2.6)

We proceed by analogy with ĎI
J , using nz(a,W ∗IJ , b)PIJ to define linear maps Aoo(

I
J),

Aos(
I
J), Auo (IJ), and Aus (IJ), and n̄z(a,W ∗IJ , b)PIJ to define linear maps Āss(

I
J) and Āsu(IJ) (we

will not need Āus (IJ) or Āuu(IJ)). Again, these maps all vanish identically by (2.6). Each of

these maps can be expressed as a sum of terms which are themselves compositions of the

component maps of ĎI
J . Finally, we define the map ǍIJ : Č(YI)→ Č(YJ) by the matrix

ǍIJ =

 Aoo(
I
J)

∑
I≤K≤J

(
Auo (KJ )D̄s

u(IK) +Du
o (KJ )Āsu(IK)

)
Aos(

I
J) Āss(

I
J) +

∑
I≤K≤J

(
Aus (KJ )D̄s

u(IK) +Du
s (KJ )Āsu(IK)

)
 . (2.7)

It follows that ǍIJ vanishes identically as well. The motivation behind the definition of ǍIJ

is explained in the Appendix.

Lemma 2.2.7. ǍIJ is equal to the component of Ď2 from Č(YI) to Č(YJ):

ǍIJ =
∑

I≤K≤J
ĎK
J Ď

I
K .
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Proof. We must show that corresponding matrix entries are equal, that is

Aoo(
I
J) =

∑
I≤K≤J

Do
o(
K
J )Do

o(
I
K)

+
∑

I≤K≤M≤J
Du
o (MJ )D̄s

u(KM )Do
s(
I
K)

Aos(
I
J) =

∑
I≤K≤J

Do
s(
K
J )Do

o(
I
K)

+
∑

I≤K≤J
D̄s
s(
K
J )Do

s(
I
K)

+
∑

I≤K≤M≤J
Du
s (MJ )D̄s

u(KM )Do
s(
I
K)

∑
I≤K≤J

(
Auo (KJ )D̄s

u(IK) +Du
o (KJ )Āsu(IK)

)
=

∑
I≤L≤K≤J

Do
o(
K
J )Du

o (LK)D̄s
u(IL)

+
∑

I≤K≤M≤J
Du
o (MJ )D̄s

u(KM )D̄s
s(
I
K)

+
∑

I≤L≤K≤M≤J
Du
o (MJ )D̄s

u(KM )Du
s (LK)D̄s

u(IL)

Āss(
I
J) +

∑
I≤K≤J

(
Aus (KJ )D̄s

u(IK) +Du
s (KJ )Āsu(IK)

)
=

∑
I≤L≤K≤J

Do
s(
K
J )Du

o (LK)D̄s
u(IL)

+
∑

I≤K≤J
D̄s
s(
K
J )D̄s

s(
I
K)

+
∑

I≤L≤K≤J
D̄s
s(
K
J )Du

s (LK)D̄s
u(IL)

+
∑

I≤K≤M≤J
Du
s (MJ )D̄s

u(KM )D̄s
s(
I
K)

+
∑

I≤L≤K≤M≤J
Du
s (MJ )D̄s

u(KM )Du
s (LK)D̄s

u(IL).

After expanding out the A∗∗ and distributing, all terms on the right appear exactly once on

the left by Lemma 2.2.3 (the terms with four components appear only once since D̄s
uD

u
s D̄

s
u

is not a term of Asu). All other terms on the left are of the form Du
o D̄

u
uD̄

s
u, Du

s D̄
u
uD̄

s
u,

or D̄u
s D̄

s
u. In the first case, Du

o (K2
J )D̄u

u(K1
K2

)D̄s
u(IK1

) is a term of both Auo (K1
J )D̄s

u(IK1
) and

Du
o (K2
J )Āsu(IK2

). Similarly, Du
s D̄

u
uD̄

s
u occurs in Aus D̄

s
u and Du

s Ā
s
u, and D̄u

s D̄
s
u occurs in Aus D̄

s
u

and Ass. Therefore, each of the extra terms occurs twice and we have equality over F2.
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Remark 2.2.8. An internal restpoint of γ̆ is called a break. A break is good if the cor-

responding monopole is irreducible or boundary-stable. A trajectory γ̆ ∈ M+
z (a0,W

∗, b0)

occurs in the extended boundary of a 1-dimensional stratum if γ̆ can be obtained by ap-

pending (possibly zero) additional components to either end of a boundary point of a

1-dimensinal moduli space Mz(a,W ∗IJ , b)PIJ or M red
z (a,W ∗IJ , b)PIJ . In these terms, we have

shown that among the trajectories counted by ǍIJ , those with no good break each occur

in the extended boundary of exactly two 1-dimensional strata. The remaining trajectories

each have one good break and occur in the extended boundary of exactly one 1-dimensional

stratum. In particular, ĎK
J Ď

I
K counts those isolated trajectories which break well on YK .

This remark may also be understood from the perspective of path algebras, as explained in

the Appendix.

Remark 2.2.9. A break of γ̆ = (γ̆0, γ01, . . . , γ̆q) is central if it is not a restpoint of γ̆0 or

γ̆q. Note that γ̆ has a central break if and only if it lies over a boundary fiber. We can

express ǍIJ as the sum of similarly defined maps Q̌IJ and B̌I
J , which count boundary points

with and without a central, good break, respectively. It follows from Remark 2.2.8 that

B̌I
J = ĎI

JĎ
I
I + ĎJ

J Ď
I
J

Q̌IJ =
∑

I<K<J

ĎK
J Ď

I
K .

B̌I
J may be thought of (imprecisely) as an operator associated to the interior of PIJ , while

Q̌IJ is (precisely) the operator associated to the boundary QIJ (in the case l = 3 in Figure

2.2, Q̌000
111 is the sum of six composite operators, one for each edge of the hexagon). We can

then express ǍIJ = 0 as

B̌I
J = Q̌IJ ,

which has the form

ĎI
JĎ

I
I + ĎJ

J Ď
I
J = Q̌IJ .

This is the sense in which Lemma 2.2.7 should be viewed as a generalization of (1.5). As

in that case, Q̌IJ is null-homotopic and ĎI
J provides the chain homotopy.

We now conclude:
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Proposition 2.2.10. (X, Ď, F ) is a filtered chain complex, where F is the filtration induced

by weight, namely

F iX =
⊕

I∈{0,1}l
w(I)≥i

Č(YI).

Proof. The equation Ď2 = 0 holds by Lemma 2.2.7 and the fact that the operators ǍIJ

all vanish identically. The differential Ď respects the filtration, as I ≤ J implies w(I) ≤

w(J).

In order to describe H∗(X, Ď), we recall some topology. Let Y0 be a closed, oriented 3-

manifold, equipped with an oriented, framed knot K0, and let Y1 be the result of surgery on

K0 (this surgery is insensitive to the orientation of K0). Y1 comes equipped with a canonical

oriented, framed knot K1, obtained as the boundary of the cocore of the 2-handle in the

associated elementary cobordism, and given the −1 framing with respect to the cocore (see

Section 42.1 of [24] for details). So we may iterate this surgery process, yielding a sequence

of pairs {(Yn,Kn)}n≥0. It is well-known that this sequence is 3-periodic, in the sense that

for each i ≥ 0, there is an orientation-preserving diffeomorphism

(Yi+3,Ki+3)
∼=−→ (Yi,Ki)

which carries the oriented, framed knot Ki+3 to Ki. Applying this construction to each

component of the link L ⊂ Y , we may extend our collection of surgered 3-manifolds YI

from the hypercube {0, 1}l to the lattice {0, 1,∞}l. We may now state the 2-handle version

of the link surgery spectral sequence, which computes H∗(X, Ď) in stages.

Theorem 2.2.11. Let Y be a closed, oriented 3-manifold, equipped with an l-component

framed link L. Then the filtered complex (X, Ď, F ) induces a spectral sequence with E1-term

given by

E1 =
⊕

I∈{0,1}l

̂

HM •(YI)

and d1 differential given by

d1 =
⊕

w(J)−w(I)=1

̂

HM •(WIJ).
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The link surgery spectral sequence collapses by stage l + 1 to

̂

HM (Y∞). Each page has an

integer grading ť induced by vertex weight, which the differential dk increases by k.

Remark 2.2.12. The above statement uses different notation than that given in Theorem

2.0.1 in the introduction and in Theorem 4.1 of [36], emphasizing 2-handle addition over

surgery. To reconcile the two forms, we describe the 3-periodicity above in the case of a

knot K0 ⊂ Y from the surgery perspective (see Section 42.1 of [24]). The complements

Y − ν(Kn) are all diffeomorphic, so we may view each of the surgered manifolds Yn as

obtained by gluing a solid torus to the fixed complement Y0 − ν(K0). If we denote the

meridian and framing of Kn by µn and λn, respectively, thought of as curves on the torus

∂ν(K1), then we have the relations

µn+1 = λn

λn+1 = −µn − λn

which correspond to the matrix  0 −1

1 −1


of order 3. Since the framing is insensitive to the orientation of the curve, we can regard

K0, K1, and K2 = K∞ as having the framings λ0, λ0 +µ0, and µ0, respectively. Therefore,

YI is shifted one step from Y (I), i.e. Y1 = Y (0), Y∞ = Y (1), and Y0 = Y (∞). So Theorem

2.0.1 is simply Theorem 2.2.11 applied to K1 ⊂ Y1. In the case of a link, the same shift in

the 3-periodic sequence occurs in each component.

The first claim of Theorem 2.2.11 follows immediately from the usual construction of

the spectral sequence associated to a filtered complex. The ť grading is well-defined since

each differential dk is homogenous with respect to vertex weight. We complete the proof

in two stages. First, in Section 2.3, we define a complex (X̃, Ď), modeled on the lattice

{0, 1,∞}l, in which (X, Ď) sits as a quotient complex. Then, in Section 2.4, we use the

surgery exact triangle to conclude that X̃ is null-homotopic. The identity of the E∞ term

quickly follows.
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2.3 Product lattices and graph associahedra

Consider the lattice {0, 1,∞}l, with the product order induced by the convention 0 < 1 <∞.

An∞ digit contributes two to the weight. We will sometimes also use∞ to denote the final

vertex {∞}l, with the meaning clear from context. Consider the full cobordism W from Y0

to Y∞, the result of attaching two rounds of l 2-handles:

W =

(
[0, 1]× Y ∪

l⋃
i=1

hi

)
∪

l⋃
j=1

gj .

Here hi is attached to the component Ki of L ⊂ Y , and gj is attached to K ′j ⊂ Y1 , where

K ′j denotes the boundary of the co-core of hj with −1 framing. A valid order of attachment

corresponds to a maximal chain in {0, 1,∞}l, or equivalently to a path in Γ from 0 to ∞,

of which there are (2l)!
2l

. For each vertex I = (m1, . . . ,ml), we have the hypersurface YI ,

diffeomorphic to a boundary component of

W0I = [0, 1]× Y ∪
⋃

{i |mi≥1}

hi ∪
⋃

{i |mi=∞}

gi.

An ∞ digit corresponds to attaching a stack of two 2-handles to a component of L ⊂ Y .

As in Section 2.1, we will construct a polytope of metrics PIJ on the cobordism WIJ for

all pairs of vertices I < J . The simplest new case occurs when l = 1, I = 0, and J = ∞.

Since w(∞)−w(0) = 2, the polytope P0∞ should be a closed interval with degenerate metrics

over the two boundary points. However, we now have only one internal hypersurface, Y1,

on which to degenerate the metric. The solution, as in [27], is to construct an auxiliary

hypersurface S1 as follows. Let E1 be the 2-sphere formed by gluing the cocore of h1 to

the core of g1 along their common boundary K ′1. Due to the -1-framing on K ′1, ν(E1) is a

D2-bundle of Euler class -1, with E1 embedded as the zero-section. It follows that

ν(E1) ∼= CP2 − int(D4)

and we define the hypersurface S1 to be the bounding 3-sphere ∂ν(Ki). P0∞ is then iden-

tified with the interval [−∞,∞], with the metric degenerating on S1 at −∞ and Y1 at

∞.

For the lattice {0, 1,∞}l, we will embed l auxiliary 3-spheres S1, . . . , Sl in addition

to the 3l − 2 internal hypersurfaces. We must then construct a family of metrics which
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interpolates between the
∑l

i=1

(
l
i

) (2l−i)!
2l−i

ways to decompose W along 2l−1 pairwise-disjoint

hypersurfaces. As a first step, we generalize Lemma 2.1.2. The following proposition is

motivated by a half-dimensional diagram in the spirit of Figures 2.1 and Figure 2.8.

Proposition 2.3.1. The full set of 3l− 2 internal hypersurfaces YI and l spheres Si can be

simultaneously embedded in the interior of W so that the following conditions hold:

(i) The internal hypersurfaces in any subset are pairwise disjoint as submanifolds of W if

and only if they form a chain. In this case, cutting along YI1 < YI2 < ... < YIk breaks

W into the disjoint union

W0I1

∐
WI1I2

∐
· · ·

∐
WIk∞.

(ii) Distinct YI and YJ intersect in exactly ρ(I, J) disjoint tori.

(iii) YI and Si intersect if and only if mi = 1, where I = (m1, . . . ,ml). In this case, they

intersect in a torus.

(iv) The Si are pairwise disjoint.

Proof. List the vertices as I0, I1, ..., I3l , first in order of increasing weight and then numeri-

cally within each weight class. We express the full cobordism as

W = [0, 3l]× Y ∪
l⋃

i=1

hi ∪
l⋃

i=1

gi

and embed Y0 and Y∞ as the boundary. As in the proof of Lemma 2.1.2, for each 1 ≤

q ≤ 3l − 1, we have slimmer 2-handles hqi and gqi as the images of D2 × D2
q in hi and gi,

respectively, where D2
q is the disk of radius q

3n . Again, we think of

h̃qi = [q, 3l]× νq(Ki) ∪
⋃

{3l}×νq(Ki)

hqi

as a longer 2-handle which tunnels through [q, 3l]× Y in order to attach to [0, q]× Y along

{q}×νq(Ki). Let K ′i be the boundary of the cocore of hi, so that νq(K ′i) = D2
q ×∂D2 is the

region of hi to which gqi attaches. Let Aiq be the annulus given in polar coordinates (r, θ)

by [ q
3l
, 1]× S1, thought of as sitting in the cocore of hi. The boundary of D2

q ×A
q
i consists
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of νq(K ′i) and a radial contraction of νq(K ′i) into the interior of hi, denoted ν̃q(K ′i). So we

may regard

g̃qi = D2
q ×A

q
i ∪

⋃
νq(K′i)

gqi

as a longer 2-handle which tunnels through D2 × Aiq ⊂ hi in order to attach to h̃qi along

ν̃q(K ′i) ⊂ ∂h̃
q
i . In this way, we embed W0Iq in W as

W0Iq = Y × [0, q] ∪
⋃

{i |mi≥1}

h̃qi ∪
⋃

{i |mi=∞}

g̃qi

and YIq as a component of its boundary. Here Iq = (m1, ...,ml). Next, let the 2-sphere Ei

be the result of gluing the cocore of hi and the core of gi along their common boundary

K ′i, and let ν(Ei) be the result of gluing together the corresponding trivial D2-bundles of

radius 1
2·3l . Then ν(Ei) is a D2-bundle of Euler class -1, and we embed the 3-sphere Si as

its boundary.

Conditions (i) and (ii) now follow from a straightforward generalization of the proof

of Lemma 2.1.2. For (iii), note that if mi = 1, then the intersection of YI and Si is the

boundary of the restriction of the D2-bundle ν(Ei) to K ′i. Finally, the Si are pairwise

disjoint because they live in different pairs of handles.

For fixed I < J , the interval {K | I ≤ K ≤ J} takes the form {0, 1,∞}m × {0, 1}k for

some pair of non-negative integers (m, k) with m + k = l. In order to define the maps ĎI
J

in general, we need to construct a polytope Pm,k of dimension 2m + k − 1 for each pair

(m, k). We define Pm,k abstractly to have a face of co-dimension d for every subset of d

mutually disjoint hypersurfaces in the interior of W , with inclusion of faces dual to inclusion

of subsets. Our definition is justified by Theorem 2.3.3, which realizes Pm,k concretely as a

convex polytope.

In order to motivate this theorem, we first construct those Pm,k of dimension three

or less by hand. The polytopes P0,1, P0,2, P0,3, and P0,4 are the first few permutohedra

of Proposition 2.1.4, namely a point, an interval, a hexagon, and a truncated octahedron

(recall Figure 2.3). We saw that P1,0 is an interval, and it is easy to see that P1,1 is the

associahedron K4, otherwise known as the pentagon. P2,0 is more interesting. In Figure

2.4, we use a trick to establish that it is K5, also known as Stasheff’s polytope [42]. See
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[13] for an enjoyable, informal introduction to associahedra. Note that Kn has dimension

n− 2 while Pn has dimension n− 1.

Figure 2.4: Consider the full cobordism W corresponding to the lattice {0, 1,∞}2 at left.

The seven interior hypersurfaces and two auxiliary 3-spheres are embedded in W in such a

way that the diagram at center accurately depicts which pairs intersect (although the triple

intersection point is an artifact). The nine internal arcs in the diagram are arranged so that

by stretching normal to disjoint subsets, we obtain a parameterization of the space of con-

formal structures on the hexagon, which is known to compactify to the associahedron K5 at

right. In fact, we can exploit this connection between associahedra and conformal structures

on polygons to construct monopole Floer analogues of maps counting psuedoholomorphic

polygons in Heegaard Floer homology. We will return to this in a future paper.

At this stage, it may be tempting to conjecture that all the Pm,k are permutohedra or

associahedra. We check this against the only remaining 3-dimensional case, namely P1,2.

To build this polyhedron, it is useful to return to the viewpoint of Remark 2.1.5. Let

Γ be the oriented graph corresponding to the lattice {0, 1,∞}m × {0, 1}k. Let Γ̄ be the

unoriented graph obtained as the transitive closure of Γ with its initial and final nodes

removed. We now add l additional nodes I ′i (representing the Si) to Γ̄ and connect each I ′i

to the others and to those I = (m1, . . . ,ml) ∈ Γ̄ with mi 6= 1. By Proposition 2.3.1, the

nodes of the resulting graph Γ̄′ are in bijection with the full set of hypersurfaces, with two

nodes connected by an edge if and only if the corresponding hypersurfaces are disjoint. The

graph Γ̄′ is the 1-skeleton of a simplical complex Cm,k whose face poset is isomorphic to the

poset of non-empty cliques in Γ̄′ under inclusion. That is, the d-dimensional faces of Cm,k
are in bijection with the d-cliques of Γ̄′ (the fact that this poset defines a simplicial complex
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will follow from Theorem 2.3.3). The simple polytope dual to Cm,k is then, by definition,

the boundary of Pm,k. In Figure 2.5, we illustrate this process for P1,2, concluding that it

is indeed something new.

Figure 2.5: We construct the boundary of the polyhedron P1,2 as the dual of the simplicial

complex C1,2. First, at left, we remove the initial and final nodes from the lattice {0, 1,∞}×

{0, 1}2. We then flatten the shaded region and take the transitive closure to obtain Γ̄,

represented by the shaded rectangle and compact dotted line segments at center. Next we

add the vertex I ′1 at infinity (not shown) and connect it by dotted lines to the six nodes

for which m1 6= 1. At this stage, we have constructed Γ̄′, the 1-skeleton of C1,2. The faces

of C1,2 are the 3-cliques (triangles). Drawing the dual with thin red lines, we obtain the

boundary of P1,2. At right, we have redrawn P1,2. The face S1 corresponds to the large

hexagonal base under the colorful tortoise shell. The 12 vertices away from S1 correspond

to the 12 paths through the lattice.

The right hand side of Figure 2.5 illustrates P1,2 as a convex polytope in R3. However,

our dual-graph perspective does not provide such an explicit realization of Pm,k in higher

dimensions. While searching for an alternative construction of P1,2, the author discovered

beautiful illustrations of similar polyhedra in [12] and [15]. Given a connected graph G

with n vertices, Carr and Devadoss construct a convex polytope PG of dimension n− 1, the

graph-associahedron of G, using the following notions.

A tube of G is a proper, non-empty set of nodes of G whose induced graph is a connected
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subgraph of G. There are three ways in which tubes t1 and t2 can interact:

(1) Tubes are nested if t1 ⊂ t2 or t2 ⊂ t1;

(2) Tubes intersect if t1 ∩ t2 6= ∅ and t1 6⊂ t2 and t2 6⊂ t1;

(3) Tubes are adjacent if t1 ∩ t2 = ∅ and t1 ∪ t2 is a tube in G.

Tubes are compatible if they do not intersect and they are not adjacent. A tubing T of G is

a set of tubes of G such that every pair of tubes in T is compatible.

We now define the graph-associahedron of a connected graph G with n nodes. Labelling

each facet of the n − 1 simplex 4G by a node of G, we have a bijection between the faces

of 4G and the proper subsets of nodes of G. By definition, PG is sculpted from 4G by

truncating those faces which correspond to a connected, induced subgraph of G (see Figure

2.6). We therefore have a bijection

{facets of PG} ←→ {tubes of G}. (2.8)

More generally, Carr and Devadoss prove that PG is a simple, convex polytope whose face

poset is isomorphic to the set of valid tubings of G, ordered such that T < T ′ if T is obtained

from T ′ by adding tubes. Moreover, in [15], Devadoss derives a simple, recursive formula

for a set of points with integral coordinates in Rn, whose convex hull realizes PG.

Remark 2.3.2. Carr and Devadoss trace their construction back to the Deligne-Knudsen-

Mumford compactificationM0,n(R) of the real moduli space of curves. In this context, the

sculpting of PG is thought of as a sequence of real blow-ups. When G is a Coxeter graph, PG

tiles the compactification of the hyperplane arrangement associated to the corresponding

Coxeter system. The n-clique, path, and cycle yield the (n−1)-dimensional permutohedron,

associahedron, and cyclohedron, respectively. By the n-clique, we mean the complete graph

on n nodes.

Comparing Figures 2.5 and 2.6, we see that P1,2 is precisely the graph-associahedron of

the 3-clique with one leaf. In fact, all of the polytopes Pm,k are graph-associahedra:
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Figure 2.6: We have modified Figure 6 in [15] to illustrate the sculpting of PG for the graph

G given by the 3-clique with one leaf. Each node of G slices out a half-space in R3, leaving

the 3-simplex 4G at left. Next, we shave down those vertices of 4G which correspond to

the connected, induced subgraphs of size three. Finally, at right, we shave down those edges

of 4G which correspond to the edges of G. This figure also illustrates the bijection (2.8).

Theorem 2.3.3. The polytope Pm,k associated to the lattice {0, 1,∞}m × {0, 1}k is the

graph-associahedron of the (m+ k)-clique with m leaves. More generally, the polytope nat-

urally associated to the lattice {0, ..., n1} × · · · × {0, ..., nl}, with all ni ≥ 1, is the graph-

associahedron of the l-clique with paths of length n1 − 1, . . . , nl − 1 attached.

Proof. An example is given in Figure 2.7. We first consider the lattice {0, 1,∞}m×{0, 1}k.

In addition to the 3m2k − 2 internal hypersurfaces YI , we have m auxialliary hypersurfaces

Si. Let G be the complete graph on nodes v1, . . . , vm+k with a leaf v′i attached to vi for

each i = 1, . . . ,m. The bijection (2.8) is given by

YI 7→ {vi |mi ≥ 1} ∪ {v′i |mi =∞}

Si 7→ {v′i}.

and extends to an isomorphism of posets.

Next, consider the lattice {0, 1, ..., n}. The cobordism W is then built by attaching a

single stack of handles h1∪· · ·∪hn to [0, 1]×Y (the n = 3 case is shown in Figure 2.8, though

with different notation). In addition to the internal hypersurfaces Y1, . . . , Yn−1, we include

an auxiliary hypersurface Sjk between each pair of handles (hj , hk) with 1 ≤ j < k ≤ n,

embedded as the boundary of a tubular neighborhood of the union of the intervening 2-

spheres Ei. In fact, if k − j ≡ 2 (mod 3), then Sjk is diffeomorphic to S1 × S2. Otherwise,
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Sjk is diffeomorphic to S3. By a straightforward variation on the theme of Lemma 2.1.2 and

Proposition 2.3.1, these n− 1 +
(
n
2

)
hypersurfaces can all be embedded in W so that

(i) the Yi are all disjoint;

(ii) Yi and Sjk intersect if and only if j ≤ i < k. In this case, they intersect in a torus.

(iii) Sj1k1 and Sj2k2 intersect if and only if the intervals {j1, . . . , k1} and {j2, . . . , k2} overlap

but are not nested. In this case, they intersect in a torus.

Now let the graph G be the path with nodes {v0, . . . , vn}. The bijection (2.8) is given by

Yi 7→ {v0, ..., vi}

Sjk 7→ {vj , ..., vk}.

and extends to an isomorphism of posets. As remarked above, PG is then the (n − 1)-

dimensional associahedron Kn+1. The result for a lattice consisting of an arbitrary product

of chains follows from a straightforward, subscript-heavy amalgamation of the arguments

in the above two cases.

Now consider the lattice Λ = {0, ..., n1} × · · · × {0, ..., nl} with the corresponding graph

G given by Theorem 2.3.3. Using a formula in [15], we can realize PG concretely as the

convex hull of vertices in general position in Rd, where d = n1 · · ·nl − 1. Now PG has one

vertex Vγ for every maximal collection γ of disjoint hypersurfaces in the cobordism W with

initial metric g0. As in Section 2.1, we associate to the vertex Vγ a cube of metrics Cγ

which stretches on the hypersurfaces in γ. We can then use PΛ to parameterize a family of

metrics on W by identifying each Cγ with the cube containing the vertex Vγ in the cubical

subdivision of PΛ. In particular, Pm,k consists of
∑m

i=0

(
m
i

) (2m+k−i)!
2m−i

cubes.

Remark 2.3.4. Using these polytopes of metrics, we can define maps ĎI
J associated to

any lattice formed as a product of chains of arbitrary length, where {0, . . . , n} has length

n. However, we will see that this gives rise to a differential if and only if all the chains have

length one or two. When there is a chain of length three or more, additional terms arise

from breaks on auxiliary hypersurfaces. We will see this phenomenon explicitly for a single

chain of length three in the proof of the surgery exact triangle (see Theorem 2.4.2).
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Figure 2.7: The figure at left represents a Kirby diagram arising from the 3-periodic surgery

sequence applied to each component of a framed link with four components. The corre-

sponding lattice is the product of four chains, while the graph is obtained by appending

paths to the complete graph on four vertices. The pentagon at right represents the corre-

sponding 9-dimensional graph associahedron. The above assignment of a polytope PG to

a finite product lattice generalizes the assignment of the permutohedron to the hypercube

described in Section 2.1.

Having constructed polytopes of metrics for all intervals in the lattice {0, 1,∞}l, we

proceed to define the complex (X̃, Ď). Fix a metric on the cobordism W which is cylindrical

near every hypersurface YI and auxiliary hypersurface Si, where each Si has been equipped

with the round metric. We let

X̃ =
⊕

I∈{0,1,∞}l
Č(YI)

and define the maps ĎI
J : Č(YI) → Č(YJ) by exactly the same construction and matrix

(2.5) as before, with Ď : X̃ → X̃ their sum.

We now prove that Ď is a differential by an argument which parallels that in Section 2.2.

We first expand our definition of M+
z (a,WIJ(p)∗, b) to intervals of the form {0, 1,∞}m ×

{0, 1}k. Let Vi denote the copy of CP2 − int(D4) cut out by Si. For each I < J , let

Sj1 , ..., Sjn(I,J)
be the spheres completely contained in WIJ . We denote the corresponding

cobordism with n(I, J) + 2 boundary components by

UIJ = WIJ −
n(I,J)⋃
s=1

int (Vjs) .
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If p is in the interior of the face (I1 < I2 < · · · < Iq−1, S1, ..., Sr), then an element γ̆ of

M+
z (a,WIJ(p)∗, b) is a (2q + 2r + 1)-tuple

(γ̆0, γ01, γ̆1, γ12, . . . , γ̆q−1, γq−1 q, γ̆q, η1, δ̆1, . . . , ηr, δ̆r) (2.9)

where

γ̆j ∈ M̆+(aj , aj)

γj j+1 ∈M(aj , cj1 , . . . , cjn(Ij ,Ij+1)
, U∗IjIj+1

(p), aj+1)

δ̆i ∈ M̆+(ci, ci)

ηi ∈M(V ∗i (p), ci)

a0 = a

aq = b

aj ∈ C(YIj )

ci ∈ C(Si)

and γ̆ is in the homotopy class z (and similarly when p is in the interior of a face which

includes a subset of the Si other than the first r). The fiber product

M+
z (a,W ∗IJ , b)PIJ =

⋃
p∈P
{p} ×M+

z (a,WIJ(p)∗, b)

is compact. We then define ǍIJ : Č(YI) → Č(YJ) by exactly the same construction and

matrix (2.7) as before.

We will also need the following lemma, consolidated from [27] (see Lemma 5.3 there

and the preceding discussion). The essential point is that there is a diffeomorphism of

CP2 − int(D4) which restricts to the identity on the boundary and induces a fixed-point-

free involution on the set of spinc structures.

Lemma 2.3.5. Fix a sufficiently small perturbation on Si. Then for each c, c′ ∈ C(Si),

M̆(c, c′) = ∅ and the trajectories in the zero-dimensional strata of M+(V ∗i , c) occur in pairs.

When Mz(a,W ∗IJ , b)PIJ or M red
z (a,W ∗IJ , b)PIJ is 1-dimensional, the number of boundary

points in the corresponding compactification is still even (technically, using a generalization



CHAPTER 2. THE LINK SURGERY SPECTRAL SEQUENCE 42

of Lemma 2.2.3 to the case of cobordisms with three boundary components, as done in [24]

by introducing doubly boundary obstructed trajectories). By Lemma 2.3.5, the number

of boundary points which break on precisely some non-empty, fixed collection {Si1 , ...Sir}

of the auxiliary hypersurfaces is a multiple of 2r, via the pairing of ηij and η′ij in (2.9).

Therefore, by inclusion-exclusion, the number of boundary points which do not break on

any of the Si is even as well. Since these are precisely the boundary points counted by the

matrix (2.7), ǍIJ still vanishes and the proof of Lemma 2.2.7 goes through without change.

We conclude:

Proposition 2.3.6. (X̃, Ď, F ) is a filtered chain complex, where F is the filtration induced

by weight, namely

F iX̃ =
⊕

I∈{0,1,∞}l
w(I)≥i

Č(YI).

Remark 2.3.7. While we were compelled to introduce auxiliary hypersurfaces Si in order

to obtain polytopes, the corresponding facets contribute vanishing terms to Q̌IJ by Lemma

2.3.5. We thereby recover

Q̌IJ =
∑

I<K<J

ĎK
J Ď

I
K .

2.4 The surgery exact triangle

We will identify the E∞ page of the link surgery spectral sequence by applying the surgery

exact triangle to the complex of Proposition 2.3.6. Before stating the surgery exact triangle,

we first recall the algebraic framework underlying its derivation in both monopole and

Heegard Floer homology (see [27] and [36], respectively).

Lemma 2.4.1. Let {Ai}∞i=0 be a collection of chain complexes and let

{fi : Ai → Ai+1}∞i=0

be a collection of chain maps satisfying the following two properties:

(i) fi+1 ◦ fi is chain homotopically trivial, by a chain homotopy

Hi : Ai → Ai+2
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(ii) the map

ψi = fi+1 ◦Hi +Hi+1 ◦ fi : Ai → Ai+3

is a quasi-isomorphism.

Then the induced sequence on homology is exact. Furthermore, the mapping cone of f1 is

quasi-isomorphic to A3 via the map with components H1 and f2.

Let Y0 be a closed, oriented 3-manifold, equipped with a framed knot K0. Applying the

functor

̂

HM • to the associated 3-periodic sequence of elementary cobordisms

{Wn : Yn → Yn+1}n∈Z/3Z,

we obtain the surgery exact triangle:

Theorem 2.4.2. With coefficients in F2, the sequence

· · · −→

̂

HM •(Yn−1)

̂

HM •(Wn−1)−−−−−−−−→

̂

HM •(Yn)

̂

HM •(Wn)−−−−−−→

̂

HM •(Yn+1) −→ · · ·

is exact.

Proof. We reorganize the proof in [27] to fit it within our general framework of polytopes

PIJ and identities ǍIJ . We use the notation {0, 1,∞, 0′} for the lattice {1, 2, 3, 4} considered

in [27]. The corresponding graph (in the sense of both Γ and G) is the path of length three,

yielding a pentagon of metrics PG whose sides correspond to Y1, Y∞, S1 = S1
∞, S∞ = S∞0′ ,

and R1 = S1
0′ (where the left-hand notation is shorthand for the right-hand notation in

the proof of Theorem 2.3.3). The auxiliary hypersurface R1 is diffeomorphic to S1 × S2

and cuts out V1
∼= CP2 − int(D4) from W , leaving the cobordism U1 with three boundary

components.

Keeping the 3-periodicity in mind, we prove exactness by applying Lemma 2.4.1 with

A1+3j = Č(Y0) f1 = Ď0
1 H1 = Ď0

∞ ψ1 = Ď0
0′

A2+3j = Č(Y1) f2 = Ď1
∞ H2 = Ď1

0′

A3+3j = Č(Y∞) f3 = Ď∞0′

where we have yet to define Ď0
0′ . The first condition of Lemma 2.4.1 is then satisfied by

Proposition 2.3.6 with l = 1.
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Figure 2.8: At left, the half-dimensional diagram of the cobordism W for the lattice

{0, 1,∞, 0′}. Note that S1 is represented by two concentric curves, arising as the boundary

of the tubular neighborhood of a circle representing the sphere E1 (and similarly for S∞).

At right, the pentagon K4 of metrics, analogous to the hexagon P3 in Figure 2.2.

Let R denote the edge of the pentagon corresponding to R1, considered as a one-

parameter family of metrics on V1 stretching from S1 to S∞. Viewing V1 as a cobordism

from the empty set to R1, with the family of metrics R, we have components

no ∈ Co•(R1) ns ∈ Cs•(R1) n̄s ∈ Cs•(R1) n̄u ∈ Cu• (R1)

In other words, these elements count isolated trajectories in moduli spaces of the form

Mz(V ∗1 , c)R and M red
z (V ∗1 , c)R. In fact, by Lemma 5.4 of [27], when the perturbation on

R1 is sufficiently small, there are no irreducible critical points and all components of the

differential on Č(R1) vanish, as do no and n̄s.

We define the maps D∗∗(
0
0′) exactly as before. We similarly define maps D̄ss

s (0
0′) and

D̄ss
u (0

0′) which count isolated trajectories in M red
z (a, c, U∗1 , b):

D̄ss
s (0

0′) : Cs•(R1)⊗ Cs•(Y0)→ Cs•(Y0′) D̄ss
s (0

0′)(ec ⊗ ea) =
∑

b∈Cs(Y0′ )

∑
z

m̄z(a, c, U∗1 , b)eb;

D̄ss
u (0

0′) : Cs•(R1)⊗ Cs•(Y0)→ Cu• (Y0′) D̄ss
u (0

0′)(ec ⊗ ea) =
∑

b∈Cu(Y0′ )

∑
z

m̄z(a, c, U∗1 , b)eb.
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We combine these components to define the map Ď0
0′ : Č(Y0)→ Č(Y0′) by

Ď0
0′ =

 Do
o(

0
0′)

∑
0≤K≤0′ D

u
o (K0′ )D̄

s
u(0
K)

Do
s(

0
0′) Ds

s(
0
0′) +

∑
0≤K≤0′ D

u
s (K0′ )D̄

s
u(0
K)


+

 0 Du
o (0′

0′)D̄
ss
u (0

0′)(ns ⊗ ·)

0 D̄ss
s (0

0′)(ns ⊗ ·) +Du
s (0′

0′)D̄
ss
u (0

0′)(ns ⊗ ·)

 , (2.10)

The terms in (2.10) break on a boundary-stable critical point in Č(R1). Of these, the term

D̄ss
s (0

0′)(ns⊗·) is singly boundary-obstructed, while the other two are compositions of a non-

boundary obstructed operator and a doubly boundary-obstructed operator (see Definition

24.4.4 in [24]). Finally, we introduce the chain map Ľ : Č(Y0)→ Č(Y0′) defined by

Ľ =

 Loo LuoD̄
s
u(0

0) +Du
o (0′

0′)L̄
s
u

Los L̄ss + Lus D̄
s
u(0

0) +Du
s (0′

0′)L̄
s
u

 (2.11)

where L∗∗ = Du∗
∗ (n̄u⊗ ·) and L̄∗∗ = D̄u∗

∗ (n̄u⊗ ·). So the coefficient of b in Ľ(ea) is a count of

the zero-dimensional stratum of M+
z (a, c, U∗1 , b), over all c such that ec is a summand of n̄u.

By Lemma 2.4.4 below, these maps are related by

Ď0′
0′Ď

0
0′ + Ď0

0′Ď
0
0 = Ď1

0′Ď
0
1 + Ď∞0′ Ď

0
∞ + Ľ. (2.12)

Furthermore, by Proposition 5.6 of [27], Ľ is a quasi-isomorphism. We conclude that

Ď1
0′Ď

0
1 + Ď∞0′ Ď

0
∞ is a quasi-isomorphism as well. This is precisely the second condition

of Lemma 2.4.1, which then implies the theorem.

Remark 2.4.3. In fact, the authors of [27] show that the map induced by Ľ on

̂

HM •(Y0)

is given by multiplication by the power series

∑
k≥0

U
k(k+1)/2
† .

The proof is related to that of the blow-up formula, Theorem 39.3.1 of [24].

Equation (2.12) is proved by counting ends. The maps A∗∗(
0
0′) and Ā∗∗(

0
0′) are defined

using the vanishing elements nz(a,W ∗, b)PIJ and n̄z(a,W ∗, b)PIJ exactly as before. By

analogy with the maps Dss
∗ above, we also define vanishing maps Āsss (0

0′) and Āssu (0
0′) which
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count boundary points of M red+
z (a, c, U∗1 , b). Finally, we define Ǎ0

0′ : Č(Y0)→ Č(Y0′) by

Ǎ0
0′ =

 Aoo(
0
0′)

∑
0≤K≤0′

(
Auo (K0′ )D̄

s
u(0
K) +Du

o (K0′ )Ā
s
u(0
K)
)

Aos(
0
0′) Ass(

0
0′) +

∑
0≤K≤0′

(
Aus (K0′ )D̄

s
u(0
K) +Du

s (K0′ )Ā
s
u(0
K)
)


+

 0 Auo (0′
0′)D̄

ss
u (0

0′)(ns ⊗ ·) +Du
o (0′

0′)Ā
ss
u (0

0′)(ns ⊗ ·)

0 Āsss (0
0′)(ns ⊗ ·) +Aus (0′

0′)D̄
ss
u (0

0′)(ns ⊗ ·) +Du
s (0′

0′)Ā
ss
u (0

0′)(ns ⊗ ·)

 , (2.13)

which therefore vanishes as well. The form of Ǎ0
0′ follows from the model case of Morse

theory for manifolds with boundary, as described in Appendix I. Note that all the terms in

(2.13) break on a boundary-stable critical point in Č(R1). The term Āsss (0
0′)(ns⊗·) is singly

boundary-obstructed, while the other four are compositions of a non-boundary-obstructed

operator and a doubly-boundary-obstructed operator.

Lemma 2.4.4. The map Ǎ0
0′ + Ľ is equal to the component of Ď2 from Č(Y0) to Č(Y0′):

Ǎ0
0′ + Ľ =

∑
0≤K≤0′

ĎK
0′ Ď

0
K .

Proof. As in the proof of Lemma 2.2.7, all terms on the right appear exactly once on the

left, with the additional terms on the left being those which do not have a good break on

any YI . We divide these extra terms into those with

(i) no break on R1;

(ii) a boundary-stable break on R1;

(iii) a boundary-unstable break on R1.

Terms of type (i) can be enumerated just as in the proof of Lemma 2.2.7, so each occurs

twice in Ǎ0
0′ . Dropping indices where it causes no ambiguity, the terms of type (ii) occur in

six pairs:

Du
o D̄

su
u (ns ⊗ D̄s

u(·)) in AuoD̄
s
u and Du

o Ā
ss
u (ns ⊗ ·);

Du
o D̄

u
uD̄

ss
u (ns ⊗ ·) in AuoD̄

ss
u (ns ⊗ ·) and Du

o Ā
ss
u (ns ⊗ ·);

Du
s D̄

su
u (ns ⊗ D̄s

u(·)) in Aus D̄
s
u and Du

s Ā
ss
u (ns ⊗ ·);

Du
s D̄

u
uD̄

ss
u (ns ⊗ ·) in Aus D̄

ss
u (ns ⊗ ·) and Du

s Ā
ss
u (ns ⊗ ·);

D̄su
u (ns ⊗ D̄s

u(·)) in Aus D̄
s
u and Āsss (ns ⊗ ·);

D̄u
s D̄

ss
u (ns ⊗ ·) in Aus D̄

ss
u (ns ⊗ ·) and Āsss (ns ⊗ ·).
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Finally, the terms of type (iii) occur in five pairs:

Du
oD

us
u (n̄u ⊗ ·) in Du

o Ā
s
u and Du

o L̄
s
u;

Duu
o (n̄u ⊗ D̄s

u(·)) in AuoD̄
s
u and LuoD̄

s
u;

Du
sD

us
u (n̄u ⊗ ·) in Du

s Ā
s
u and Du

s L̄
s
u;

Duu
s (n̄u ⊗ D̄s

u(·)) in Aus D̄
s
u and Lus D̄

s
u;

D̄us
s (n̄u ⊗ ·) in Āss and L̄ss.

We conclude that terms of types (i) and (ii) are double counted by Ǎ0
0′ while those of type

(iii) are counted once each by Ǎ0
0′ and Ľ. We therefore have equality over F2.

Remark 2.4.5. If we consider a boundary-unstable break on R1 to be a good break as well,

then Remark 2.2.8 goes through exactly as before. Furthermore, Ľ counts those trajectories

which break well on R1 (see also the discussion following Proposition 5.5 in [27]).

Remark 2.4.6. For the lattice {0, 1,∞, 0′}, we introduced the auxiliary hypersurfaces S1,

S2, and R1 in order to build the pentagon of metrics. The Si edges contribute vanishing

terms to Q̌IJ by Lemma 2.3.5, whereas the R1 edge contributes the term Ľ. Thus,

Q̌IJ = Ď1
0′Ď

0
1 + Ď∞0′ Ď

0
∞ + Ľ

and once more we can view (2.12) as a “generalization” of (1.5).

2.5 The link surgery spectral sequence: convergence

We are now positioned to identify the limit of the link surgery spectral sequence.

Proof of Theorem 2.2.11. For 1 ≤ k ≤ l, define the map

Fk :
⊕

I∈{∞}l−k×{0,1}×{0,1}k−1

Č(YI) −→
⊕

I∈{∞}l−k×{∞}×{0,1}k−1

Č(YI)

as the sum of all compatible components of the differential Ď on the subcomplex⊕
I∈{∞}l−k×{0,1,∞}×{0,1}k−1

Č(YI)

of X̃. Then Ď2 = 0 implies that Fk is a chain map. Consider the filtration given by the

weight of the last k − 1 digits of I. By applying the final assertion of Lemma 2.4.1 to the
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surgery exact triangles arising from the component Kl−k+1, we conclude that Fk induces

an isomorphism between the E1 pages of the associated spectral sequences. Therefore, Fk

is a quasi-isomorphism, as is the composition

F = F1 ◦ F2 ◦ · · · ◦ Fl : X → Č(Y∞). (2.14)

Remark 2.5.1. The proof of Theorem 2.2.11 hinges on two facts:

(i) lattices of the form {0, 1}k and {0, 1,∞}× {0, 1}k give rise to filtered complexes;

(ii) the lattice {0, 1,∞, 0′} gives rise to an exact sequence.

We considered more general lattices in Theorem 2.3.3 and Proposition 2.3.6 in part to make

clear how both these facts arise as special cases of the same polytope constructions. The

lattice {0, 1,∞, 0′} × {0, 1} will arise naturally in Section 2.6.

2.5.1 Grading

We now introduce an absolute mod 2 grading δ̌ on the hypercube complex (X, Ď) which

reduces to gr(2) in the case l = 0. In fact, it will be useful to define δ̂ on the larger complex

(X̃, Ď) associated to the lattice {0, 1,∞}l. Let x ∈ Č(YI) be homogeneous with respect to

the gr(2) grading. Then we define

δ̌(x) = gr(2)(x) + (ι(W0I)− w(I))− (ι(W0∞)− 2l)− l mod 2

= gr(2)(x)− (ι(WI∞) + w(I)) + l mod 2. (2.15)

Here the subscripts 0 and ∞ are shorthand for the initial and final vertices of {0, 1,∞}l.

Lemma 2.5.2. The differential Ď on X̃ and X lowers δ̂ by 1.

Proof. Since ĎI
J is defined using a family of metrics of dimension w(J)−w(I)− 1 on WIJ ,

it shifts gr(2) by

−ι(WIJ) + (w(J)− w(I)− 1) = (ι(WJ∞) + w(J))− (ι(WI∞) + w(I))− 1.

The claim now follows from (2.15).
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We now complete the proof of Theorem 2.0.1.

Proposition 2.5.3. The gradings δ̌ and gr(2) coincide under the quasi-isomorphism

F : X → Č(Y∞)

defined in (2.14).

Proof. The weight of the vertex {∞}l is 2l. Therefore, given x ∈ Č(Y∞), by (2.15) we have

δ̌(x) = gr(2)(x)− l mod 2.

So it suffices to show that the quasi-isomorphism F : X → Č(Y∞) lowers δ̌ by l. But F is

a composition of l maps Fk, each of which is a sum of components of Ď. So we are done by

the Lemma 2.5.2.

2.5.2 Invariance

The construction of the hypercube complex

X(g, q) =
⊕

I∈{0,1}l
Č(YI(g|I , q|I))

depends on a choice of metric g and admissible perturbation q on the full cobordism W ,

where the metric is cylindrical near each of the hypersurfaces YI . Let (g0, q0) and (g1, q1)

be two such choices.

Theorem 2.5.4. There exists a ť-filtered, δ̌-graded chain homotopy equivalence

φ : X(g0, q0)→ X(g1, q1),

which induces a (ť, δ̌)-graded isomorphism between the associated Ei pages for all i ≥ 1.

Proof. We start by embedding a second copy of each YI in W as follows (see Figure 2.9 for

the case l = 2). First, relabel the incoming end Y0 as Y0×{0} and every other YI as YI×{1}.

Then embed a second copy of Y0×{0}, labeled Y0×{1}, just above the original. Finally,

embed a second copy of each YI×{1}, labeled YI×{0}, just below the original. We now have
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an embedded hypersurface YI×{i} for each I × {i} in the hupercube {0, 1}l × {0, 1}, with

diffeomorphisms

WI×{0},I×{1} ∼= YI × [0, 1] (2.16)

WI×{i},J×{j} ∼= WIJ (2.17)

where in (2.17) we assume I < J . Furthermore, YI×{i} and YJ×{j} are disjoint if I × {i}

and J × {j} are ordered.

Figure 2.9: At left, we have the half-dimensional diagram of the cobordism W used to

prove analytic invariance in the case l = 2. For each I ∈ {0, 1}2, the hypersurfaces YI×{0}

(in blue) and YI×{1} (in red) bound a cylindrical cobordism. At right, we can fix the blue

metric g0 on W000,110 (top), or the red metric g1 on W001,111 (bottom). The green metric on

the middle rectangle represents an intermediate state. To construct the homotopy, we slide

the metric from that on the top rectangle to that on the bottom rectangle in a controlled

manner, as explained in Figure 2.10.

Our strategy is as follows. We define a complex

X̌ =
⊕

I∈{0,1}l,i∈{0,1}

Č(YI×{i}),

where the differential Ď is defined as a sum of components

Ď
I×{i}
J×{j} : Č(YI×{i})→ Č(YJ×{j}).
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Those components of the form Ď
I×{i}
J×{i} are inherited fromX(gi, qi). So we may viewX(g0, q0)

as the complex over {0, 1}l×{0} obtained from quotienting X̌ by the subcomplex X(g1, q1)

over {0, 1}l × {1}. The component ĎI×{0}
J×{1} is induced by the cobordism WI×{i},J×{j} over

a family of metrics and perturbations parameterized by a permutohedron P̌ I×{0},J×{1}, to

be defined momentarily. Then Ď
2 = 0 implies that

φ =
∑
I≤J

Ď
I×{0}
J×{1} : X(g0, q0)→ X(g1, q1)

is a chain map. If we extend the δ̌ grading verbatim to X̌, then φ is odd as a map on

X̌ by Proposition 2.5.3, and thus even as a map from X(g0, q0) and X(g1, q1). Thus, φ is

δ̌-graded, and it is clearly ť-filtered. By (2.16), the map

Ď
I×{0}
I×{1} : Č(YI×{0})→ Č(YI×{1})

induces an isomorphism on homology. Thus, filtering by the horizontal weight w defined

by w(I × {i}) = w(I), φ induces a (ť, δ̌)-graded isomorphism between the E1 pages of the

corresponding spectral sequences. By Theorem 3.5 of [31], we conclude that φ induces

a (ť, δ̌)-graded isomorphism between the Ei pages for each i ≥ 1. Thus, φ is a quasi-

isomorphism, and therefore (since we are working over a field) a homotopy equivalence.

It remains to construct the family parameterized by each P̌ I×{0},J×{1} and to prove

that Ď2 = 0. We start by fixing a metric gII on each cylindrical cobordism WI×{0},I×{1}

for which gII (YI×{0}) = g0(YI) and gII (YI×{1}) = g1(YI) (we proceed similarly with regard

to the perturbations, though we will suppress this). Here the notation g(Y ) denotes the

restriction of g to Y . The point P̌ I×{0},I×{1} is defined to correspond to the metric gII . Now

for each I ∈ {0, 1}l, we specify a metric gI on W by its restriction to each of three pieces:

gI(W0×{0},I×{0}) = g0(W0I)

gI(WI×{0},I×{1}) = gII

gI(WI×{1},1×{1}) = g1(WI1 ).

We will use these metrics to construct the family parameterized by P̌ 0×{0},1×{1} in several

stages. The case l = 2 is illustrated in Figure 2.10.
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Figure 2.10: The hexagon P̌
000
111 is drawn so that increasing the vertical coordinate is sug-

gestive of moving from the red metrics to the blue metrics. Gray represents the cylindrical

metrics gII , while green represents an intermediate mixture of red, blue, and gray.
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We first describe a family F of non-degerate metrics on W , parameterized by the per-

mutohedron Pl+1. Let QI denote the facet of Pl corresponding to the internal vertex I.

Pl+1 may be obtained from Pl × [0, l] by subdividing each facet QI × [0, 1] by the ridge

QI × {w(I)}. (In the l = 2 case, this amounts to adding a vertex at the midpoint of each

vertical edge in a square. In the l = 3 case, shown at right in Figure 3.2, we cross the

hexagon with an interval and add an edge to each lateral face. The general case is estab-

lished in Theorem 3.0.7) We next label the facets QI× [0, w(I)] and QI× [w(I), l] by I×{1}

and I × {0}, respectively. Furthermore, we label Pl × {0} and Pl × {l} by 0 × {1} and

1 × {0}, respectively.

We then associate the metric gI to each vertex of Pl+1 lying on QI × {w(I)}. The

remaining vertices of Pl+1 lie on Pl × {0} or Pl × {l}. We associate to these vertices the

metrics g0 and g1 , respectively (note that w(0 ) = 0 and w(1 ) = l). At this stage, we have

defined F on the 0-skeleton of Pl+1. We proceed inductively: having extended F to the

boundary ∂F of a k-dimensional face F of Pl+1, we extend F to the interior of F , subject

to the following constraint:

If F|∂F is constant over some hypersurface or component of W , then so is F|F . (2.18)

In particular, the family F is constant when restricted to each of the facets Pl × {0} and

Pl × {l} and each of the ridges QI × {w(I)}. Note that the existence of such extensions

appeals to the contractibility of the space of metrics on W (or more precisely, the space of

metrics on W which extend a fixed metric on a submanifold of W ).

The family F over Pl+1 slides the metric (and perturbation) on W in stages (in Figure

2.10, P2+1 is the inner hexagon). We now extend F to a family G which incorporates

stretching. To each facet QI×{i} of Pl+1, we glue the polytope QI×{i} × [0,∞] along the

facet QI×{i}×{0} (in Figure 2.10, these are the six lightly shaded rectangles). We extend G

over QI×{i}× [0,∞] by stretching on YI×{i} in accordance with the latter coordinate (recall

that the metric on YI×{i} is constant over QI×{i}). Next, along each ridge QI×{i}<J×{j} in

Pl+1, we glue on the polytope QI×{i}<J×{j}×[0,∞]×[0,∞] in the obvious manner (in Figure

2.10, these are the six heavily shaded squares). The first interval parameterizes stretching

on YI×{i} while the second interval parameterizes stretching on YJ×{j}. We continue this
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process until the last stage, when we glue one cube [0,∞]l at each vertex of Pl+1, over which

G stretches on the corresponding maximal chain of internal hypersurfaces.

In the end, we have simply thickened the boundary of Pl+1 to describe a family G

of metrics on W parameterized by the permutohedron P̌ 0×{0},1×{1} (the full hexagon in

Figure 2.10). This family is degenerate over the boundary of P̌ 0×{0},1×{1} precisely as

described by Proposition 2.1.4. Now, for each I ≤ J , we construct a family of metrics GIJ

over P̌ I×{0},J×{1} by restricting the family G to WI×{0},J×{1} over an appropriate face of

P̌ 0×{0},1×{1} (here the constraint (2.18) is essential).

The proof that Ď2 = 0 now lifts directly from the original proof that Ď2 = 0, with

one new point that we now explain. The component of Ď2 from Č(Y0×{0}) to Č(Y1×{1})

vanishes if and only if

Ď
0×{0}
1×{1}Ď

0×{0}
0×{0} + Ď

1×{1}
1×{1}Ď

0×{0}
1×{1} = Ď

1×{0}
1×{1}Ď

0×{0}
1×{0} + Ď

0×{1}
1×{1}Ď

0×{0}
0×{1}

+
∑

0<I<1

Ď
I×{0}
1×{1}Ď

0×{0}
I×{0} + Ď

I×{1}
1×{1}Ď

0×{0}
I×{1} . (2.19)

Consider the composite map corresponding to the family G over the facet 1 × {0} of

P̌ 0×{0},1×{1}. Since the family F over the corresponding facet of Pl+1 is constant, the

only sections of the facet 1 × {0} which contributes non-trivially to this map are those of

the form {∞} × [0,∞]l−l in the boundary of the cubes [0,∞]l (in Figure 2.10, these are

the two segments of the top edge of the hexagon which lie in the boundary of the heavily

shaded squares). The other sections cannot give rise to 0-dimensional moduli spaces, since

they involve at least one parameter which does not change the metric. We can therefore

identify the map associated to the facet 1 × {0} with Ď
1×{0}
1×{1}Ď

0×{0}
1×{0} (in Figure 2.10, we

are contracting out the middle segment of the top edge). Similarly, the map associated

to the facet 0 × {1} coincides with Ď
1×{0}
1×{1}Ď

0×{0}
1×{0}, and the sum on line (2.19) coincides

with the map associated to the remaining lateral facets of P̌ 0×{0},1×{1}. Thus, the full

equation expresses the fact that the map Ď0×{0}
1×{1} associated to the full permutohedron is a

null-homotopy for the map associated to its boundary. The other components of Ď2 vanish

by a completely analogous argument.

Remark 2.5.5. Recall the top and bottom rectangles at right in Figure 2.9. Suppose

that the red and blue metrics agree where they overlap, so that the family F on Pl+1 can
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be made completely constant. Then only the cubes [0,∞]l contribute non-trivially to the

map Ď0×{0}
1×{1}. Discarding the rest of P̌ 0×{0},1×{1} and gluing these cubes together, we build

a permutohedron giving rise to the same map. This viewpoint highlights the connection

between the permutohedra P̌ I×{0},J×{1} and the permutohedra PIJ that we first constructed

in Section 2.1, using only cubes which stretch the metric along maximal chains of internal

hypersurfaces.

Remark 2.5.6. The construction in Section 2.1 starts with an initial metric g0 which is

required be cylindrical near all hypersurfaces YI simultaneously. In fact, by proceeding

as in Figure 2.10, we can instead start with a finite collection of initial metrics for which

each metric need only be cylindrical near a subset of pairwise disjoint hypersurfaces. More

precisely, we first fix a cylindrical metric on a neighborhood of each hypersurface YI in

W (these metrics need not be mutually compatible). Then, for each pair of immediate

successors I < J , we fix a metric on WIJ which extends the corresponding metric near each

boundary component. Each vertex of the permutohedron Pl expresses W as a composition

of l elementary cobordisms WIJ and therefore determines a metric on W . Inducting up from

the 0-skeleton, we define a family of metrics parameterized by all of Pl, imposing condition

(2.18) as before. Finally, we enlarge Pl to a family P l which incorporates stretching as well.

Remark 2.5.7. Note that any two filtered chain maps

φ1, φ2 : X(g0, q0)→ X(g1, q1)

constructed using the recipe in the proof of invariance are related by a filtered chain ho-

motopy, and thus induce the same maps on Ek for k ≥ 1. The filtered chain homotopy is

constructed just as in the proof, by building in yet another factor of {0, 1} into the lattice

(so there are four copies of each hypersurface YI embedded in W ). In this way, from a

framed link L ⊂ Y , we obtain a spectral sequence whose pages Ei for i ≥ 1 are “groups

up to canonical isomorphism”, with the later category admitting a functor to GROUP by

taking “cross-sections” (see Section 23.1 of [24]). We may therefore regard the pages Ei for

i ≥ 1 as actual groups associated to a framed link L in Y , rather than just isomorphism

classes of groups.
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2.6 The U† map and H̃M•(Y )

Given a cobordismW : Y0 → Y1, Kronheimer and Mrowka construct a map U† =

̂

HM •(u|W ) :̂

HM •(Y0)→

̂

HM •(Y1). In [24], this map is defined by pairing each moduli spaceMz(a,W ∗, b)

with a representative u of the first Chern class of the natural complex line bundle on Bσ(W ).

A dual description of the map is given in [27]. We will use the notation m̌(u|W ) for this

map on the chain level.

We will employ a third description which fits in neatly with our previous constructions.

We first recall some facts about the monopole Floer homology of the 3-sphere (see Sections

22.7 and 25.6 of [24]). With round metric and small perturbation, the monopoles on the

3-sphere consist of a single bi-infinite tower {ci}i∈Z of reducibles, with ci boundary-stable if

and only if i ≥ 0. As shown in Lemma 27.4.2 of [24], the moduli space M((D4)∗, ci) is empty

for i ≥ 0 and has dimension −2i − 2 for i ≤ 0. In particular, M((D4)∗, c−1) consists of a

single point. Furthermore, U† sends c−1 to c−2, so the pairing 〈u,M((D4)∗, c−2)〉 evaluates

to 1. This motivates the following reformulation.

Given a cobordism W : Y0 → Y1, let W ∗∗ denote the manifold obtained by removing a

ball from the interior of W and attaching cylindrical ends to all three boundary components,

with the new S3 × [0,∞) end regarded as incoming. Choose the metric and perturbation

on W so that we return to the situation described in the last paragraph over S3. We define

the map m̌(U†|W ) : Č(Y0) → Č(Y1) by replacing each moduli space Mz(a,W ∗, b) in the

definition of m̌(W ) with the moduli space Mz(a, c−2,W
∗∗, b). In other words,

m̌(U†|W ) =

 muo
o (c−2 ⊗ ·) muu

o (c−2 ⊗ ∂̄su(·)) + ∂uo m̄
us
u (c−2 ⊗ ·)

muo
s (c−2 ⊗ ·) m̄us

s (c−2 ⊗ ·) +muu
s (c−2 ⊗ ∂̄su(·)) + ∂us m̄

us
u (c−2 ⊗ ·)

 .
One sees that m̌(U†|W ) is a chain map and well-defined up to homotopy equivalence by the

same argument used for m̌(W ), together with the fact that there are no isolated trajectories

from c−2 to any other ci ∈ C(S3).

Proposition 2.6.1. The map m̌(U†|W ) is homotopy equivalent to the map m̌(u|W ).

Proof. Given a cobordism W , we may assume the cochain u is supported over the con-

figuration space of a small ball. Now the homotopy which stretches the metric nor-



CHAPTER 2. THE LINK SURGERY SPECTRAL SEQUENCE 57

mal to the 3-sphere bounding this ball reduces the claim to the local computation that

〈u,M((D4)∗, a−2)〉 = 1.

Remark 2.6.2. We could instead allow for a generic choice of metric and perturbation on

the S3 end, replacing a−2 by any chain in Ĉ(S3) representing the same class in ĤM•(S3).

Such an approach would invoke our recent development of monopole Floer maps for cobor-

disms with multiple ends, as described at end of the Appendix.

We now define a fourth version of monopole Floer homology, denoted H̃M•(Y ) and

analogous to the group ĤF(Y ) in Heegaard Floer homology. Here we encounter a subtle

“point”, which arises for ĤF(Y ) as well. Namely, it seems necessary to equip Y with

a basepoint y in order to define an actual group H̃M•(Y, y). To a 3-manifold Y without

basepoint, we only have an isomorphism class of (graded) group H̃M•(Y ). We will elaborate

on this point at the end of the section in Remark 2.6.6.

We now proceed to define the (isomorphism class of) group H̃M•(Y ). Fix an (open) ball

D4 in Y and equip the cobordism (Y × [0, 1]) −D4 with a metric and perturbation which

restrict to the S3 boundary component as above. We use the shorthand U† for the map

m̌(U†|Y × [0, 1]) : Č(Y )→ Č(Y ) induced by this cobordism.

The complex C̃(Y ) is defined to be the mapping cone of U†:

C̃(Y ) = Č(Y )
⊕
Č(Y ){1} ∂̃ =

 ∂̌ 0

U† ∂̌


Since U† is an even map, the differential ∂̃ is odd, and therefore gr(2) naturally extends to

C̃(Y ) (as does grQ for torsion spinc structures). We then define H̃M•(Y ) as the (negative

completion1 of the homology H∗(C̃(Y ), ∂̃). By construction, there is an exact sequence

· · · l∗−→ H̃M•(Y ) k∗−→

̂

HM •(Y )
U†−→

̂

HM •(Y ) l∗−→ · · · (2.20)

of F2[[U†]] modules where U† acts by zero on H̃M•(Y ). Here the maps k∗, U†, and l∗ have

degrees 0, −2, and 1, respectively.

The construction of a chain map m̃(W ) : C̃(Y0)→ C̃(Y1) from a cobordism W is similar

to the l = 1 case of the

̂

HM • spectral sequence. We first relabel the ends of W as Y00

1As with

d

HM •, this completion has no real effect here, but we keep the bullet for notational consistency.
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and Y11 and embed a second copy of each in the interior of W as follows (see Figure 2.11).

Let γ be a path in W from a point y0 in Y0 to a point y1 in Y1. Fix a small ball inside

a tubular neighborhood ν(γ) of γ. The 3-manifold Y01 is obtained by taking a parallel

copy of Y00 just inside the boundary and pushing the region in ν(γ) past the ball, so that

cutting along Y01 leaves the ball in the first component W00,01
∼= Y0× [0, 1]. Similarly, Y10 is

obtained by taking a parallel copy of Y11 near the boundary and pushing the region inside

ν(γ) inward past the ball, so that cutting along Y10 leaves the ball in the second component

W10,11
∼= Y1 × [0, 1]. Note that both W00,10 and W01,11 are diffeomorphic to W .

Figure 2.11: The surface above represents the cobordism used to construct the chain map

m̃(W ) : C̃(Y0)→ C̃(Y1). The path γ is depicted as a dotted line.

The intersection of Y01 and Y10 is modeled on S2 × {0} × {0} ⊂ S2 × (−ε, ε) × (−ε, ε),

so we can choose the metric on W to be cylindrical near both internal hypersurfaces (or we

may choose the metrics independently as in Remark 2.5.6). Consider the interval of metrics

P̃00,11 = [−∞,∞] which expands a cylindrical neck along Y01 as the parameter decreases

from 0 and expands a cylindrical neck along Y10 as the parameter increases from 0. As in

Section 2.1, at ±∞ we have not metrics but disjoint unions. We use this interval to define

eight operators Hu∗
∗ (c−2 ⊗ ·) which count isolated trajectories in the moduli space

M(a,W ∗, b)P̃00,11
=

⋃
p∈P̃00,11

⋃
z

Mz(a, c−2,W
∗∗(p), b)
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where

Mz(a,W (−∞)∗, b) =
⋃

c∈Č(Y01)

⋃
z1,z2

Mz1(a, c−2,W
∗∗
00,01, c)×Mz2(c,W ∗01,11, b),

and

Mz(a,W (∞)∗, b) =
⋃

c∈Č(Y10)

⋃
z1,z2

Mz1(a,W ∗00,10, c)×Mz2(c, c−2,W
∗∗
10,11, b).

We then define Ȟ(U†|W00,11) by the same expression as Ď00
11 in (2.5), except that if I ends

in 0 and J ends in 1, then D∗∗(
I
J) is replaced by Du∗

∗ (IJ)(c−2 ⊗ ·). So in full, we have

Ȟ(U†|W00,11) =

 Huo
o (c−2 ⊗ ·) Huu

o (c−2 ⊗ ∂̄su(·)) + ∂uo H̄
us
u (c−2 ⊗ ·)

Huo
s (c−2 ⊗ ·) H̄us

s (c−2 ⊗ ·) +Huu
s (c−2 ⊗ ∂̄su(·)) + ∂us H̄

us
u (c−2 ⊗ ·)


+

 0 mu
o (01

11)m̄us
u (00

01)(c−2 ⊗ ·) +muu
o (10

11)(c−2 ⊗ m̄s
u(00

10)(·))

0 mu
s (01

11)m̄us
u (00

01)(c−2 ⊗ ·) +muu
s (10

11)(c−2 ⊗ m̄s
u(00

10)(·))


From this perspective, the differentials on C̃(Y0) and C̃(Y1) are

∂̃(Y0) =

 ∂̌(Y00) 0

m̌(U†|W00,01) ∂̌(Y01)

 and ∂̃(Y1) =

 ∂̌(Y10) 0

m̌(U†|W10,11) ∂̌(Y11)

 ,
respectively. Finally, the map m̃(W ) : C̃(Y0)→ C̃(Y1) is defined by

m̃(W ) =

 m̌(W00,10) 0

Ȟ(U†|W00,11) m̌(W01,11)

 . (2.21)

The fact that m̃(W ) is a chain map is a special case of the construction of the total complex

underlying the H̃M• version of the link surgery spectral sequence, as explained in Remark

2.6.4. We now turn to constructing this total complex, which we will denote here by (X,D)

with pages Ei, though in other sections we may return to the notation (X, Ď) and Ei when

it is clear from context which version is intended.

Given an l-component framed link L ⊂ Y and a point y in the link complement, we

embed a small ball D4 in the interior of a neighborhood ν(γ) of a path γ with image

{y} × [0, 1] ⊂ (Y − ν(L))× [0, 1] ⊂W . Next we relabel the incoming end Y{0}l as Y{0}l×{0}

and every other YI as YI×{1}. We then embed a second copy of Y{0}l×{0}, labeled Y{0}l×{1},
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just above the first, modified so that it now passes above the ball. Finally, we embed a

second copy of each YI×{1}, labeled YI×{0}, just below the first, modified so that it now

passes below the ball, using the path γ as a guide. See Figure 2.12 for the case l = 2. We

now have an embedded hypersurface YI for each I ∈ {0, 1}l+1. Furthermore, the intersection

data is precisely what we expect for this hypercube, namely that YI intersects YJ if and

only if I and J are not ordered. Therefore, given any I < J we may construct a family of

metrics on WIJ parameterized by a permutohedron P IJ of dimension w(J)− w(I)− 1.

Figure 2.12: At left, we have the half-dimensional diagram of the cobordism W with a small

ball removed in the case l = 2. For each I ∈ {0, 1}2, the pair YI×{0} and YI×{1} bound

a cylindrical cobordism containing the ball. At right, we have drawn the corresponding

hexagon P 000
111 so that increasing the vertical coordinate is suggestive of translating the sphere

through W . The small figures at the vertices and edges illustrate the metric degenerations,

read as composite cobordisms from left to right. In each, the component containing the

sphere is more heavily shaded.

Now fix a metric on the cobordism W which is cylindrical near every hypersurface YI

and round near S3. We will define a complex

X =
⊕

I∈{0,1}l×{0,1}

Č(YI), (2.22)

where the differential D : X → X is the sum of components DI
J : Č(YI) → Č(YJ) over all

I ≤ J . We have set things up so that the ball is contained in WIJ if and only if I ends in 0

and J ends in 1. So when I and J end in the same digit, the operators D∗∗(
I
J) may be defined

exactly as before (see (2.4)). In the other case, we construct operators Du∗
∗ (IJ)(c−2⊗·) using
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moduli spaces Mz(a, c−2,W
∗∗
IJ , b)P IJ which are defined by slightly modifying the definition

of the moduli spaces Mz(a,W ∗IJ , b)PIJ . Namely, if p ∈ P IJ is in the interior of the face

I1 < I2 < · · · < Iq−1, with the last digit changing between Ik and Ik+1, then an element of

Mz(a, c−2,WIJ(p)∗∗, b) is a q-tuple

(γ01, γ12, . . . , γq−1 q)

as before except that

γk k+1 ∈M(aj , c−2,W
∗∗
IkIk+1

(p), ak+1).

LetD∗∗(
I
J) be synonymous withD∗∗(

I
J) if I and J end in the same digit, and withDu∗

∗ (IJ)(c−2⊗

·) otherwise. Similar remarks apply to D̄∗∗(
I
J) and D̄u∗

∗ (IJ)(c−2 ⊗ ·). We then define DI
J :

Č(YI)→ Č(YJ) by precisely the same expression as (2.5), with each D underlined.

The proof that D2 = 0 goes along familiar lines. The operators A∗∗(
I
J) may be defined

exactly as before when I and J end in the same digit. When I ends in 0 and J ends in

1, we define operators Au∗∗ (IJ)(c−2 ⊗ ·) which count ends of 1-dimensional moduli spaces

M+
z (a, c−2,W

∗∗
IJ , b)P IJ , which in turn are defined by slightly modifying the definition of the

moduli spaces M+
z (a,W ∗IJ , b)PIJ in the same manner as above. As before, these operators

all vanish. Now let A∗∗(
I
J) be synonymous with A∗∗(

I
J) if I and J end in the same digit, and

with Au∗∗ (IJ)(c−2 ⊗ ·) otherwise. Similar remarks apply to Ā∗∗(
I
J) and Āu∗∗ (IJ)(c−2 ⊗ ·). We

then define AIJ : Č(YI)→ Č(YJ) by precisely the same expression as (2.7), with each D and

A underlined.

Lemma 2.6.3. AIJ is equal to the component of D2 from Č(YI) to Č(YJ):

AIJ =
∑

I≤K≤J
DK
J D

I
K .

Thus, D is a differential.

Proof. Recall that c−2 is a boundary-unstable and that there are no isolated trajectories

from c−2 to any other ci ∈ C(S3). It follows that 1-dimensional moduli spacesM+
z (a, c−2,W

∗∗
IJ , b)P̃IJ

have the same types of ends as M+
z (a,W ∗IJ , b)PIJ , as described in Lemma 2.2.3. Similarly,

M red+
z (a, c−2,W

∗∗
IJ , b)P IJ has the same types of ends as M red+

z (a,W ∗IJ , b)P IJ . Now we simply

repeat the proof of Lemma 2.2.7 with everything underlined.
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Remark 2.6.4. The case l = 0 shows that U† : Č(Y0) → Č(Y0) is a chain map. The case

l = 1 shows that m̃(W ) : C̃(Y0)→ C̃(Y1) is a chain map when W is an elementary 2-handle

cobordism, and goes through without change for arbitrary cobordisms.

Remark 2.6.5. By the method of Remark 2.5.6, we can choose metric and perturbation

data so that the complexes  ⊕
I∈{0,1}l×{0}

Č(YI),
∑
I≤J

Ď
I×{0}
J×{0}


and  ⊕

I∈{0,1}l×{1}

Č(YI),
∑
I≤J

Ď
I×{1}
J×{1}


are canonically identified with a fixed total complex (X, Ď). Let

Ǔ =
∑
I≤J

D
I×{0}
J×{1}.

Then Lemma 2.6.3 implies that Ǔ : (X, Ď) → (X, Ď) is a filtered chain map. We thereby

get an induced chain map ui on each page Ei of the spectral sequence for X, with u∞

identified with the map U† under the isomorphism E∞ ∼=

̂

HM •(Y ) induced by (2.14). We

will make use of this viewpoint in Chapter 8.

In order to interpret Lemma 2.6.3 as a result in tilde theory, we collapse

X =
⊕

I∈{0,1}l
C̃(YI)

along the final digit, with D given by the sum of maps D̃I
J = C̃(YI)→ C̃(YJ) where

D̃I
J =

 Ď
I×{0}
J×{0} 0

D
I×{0}
J×{1} Ď

I×{1}
J×{1}

 . (2.23)

Note that this generalizes (2.21). Define the horizontal weight w(I) of a vertex I to be the

sum of all but the final digit. Filtering (X,D) by w, we obtain the H̃M• version of the link

surgery spectral sequence. In particular,

E1 =
⊕

I∈{0,1}l
H̃M•(YI)
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and the d1 differential is given by

d1 =
⊕

w(J)−w(I)=1

H̃M•(WIJ).

In order to identify E∞ with H̃M•(Y∞), we expand to the larger complex

X̃ =
⊕

I∈{0,1,∞}l×{0,1}

Č(YI), (2.24)

where we have again relabeled the YI and embedded a second copy of each which passes on

the opposite side of the ball. These hypersurfaces all avoid the auxiliary S3 hypersurfaces

which are confined in the handles. The intersection data is as predicted for the shape of

the lattice by Theorem 2.3.3, so we may build families of metrics parameterized by graph

associahedra which define maps DI
J and AIJ . The auxiliary hypersurfaces still cut out

CP2 − int(D4), so the corresponding facets contribute vanishing operators as before. We

conclude from 2.6.3 that (X̃,D) forms a complex.

Finally, we turn to the surgery exact triangle. Recall the hypersurfaces Y0, Y1, Y∞, Y0′

and auxiliary S1, S2, and R1. After relabeling, these become Y00, Y10, Y∞0, Y0′1, S1, S2,

and R1, to which we add Y01, Y11, Y∞1, and Y0′0. The nine hypersurfaces in the interior of

W intersect as predicted by the shape of the lattice {0, 1,∞, 0′}×{0, 1}, yielding the graph

associahedron on a chain of length 4, namely, the 3-dimensional associahedron K5, shown

in Figure 2.13.

The map L00
0′1 : Č(Y00) → Č(Y0′1) associated to R1 is given by the same expression as

Ľ, but with L∗∗ = Duu∗
∗ (c−2 ⊗ n̄u ⊗ ·) and L̄∗∗ = D̄uu∗

∗ (c−2 ⊗ n̄u ⊗ ·), over the one-parameter

family of metrics stretching from Y01 to Y0′0. This gives the identity

Ď0′1
0′1L

00
0′1 + L00

0′1Ď
00
00 = Ľ01

0′1D
00
01 +D0′0

0′1Ľ
00
0′0, (2.25)

where Ľ00
0′0 and Ľ01

0′1 are the analogues of Ľ corresponding to the four hypersurfaces YI

ending in 0 and 1, respectively, together with S1, S2, and R1. Similarly, A0
0′ is modeled on

the expression (2.13) for Ǎ0
0′ and includes terms counting monopoles on cobordisms with

four boundary components. By the same reasoning as in the proof of Lemma 2.6.3, the

analogue of Lemma 2.4.4 goes through essentially unchanged (although with nearly twice
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Figure 2.13: The lattice {0, 1,∞, 0′} × {0, 1} corresponds to Stasheff’s polytope, drawn

at center so that the depth coordinate is suggestive of translating the sphere through W .

Recall that the same polytope is associated to the lattice {0, 1,∞}×{0, 1,∞} in Figure 2.4,

redrawn at right. In fact, by Theorem 2.3.3, an associahedron arises whenever the lattice is

a product of at most two chains. The map corresponding to K5 above is a null-homotopy

for the sum of the maps associated to the faces. Those associated to S1 and S2 vanish as

before, leaving a nine-term identity on the chain level.



CHAPTER 2. THE LINK SURGERY SPECTRAL SEQUENCE 65

as many terms), leading to the nine-term identity given by the lower left entry of Ď0′0
0′0 0

D0′0
0′1 Ď0′1

0′1

 Ď00
0′0 0

D00
0′1 Ď01

0′1

+

 Ď00
0′0 0

D00
0′1 Ď01

0′1

 Ď00
00 0

D00
01 Ď01

01


=

 Ď10
0′0 0

D10
0′1 Ď11

0′1

 Ď00
10 0

D00
11 Ď01

11

+

 Ď∞0
0′0 0

D∞0
0′1 Ď∞1

0′1

 Ď00
∞0 0

D00
∞1 Ď01

∞1

+

 Ľ00
0′0 0

L00
0′1 Ľ01

0′1


The upper left and lower right identities are precisely those given by Lemma 2.4.4. Rewriting

this identity via (2.23), we have the H̃M• analog of (2.12):

D̃0′
0′D̃

0
0′ + D̃0

0′D̃
0
0 = D̃1

0′D̃
0
1 + D̃∞0′ D̃

0
∞ + L̃.

The final map L̃ : C̃(Y0) → C̃(Y0′) is a chain map by (2.25). Filtering the corresponding

square complex

Z =
⊕

I∈{00,0′0,01,0′1}

Č(YI)

by the second digit, and recalling that Ľ00
0′0 and Ľ01

0′1 are quasi-isomorphisms, we conclude

that H∗(Z) = 0. Therefore, L̃ is a quasi-isomorphism as well. Now exactly the same

algebraic arguments yield the surgery exact triangle, and more generally the full statement

of the link surgery spectral sequence, for H̃M•.

The grading results of Section 2.5 readily extend to H̃M• by viewing the underlying

complex in terms of

̂

HM • as in (2.22) and (2.24). In this way, we may extend δ̌ to a mod 2

grading on X̃ using the same definition. Since U† cuts down the dimension of moduli spaces

by two, the maps DI
J on X̃ obey the same mod 2 grading shift formula as the maps ĎI

J on

X̃. In particular, Lemmas 2.5.2 and 2.5.3 still apply, and when l = 0, δ̌ and gr(2) coincide

on H̃M•(Y ).

Remark 2.6.6. We now explain how the extra data of a basepoint y ∈ Y determines a

group H̃M•(Y, y) rather than just an isomorphism class of group, and then discuss invariance

of the spectral sequence.

Recall that a cobordism W from Y0 to Y1 is a compact, oriented four-manifold with

boundary W , together with a diffeomorphism of oriented manifolds

α = (α0
∐
α1) : ∂W → −Y0

∐
Y1.
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A path γ in W from y0 ∈ Y0 to y1 ∈ Y1 is a smooth embedding γ : [0, 1] → W such that

α0(γ(0)) = y0 and α1(γ(1)) = y1. We also require that γ maps the interior of [0, 1] to the

interior of W . An isomorphism of pairs (W,γ) and (W ′, γ′) is an orientation-preserving

diffeomorphism φ : W → W ′ such that α = α′φ and γ′ = φγ. The isotopy extension

theorem implies that if γ and γ′ are paths in W which are isotopic relative to their common

endpoints, then (W,γ) is isomorphic to (W,γ′). In particular, the isomorphism class of

(W,γ) is independent of the parameterization of γ, and the composition of isomorphism

classes of pairs is well-defined2.

We define a category COBb, regarded as the based version of COB. An object (Y, y) of

COBb consists of a compact, connected, oriented 3-manifold Y together with a basepoint

y ∈ Y . A morphism from (Y0, y0) to (Y1, y1) is an isomorphism class of pair (W,γ), consisting

of a connected cobordism W : Y0 → Y1 and a path γ from y0 to y1. The identity morphism

on (Y, y) is represented by the cylindrical pair (Y × [0, 1], y × [0, 1]).

We will define the functor

H̃M• : COBb → GROUP (2.26)

in stages. Recall that the chain map m̃(W ) associated to a cobordism W : Y0 → Y1 depends

on a choice of ball in a neighborhood of a path γ across W , and a family of metrics and

perturbations on W−D4 parameterized by an interval (we think of this family as sliding the

ball across the cobordism along γ). We constructed such a family by embedding an extra

copy of each boundary component of W , parallel to the boundary except for a “finger” of

each copy which is routed into the interior of W to “capture” the ball. These fingers are

guided by the path γ from a point y0 ∈ Y ×{0} to a point y1 ∈ Y ×{1}. If we define a second

chain map using the same path γ in W as a guide, then we can define a chain homotopy

between the first and second chain maps using a family of metrics and perturbations on

W −D4 parameterized by a hexagon (this is an amalgamation of the approaches in Figures

2.9 and 2.10 and Figures 2.11 and 2.12).

2To construct the composition of pairs, we must fix collar neighborhoods at the interface to extend the

smooth structure across, and then smooth the kink in the composite path. So it is only the isomorphism

class of the composition that is well-defined, just as in the category COB.
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In other words, suppose we are given points yi ∈ Yi and metric and perturbation data

on (Yi × [0, 1]) − D4
i for some choices of balls around the yi × {1

2}. Then a cobordism

W : Y0 → Y1 equipped with a path γ : y0 → y1 induces a chain map up to chain homotopy,

and thus a canonical map on homology. Furthermore, given an isomorphic pair (W ′, γ′),

we can use the diffeomorphism φ to push families of metrics and perturbations on W −D4

to such families on W ′ − φ(D4). With these choices, the pairs (W,γ) and (W ′, γ′) induce

identical chain maps.

These observations are sufficient to apply the same trick used to obtain actual groups

for the other versions of monopole Floer homology; we outline the approach here and refer

the reader to Section 23.1 of [24] for details. Let C̃OBb be the category in which an object

is a quadruple (Y, y,D4, g, q) where D4 is ball around y, and g and q are a metric3 and

admissible perturbation on (Y × [0, 1]) −D4. A morphism in C̃OBb is a COBb-morphism

between the underlying based 3-manifolds. As explained in the previous paragraph, we have

a functor

H̃M• : C̃OBb → GROUP. (2.27)

If (g, q,D4) and (g′, q′, (D4)′) are two sets of data over same pair (Y, y), then the objects

(Y, y,D4, g, q) and (Y, y, (D4)′, g′, q′) are canonically isomorphic in C̃OBb via the isomor-

phism (Y × [0, 1], y× [0, 1]). Thus, the groups H̃M•(Y, y,D4, g, q) and H̃M•(Y, y, (D4)′, g′, q′)

are canonically isomorphic. We thereby obtain a functor from COBb to the category of

“groups up to canonical isomorphism”. The later admits a functor to GROUP by taking

“cross-sections”, and composition of functors yields that of (2.26).

We now consider the invariance of the link surgery spectral sequence associated to a

framed link L ⊂ Y . The proof of Theorem 2.5.4 in the

̂

HM • case readily adapts to a version

for H̃M• to give a filtered chain map φ inducing a filtered, chain homotopy equivalence

between total complexes X and X ′ defined using different sets of auxiliary data, including

3As before, the metric is required to be cylindrical near the Yi ends and standard on the S3 end. More

systematically, we could consider the septuple (Y, y,D4, gY , qY , g, q) where D4 is neighborhood of y, gY is a

metric on Y and g is a metric on (Y × [0, 1])−D4 extending gY , etc. This inductive approach is preferable

when we want the flexibility of a family of initial metrics, such as when defining a chain map between X

and X ′ defined using different analytic data. See Remark 2.5.6.
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basepoints y and y′. This chain map is defined using the cobordism W with 2l+2 embedded

hypersurfaces as guides (that is, two copies of each hypersurfaces in Figure 2.12). If y and

y′ are distinct, then to specify φ we must also choose a path η between the basepoints in

the complement of L in Y , as a tubular neighborhood of η× [0, 1] ⊂W provides a common

tubular neighborhoods of the paths {y} × [0, 1] and {y′} × [0, 1]. We do not know if chain

maps defined using different paths η are chain homotopic. However, if y and y′ coincide,

then we may pin down φ up to filtered chain homotopy by requiring that η be the constant

path. The filtered chain homotopy between chain maps is built using the same approach

as in the

̂

HM • case. In this way, from a framed link L ⊂ Y and a basepoint y in the

complement of L, we obtain an H̃M• spectral sequence whose pages Ei for i ≥ 1 are actual

groups.
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Chapter 3

Realizations of graph associahedra

The purpose of this brief chapter is to unify, under a general theorem, several earlier obser-

vations of inductive realizations of graph associahedra.

Recall the realization of Stasheff’s polytope K5 as a refinement of K4 × [0, 1] at center

in Figure 2.13, and the inductive realization of Pl+1 as a refinement of Pl × [0, 1] in the

proof of Theorem 2.5.4. Both of these are motivated by the “sliding-the-point” proof of the

naturality of the U† action in Floer theory To see why, recall that to any product lattice Λ

we may associate a map Ď whose longest component counts monopoles on W over a family

of metrics parameterized by a polytope PG (see Remark 2.3.4). We then expect the longest

component of the homotopy which expresses the naturality of the U† action with respect

to Ď to count monopoles over a family of metrics parameterized by PG × [0, 1], where the

latter coordinate slides the point through W (see Figure 3.1).

These considerations led us to the following general theorem.

Theorem 3.0.7. Let G and G′ be the graphs associated to lattices Λ and Λ × {0, 1}, re-

spectively. Given a realization of PG, the graph associahedron PG′ may be realized as a

refinement of PG × [0, n]. Namely, for each internal vertex I of Λ, we refine PG × [0, n] by

adding the closure of the corresponding facet of PG × {w(I)} ⊂ PG × [0, 1].

Intuitively, we do not add ridges to PG × [0, n] for the auxiliary hypersurfaces because

the point never passes through them. This construction is illustrated in Figure 3.2. In the

center and righthand realizations, the construction is applied twice, starting from a graph
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Figure 3.1: At left, we slide the point (or sphere) through the full cobordism from Figures

2.1 and 2.2. Each time the point crosses an internal hypersurface, we add a ridge to the

corresponding lateral facet of P3× [0, 1]. Once the point has completed its journey, we have

a realization of P4. At right, we similarly slide the point through the full cobordism from

Figure 2.8, adding ridges to K4 × [0, 1] corresponding to the two internal hypersurfaces.

Once the point has completed its journey, we have K5.

associahedron which is geometrically an interval.

Figure 3.2: Two alternative realizations of the permutohedron from Figure 2.3, and one of

the graph associahedron from Figures 2.5 and 2.6.

We recall the relationship between G and G′ as determined by Theorem 2.3.3 and

illustrated in Figure 3.3 below. For Λ = {0, ..., n1} × · · · × {0, ..., nl}, the graph G is the

clique on vertices v1, . . . , vl with paths of length n1 − 1, . . . , nl − 1 attached. The graph G′

is constructed from G by adding a vertex v and connecting it to each of the vi to form a

clique of size l+1. Note that internal vertices of Λ correspond to tubes of G which intersect

the clique non-trivially.
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Figure 3.3: The graphs G and G′ corresponding to lattices Λ and Λ × {0, 1}, respectively.

The additional vertex and edges of G′ are in red.

Before proving Theorem 3.0.7, we illustrate two special families of examples. Note

that the lattices {0, 1, . . . , n} and {0, 1, . . . , n − 1} × {0, 1} both correspond to the graph

consisting of a path of length n− 1. We therefore obtain a realization of the associahedron

Kn+2 by adding ridges1 to Kn+1 × [0, n]. Similarly, since {0, 1}n = {0, 1}n−1 × {0, 1}, we

obtain a realization of the permutohedron Pn+1 by adding ridges to all lateral facets of

Pn × [0, n]. If we build these realizations inductively, starting from K2 = P1 = {0}, then

each is naturally a refinement of the hypercube (see Figure 3.4). We may arrange that Pn+1

refines Kn+2 as well. Upon sharing these inductive realizations of Kn+2 and Pn+1 with

experts, we learned of their discovery a decade earlier2 [39]. Theorem 3.0.7 may be viewed

as a common generalization, motivated by vastly different considerations.

We now turn to its proof. Label the vertices in the original l-clique of G by v1, . . . , vl.

Let n denote the number of vertices in G. Recalling the graph associahedron construction

in Section 2.3, we will need some additional terminology. A tube t in G is internal if it

contains at least one vertex vi, or equivalently, if it corresponds to an internal vertex I of Λ.

1By the proof of Theorem 3.0.7, one should add ridges to those lateral facets of Kn+1×[0, n] corresponding

to tubes in the path of length n− 2 which include the initial vertex (given by one of the two ends).

2For even earlier realizations of Kn+2 as a convex hull, see [29], which is generalized in [15].
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Figure 3.4: We realize Kn+2 by adding (n2 ) ridges with integral vertices to the hypercube

[0, 1]× [0, 2]× · · · × [0, n]. Similarly, Pn+1 is obtained by adding 2n+1 − 2(n + 1) ridges to

the hypercube, as shown in the center realization of Figure 3.2 for n = 3.
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The weight of an internal tube t is the number of vertices it contains, or equivalently, the

weight of the corresponding internal vertex. Note that if t1 and t2 are distinct internal tubes

in a tubing T , then they must be nested (as they cannot be non-adjacent), and thus have

distinct weights. Given a tubing T with k internal tubes, we will always index the internal

tubes ti in order of increasing weight wi. Let [0, n]T denote the partition of the interval

[0, n] into k + 1 edges by adding a vertex at each integer wi. Recall that the face poset of

PG corresponds to the poset of tubings of G. Let FT denote the face of PG corresponding

to the tubing T . Let TG denote the set of tubings of G.

Theorem 3.0.7 may now be restated as the assertion that PG is realized by the polytope

P =
⋃
T∈TG

FT × [0, n]T .

Proof. For a tubing T ∈ TG with k internal tubes, the partitioned interval [0, n]T consists

of k + 2 vertices labeled wi and k + 1 edges labeled (wi, wi+1), where we set w0 = 0 and

wk+1 = n. We write f ∈ [0, n]T to denote that f is a face of [0, n]T . Tracing through the

definitions, the face poset of P is isomorphic to the poset

SG = {(T, f) |T ∈ TG, f ∈ [0, n]T }

with (T1, f1) ≤ (T2, f2) if and only if T1 ≤ T2 and f1 ⊂ f2 as subsets of [0, n]. Here f2

denotes the closure of f2, and the poset structure on tubings is by reverse inclusion. On

the other hand, the face poset of PG′ is isomorphic to TG′ .

We define a map σ : SG → TG′ as follows:

(1) σ(T, 0) = T ∪ {{v}}.

(2) σ(T,wi) = T ∪ {ti ∪ {v}}, where ti ∈ T has weight wi.

(3) σ(T, n) = T ∪ {V }.

(4) σ(T, (wi, wi+1)) = (T − {tj | j ≥ i+ 1}) ∪ {tj ∪ {v} | j ≥ i+ 1}.

We will show that σ is an isomorphism of posets. The inverse map τ : TG′ → SG is

defined as follows. Regard a tubing T ′ ∈ TG′ as a multi-set of sets of vertices of G′. Delete

the vertex v from each set in T ′ where it appears to obtain a new multi-set T of sets of
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vertices of G. The structure of G′ forces T to satisfy exactly one3 of the following four

properties:

(1) ∅ ∈ T. This occurs when {v} ∈ T ′.

(2) {ti, ti} ⊂ T for some (unique) internal tube ti. This occurs when ti, ti ∪ {v} ∈ T ′.

(3) {V } ∈ T, where V is the set of all vertices of G. This occurs when V ∈ T ′.

(4) T is a valid tubing of G. In this case, let i + 1 be the smallest index such that ti+1

contains v. If there is no such tube, let i+ 1 = n.

In each case, we define τ(T ′) as follows:

(1) τ(T ′) = (T− {∅}, 0).

(2) τ(T ′) = (T− {ti}, wi).

(3) τ(T ′) = (T− {V }, n).

(4) τ(T ′) = (T, (wi, wi+1)).

It is immediate that σ and τ are inverse maps.

Finally, we must verify that σ is order preserving: if (T1, f1) ≤ (T2, f2) then T ′1 ≤ T ′2,

where T ′1 = σ(T1, f1) and T ′2 = σ(T2, f2). Since the poset structure on tubings is by reverse

inclusion, this is equivalent to the following:

Lemma 3.0.8. If T1 ⊃ T2 and f1 ⊂ f2 then T ′1 ⊃ T ′2.

Proof. If f2 is a vertex then f1 = f2, and from the definition of σ we see that T1 ⊃ T2

implies T ′1 ⊃ T ′2. We are left to consider the case that f2 is an edge:

Let s1, . . . , sl denote the internal tubes of T1 with weights u1 < · · · < ul. Let t1, . . . , tk

denote the internal tubes of T2, with weights w1 < · · · < wk. As before, set u0 = w0 = 0

and ul+1 = wk+1 = n. Now f2 = (wi, wi+1) for some i, and T1 ⊃ T2 implies that ui′ = wi

and ui′′ = wi+1 for some i ≤ i′ < i′′. Furthermore, f1 ⊂ f2 = [wi, wi+1].

3Using the structure of G′ in Figure 3.3, the reader may verify that these four properties are mutually

exclusive, and that if none of the first three properties hold, then T is a valid tubing of G.
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We first consider the case f1 = um with um 6= 0, n. Then

T ′1 = T1 ∪ {sm ∪ {v}}

T ′2 = (T2 − {tj | j ≥ i+ 1}) ∪ {tj ∪ {v} | j ≥ i+ 1}

Since T ′1 is a valid tubing, we know that sj contains the vertex v for all j ≥ m+ 1, and in

particular for all j ≥ i′′+ 1. Since T1 ⊃ T2, we have tj ∪ {v} ∈ T ′1 for all j ≥ i+ 1, and thus

T ′1 ⊃ T ′2. The argument is similar when um = 0 or um = n.

The remaining case is f1 = (um, um+1) for some i′ ≤ m < i′′. Then

T ′1 = (T1 − {sj′ | j′ ≥ m+ 1}) ∪ {sj′ ∪ {v} | j′ ≥ m+ 1}

T ′2 = (T2 − {tj | j ≥ i+ 1}) ∪ {tj ∪ {v} | j ≥ i+ 1}

Since T1 ⊃ T2, each tj with j ≥ i + 1 corresponds to some sj′ with j′ ≥ i′′ ≥ m + 1, so

tj ∪ {v} ∈ T ′2. On the other hand, for each j′ such that i′′ > j′ ≥ m+ 1, we have uj′ 6= wj

for any j, so sj′ /∈ T2. Thus T ′1 ⊃ T ′2.

We conclude that σ yields an isomorphism between the face poset of P and the face

poset of PG′ . So P is indeed a realization of PG′ , proving the theorem.
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Chapter 4

Odd Khovanov homology and

Conway mutation

In the chapter alone, chain complexes and homology groups are presumed to have Z coeffi-

cients unless otherwise specified.

To an oriented link L ⊂ S3, Khovanov associates a bigraded homology group Kh(L)

whose graded Euler characteristic is the unnormalized Jones polynomial [22]. This invariant

also has a reduced version Kh(L,K), which depends on a choice of marked component K.

While the Jones polynomial itself is insensitive to Conway mutation, Khovanov homology

generally detects mutations that swap strands between link components [49]. Whether

the theory is invariant under component-preserving mutation, and in particular for knots,

remains an interesting open question, explored in [7], [23], and [48]. No counterexamples

exist with fewer than 14 crossings, although Khovanov homology does distinguish knots

related by genus 2 mutation [17], whereas the (colored) Jones polynomial does not.

In 2003, Ozsváth and Szabó introduced a link surgery spectral sequence whose E2 term

is Kh(L; F2) and which converges to ĤF(−Σ(L)), the Heegaard Floer homology of the

branched double-cover with reversed orientation [36]. In search of a candidate for the E2

page over Z, Ozsváth, Rasmussen and Szabó developed odd Khovanov homology Kh′(L),

a theory whose mod 2 reduction coincides with that of Khovanov homology [34]. While

the reduced version K̃h(L) also categorifies the Jones polynomial, it is independent of the
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choice of marked component and determines Kh′(L) according to the equation

Kh′t,q(L) ∼= K̃ht,q−1(L)⊕ K̃ht,q+1(L). (4.1)

In contrast to Khovanov homology for links, we prove:

Theorem 4.0.9. Odd Khovanov homology is mutation invariant. Indeed, connected mutant

link diagrams give rise to isomorphic odd Khovanov complexes.

Corollary 4.0.10. Khovanov homology over F2 is mutation invariant.

It is not known if these results extend to genus 2 mutation [17]. Wehrli announced a proof

of Corollary 4.0.10 for component-preserving Conway mutation in 2007, using an approach

outlined by Bar-Natan in 2005 [7]. Shortly after our paper first appeared, Wehrli posted

his proof, which is completely independent and extends to the case of Lee homology over

F2 [48].

Mutant links in S3 have homeomorphic branched double-covers. It follows that the E∞

page of the ĤF link surgery spectral sequence is also mutation invariant. Building on work

of Roberts [37], Baldwin has shown that all pages Ei with i ≥ 2 are link invariants, as

graded vector spaces [5]. To this, we add:

Theorem 4.0.11. The Ei page of the ĤF link surgery spectral sequence is mutation in-

variant for i ≥ 2. Indeed, connected mutant link diagrams give rise to isomorphic filtered

complexes.

Our proof will apply equally well to the monopole version of the spectral sequence developed

in Chapter 6. Note that Khovanov homology, even over F2, is not an invariant of the

branched double-cover itself [46].

This chapter is organized as follows. In Section 4.1, to a connected, decorated link dia-

gram D we associate a set of numerical data that is determined by (and, in fact, determines)

the equivalence class of D modulo diagrammatic mutation (and planar isotopy). From this

data alone, we construct a complex (C̃(D), ∂̃ε) which is a priori invariant under mutation

of D. In Section 4.2, we recall the construction of odd Khovanov homology and prove:

Proposition 4.0.12. The complex (C̃(D), ∂̃ε) is canonically isomorphic to the reduced odd

Khovanov complex (C(D), ∂̄ε).
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This establishes Theorem 4.0.9 and verifies that our construction leads to a well-defined (in

fact, previously-defined) link invariant.

In Section 4.3, we consider a surgery diagram for the branched double-cover ofD given by

a framed link L ⊂ S3 with one component for each crossing. Ozsváth and Szabó associate a

filtered complex to D by applying the Heegaard Floer functor to a hypercube of 3-manifolds

and cobordisms associated to various surgeries on L (see [36] for details). The link surgery

spectral sequence is then induced by standard homological algebra. In Proposition 4.3.1,

we prove that the framed isotopy type of L is determined by the mutation equivalence class

of D, establishing Theorem 4.0.11. Note that Corollary 4.0.10 may be viewed as the E2

page of Theorem 4.0.11.

We conclude Section 4.3 with a remark on our original motivation for the construction

of the complex (C̃(D), ∂̃ε). An essential observation in [36] is that one recovers the reduced

Khovanov complex over Z/2Z by first branched double-covering the Khovanov hypercube

of 1-manifolds and 2-dimensional cobordisms and then applying the Heegaard Floer TQFT

to the resulting hypercube of 3-manifolds and 4-dimensional cobordisms. As we establish

starting in Chapter 6, a similar relationship holds between reduced Khovanov homology and

the monopole Floer TQFT. From this perspective, our results may be viewed as immediate

consequences of the topological fact that branched double-covering destroys all evidence of

mutation.

4.1 A thriftier construction of reduced odd Khovanov ho-

mology

Given an oriented link L, fix a connected, oriented link diagram D with crossings c1, . . . , cn.

Let n+ and n− be the number of positive and negative crossings, respectively. We use V(D)

and E(D) to denote the sets of vertices and edges, respectively, of the hypercube {0, 1}n,

with edges oriented in the direction of increasing weight. Decorate each crossing ci with an

arrow xi, which may point in one of two parallel directions and appears in each complete

resolution D(I) as an oriented arc between circles according to the conventions in Figure

4.1.
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Recall that a planar link diagram D admits a checkerboard coloring with white exterior,

as illustrated at left in Figure 4.3. The black graph B(D) is formed by placing a vertex in

each black region and drawing an edge through each crossing. The edge through ci connects

the vertices in the black regions incident to ci. Given a spanning tree T ⊂ B(D), we may

form a resolution of D consisting of only one circle by merging precisely those black regions

which are incident along T . In particular, all connected diagrams admit at least one such

resolution.

With these preliminaries in place, we now give a recipe for associating a bigraded chain

complex (C̃(D), ∂̃ε) to the decorated diagram D. The key idea is simple. Think of each

resolution of D as a connected, directed graph whose vertices are the circles and whose

edges are the oriented arcs. While the circles merge and split from one resolution to the

next, the arcs are canonically identified throughout. So we use the exact sequence

{cycles} ↪→ Z〈arcs〉 d−→ Z〈circles〉 −→ Z −→ 0

of free Abelian groups to suppress the circles entirely and instead keep track of the cycles

in each resolution, thought of as relations between the arcs themselves.

We begin the construction by fixing a vertex I∗ = (m∗1, . . . ,m
∗
n) ∈ V(D) such that the

resolution D(I∗) consists of only one circle S. To each pair of oriented arcs (xi, xj) in

D(I∗) we associate a linking number aij ∈ {0,±1} according to the symmetric convention

in Figure 4.2. We set aii = 0. Note that arcs on the same side of S cannot link. For each

I ∈ V(D), we have an Abelian group

Ṽ (D(I)) = Z〈x1, . . . , xn | rI1, . . . , rIn〉

Figure 4.1: Oriented resolution conventions. The arrow xi at crossing ci remains fixed

in a 0-resolution and rotates 90◦ clockwise in a 1-resolution. To see the other choice for

the arrow at ci, rotate the page 180◦. Mutation invariance of the Jones polynomial follows

from the rotational symmetries of the above tangles in R3.
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presented by relations

rIi =


xi −

∑
{j |mj 6=m∗j}

(−1)m
∗
j aijxj if mi = m∗i

−
∑

{j |mj 6=m∗j}

(−1)m
∗
j aijxj if mi 6= m∗i .

(4.2)

Indeed, these relations generate the cycles in the graph of circles and arcs at D(I) (see

Lemma 4.2.1).

To an edge e ∈ E(D) from I to J given by an increase in resolution at ci, we associate

a map

∂̃IJ : Λ∗Ṽ (D(I))→ Λ∗Ṽ (D(J))

of exterior algebras, which is defined in the case of a split and a merge, respectively, by

∂̃IJ(u) =

 xi ∧ u if xi = 0 ∈ Ṽ (D(I))

u if xi 6= 0 ∈ Ṽ (D(I)).

Extending by zero, we may view each of these maps as an endomorphism of the group

C̃(D) =
⊕

I∈V(D)

Λ∗Ṽ (D(I)).

Consider a 2-dimensional face of the hypercube from I to J corresponding to an increase

in resolution at ci and cj . The two corresponding composite maps in C̃(D) commute up

to sign, and they vanish identically if and only if the arcs xi and xj in D(I) are in one

of the two configurations in Figure 4.2, denoted Type X and Type Y . Note that we can

distinguish a Type X face from a Type Y face without reference to the diagram by checking

Figure 4.2: Linking number conventions. Two arcs are linked in D(I∗) if and only if

their endpoints are interleaved on the circle. Otherwise, aij = 0. Any linked configuration

is isotopic to one of the above on the 2-sphere R2 ∪ {∞}.
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which of the relations xi ± xj = 0 holds in C̃(D) over the two vertices of the face that are

strictly between I and J .

A Type Y edge assignment on C̃(D) is a map ε : E(D)→ {±1} such that the product of

signs around a face of Type X or Type Y agrees with the sign of the linking convention in

Figure 4.2 and such that, after multiplication by ε, every face of C̃(D) anticommutes. Such

an assignment defines a differential ∂̃ε : C̃(D)→ C̃(D) by

∂̃ε(v) =
∑

{e∈E(D),J∈V(D) | e goes from I to J}

ε(e) · ∂̃IJ(v)

for v ∈ Λ∗Ṽ (D(I)). Type Y edge assignments always exist and any two yield isomorphic

complexes, as do any two choices for the initial arrows on D. We can equip (C̃(D), ∂̃ε)

with a bigrading that descends to homology and is initialized using n± just as in [34]. The

bigraded group C̃(D) and maps ∂̃IJ are constructed entirely from the numbers aij , m∗i , and

n±. Thus, up to isomorphism:

Proposition 4.1.1. The bigraded complex (C̃(D), ∂̃ε) is determined by the linking matrix

A of any one-circle resolution of D, the vertex of this resolution, and the number of positive

and negative crossings.

Proof of Theorem 4.0.9. The following argument is illustrated in Figure 4.3. Given ori-

ented, mutant links L and L′, fix a corresponding pair of oriented, connected diagrams D

and D′ for which there is a circle C exhibiting the mutation. This circle crosses exactly

two black regions of D, which we connect by a path Γ in B(D). To simplify the exposition,

we will assume there is a crossing between the two strands of D in C, so that Γ may be

chosen in C. Extend Γ to a spanning tree T to obtain a resolution D(I∗) with one circle.

The natural pairing of the crossings of D and D′ induces an identification V(D) ∼= V(D′).

The resolution D′(I∗) may be obtained directly from D(I∗) by mutation and also consists

of one circle S. We can partition the set of arcs inside C into those which go across S (in

dark blue) and those which have both endpoints on the same side of S (in red). Since this

division is preserved by mutation, the mod 2 linking matrix is preserved as well.

Arrows at the crossings of D orient the arcs of D(I∗), which in turn orient the arcs of

D′(I∗) via the mutation. To preserve the linking matrix at I∗ with sign, we modify the arcs
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of D′(I∗) as follows. Let A = {arcs in C and in S} and B = {arcs in C and not in S}. We

reverse those arcs of D′(I∗) that lie in A, B, or A ∪B, according to whether the mutation

is about the z-, y-, or x-axis, respectively (as represented at right in Figure 4.3). We then

select a corresponding set of arrows on D′. Note that it may also be necessary to switch the

orientations of both strands inside C so that D′ will be consistently oriented. In any case,

the number of positive and negative crossings is unchanged. Propositions 4.0.12 and 4.1.1

now imply the theorem for (C(D), ∂̄ε). The unreduced odd Khovanov complex is isomorphic

to two copies of the reduced complex, just as in (4.1).

Remark 4.1.2. We have seen that if connected diagrams D and D′ are related by diagram-

matic mutation (and planar isotopy), then there is an identification of their crossings and

a vertex I∗ such that D(I∗) and D′(I∗) have the same mod 2 linking matrix. Remarkably,

the converse holds as well, i.e., I∗ and A mod 2 together determine D up to diagrammatic

mutation. This follows from a theorem of Chmutov and Lando: Chord diagrams have the

same intersection graph if and only if they are related by mutation [14]. Here we view a one-

circle resolution as a bipartite chord diagram, so that its mod 2 linking matrix is precisely

the adjacency matrix of the corresponding intersection graph. Note that in the bipartite

case, any combinatorial mutation as defined in [14] can be realized by a finite sequence of

our diagrammatic ones.

Chmutov and Lando apply their result to the chord-diagram construction of finite type

invariants. All finite type invariants of order ≤ 10 are insensitive to Conway mutation,

whereas there exists an invariant of order 11 that distinguishes the knots in Figure 4.3 and

one of order 7 that distinguishes genus 2 mutants (see [32] and [14]).

4.2 The original construction of reduced odd Khovanov ho-

mology

We now recall the original construction of reduced odd Khovanov homology, following [34].

Given an oriented link L ⊂ S3, we fix a decorated, oriented diagram D as before, though

now it need not be connected. For each vertex I ∈ V(D), the resolution D(I) consists of a
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Figure 4.3: The Kinoshita-Terasaka and Conway knots. Orientations on the arcs in

the upper-right resolution induce orientations on the arcs in the lower-right resolution via

the mutation. In order to obtain the same linking data with sign, we have reversed the five

arcs in the lower-right resolution that lie inside both S and C. We then work backwards to

select arrows in the lower-left knot diagram.
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set of circles {SIi }. Let V (D(I)) be the free Abelian group generated by these circles. The

reduced group V (D(I)) is defined to be the kernel of the augmentation η : V (D(I)) → Z

given by
∑
aiS

I
i 7→

∑
ai.

Now let Z〈x1, . . . , xn〉 denote the free Abelian group on n generators. For each I ∈ V(D),

we have a boundary map

dI : Z〈x1, . . . , xn〉 → V (D(I))

given by dIxi = SIj − SIk , where xi is directed from SIj to SIk in D(I). Consider an edge

e ∈ E(D) from I to J corresponding to a increase in resolution at ci. If two circles merge

as we move from D(I) to D(J), then the natural projection map {SIi } � {SJi } induces a

morphism of exterior algebras. Alternatively, if a circle splits into two descendants, the two

reasonable inclusion maps {SIi } ↪→ {SJi } induce equivalent morphisms on exterior algebras

after wedging with the ordered difference of the descendents in D(J). In other words, we

have a well-defined map

∂̄IJ : Λ∗V (D(I))→ Λ∗V (D(J))

given by

∂̄IJ(v) =

 dJxi ∧ v if dIxi = 0 ∈ V (D(I))

v if dIxi 6= 0 ∈ V (D(I))

in the case of a split and a merge, respectively, along xi.

As in Section 4.1, we now form a group C(D) over the hypercube and choose a Type

Y edge assignment to obtain a differential ∂̄ε : C(D)→ C(D). The reduced odd Khovanov

homology K̃h(L) ∼= H∗(C(D), ∂̄ε) is independent of all choices and comes equipped with

a bigrading that is initialized using n±. The unreduced version is obtained by replacing

V (D(I)) with V (D(I)) above.

Proof of Proposition 4.0.12. Suppose that D is connected. Then for each I ∈ V(D), the

image of dI : Z〈x1, . . . , xn〉 → V (D(I)) is precisely V (D(I)). In fact, by Lemma 4.2.1

below, dI induces an isomorphism Ṽ (D(I)) ∼= V (D(I)). The collection of maps dI therefore

induce a group isomorphism C̃(D) ∼= C(D) which is immediately seen to be equivariant

with respect to the edge maps ∂̃IJ and ∂̄IJ . After fixing a common Type Y edge assignment,

the proposition follows.
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Lemma 4.2.1. The relations rIi generate the kernel of the map dI : Z〈x1, . . . , xn〉 →

V (D(I)).

Proof. To simplify notation, we assume that mi 6= m∗i if and only if i ≤ k, for some

1 ≤ k ≤ n. Consider the n × n matrix M I with column i given by the coefficients of

(−1)m
∗
i rIi . Let AI be the leading k× k minor, a symmetric matrix. We build an orientable

surface F I by attaching k 1-handles to the disk D2 bounded by S so that the cores of the

handles are given by the arcs x1, . . . , xk as they appear in D(I∗). We obtain a basis for

H1(F I) by extending each oriented arc to a loop using a chord through D2. The cocores

of the handles are precisely x1, . . . , xk as they appear in D(I), so these oriented arcs form

a basis for H1(F I , ∂F I). With respect to these bases, the homology long exact sequence of

the pair (F I , ∂F I) includes the segment

H1(F I) AI−−→ H1(F I , ∂F I)
dI |Z〈x1,...,xk〉−−−−−−−−→ H0(∂F I)

η−→ Z→ 0. (4.3)

Furthermore, for each i > k, the oriented chord in D2 between the endpoints of xi is

represented in H1(F I , ∂F I) by the first k entries in column i of M I . We can therefore

enlarge (4.3) to an exact sequence

Z〈x1, . . . , xn〉
MI

−−→ Z〈x1, . . . , xn〉
dI−→ V (D(I))

η−→ Z→ 0,

which implies the lemma.

We can reduce the number of generators and relations in our construction by using the

smaller presentation in (4.3). Namely, for each I = (m1, . . . ,mn) ∈ V(D), we let V̂ (D(I))

be the group generated by {xj |mj 6= m∗j} and presented by AI . By (4.2), the edge map ∂̃IJ

at ci is replaced by

∂̂IJ(u) =


xi ∧ u if xi = 0 ∈ V̂ (D(I)) and mi = m∗i

−rIi ∧ u if xi = 0 ∈ V̂ (D(I)) and mi 6= m∗i

u if xi 6= 0 ∈ V̂ (D(I)),

where it is understood that xi 7→ 0 when mi 6= m∗i . While the definition of ∂̂IJ is more

verbose, the presentations AI are simply the 2n principal minors of a single, symmetric

matrix: {(−1)m
∗
i+m∗j aij}. The resulting complex (Ĉ(D), ∂̂ε) sits in between (C̃(D), ∂̃ε) and

(C(D), ∂̄ε) and is canonically isomorphic to both.
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4.3 Branched double-covers, mutation, and link surgery

To a one-circle resolution D(I∗) of a connected diagram of a link L ⊂ S3, we associate a

framed link L ⊂ S3 that presents −Σ(L) by surgery (see also [21]). Figure 4.4 illustrates

the procedure starting from each resolution at right in Figure 4.3. We first cut open the

circle S and stretch it out along the y-axis, dragging the arcs along for the ride. We then

slice along the Seifert surface {x = 0, z < 0} for S and pull the resulting two copies up to

the xy-plane as though opening a book. This moves those arcs which started inside S to the

orthogonal half-plane {z = 0, x > 0}, as illustrated in the second row. The double cover of

S3 branched over S is obtained by rotating a copy of the half-space {z ≥ 0} by 180◦ about

the y-axis and gluing it back onto the upper half-space. The arcs xi lift to circles Ki ⊂ S3,

which comprise L. We assign Ki the framing (−1)m
∗
i .

If D is decorated, then L may be oriented by the direction of each arc in the second row

of Figure 4.4. The linking matrix A of L then coincides with A off the diagonal, with the

diagonal itself encoding I∗. In fact, the geometric constraints on L are so severe that it is

determined up to framed isotopy by A. This seems to follow intuitively from hanging L on

a wall, and is rigorously true by:

Proposition 4.3.1. The isotopy type of L ⊂ S3 is determined by the intersection graph of

D(I∗), whereas the framing of L is determined by I∗.

Proof. Suppose that D(I∗) and D′(J∗), thought of as bipartite chord diagrams, have the

same intersection graph. Then by [14], D(I∗) is connected to D′(J∗) by a sequence of mu-

tations (see Remark 4.1.2). Each mutation corresponds to a component-preserving isotopy

of L modeled on a half-integer translation of a torus R2/Z2 embedded in S3 (see Figure

4.4). Therefore, the associated links L and L′ are isotopic. The second statement is true by

definition.

Proof of Theorem 4.0.11. From the construction of the spectral sequence in [36], it is clear

that the filtered complex associated to a connected diagram D only depends on D through

the framed isotopy type of the link L associated to a one-circle resolution. We conclude

that each page (Ei, di) for i ≥ 1 is fully determined by the mutation invariant data in

Proposition 4.3.1 (for further details, see [5] and [37]).
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We finally come to the surgery perspective that first motivated the construction of

the complex (C̃(D), ∂̃ε). For each I = (m1, . . . ,mn) ∈ V(D), let LI consist of the same

underlying link as L, but with framing modified to

λIi =

 ∞ if mi = m∗i

0 if mi 6= m∗i

on Ki. Then LI is a surgery diagram for Σ(D(I)) ∼= #kIS1 × S2, where D(I) consists of

kI + 1 circles. The linking matrix of LI then presents H1(Σ(D(I))) with respect to fixed

meridians {xi |mi 6= m∗i }. By identifying H1(Σ(D(I))) with V̂ (D(I)), we may construct

(Ĉ(D), ∂̂ε), and therefore K̃h(L), completely on the level of branched double-covers. We

elaborate on this perspective, and its relationship to the monopole Floer homology and

Donaldson TQFT’s in Chapter 6.
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Figure 4.4: Constructing a surgery diagram for the branched double-cover. The

resolutions in the first row are related by mutation along the Conway sphere formed by

attaching disks to either side of C. The double cover of S2 branched over its intersection

with S is represented by each torus in the third row. Rotation of the torus about the z-axis

yields a component-preserving isotopy from L to L′.
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Chapter 5

Link signature and homological

width

Let D be a decorated, connected diagram of an oriented link L ⊂ S3. In Section 4.3, given

a one-circle resolution D(I∗), we constructed a surgery diagram L ⊂ S3 for −Σ(L) with

linking matrix A. By Remark 4.1.2, this linking matrix contains sufficient information to

recover any invariant of D which is unchanged by mutation. In particular:

Theorem 5.0.2. The signature, determinant, and nullity of L are given by

σ(L) = σ(A) + w(I∗)− n−

det(L) = |det(A)|

ν(L) = ν(A)

Proof. The last two equations follow from the fact that A presents H1(−Σ(L)). The first

equation follows from the 4-dimensional viewpoint of Gordon and Litherland [20]. Let

F ⊂ S3 be a spanning surface for L. Let L′ be the push-off of L into F with parallel

orientation. Finally, let X = Σ(D4, F ) be the branched double-cover of F pushed into D4

with ∂F ⊂ ∂D4. The central result of [20] says that

σ(L) = −σ(X) +
1
2

lk(L,L′).

The linking number at right may be thought of as correcting for the fact that F may

be non-orientable. For the combinatorial Gordon-Litherland signature formula, F is the



CHAPTER 5. LINK SIGNATURE AND HOMOLOGICAL WIDTH 90

black surface in the checkerboard coloring, and the intersection form of X is presented by

removing a row and column from the Goeritz matrix of the black graph.

By constrast, for our signature formula, F is the spanning surface obtained from the disk

bounded by D(I∗) by a attaching a twisted band along each chord. Based on a standard

diagram of F , the correction term is given by

1
2

lk(L,L′) = w(I∗)− n−.

Furthermore, the branched double-cover X is obtained by attaching 2-handles along L and

then reversing the orientation, so the intersection form if X is presented by −A.

A less direct proof of this signature formula, routed through the combinatorial Gordon-

Litherland signature formula by comparing surgery diagrams, appears in Chapter 6.

Example 5.0.3. Consider the resolution D(010) of the right-handed trefoil T in Figure

6.2, with A given by the linking matrix at right. The signature formula gives

σ(T ) = σ(A) + w(010)− n−(D) = 1 + 1− 0 = 2.

For the mirrored diagram D representing the left-handed trefoil T , consider the mirrored

resolution D(101). Now the signature formula gives

σ(T ) = σ(−A) + w(101)− n−(D) = −1 + 2− 3 = −2.

This signature formula makes certain properties of link signature quite transparent:

Corollary 5.0.4. Link signature is invariant under Conway mutation.

Proof. Mutant diagrams have the same number of negative crossings, and give rise to the

same matrix A at corresponding one-circle resolutions I∗ (see Figure 4.3).

In fact, link signature is known to be invariant under genus 2 mutation [17], a stronger

result. As another example, we also quickly recover a result of Pawel Traczyk from 2004

[44].

Corollary 5.0.5. If D is a connected alternating diagram of a link L, then

σ(L) = n+ + 1− c

where c is the number of circles in the initial resolution of D.
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Proof. Fix a one-circle resolution D(I∗). Since D is alternating, its initial resolution is the

black (or white) resolution with respect to the checkerboard coloring. So D(I∗) is obtained

by resolving along a spanning tree of the black graph (or white graph). Thus

w(I∗) = c− 1

and the 0-resolution chords lie on the opposite side of the circle D(I∗) from the 1-resolution

chords. So if we order the 0-resolution chords before the 1-resolution chords, then the

linking matrix A has the block form

A =

 In−w(I∗) B

BT −Iw(I∗)


where Ik denotes the k×k identity matrix and BT is the transpose of B. Since A is positive

definite on the subspace spanned by the first n− w(I∗) basis vectors and negative definite

on the subspace spanned by the last w(I∗) basis vectors, we have σ(A) = n− 2w(I∗). From

Theorem 5.0.2 we conclude

σ(L) = n− 2w(I∗) + w(I∗)− n− = n+ − w(I∗) = n+ − c+ 1.

Let C̃Kh(D) denote the reduced Khovanov complex of a link diagram D, with F2 co-

efficients. Let K̃h(L) denote the reduced Khovanov homology of L with F2 coefficients.

The homological width wfKh
(L) is defined to be one more than the difference between the

maximal and minimal δ-gradings over which K̃h(L) is supported (for example, alternating

links have width one). We now turn to a new proof of the following proposition regarding

homological width, originally proven in [3]. Our method underlies the proof of Theorem

8.1.8, which restricts the shape of the differentials on the monopole link surgery spectral

sequence with respect to the δ grading.

Proposition 5.0.6. If L is non-split and k-almost alternating, then wfKh
(L) ≤ k + 1.

In preparation for the proof, we recall some terminology. A diagram D is almost al-

ternating if it is not alternating, but can be made alternating by reversing one crossing,
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called a dealternator [2]. More generally, a diagram D is k-almost alternating if D can be

made alternating by reversing k crossings, but not by reversing only k− 1 crossings. A link

is k-almost alternating if it has a k-almost alternating diagram, but not a (k − 1)-almost

alternating diagram. If D has l crossings, then D is k-almost alternating for some k ≤ l/2.

In particular, every link is k-almost alternating for some k.

For the proof of Proposition 5.0.6, we will need a refinement of the notion of almost

alternating, also from [2]. A diagram D is called dealternator connected, k-almost alternating

if D is k-almost alternating for some choice of k dealternators, such that the corresponding

2k alternating resolutions are all connected (see Figure 5.1). A link is dealternator connected,

k-almost alternating if it has a dealternator connected, k-almost alternating diagram, but

not a dealternator connected, (k − 1)-almost alternating diagram.

Figure 5.1: A standard diagram of T (3, 7), as well as a dealternator connected, 2-almost

alternating diagram, constructed using an algorithm in [1].

Two questions arise. Does every link have a dealternator connected, k-almost alternat-

ing diagram for some k? When is a k-almost alternating link also dealternator connected,

k-almost alternating? Note that the 2-component unlink is 0-almost alternating, but deal-

ternator connected, 1-almost alternating. On the other hand:

Proposition 5.0.7. A non-split link is dealternator connected, k-almost alternating if and

only if it is k-almost alternating. Furthermore, every link is dealternator connected, k-

almost alternating for some k.

Proof. It suffices to show that a connected and k-almost alternating diagram D may be

modified to a dealternator connected, k-almost alternating diagram D′ of the same link. To

obtain D′, we modify D near each dealternator by the local move in Figure 5.2.
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Figure 5.2: At left, the local move (compare with Figure 1 of [1]). At right, we see that

resolving at the new dealternators does not disconnect the diagram.

Proof of Proposition 5.0.6. Fix a dealternator connected, k-almost alternating diagram D

for L, and number the crossings so that the first k of l are the dealternators. Let DI′

denote the diagram which results from resolving the dealternators according to I ′ ∈ {0, 1}k.

Note that each DI′ is connected and alternating, and therefore non-split by a theorem of

Menasco.

Let x(I ′) be the generator in lowest quantum grading in C̃Kh(D)|I′×{0}l−k . For imme-

diate successors I ′ < J ′ in {0, 1}k, let e be the edge in the hypercube from I ′ × {0}l−k to

J ′ × {0}l−k. A short calculation shows that

δ(x(J ′)) =

 δ(x(I ′)) if e merges two circles,

δ(x(I ′))− 1 if e splits a circle in two.

So for any I ′ ≤ J ′, we have

δ(x(I ′)) ≥ δ(x(J ′)), (5.1)

with the largest span given by

δ(x(0 ′))− δ(x(1 ′)) ≤ k. (5.2)

Now define the modified weight w(K) to be the sum of the first k digits of K ∈ {0, 1}l.

Filtering C̃Kh(D) by w(K), we obtain a spectral sequence with pages Ei, converging to

K̃h(L). The page E1 is the direct sum of the groups K̃h(DI′), each of which is supported on

a single diagonal δ = δ(x(I ′)), by Lemmas 5.0.8 and 5.0.9 below. Therefore, by (5.2) this

page has width at most k + 1, and the same must be true of the final page K̃h(L).
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Lemma 5.0.8. If L is non-split and alternating, then K̃h(L) is thin.

Proof. We proceed by induction on the crossing number of L. The lemma clearly holds

for the unknot. Fix a reduced, alternating diagram D of L, which necessarily exhibits the

crossing number. Since width is preserved under mirroring, without loss of generality, we

may assume that the initial complete resolution has at least two circles, and therefore that

all edges leaving it are merges. Now fix any crossing in D. The corresponding resolutions

have lower crossing number, and are also connected and alternating, thus non-split, and

thin by induction. Since the edge e connecting these resolutions is a merge, the page E1 is

thin as well, as is the final page E2 ∼= K̃h(L).

Let C̃Kh(D)|I denote the summand of C̃Kh(D) supported over resolution I.

Lemma 5.0.9. Given a connected, alternating diagram D, let x be the generator in lowest

quantum grading in C̃Kh(D)|0 , and let y be the generator in highest quantum grading in

C̃Kh(D)|1 . Then δ(x) = δ(y) = σ(L)/2, and at least one of x and y is a non-trivial

generator of K̃h(L).

Proof. Let l be the number of crossings, and let c(I) be the number of circles in resolution

D(I). With respect to the checkerboard coloring, the extremal resolutions of an alternating

diagram are the black and white resolutions. Since the black graph and white graph each

have l edges and are dual on the sphere, we may express the Euler characteristic of either

by

c(0 )− l + c(1 ) = 2 (5.3)

The quantum and homological gradings of x and y are given by

q(x) = −(c(0 )− 1) + n+ − 2n−

q(y) = c(1 )− 1 + l + n+ − 2n−

t(x) = −n−

t(y) = l − n−
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Thus, the difference in δ grading is

δ(y)− δ(x) =
1
2

(c(1 )− 1 + l + c(0 )− 1)− l

=
1
2

(c(0 )− l + c(1 )− 2) = 0

where the last equality follows from (5.3). Furthermore,

2δ(x) = −(c(0 )− 1) + n+ = −w(I∗) + n+ = σ(L)

by Corollary 5.0.5.

If D has no crossings, then x and y coincide and generate K̃h(L). Otherwise, at least

one of D(0 ) and D(1 ) has two or more circles. If c(0 ) > 1, then every component of d

leaving C̃Kh(D)|0 corresponds to a merging of circles, so x is in the kernel. If c(1 ) > 1,

then every component of d ending at C̃Kh(D)|1 corresponds to a splitting of circles, so y is

not in the image. The second claim immediately follows.

Note that the two lemmas imply a result from [30]:

Corollary 5.0.10. If L is a non-split alternating link, then K̃h(L) is thin and supported

on the diagonal δ = 1
2σ(L).
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Chapter 6

From Khovanov homology to

monopole Floer homology

Given an oriented link L ⊂ S3, let K̃h(L) denote the reduced Khovanov homology of L with

F2 coefficients. To a diagram of L, we will associate framed link L ⊂ −Σ(L). This link is

closely related to framed link L ⊂ S3 defined in Chapter 4, which we will instead denote by

L′ from now on. In this chapter, we apply the H̃M• version of Theorem 2.0.1 to L ⊂ −Σ(L)

to prove:

Theorem 6.0.11. The link surgery spectral sequence for L ⊂ −Σ(L) has E2 page isomor-

phic to K̃h(L) and converges by the El+1 page to H̃M•(−Σ(L)).

While the construction of this spectral sequence depends on a choice of diagram for L,

as well as analytic data, Theorem 6.0.11 implies that the E2 and E∞ pages are actually

link invariants. These pages are also insensitive to Conway mutation, since this is true of

Khovanov homology over F2 as well as branched double covers. More generally, we prove:

Theorem 6.0.12. For each k ≥ 2, the isomorphism class of the (ť, δ̌)-graded vector space

Ek depends only on the mutation equivalence class of L.

The analytic invariance described in Theorem 2.0.2 is crucial here. As explained in

Section 6.1, Reidemeister invariance is then an immediate consequence of Baldwin’s proof

in the Heegaard Floer case [5], whereas mutation invariance follows from our proof in the
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Heegaard and monopole Floer cases. Note that both Heegaard Floer proofs, in turn, depend

on Roberts’ work on invariance with respect to isotopy, handleslides, and stabilization in

Heegaard multi-diagrams [37], and Baldwin’s work on invariance with respect to almost

complex data [5].

Recall that Khovanov homology is graded by two integers, the homological grading t

and the quantum grading q. We may repackage this as a rational (t, δ)-bigrading, where

δ = q/2− t

marks the diagonals of slope two in the (t, q)-plane. On the other hand, monopole Floer

homology has a canonical mod 2 grading and decomposes over the set of spinc structures.

Using the δ̌ grading on the spectral sequence, we derive the first result relating these finer

features of monopole or Heegaard Floer homology to those of Khovanov homology, leading

to a refinement of the rank inequality

rk K̃h(L) ≥ rk H̃M•(−Σ(L)) ≥ det(L).

Let H̃M
0

•(Y ) and H̃M
1

•(Y ) denote the even and odd graded pieces of H̃M•(Y ), respectively.

Let K̃h
0
(L) and K̃h

1
(L) denote the even and odd graded pieces of K̃h(L) with respect to the

integer grading δ − (σ(L) − ν(L))/2. The terms σ(L) and ν(L) refer to the signature and

nullity of L, respectively. Our convention is that the signature of the right-handed trefoil

is +2 (that is, minus the signature of a Seifert matrix). Recall that ν(L) = b1(Σ(L)).

Theorem 6.0.13. The δ̌ grading on the spectral sequence coincides with

δ − 1
2

(σ(L)− ν(L)) mod 2

on the E2 page. Thus, the rank inequality may be refined to

rk K̃h
0
(L) ≥ rk H̃M

0

•(−Σ(L)) ≥ det(L)

rk K̃h
1
(L) ≥ rk H̃M

1

•(−Σ(L)).

Furthermore, the δ̌ Euler characteristic of each page is given by det(L). The ť grading on

the spectral sequence coincides with t+ n− on the E2 page.
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In particular, all the differentials on the spectral sequence shift δ + 2Z by one. Note

also that H̃M•(−Σ(L), s) is non-trivial1 whenever c1(s) is torsion, as follows from Corollary

35.1.4 in [24]. We conclude:

Corollary 6.0.14. If K̃h(L) is supported on a single diagonal, then the spectral sequence

collapses at the E2 page. In particular, H̃M•(−Σ(L)) is supported in even grading and has

rank det(L), with one generator in each spinc structure.

In fact, K̃h(L) is supported on the single diagonal δ = σ(L)/2 whenever L is quasi-

alternating [30]. We proved this fact when L is (non-split) alternating in Corollary 5.0.10.

This is consistent with Theorem 6.0.13, since quasi-alternating links have non-zero deter-

minant, and therefore vanishing nullity.

By modifying the proof of Theorem 6.0.13, which invokes the combinatorial Gordon-

Litherland signature formula (see [20]), we obtain a (closely) related proof of the signature

formula in Theorem 5.0.2. Remarkably, a deep structure theorem in graph theory due

to W. H. Cunningham implies that the linking matrix A alone determines the mutation

equivalence class of L, the framed isotopy type of L, and therefore Ei for all i ≥ 1 (see

Remark 6.1.2 and [14] for more details).

Since our results first appeared, Kronheimer and Mrowka have established a similar

connection between Khovanov homology and a version of instanton Floer homology for

links [26]. As a corollary, they conclude that Khovanov homology detects the unknot.

6.1 Khovanov homology and branched double-covers

We now construct the spectral sequence in Theorem 6.0.11. The key new ingredient is the

following H̃M• analog of Proposition 6.2 in [36] for ĤF. We delay the proof to Chapter 7,

as it follows from the more general Theorem 7.3.3, as explained in Remark 7.3.6.

Proposition 6.1.1. Let Y = #k(S1×S2). Then, H̃M•(Y ) is a rank one, free module over

the ring Λ∗H1(Y ) generated by some class Θ, and entirely supported over the torsion spinc

structure. Moreover, if K ⊂ Y is a curve which represents one of the circles in one of the

1Alternatively, one can show that the gr(2) Euler characteristic of gHM•(Y, s) is 1 if b1(Y ) = 0.
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S1×S2 summands, then the three-manifold Y ′ = Y0(K) is diffeomorphic to #k−1(S1×S2),

with a natural identification

π : H1(Y )/[K] −→ H1(Y ′).

Under the cobordism W induced by the two-handle, the map

H̃M•(W ) : H̃M•(Y ) −→ H̃M•(Y ′)

is specified by

H̃M•(W )(ξ ·Θ) = π(ξ) ·Θ′, (6.1)

where here Θ′ is the generator of H̃M•(Y ′), and ξ is any element of Λ∗H1(Y ). Dually, if

K ⊂ Y is an unknot, then Y ′′ = Y0(K) ∼= #k+1(S1 × S2), with a natural inclusion

i : H1(Y ) −→ H1(Y ′′).

Under the cobordism W ′ induced by the two-handle, the map

H̃M•(W ) : H̃M•(Y ) −→ H̃M•(Y ′′)

is specified by

H̃M•(W ′)(ξ ·Θ) = (ξ ∧ [K ′′]) ·Θ′′, (6.2)

where here [K ′′] ∈ H1(Y ′′) is a generator in the kernel of the map H1(Y ′′)→ H1(W ′).

We now construct the H̃M• spectral sequence associated to a link L ⊂ S3. We first fix

a diagram D with l crossings. Following Section 2 of [36], we associate to D a framed link

L ⊂ −Σ(L) to which we will apply the link surgery spectral sequence. First, in a small

ball Bi about the crossing ci, place an arc with an end on each strand as shown in the ∞

resolution of Figure 6.1. Each of these arcs lifts to a closed loop Ki in the branched double

cover Σ(L), giving the components of a link L ⊂ Σ(L). Note that all of the resolutions of D

agree outside of the union of the Bi. Furthermore, the branched double cover of Bi over the

two unknotted strands of D(I) ∩ Bi is a solid torus, with meridian given by the preimage

of either of the two strands pushed out to the boundary of Bi. So for each I ∈ {0, 1,∞}l,

we may identify Σ(D(I))− ν(D(I)) with Σ(L)− ν(L).
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In this way, for each crossing ci, we obtain a triple of curves (λi, λi + µi, µi) in the

corresponding boundary component of Σ(L)−ν(L), which represent meridians of the fillings

giving the branched covers of the 0, 1, and ∞ resolutions at ci, respectively. In this cyclic

order, the curves may be oriented so that the algebraic intersection number of consecutive

curves is +1. We change this to −1 by flipping the orientation on the branched double

cover (whereas in [36] this is done by replacing L with its mirror). In the language of [36],

each triple (λi, λi + µi, µi) forms a triad. From our 4-manifold perspective, this is precisely

the condition that each 2-handle in a stack is attached to the previous 2-handle using

the -1 framing with respect to the cocore (see the discussion preceding Theorem 2.2.11).

From either perspective, framing Ki by λi, we are in precisely the setup of the link surgery

spectral sequence, with YI = −Σ(D(I)) for all I ∈ {0, 1,∞}l. Now, using Proposition

6.1.1, the argument in [36] may be repeated verbatim to show that the complexes (E1, d1)

and C̃Kh(L) are isomorphic, and therefore that E2 is isomorphic to the reduced Khovanov

homology K̃h(L).

Figure 6.1: We have one short arc between the two strands near each crossing, in both the

original diagram and its resolutions.

Alternative proof of Theorem 6.0.11. As an alternative to the argument in [36], we now

present a more global description of the isomorphism E1 ∼= C̃Kh(L), taking advantage of

the construction in Section 4.3 of a framed link L′ ⊂ S3 (there denoted L) which gives

a surgery diagram for the branched double cover with reversed orientation −Σ(L). This

construction of L′ is illustrated in Figure 6.2 for the standard diagram of the right-handed

trefoil T . We first fix a vertex I∗ = (m∗1, . . . ,m
∗
n) ∈ {0, 1}l for which the resolution D(I∗)

consists of one circle. The link L′ is obtained as the preimage of the corresponding red arcs

in Figure 6.1, where the component K′i is given the framing λi = (−1)m
∗
i . Note that the

link L ⊂ −Σ(L) is represented in this surgery diagram by the framed push-off of L′.
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Figure 6.2: At left, we number the crossings in a diagram of the right-handed trefoil T .

The resolution D(010) has one circle, and one (arbitrarily-oriented) arc for each crossing.

We then cut the circle open at the dot and stretch it out to a line, dragging the arcs along

for the ride. Reflecting each arc under the line yields the framed link L′ ⊂ S3 and linking

matrix at right. Surgery on L′ gives −Σ(T ), which is the lens space −L(3, 1).

For each I = (m1, . . . ,mn) ∈ {0, 1}l, let L′I be the link L′ with framing modified to

λi =

 ∞ if mi = m∗i

0 if mi 6= m∗i

on K′i. Then L′I gives a surgery diagram for YI = −Σ(D(I)) ∼= #k(S1 × S2), where the

resolution D(I) consists of k + 1 circles. This is illustrated in Figure 6.3 for the trefoil

T . Furthermore, each elementary 2-handle cobordism WIJ = −Σ(FIJ) : −Σ(D(I)) →

−Σ(D(J)) is given explicitly by 0-surgery on either Ki or its meridian xi, in the case where

m∗i = 0 or 1, respectively. Let KIJ ⊂ −Σ(D(I)) denote the knot on which we are doing

0-surgery, and let K ′′IJ ⊂ −Σ(D(J)) be the boundary of the co-core of the corresponding

2-handle.

By Proposition 6.1.1, the (E1, d1) page of the link surgery spectral sequence for L ⊂

−Σ(L) is isomorphic to a complex complex with underlying F2-vector space

Ĉ(D) =
⊕

I∈{0,1}l
Λ∗H1(−Σ(D(I)))

and differential ∂̂ given by the sum of maps ∂̂IJ over all immediate successors I < J in

{0, 1}l. These in turn are defined by

∂̂IJ(ξ) =

 π(ξ) if KIJ represents a circle factor,

[K ′′IJ ] ∧ i(ξ) if KIJ is an unknot,
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On the other hand, (Ĉ(D), ∂̂) is precisely the version of C̃Kh(D) defined at the end of

Section 4.2, using the identification of H1(−Σ(D(I))) with V̂ (D(I)) as explained in 4.3.

We conclude that (E1, d1) and C̃Kh(L) are isomorphic complexes, and therefore that E2 is

isomorphic to K̃h(L) as an F2-vector space.

Remark 6.1.2. In Chapter 4, we showed that the framed isotopy type of L ⊂ −Σ(L) is

completely determined by the linking matrix A of L′ ⊂ S3. If follows that the pages Ei

for i ≥ 1 are determined by A as well (up to an overall shift in bigrading that depends on

n±). In fact, since we are working with F2 coefficients, the orientations of the arcs (and

corresponding components of L′) are extraneous as well. We need only record which pairs

of arcs in D(I∗) are linked, as well as I∗ itself. On the other hand, the matrix A with

signs fully encodes the odd Khovanov homology of L with Z coefficients (again, up to an

overall shift in bigrading that depends on n±), and should also encode a lift of the spectral

sequence to Z.

6.1.1 Grading

For the duration of this paragraph, we return to the notation Ei to distinguish the H̃M•

version of the spectral sequence from the

̂

HM • version. Our goal is to relate the mod 2

grading δ̌ on E1 to the integer grading δ on C̃Kh(L). Since U† is surjective on

̂

HM (#kS1×

S2), E1 may be identified as a δ̌-graded vector space with the kernel of the map

∑
I∈{0,1}l

̂

HM •(U† | YI × [0, 1]) : E1 → E1.

This permits us to work with the δ̌ grading on E1 instead.

Proof of Theorem 6.0.13. Let L ⊂ S3 be an oriented link and fix a diagram D with n

crossings. Let n+ and n− denote the number of positive and negative crossings, respectively.

Consider the hypercube complex (X, Ď) given by surgeries on L′ ⊂ −Σ(L). Recall that

YI = −Σ(D(I)) ∼= #k(S1 × S2) when the resolution D(I) consists of k + 1 circles.

We may think of a generator x ∈ Λr(H1(YI)) as an element of either E1 or C̃Kh(D). The

group H̃M•(YI) is supported over the torsion spinc structure, and Proposition 7.3.7 shows
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Figure 6.3: Continuing from Figure 6.2, above we obtain the cube of surgery diagrams L′I
for the right-handed trefoil T . All solid components are 0-framed, while all faded compo-

nents are ∞-framed. The link surgery cube of 3-manifolds YI and 4-dimensional 2-handle

cobordisms WIJ above is the branched double cover of the Khovanov cube of 1-manifolds

D(I) ⊂ S3 and 2-dimensional 1-handle cobordisms FIJ ⊂ S3 × [0, 1] below.
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that grQ(x) = k − r, where grQ(x) is the rational grading over the torsion spinc-structure,

reviewed at the end of Section 1.1. Moreover, on YI we have

grQ(x) ≡ gr(2)(x) mod 2. (6.3)

Recall that C̃Kh(D) has a quantum grading q and a homological grading t. The δ-

grading is defined as the linear combination δ = 1
2q − t. Translating from the definitions in

[34], we may express these gradings as

q(x) = 2grQ(x)− b1(YI) + w(I) + n+ − 2n−

t(x) = w(I)− n−

δ(x) = grQ(x)− 1
2
b1(YI)−

1
2
w(I) +

1
2
n+

Here n+ and n− denote the number of positive and negative crossings in D. The final

formula defines a function δ : X → Q.

By (6.3), we may define a lift δ̌Q : X → Z of the mod 2 grading δ̌ from (2.15) by

δ̌Q(x) = grQ(x)− (ι(WI∞) + w(I)) + l. (6.4)

Note that all cobordisms WIJ over the hypercube satisfy σ(WIJ) = 0. This is easily seen for

an elementary cobordism, and follows in general from signature additivity. So using (1.9),

we may expand δ̌Q(x) as

δ̌Q(x) = grQ(x)− 1
2
b1(YI)−

1
2
w(I)− 1

2
σ(W0∞) +

1
2
b1(Σ(L)).

Finally, we compare δ(x) with δ̌Q:

δ(x)− δ̌Q(x) =
1
2

(σ(W0∞) + n+ − b1(Σ(L))).

=
1
2

(σ(L)− ν(L))

The last line follows from Lemma 6.1.3 below. Reducing mod 2, we have the first claim of

Theorem 6.0.13.

For the remaining claim about the determinant, note that when ν(L) = 0 we have

χδ̌(E
2) = (−1)σ(L)/2χδ(K̃h(L)) = (−1)σ(L)/2VL(−1) = det(L),
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where VL(q) denotes the Jones polynomial of L, and when ν(L) > 0 all of the above terms

vanish. Alternatively, one can show that the number of spinc structures on −Σ(L) is det(L)

and that

χgr(2)(H̃M•(−Σ(L), s))

is one when ν(L) = 0, and vanishes otherwise.

Lemma 6.1.3. The signature and nullity of L are given by

σ(L) = σ(W0∞) + n+

ν(L) = b1(Σ(L))

Proof. The nullity ν(L) is sometimes defined as the nullity of any symmetric Seifert matrix

S for L, and sometimes as b1(Σ(L)). These definitions are equivalent since S presents

H1(Σ(L)).

We will prove the formula for σ(L) by relating σ(W0∞) to the signature of a certain

4-manifold XL bounding Σ(L). Recall that the diagram D has a checkerboard coloring with

infinite region in white. The black area forms a spanning surface F for L with one disk for

each black region, and one half-twisted band for each crossing. View L as in the boundary

of D4, and push F into the interior. We then define XL as the branched double cover of

D4 over F . In [20], Gordon and Litherland show that the intersection form of XL is the

Goeritz form G associated to D, and that

−σ(L) = σ(G)− µ(D),

where µ(D) = c−d (see Figure 6.4). The minus sign in front of σ(L) is due to the fact that

the signature convention in [20] is the opposite of ours. Using the relations

w(B) = b+ c

n− = b+ d

we can also express µ(D) as

µ(D) = w(B)− n−.
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Therefore,

σ(L) = −σ(XL) + w(B)− n−. (6.5)

Figure 6.4: Four types of crossings in an oriented diagram with checkerboard coloring. The

letters a, b, c, and d denote the number of crossings of each type.

We now construct a Kirby diagram for XL (see Section 3 of [36] and Section 3 of [21]

for similar constructions). First, form the black graph resolution D(B) by resolving each

crossing so as to separate the black regions into islands (that is, 1-resolve a crossing if and

only if it is of type b or c in Figure 6.4). Draw a 1-handle in dotted circle notation along

the boundary of each black region in D(B). Next, add a 2-handle clasp at each crossing,

with framing +1 if the crossing is of type b or c, and −1 otherwise. Finally, delete one of

the 1-handles.

Next we construct a relative Kirby diagram for the cobordism WB∞. First turn all

but one of the circles in D(B) into 1-handles to get a surgery diagram for YB = Σ(D(B)),

regarded as the incoming end of WB∞. Next, introduce a 0-framed clasp at each of the

n − w(B) crossings corresponding to 0 digits of B. This gives a relative Kirby diagram

for the cobordism WB1 . Finally, introduce −1 framed clasps at each of the remaining

crossings, and −1 framed meridians on each of the 0-framed clasps. This gives a relative

Kirby diagram for the cobordism WB∞. After pulling off and blowing down all n − w(B)

of the −1 framed meridians, and filling in the incoming end with a boundary connect sum

of copies of S1 ×D3, we recover the Kirby diagram for −XL. Therefore,

σ(WB∞) = −σ(XL)− (n− w(B)).
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Combined with (6.5), we conclude

σ(L) = −σ(XL) + w(B)− n−

= σ(WB∞) + (n− w(B)) + w(B)− n−

= σ(W0∞) + n+.

For the last line, note that since σ(W0B) vanishes, signature additivity implies that σ(W0∞) =

σ(WB∞).

Modifying the above proof, we obtain the signature formula in Section 5:

Alternative proof of the signature formula in Theorem 5.0.2. Recall the construction of the

surgery diagram L′ for −Σ(L), as in Figure 6.2. Let ZL be the 4-manifold obtained by

attaching 2-handles along L′. By construction, ZL bounds −Σ(L). Just as in the above

proof, a Kirby diagram argument shows that

σ(W0∞) = σ(WI∗∞) = σ(ZL)− (n− w(I∗)) = σ(A)− (n− w(I∗)),

where A is the linking matrix of L, which is congruent to the linking matrix of the arcs in

Theorem 5.0.2. From Lemma 6.1.3, we arrive at the formula

σ(L) = σ(W0∞) + n+

= σ(A) + w(I∗)− n−.

6.1.2 Invariance

We now turn to the proof of Theorem 6.0.12, which describes the extent to which the

spectral sequence depends on the choice of diagram for the link L.

Proof of Theorem 6.0.12. Let D1 and D2 be two diagrams of the oriented link L ⊂ S3.

Let X(Di) represent the hypercube complex associated to diagram Di, for some choice of

analytic data (which we may suppress by Theorem 2.0.2). The goal is to construct a filtered

chain map

φ : X(D1)→ X(D2)
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which induces an isomorphism on the E2 page, and therefore on all higher pages as well. It

suffices to consider the case where D1 and D2 differ by a single Reidemeister move.

In [5], Baldwin defines such a map φ for each of the three Reidemeister moves. While he

was considering the Heegaard Floer version of the spectral sequence, his maps have direct

analogues in the monopole Floer case. The difficult part is proving that φ induces a homo-

topy equivalence from C̃Kh(D1) to C̃Kh(D2) on the E1 page. However, this argument only

involves properties of the Khovanov differential, drawing heavily on the proof that Kho-

vanov homology is a bigraded link invariant (see [34]). It is also clear from the construction

that φ preserves the bigrading on Khovanov homology, and therefore δ̌.

Now, suppose links L1 and L2 are related by a mutation. Fix diagrams D1 and D2 for

L1 and L2 which exhibit the mutation. Let L′1 and L′2 be the associated framed links in S3,

and let L1 and L2 be the associated framed links in −Σ(L1) and −Σ(L2). In Section 4.3,

we proved that there is an orientation-preserving diffeomorphism

ψ′ : S3 → S3

for which ψ(L′1) and L′2 are isotopic as framed links. This implies that there is an orientation-

preserving diffeomorphism

ψ : −Σ(L1)→ −Σ(L2)

for which ψ(L1) and L2 are isotopic as framed links. Appealing to Theorem 2.0.2, we

conclude that the Ei pages of the spectral sequences associated to D1 and D2 are isomorphic

for all i ≥ 1.

6.2 The spectral sequence for a family of torus knots?

In order to illustrate the spectral sequence in action, we now present an example which is

both speculative and, we hope, compelling. Consider the family of torus knots given by

{T (3, 6n± 1) |n ≥ 1}.

For this family, the unreduced Khovanov homology with coefficients in Q takes the form

of repeating blocks, and is stable, up to a shift in quantum grading, as n grows [41],
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[45]. Watson recently deduced a similar structure over F2 up to a repeating indeterminate

summand [47]. Computing K̃h(T (3, 6n ± 1)) explicitly for several values of n using Bar-

Natan’s KnotTheory package [4], a consistent pattern emerges, as shown in Figure 6.5.

Assuming this pattern persists, up to a shift in quantum grading, we then have inclusions

K̃h(T (3, 5)) ⊂ K̃h(T (3, 7)) ⊂ K̃h(T (3, 11)) ⊂ K̃h(T (3, 13)) ⊂ · · · .

Conjecture 6.2.1. For each such torus knot, and some choice of analytic data and diagram,

the higher differentials are as shown in Figure 6.5. In particular, the spectral sequence

converges at the E4 page, and the above inclusions on the E2 page extend to the E3 and E4

pages.

One intriguing way to frame this conjecture is as follows. Using the (t, q)-bigrading in

Figure 6.5, we may define higher δ-polynomials by

UkT (3,6n±1)(δ) =
∑
i,j

(−1)i rkEki,j(T (3, 6n± 1)) δj/2−i

for each k ≥ 2. Then Conjecture 6.2.1 implies that the δ-polynomials on the E2 and E3

pages are monic monomials, while

U4
T (3,6n±1)(δ) = δσ/2 − δσ/2+1 + δσ/2+2 − · · ·+ δs/2. (6.6)

Here s denotes Rasmussen’s s-invariant. We emphasize that these polynomials will in

general depend on the branch set (not only on the branched double-cover), even on the

E∞ page, as we show in Proposition 8.2.5. Still, it would be interesting to compare (6.6)

with the polynomials arising from Greene’s conjectured δ-grading on ĤF(−Σ(T (3, 6n± 1)),

which may also depend on the branch set. This grading is defined in Section 8 of [21] using

a special Heegaard diagram associated to the link diagram.

Our primary evidence for Conjecture 6.2.1 comes from [5], where Baldwin deduces that

the Heegaard Floer spectral sequence for T (3, 5) is as shown in Figure 6.5. His argument uses

the Khovanov and Heegaard Floer contact invariants to show that the lower left generator

survives to E∞ for every torus knot. This is the only survivor in the case of T (3, 5), as the

branched double cover is the Poincaré homology sphere. We have not rigorously computed



CHAPTER 6. FROM KHOVANOV HOMOLOGY TO MONOPOLE FLOER
HOMOLOGY 110

Figure 6.5: Each dot represents an F2 summand of K̃h(T (3, 6n ± 1)) in the (t, q)-plane.

The diagonal δ = σ/2 is heavily shaded and the diagonal δ = s/2 is lightly shaded (unless

s = σ). The d2 and d3 differentials are in red and blue, respectively, as are their victims.

The surviving (black) dots generate H̃M•(−Σ(2, 3, 6n ± 1)). The shaded diagonals also

correspond to δ̌Q = 0 and δ̌Q = (2n− 1)± 1. For n ≥ 1, there is precisely one black dot on

each diagonal in this range, giving the expected rank of E∞ in each gr(2) grading.
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the monopole Floer spectral sequence even in this case, since we lack an analogous contact

invariant.

As further evidence, we cite the compatibility of H̃M•(−Σ(T (3, 6n − 1))) with the E∞

page implied by our conjecture. The branched double cover of T (3, 6n± 1) is the Brieskorn

integer homology sphere

Σ(2, 3, 6n± 1),

which arises by 1/(6n± 1) Dehn surgery on a trefoil knot (the right-handed one for 6n+ 1

and the left-handed one for 6n−1). Using the surgery exact triangle, gradings, and module

structure, the Heegaard Floer groups HF +(Σ(2, 3, 6n± 1)) are explicitly calculated in [35].

The same techniques should apply in the monopole case to show directly, using (2.20), that

H̃M•(−Σ(2, 3, 6n− 1)) = Z(−2) ⊕
(
Z(−2) ⊕ Z(−1)

)n−1

H̃M•(−Σ(2, 3, 6n+ 1)) = Z(0) ⊕
(
Z(0) ⊕ Z(1)

)n
where the subscript denotes grQ grading (see also [33]). Indeed, we carry this out for n = 1

in Section 8.2. For general n, we may also appeal to the equivalence of Heegaard and

monopole Floer groups announced in [28]. In particular,

rk H̃M•(−Σ(2, 3, 6n± 1)) = 2n± 1

and so the δ̌-graded ranks on our conjectural E4 page are compatible with the gr(2)-graded

ranks on H̃M•(−Σ(2, 3, 6n± 1)), as required by Theorem 6.0.13.

For links such that the (t, q) bigrading on the higher pages is well-defined, we may

encode the higher pages of the spectral sequence in the form of a 2-variable higher Khovanov

polynomial, given by

EkL(t, q) =
∑
i,j

rkEki,j(L) tiqj

for each k ≥ 2. We then obtain higher Jones polynomials, given by

V k
L (q) = EkL(−1, q1/2)

for each k ≥ 2. The ordinary Jones polynomial VL(q) coincides with V 2
L (q). Furthermore,

if L is quasi-alternating, then V k
L (q) = VL(q) for all k ≥ 2.



CHAPTER 6. FROM KHOVANOV HOMOLOGY TO MONOPOLE FLOER
HOMOLOGY 112

We now record in full the various higher polynomials associated with the differentials in

Figure 6.5, in order to provide a (conjectural) data-set to aid in the search for a combinatorial

description (in fact, one possible description has recently been suggested by Szabó [43], see

the discussion following Corollary 8.0.12). For comparison, we include the polynomials on

the E2 page as well. Note that the optimal input for an algorithm may not be a diagram

of the link itself, but rather the arc-linking data which encodes the mutation equivalence

class, as described in Remark 6.1.2.

Conjecture 6.2.2. Let Sn = T (3, 6n+ 1) and let T n = T (3, 6n− 1). Set

fn(t, q) =
n−1∑
k=0

t8kq12k fn(q) =
n−1∑
k=0

q6k

For each n ≥ 1, the higher Khovanov polynomials are given by

q−sE2
Sn(t, q) = 1 +

(
(t8q12 + t5q16) + (t3q6 + t6q10) + (t2q4 + t4q6 + t5q10 + t7q12)

)
fn(t, q)

q−sE3
Sn(t, q) = 1 +

(
(t8q12 + t5q16) + (t3q6 + t6q10)

)
fn(t, q)

q−sE4
Sn(t, q) = 1 + (t8q12 + t5q16)fn(t, q)

q−sE2
T n(t, q) = 1 + (t8q12 + t5q16)fn−1(t, q) +

(
(t3q6 + t6q10) + (t2q4 + t4q6 + t5q10 + t7q12)

)
fn(t, q)

q−sE3
T n(t, q) = 1 + (t8q12 + t5q16)fn−1(t, q) + (t3q6 + t6q10)fn(t, q)

q−sE4
T n(t, q) = 1 + (t8q12 + t5q16)fn−1(t, q)

The higher Jones polynomials are given by

q−s/2 V 2
Sn(q) = 1 + q2 − q6n+2

q−s/2 V 3
Sn(q) = 1 +

(
(q6 − q8) + (−q3 + q5)

)
fn(q)

q−s/2 V 4
Sn(q) = 1 + (q6 − q8)fn(q)

q−s/2 V 2
T n(q) = 1 + q2 − q6n

q−s/2 V 3
T n(q) = 1 + (q6 − q8)fn−1(q) + (−q3 + q5)fn(q)

q−s/2 V 4
T n(q) = 1 + (q6 − q8)fn−1(q)
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The higher δ-polynomials are given by

δ−σ/2 U2
Sn(δ) = 1

δ−σ/2 U3
Sn(δ) = 1

δ−σ/2 U4
Sn(δ) = 1− δ + δ2 − · · ·+ δ2n

δ−σ/2 U2
T n(δ) = δ−1

δ−σ/2 U3
T n(δ) = δ−1

δ−σ/2 U4
T n(δ) = 1− δ + δ2 − · · ·+ δ2n−2

Here s(Sn) = 12n, s(T n) = 12n− 4, and σ(Sn) = σ(T n) = 8n. So both U4
Sn(δ) and U4

T n(δ)

may be expressed as

δσ/2 − δσ/2+1 + δσ/2+2 − · · ·+ δs/2.
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Chapter 7

Donaldson’s TQFT

7.1 The algebraic perspective

The identity of the E2 page in Theorem 6.0.11 may be understood as follows. To a diagram

of a link L ⊂ S3, we associate a framed link L ⊂ −Σ(L). With respect to L, the link surgery

hypercube of 3-manifolds Y (I) and 4-dimensional 2-handle cobordisms W (IJ) is precisely

the branched double cover of the Khovanov hypercube of 1-manifolds D(I) ⊂ S3 and 2-

dimensional 1-handle cobordisms F (IJ) ⊂ S3 × [0, 1], as illustrated for the trefoil knot

in Figures 6.2 and 6.3. Furthermore, the functor H̃M• and the functor CKh underlying

Khovanov’s unreduced theory over F2 fit into the commutative square of functors in Figure

7.1.

Figure 7.1: Commutative diagram relating the functors H̃M• and CKh.

Here S(IJ) : U(I) → U(J) and T (IJ) : V (I) → V (J) represent the induced maps of

F2-vector spaces with respect to each theory. If we replace CKh with the reduced Khovanov
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functor C̃Kh over F2, then the vertical arrow at right induces an equivariant isomorphism

of vector spaces. Consequently, we may identify the complex (E1, d1) with C̃Kh(L), and

hence E2 with K̃h(L).

In fact, when I and J are immediate successors, the entire commutative diagram admits

a more elementary and unified description. Both horizontal arrows may be regarded as an

instance of a TQFT described by Donaldson in [16]. The algebraic basis for his construction

is as follows. To an F2-vector space U , we associate the exterior algebra Λ∗U . To a linear

map i : Γ → U0 ⊕ U1, we associate a map |Γ| : Λ∗U0 → Λ∗U1 defined as follows. Let k

and n be the dimensions of Γ and U0, respectively. By taking the exterior product of the

images of the elements in any basis of Γ, we obtain an element of Λk(U0 ⊕ U1), which may

be regarded as a map via the series of isomorphisms

Λk(U0 ⊕ U1) ∼=
⊕k

i=0 ΛiU0 ⊗ Λk−iU1

∼=
⊕k

i=0 (Λn−iU0)∗ ⊗ Λk−iU1

∼=
⊕k

i=0 Hom(Λn−iU0,Λk−iU1).

Given i1 : Γ1 → U0 ⊕ U1 and i2 : Γ2 → U1 ⊕ U2, we define the composition i : Γ→ U0 ⊕ U2

by setting

Γ = {(x, z) ∈ Γ1 ⊕ Γ2 | i1(x)|U1 = i2(z)|U1}

and i(x, z) = (i1(x)|U0 , i2(z)|U2). If i1 and i2 are transverse as maps into U1, then indeed

|Γ| = |Γ2| ◦ |Γ1|.

To a manifold M , Donaldson assigns the exterior algebra Λ∗H1(M). To a cobordism

N : M0 →M1, he assigns the map

|H1(N)| : Λ∗H1(M0)→ Λ∗H1(M1),

obtained from the restriction H1(N) → H1(∂N) ∼= H1(M0) ⊕H1(M1). We refer to these

assignments as Donaldson’s TQFT, even though Λ∗H1 is not a functor in general, as the

transversality condition may fail to hold (see Remark 7.1.1 below). However, for I and J

immediate successors, the above commutative diagram may be rewritten in terms of Λ∗H1

as shown in Figure 7.2, as explained below. Since CKh and H̃M• are indeed functors, the

first commutative diagram then holds for all I < J , not only immediate successors.
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Figure 7.2: For immediate successors I < J , the commutative diagram in Figure 7.1 is iden-

tified with the commutative diagram above, with both rows given by Donaldson’s TQFT.

We explain the vertical map (Λ∗ρ)∗ at right in the diagram. For any link L in S3, the

exact sequence

H1(S3, L)→ H0(L)→ H0(S3)→ 0

gives an isomorphism H1(S3, L) ∼= H̃0(L). There is a natural map H̃0(L) ∼= H1(S3, L) →

H1(Σ(L)) which takes a relative 1-cycle to its preimage. Dually, there is a map

ρ : H1(Σ(L))→ H1(S3, L) ∼= H̃0(L) ⊂ H0(L) ∼= H1(L),

which induces a map on exterior algebras

Λ∗ρ : Λ∗H1(Σ(L))→ Λ∗H1(L).

The vertical map is given by this map precomposed with the Hodge dual ∗ on Λ∗H1(Σ(L)).

Here L equals D(I) or D(J).

The equivalence of the two commutative diagrams when I and J are immediate succes-

sors may be understood as follows. The manifold Y (I) admits a metric of positive scalar

curvature, so it follows from Proposition 36.1.3 of [24] that H̃M•(Y (I)) is the cohomology

of the torus T(Y (I)) = H1(Y (I); R)/H1(Y (I); Z), parameterizing flat U(1)-connections on

Y (I) modulo gauge. The cobordism W (IJ) also admits a metric of positive scalar curvature,

and indeed, we establish in Section 7.3 below that for elementary 2-handle cobordisms, the

map H̃M•(W (IJ)) coincides with the map on cohomology induced by the correspondence

between tori defined by flat connections over W (IJ). As Donaldson observes, the map on

cohomology induced by such a correspondence is encoded in the above TQFT. Along the
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bottom row, note that Donaldson’s TQFT is a bona fide functor in 1 + 1 dimensions, and

one may easily check that the same Frobenius algebra underlies both Λ∗H1 and CKh with

F2 coefficients.

Remark 7.1.1. The transversality needed for the functoriality in Donaldson’s TQFT fails

to hold in 3 + 1 dimensions. The simplest such failure is that of a single circle splitting

and re-merging. Then F (IJ) is the complement of two disks in the 2-torus, and W (IJ)

is the (simply-connected) complement of two balls in S2 × S2. Tracing definitions, we see

Λ∗H1(F (IJ)) = 0 whereas Λ∗H1(W (IJ)) = Id. More generally, if F (IJ) has positive genus,

then the restriction map from H1(F (IJ)) has non-trivial kernel, and thus Λ∗H1(F (IJ)) =

0, whereas Λ∗H1(W (IJ)) is non-zero even though H̃M•(W (IJ)) vanishes1. Conversely,

if the genus of F (IJ) is zero, then indeed Λ∗H1(W (IJ)) = H̃M•(W (IJ)) and the two

commutative diagrams coincide.

Remark 7.1.2. The arrows on a decorated link diagram may be used to specify homology

orientations2 on both F (IJ) and W (IJ). In this way, the entire commutative diagram in

Figure 7.1 lifts to Z coefficients, with H̃M• along the top row and the odd Khovanov TQFT,

or equivalently Donaldson’s TQFT, along the bottom row. We will return to this in future

work concerning a lift of the spectral sequence to Z coefficients.

7.2 The geometric perspective

In the previous section, we described Donaldson’s TQFT, there denoted Λ∗H1, from an

algebraic standpoint. We now elaborate on its geometric interpretation in order to make

explicit its relationship to monopole Floer homology. The group Λ∗H1(Y ) arises geometri-

1Note that b+2 (W (IJ)) coincides with the genus of F (IJ). So when this genus is positive, we may directly

deduce that gHM•(W (IJ)) vanishes from the fact that W (IJ) admits a positive scalar curvature metric with

cylindrical ends.

2In Donaldson’s TQFT, a homology orientation on the cobordism N : M0 →M1 is an orientation of the

line ΛmaxH1(N ; R)⊗ΛmaxH1(M0; R). This determines an overall sign on the map Λ∗H1(N). The definition

of homology orientation in monopole Floer homology reduces to this one for cobordisms with b+2 = 0 (see

Definition 3.4.1 of [24] for details).
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cally as the homology group H∗(T(Y )) of the torus

T(Y ) = H1(Y ; R)/H1(Y ; Z)

parameterizing flat U(1)-valued connections on Y mod gauge. A cobordism W : Y0 → Y1

gives rise to a correspondence

T(Y0) r0←− T(W ) r1−→ T(Y1) (7.1)

by restriction of connections. The Donaldson map Λ∗H1(W ) then arises as the map on

homology groups

fW : H∗(T(Y0))→ H∗(T(Y1))

given by “pull-up/push-down”. More precisely,

fW = (r1)∗ ω−1
W r∗0 ωY0

where ωY0 and ωW denote the two Poincaré duality isomorphisms3

ωY0 :H∗((T(Y0))→ H∗((T(Y0))

ωW :H∗((T(W ))→ H∗((T(W )).

The degree of fW is given by b1(W )− b1(Y0). The homology group H∗(T(Yi)) is a module

over the cohomology group H∗(T(Yi)) via the cap product. The map fW is natural with

respect to the cap product in the following sense: if γ0 ∈ H∗(T(Y0)), γ1 ∈ H∗(T(Y1)), and

r∗0(γ0) = r∗1(γ1) (7.2)

then

fW (γ0 ∩ x) = γ1 ∩ fW (x) (7.3)

for each x ∈ H∗(T(Y0)).

3Unless otherwise specified, we continue to use F2 coefficients, so H∗(T(Y )) = H∗(T(Y ); F2) and Poincaré

duality is well-defined without additional orientation data. See Section 2.8 of [24] for an equivalent Morse

theoretic construction of fW .
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Remark 7.2.1. In particular, if Im(r∗0) ⊂ Im(r∗1), then fW is determined by its value on

the fundamental class of T(Y0). This is the case, for example, whenever W is the trace of

surgery on a framed link.

Kronheimer and Mrowka develop a related module structure in monopole Floer homol-

ogy (see Sections 3.2 and 23.2 of [24]). Indeed, the group

̂

HM •(Y ), as well as its relatives, is

a module over the ordinary cohomology ring of the ambient space Bσ(Y ) via a cap product

∩ : H∗(Bσ(Y ))×

̂

HM •(Y )→

̂

HM •(Y )

which is natural with respect to cobordism maps, as we now explain. The space Bσ(Y ) is

a union over spinc structures s of components Bσ(Y, s) of homotopy type

Bσ(Y, s) ∼= T(Y )× CP∞,

and there is a canonical identification4 of cohomology rings

H∗(Bσ(Y, s)) = H∗(T(Y ))⊗ F2[U ].

Similarly, given a cobordism W : Y0 → Y1 equipped with a spinc structure t, we have

H∗(Bσ(W, t)) = H∗(T(W ))⊗ F2[U ].

Letting si denote the restriction of t to Yi, there is a (partially-defined) correspondence

Bσ(Y0, s0)← Bσ(W, t)→ Bσ(Y1, s1)

which induces bona fide maps on cohomology rings of the form

H∗(T(Y0))⊗ F2[U ]
r∗0⊗Id
−−−−→ H∗(T(W ))⊗ F2[U ]

r∗1⊗Id
←−−−− H∗(T(Y1))⊗ F2[U ].

where r∗0 and r∗1 are the same maps that appear in (7.2). The map

̂

HM •(W, t) is natural

with respect to the cap product in the following sense: if γ0 ∈ H∗(T(Y0)), γ1 ∈ H∗(T(Y0)),

and

r∗0(γ0) = r∗1(γ1)

4The configuration space Bσ(Y, s) also depends on a choice of metric, but the cohomology ring of the

space is independent of the metric up to canonical isomorphism.
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then ̂

HM •(W, t)((γ0 ⊗ Un† ) ∩ x) = (γ1 ⊗ Un† ) ∩

̂

HM •(W, t)(x) (7.4)

for each x ∈

̂

HM •(Y0, s0). Here we continue to adopt the convention in [24] of using the

subscript † on U to emphasize the module structure with respect to cap product. After

completion,

̂

HM •(Y ) and its companions are modules over the completed, graded ring

H∗(T(Y )) ⊗ F2[[U†]], with U† in degree −2 and γ ∈ Hd(T(Y )) in degree −d. The group

H̃M•(Y ) inherits the structure of a module over H∗(T(Y )) ⊗ F2[[U)†]] from

̂

HM •(Y ), in

which U† acts by zero. For this reason, we will consider H̃M•(Y ) as a module over H∗(T(Y )).

7.3 Monopole Floer homology and positive scalar curvature

In the presence of positive scalar curvature, this module structure takes a particularly

explicit form:

Theorem 7.3.1 (Kronheimer, Mrowka). Suppose Y admits a metric of (strictly) positive

scalar curvature. For each spinc-structure s with c1(s) torsion, we have canonical isomor-

phisms5

ĤM•(Y, s) = H∗(T(Y ))⊗ F2[[U†]]

HM•(Y, s) = H∗(T(Y ))⊗ F2[[U†, U−1
† ]̂

HM •(Y, s) = H∗(T(Y ))⊗ F2[[U†, U−1
† ]/F2[[U†]]

as relatively Q-graded modules over H∗(T(Y ))⊗F2[[U†]], where the action on the right-hand

side is by cap product on the first factor and by multiplication on the second factor. If c1(s)

is not torsion, then the Floer groups are zero.

Proof. We outline the argument given in Section 36 of [24] (see Proposition 36.1.3 in partic-

ular). The structure of HM•(Y, s) as a module follows from the general structure theorem

5Note that dHM•(Y, s) and H∗(T(Y )) ⊗ F2[[U†]] are rank one, free modules over the same ring, each

with a unique generator, and thus canonically isomorphic. The two remaining isomorphisms are specified

by insisting on naturality with respect to the short exact sequences of modules associated to the left- and

right-hand sides of the three equations.
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of Section 35, using the fact the that triple cup product on Y is trivial. Considering the

underlying complex C̄(Y, s), we may regard the perturbation of the equations as a choice

of Morse function f on the torus T(Y ). If we replace f with εf for sufficiently small ε then

all critical points are reducible and ∂̄us = 0, using the Weitzenböck formula. This formula

also rules out spectral flow, which implies that ∂̄su = 0 for grading reasons. In particular,

Č(Y, s) = Cs(Y, s), ∂̌ = ∂̄ss

C̄(Y, s) = Cs(Y, s)⊕ Cu(Y, s), ∂̄ =

 ∂̄ss 0

0 ∂̄uu


Ĉ(Y, s) = Cu(Y, s), ∂̂ = ∂̄uu

and the module structures on

̂

HM •(Y, s) and ĤM•(Y, s) are inherited via the decomposition

C̄(Y, s) = Č(Y, s)⊕ Ĉ(Y, s){−1} (7.5)

where {−1} shifts the degree of each element of Ĉ(Y, s) down by one.

Remark 7.3.2. Theorem 7.3.1 says that, over a torsion spinc structure, each version of

the monopole Floer homology of Y reduces to Donaldson’s TQFT tensor the appropriate

F2[[U ]]-module. Theorem 7.3.3 below says that, for certain cobordisms, the Floer maps

similarly reduce to those of Donaldson’s TQFT as well.

We continue to suppose Y is an oriented, closed, connected 3-manifold with a positive

scalar curvature metric. By work of Schoen and Yau, the manifold Y decomposes as the

sum of copies of S1 × S2 and a rational homology sphere6. Let

Y0 = Y

and

Y1 = Y#(S1 × S2).

Consider the cobordism

W ′ : Y0 → Y1

6By Thurston’s geometrization conjecture, this rational homology sphere is a sum of spherical space

forms. Also note that the sum of positive scalar curvature manifolds admits such a metric as well.
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given by 0-surgery on an unknot, and the dual cobordism

W ′′ : Y1 → Y0

given by 0-surgery on the circle factor in S1×S2. Let k = b1(Y ), so that the dimensions of

T(Y0) and T(Y1) are k and k + 1, respectively. The Donaldson maps

fW ′ : H∗(T(Y0))→ H∗(T(Y1))

and

fW ′′ : H∗(T(Y1))→ H∗(T(Y0))

are non-trivial and determined via the cap product by their values on the fundamental

classes Φk and Φk+1 of T(Y0) and T(Y1), respectively (see Remark 7.2.1). Since fW ′′ has

degree −1, we have

fW ′′(Φk+1) = Φk. (7.6)

Let γ′ be the generator of the kernel of r∗1 : H1(T(Y1))→ H1(T(W )). By (7.3), we have

γ′ ∩ fW ′(Φk) = fW ′(0 ∩ Φk) = 0.

Since fW ′ has degree 0, the element fW ′(Φk) must generate the 1-dimensional kernel of γ′

acting on Hk(T(Y1)). Thus

fW ′(Φk) = γ′ ∩ Φk+1. (7.7)

By a parallel argument, we now determine the Floer maps associated to W ′ and W ′′.

Theorem 7.3.3. Let W be either W ′ or W ′′. Let t be a spinc structure on W with c1(t)

torsion7. Then with respect to the canonical isomorphisms in Theorem 7.3.1, we have:

ĤM•(W, t) = fW ⊗ IdF2[[U†]] (7.8)

HM•(W, t) = fW ⊗ IdF2[[U†,U
−1
† ] (7.9)̂

HM •(W, t) = fW ⊗ IdF2[[U†,U
−1
† ]/F2[[U†]]

(7.10)

7Note that the topology of W is such that c1(t) is torsion if and only if c1(t)|∂W is torsion. In fact,

restriction of torsion spinc structures on W gives a 1-to-1 correspondence between torsion spinc structures

on the incoming and outgoing ends.
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Proof. We first establish (7.8). By Theorem 7.3.1, the element Φk+i⊗1 generates ĤM•(Yi, si)

as a rank one, free module over H∗(T(Yi)) ⊗ F2[[U†]]. By the compatibility of (7.3) and

(7.4), and Remark 7.2.1, it therefore suffices to show:

ĤM•(W ′, t)(Φk ⊗ 1) = fW ′(Φk)⊗ 1, (7.11)

ĤM•(W ′′, t)(Φk+1 ⊗ 1) = fW ′′(Φk+1)⊗ 1. (7.12)

We will prove (7.12) first, and then use it to prove (7.11). The map ĤM•(W ′′, t) is

surjective since the identity cobordism on Y0 factors as

Y0 × [0, 1] = W ′′ ◦W1

where W1 is a 1-handle attachment. In particular, Φk+1 ⊗ 1 has non-zero image. Since

Φk+1 ⊗ 1 and Φk ⊗ 1 each generate the top-most graded piece of their respective Floer

groups, and ĤM•(W ′′, t) has a well-defined degree, it must be the case that

ĤM•(W ′′, t)(Φk+1 ⊗ 1) = Φk ⊗ 1, (7.13)

which implies (7.12) by (7.6).

Since both W ′ and W ′′ have unit Euler characteristic and vanishing intersection form,

the associated degrees are d(W ′, t) = 0 and d(W ′′, t) = −1 by (1.10). So (7.13) implies that

grQ(Φk ⊗ 1) = grQ(Φk+1 ⊗ 1)− 1

and thus

ĤM•(W ′, t)(Φk ⊗ 1) ∈ Hk(T(Y1))⊗ 1.

Furthermore, the map ĤM•(W ′, t) is injective since the identity cobordism on Y0 factors as

Y0 × [0, 1] = W3 ◦W ′

where W3 is a 3-handle attachment. Thus Φk ⊗ 1 has non-zero image. Since (7.4) implies

(γ′ ⊗ 1) ∩ ĤM•(W ′, t)(Φk ⊗ 1) = ĤM•(W ′, t)((0⊗ 1) ∩ (Φk ⊗ 1) = 0,

the image of Φk⊗1 must generate the 1-dimensional kernel of γ′⊗1 acting on Hk(T(Y1))⊗1.

Thus

ĤM•(W ′, t)(Φk ⊗ 1) = (γ′ ∩ Φk+1)⊗ 1,
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which implies (7.11) by (7.7).

We now turn to proving (7.9). We may assume that W is equipped with a metric and

perturbation that are compatible with the choices made in the proof of Theorem 7.3.1, so

that ∂̄su = ∂̄us = ∂us = 0 on both Y0 and Y1. In this case, the Floer chain maps associated to

W only involve reducibles:

m̂ = m̄u
u

m̄ =

 m̄s
s m̄u

s

m̄s
u m̄u

u


m̌ = m̄s

s.

Furthermore, in sufficiently low grQ grading, we have

m̄(W, t) =

 0 0

0 m̄u
u(W, t)


simply because all critical points on either end (Yi, si) in sufficiently low grQ grading are

boundary unstable and m̄(W, t) has a well-defined, finite degree. Therefore 7.8 implies (7.9)

in sufficiently low grQ grading. Since U† is invertible on HM•(Y1, s1), we conclude from the

naturality expressed in (7.4) that (7.9) holds in all gradings.

Now (7.9) similarly implies (7.10) in sufficiently high grQ grading. Since U† is surjective

on

̂

HM •(Y0, s0), we conclude from (7.4)that (7.10) holds in all gradings.

Remark 7.3.4. The above argument applies essentially verbatim to the case of Z coeffi-

cients (up to an overall sign determined by homology orientations). Note that (7.11) may

also be deduced from (7.12) using a form of duality for cobordism maps (see Proposition

25.5.3 of [24]).

With Y as above, the map U† is surjective on H̃M•(Y ). The exact sequence

0 −→ H̃M•(Y ) −→

̂

HM •(Y )
U†−→

̂

HM •(Y ) −→ 0

then identifies H̃M•(Y ) with the submodule Ker(U†) ⊂

̂

HM •(Y ). From Theorems 7.3.1 and

7.3.3, we have:
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Corollary 7.3.5. Suppose Y admits a metric of (strictly) positive scalar curvature. For

each spinc-structure s with c1(s) torsion, we have a canonical isomorphism

H̃M•(Y, s) = H∗(T(Y )) (7.14)

as relatively Q-graded, rank one, free modules over H∗(T(Y )) acting by cap product. If c1(s)

is not torsion, then the Floer group is zero.

Let the cobordism W be either W ′ or W ′′. Let t be a spinc structure on W with c1(t)

torsion. Then with respect to (7.14), we have

H̃M•(W, t) = fW .

So for these cobordisms, the functor H̃M• is canonically identified with Donaldson’s TQFT.

Remark 7.3.6. Proposition 6.1.1 is a reinterpretation of Corollary 7.3.5, with the generator

of Λ0H1(Y ) identified with the fundamental class of H∗(T(Y )).

We now specialize to the case of Y = #k(S1 × S2). The Floer groups of Y are sup-

ported over the unique torsion spinc structure, so we are free to omit it from the notation.

Furthermore, the gradings grQ and ḡrQ take values in Z:

Proposition 7.3.7. Let Y = #k(S1 × S2). Then then we have

H̃M•(Y ) = H∗(T(Y ))

as absolutely Z-graded modules over H∗(T(Y )). More generally, we have

ĤM•(Y ) = H∗(T(Y ))⊗ F2[[U†]]{−1}

HM•(Y ) = H∗(T(Y ))⊗ F2[[U†, U−1
† ]{−2}̂

HM •(Y ) = H∗(T(Y ))⊗ F2[[U†, U−1
† ]/F2[[U†]]{−2}

as absolutely Z-graded modules over H∗(T(Y ))⊗ F2[[U†]].

Proof. Let x ∈

̂

HM •(Y ) be the generator of lowest degree. We first prove that grQ(x) = 0

by induction on k ≥ 0. This is true by definition in the base case Y = S3. For the induction

step, consider the cobordism

W ′ : #k(S1 × S2)→ #k+1(S1 × S2)
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given by 0-surgery on an unknot. The map

̂

HM •(W ′) has degree 0, and sends the lowest

degree generator of

̂

HM •(#k(S1 × S2)) to that of

̂

HM •(#k+1(S1 × S2)) by Theorem 7.3.3.

This completes the induction.

Let x0 be the generator of H0(T(Y )). With respect to the isomorphism in Theorem

7.3.1, the generator x ∈

̂

HM •(Y ) corresponds to x0 ⊗ U−1
† . The latter has degree 2, which

accounts for the shift [−2] in the case of

̂

HM •(Y ). The shifts for HM•(Y ) and ĤM•(Y ) now

follow from (7.5). There is no shift for H̃M•(Y ) because its lowest degree generator is also

x and the degree of x0 alone is 0.



CHAPTER 8. KHOVANOV HOMOLOGY AND U† 127

Chapter 8

Khovanov homology and U†

In Chapter 6, we considered the H̃M• version of the spectral sequence associated to a

diagram of an oriented link L ⊂ S3. In this chapter, we investigate the other versions of the

spectral sequence for L. From the associated framed link L ⊂ −Σ(L), we may construct

a filtered complex (X, Ď) whose homology is isomorphic to
̂

HM •(−Σ(L)). As explained in

Remark 2.6.5, we may also construct an even, filtered chain map Ǔ : X → X, which is a

sum of components

Ǔ = U0 + U1 + U2 + · · ·Ul

where Ui shifts ť by i. Let ui : Ei → Ei denote the induced filtered chain map on the Ei

page. Under the isomorphism E∞ ∼=

̂

HM •(−Σ(L)), the map u∞ is identified with U†. Let

u† : E2 → E2 denote the filtration-preserving component of u2.

Theorem 8.0.8. For the

̂

HM • version of the link surgery spectral sequence of L ⊂ −Σ(L),

we have

E2 ∼= K̃h(L)⊗ F2[[u†, u−1
† ]/F2[[u†]]

as a module over F2[[u†]]. The spectral sequence converges by the El+1 page to

̂

HM •(−Σ(L)).

For each k ≥ 2, the (ť, δ̌)-graded vector space Ek depends only on the mutation equivalence

class of L. The δ̌ grading on the spectral sequence coincides with

δ − 1
2

(σ(L)− ν(L)) mod 2

on the E2 page and gr(2) on the E∞ page. The ť grading on the spectral sequence coincides

with t+ n− on the E2 page. The dk differential shifts δ̌ by 1 and increases ť by k.
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Remark 8.0.9. Thereom 8.0.8 holds for HM• and ĤM• upon substituting the modules

F2[[u†, u−1
† ] and F2[[u†]], respectively. For HM•, we must also replace gr(2) with ḡr(2) and

similarly δ̌ with its analogue δ̄ defined using ḡr(2). For ĤM•, the δ̌ grading coincides with

δ + 1− 1
2

(σ(L)− ν(L)) mod 2

on the E2 page. We expect the three versions of the spectral sequence to fit into a long

exact sequence of spectral sequences, though have yet to work out the details.

Proof. Let u1
† : E1 → E1 denote the filtration-preserving component of u1, a chain map in

its own right. By construction, the map u1
† acts as U† on each summand

̂

HM •(YI) of the

E1 page. By Theorem 7.3.1, we have

E1 = C̃Kh(L)⊗ F2[[u1
† , (u

1
†)
−1]/F2[[u1

† ]]

as an F2[[u1
† ]]-module, and by Theorem 7.3.3 we have

d1 = ∂fKh
⊗ Id.

The chain map u1
† : E1 → E1 induces the map u† on E2 = H∗(E1, d1). We conclude that

E2 = K̃h(L)⊗ F2[[u†, u−1
† ]/F2[[u†]]

as an F2[[u†]]-module. The remaining statements follow from the H̃M• version.

We would expect a Heegaard Floer analogue of Ď to be U0-equivariant by definition,

allowing us to set Ui = 0 for i ≥ 1 and replace u† with u2 in the theorem. We do not see a

way to force this in the monopole setting, although we can still prove the following analog

of Corollary 6.0.14:

Corollary 8.0.10. If K̃h(L) is supported on a single diagonal, then all versions of the

spectral sequence collapse at the E2 page. In this case, for each spinc structure s on −Σ(L),

we have ̂

HM •(−Σ(L), s) = F2[[U†, U−1
† ]/F2[[U†]]

HM•(−Σ(L), s) = F2[[U†, U−1
† ]]

ĤM•(−Σ(L), s) = F2[[U†]]{1}

as absolutely Z/2Z-graded modules over F2[[U†]].
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Proof. As before, the spectral sequence collapses at E2 because this page is supported in

a single δ̌ grading (note that u† is an even map). The Lee spectral sequence implies that

K̃h(L) always has positive rank. So if det(L) vanishes, then K̃h
0
(L) and K̃h

1
(L) must have

equal, positive rank. From our hypothesis on K̃h(L), we conclude that det(L) is non-zero,

which implies that −Σ(L) is a rational homology sphere. Therefore, all spinc structures s

on −Σ(L) are torsion and the above structure of HM•(−Σ(L), s) is asserted by Proposition

35.3.1 of [24].

In the ĤM• case, the map u† : E2 → E2 is injective. As u† is the filtration-preserving

component of the filtered map u2, the latter map is injective as well. Since u2 = u∞, we

conclude that U† is injective on ĤM•(−Σ(L)).

Now the odd map p∗ in the exact sequence (1.1) identifies ĤM•(−Σ(L), s) with F2[[U†, U−1
† ]{1}

in sufficiently low grQ grading (where

̂

HM •(−Σ(L), s) vanishes). Let j0 ∈ Q be such a grad-

ing. Since ĤM•(−Σ(L), s) vanishes in sufficiently high grQ grading and U† is injective and

of degree −2, there must be some even integer k0 such that

ĤM j0+j(−Σ(L), s) =


F2 if j ≤ k0 and j even

0 otherwise

with U† sending the generator of each F2 summand down to the next generator. This com-

pletes the proof for ĤM•(−Σ(L), s). Finally, the exact sequence (1.1) forces the structure

of ĤM•(−Σ(L), s).

Recall that the differential Ď on X is a sum of components

Ď = Ď0 + Ď1 + Ď2 + · · · Ďl

where Ďi shifts ť by i. The complex (X, Ď0) is identified with (E0, d0). If Ď0 = 0, then the

complex (X, Ď1) is identified with (E1, d1). In fact, we can always guarantee this:

Lemma 8.0.11. We can choose metric and perturbation data on the spectral sequence in

Theorem 8.0.8 so that the d0 differential vanishes.

Proof. By Remark 2.5.6, it suffices to show we can choose a metric and perturbation for

#k(S1×S2) such that the differential vanishes. This is accomplished by choosing a positive
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scalar curvature metric and a sufficiently small perturbation modeled on a perfect Morse

function on the torus T(#k(S1 × S2)). For details, see the proof of Theorem 7.3.1.

Recall from Remark 2.6.5 that we can arrange for the total complex (X,D) which

computes H̃M•(−Σ(L)) to be identified with the mapping cone of Ǔ : X → X. We may

further suppose that d0 = 0 on X, with d1 identified with ∂fKh
⊗ Id on

E1 = C̃Kh(L)⊗ F2[[u1
† , (u

1
†)
−1]/F2[[u1

† ]].

Since u1
† : E1 → E1 is surjective, the total complex that remains from X = E1 after apply-

ing cancellation to the u1
† components is identified with C̃Kh(D), or equivalently Ker(Ǔ)

regarded as a quotient complex of X. We conclude:

Corollary 8.0.12. Let D be a connected diagram of a link L ⊂ S3 with n crossings, with

mod 2 reduced Khovanov complex (C̃Kh(D), ∂fKh
). There exists t-filtered total differential

D̃ = ∂fKh
+ D̃2 + D̃3 + · · ·+ D̃n (8.1)

on the vector space C̃Kh(D) such that we have an isomorphism

H∗(C̃Kh(D), D̃) = H̃M•(−Σ(L)).

This formulation is particularly striking in relation to recent work of Zoltan Szabó [43].

Given a decorated link diagram D, Szabó combinatorially defines a differential DSz of the

form (8.1) on C̃Kh(D). The filtered chain homotopy type of the complex (C̃Kh(D), DSz)

is independent of the choice of diagram, and thus provides a new link invariant refining

Khovanov homology. Furthermore, this complex has been implemented in C++ by Cotton

Seed, and the resulting spectral sequence coincides precisely with that conjectured in Fig-

ure 6.5 for T (3, 5) and T (3, 7). In fact, all computations to date are consistent with the

possibility that the total homology H∗(C̃Kh(D), DSz) has the same rank as H̃M•(−Σ(L))

and ĤF(−Σ(L)). If so, we obtain a new combinatorial algorithm for computing the ranks

of these groups.

This leaves open the intriguing possibility that DSz is an instance of the monopole

differential D̃ in Corollary 8.0.12. In fact, Szabó’s formulation of DSz was motivated by

this perspective, with the decorations on D thought of as specifying Morse perturbations in
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the sense of the proof of Theorem 7.3.1. Note that Lemma 8.0.11 above tells us that there

exists a differential

Ď = (∂fKh
⊗ Id) + Ď2 + · · · Ďl

on C̃Kh(L) ⊗ F2[[u1
† , (u

1
†)
−1]/F2[[u1

† ]] which computes

̂

HM •(−Σ(L)). This gives hope, and

perhaps guidance, for extending DSz to incorporate U† as well.

It therefore seems worthwhile to compare the properties of DSz with those of D̃ and Ď.

The differential DSz shifts δ by −1, and thus induces a spectral sequence with a well-defined,

invariant integer bigrading (t, δ) on each page. In the next section, we investigate whether

D̃ and Ď share this property. That is, can we lift our Z⊕Z/2Z bigrading (ť, δ̌) to an integer

bigrading?

8.1 An integer bigrading?

We continue to consider the total complex (X, Ď) underlying the link surgery spectral

sequence converging to

̂
HM •(−Σ(L)). Recall the grading δ̌Q : X → Z defined in (6.4) by

δ̌Q(x) = grQ(x)− (ι(WI∞) + w(I)) + l (8.2)

which lifts the mod 2 grading δ̌. To examine how Ď shifts this grading, we must decompose

Ď over spinc structures:

Ď =
∑
I≤J

∑
s∈Spinc(WIJ )

ĎI
J(s).

Proposition 8.1.1. Let s be a spinc structure on WIJ . Then the map ĎI
J(s) has degree

−1 +
c2

1(s)
4

with respect to the grading δ̌Q on X.

Proof. The case I = J is clear, so we suppose I < J . Since σ(WIJ) = 0 and the family of

metrics PIJ has dimension w(J)− w(I)− 1, the map ĎI
J(s) shifts grQ by(

c2
1(s)
4
− ι(WIJ)

)
+w(J)−w(I)−1 =

(
−1 +

c2
1(s)
4

)
+(ι(WJ∞) + w(J))−(ι(WI∞) + w(I)) .

The claim now follows from 8.2.
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Corollary 8.1.2. The grading δ̌Q is well-defined on E1 and E2.

Proof. For I = J or I < J immediate successors, the map ĎI
J is supported over the unique

spinc structure with c1(s) = 0.

This grading would extend to the higher pages if either of the following conjectures held:

Conjecture 8.1.3. If c2
1(s) 6= 0, then ĎI

J(s) = 0.

Conjecture 8.1.4. If s and s̄ are conjugate spinc structures on WIJ , then ĎI
J(s) = ĎI

J(s̄).

Consequently, only the unique spinc structure with c1(s) = 0 gives a net contribution to ĎI
J .

In fact, both of these conjectures, which we entertained for a time, are FALSE. In

Section 8.2, we show that there must be a non-trivial component of a higher differential di

(and thus a component of Ď) that does not shift δ̌Q by −1 in the case of the

̂

HM • spectral

sequence for the torus knot T (3, 7).

There are two sensible extensions δ′ and δ′′ of the δ-grading on C̃Kh(L), depending on

whether one takes into account the power of U†:

δ′, δ′′ : C̃Kh(D)⊗ F2[[U†, U−1
† ]/F2[[U†]]→ Q

δ′(x⊗ Un† ) = δ(x)− 2n− 2

δ′′(x⊗ Un† ) = δ(x)− 2

The extra shift of −2 is accounted for by Proposition 7.3.7, which also allows us to regard

x⊗ Un† as an element of E1. With respect to this identification, we have

δ′(x⊗ Un† )− δ̌Q(x⊗ Un† ) =
1
2

(σ(L)− ν(L))

δ′′(x⊗ Un† )− δ̌Q(x⊗ Un† ) =
1
2

(σ(L)− ν(L)) + 2n

by the same argument as in Section 6.1.1, and thus:

Proposition 8.1.5. With respect to the isomorphism

E2 ∼= K̃h(L)⊗ F2[[u†, u−1
† ]/F2[[u†]],

the grading δ̌Q corresponds to the grading

δ′ − 1
2

(σ(L)− ν(L)).
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While the example of T (3, 7) rules out the possibility that Ď shifts δ′ by −1, this example

(as well as all others known to the author) is consistent with:

Conjecture 8.1.6. The differential Ď shifts δ′′ by −1. Equivalently (with D0 = 0), the

differential ĎI
J(s) maps C̃Kh(D)⊗ un† into C̃Kh(D)⊗ un+c21(s)/8

† .

In particular, this would imply that D̃ has the same bidegree as ∂Sz:

Conjecture 8.1.7. The differential D̃ on C̃Kh(D) shifts δ by −1.

If these conjectures are indeed simply waiting for a counterexample, the following the-

orem and corollary may explain why one has yet to be found:

Theorem 8.1.8. Let D be a dealternator connected diagram. Then the complex (C̃Kh(D), D̃)

is t-filtered chain-homotopy equivalent to a t-filtered complex (K̃h(D), D̃′) with D̃′ a sum of

components that shift δ by negative, odd integers.

Proof. The key idea is from the proof of Proposition 5.0.6. We continue from the notation

there, setting E1.5 = E
1. We refine the filtration on (C̃Kh(D), D̃) so as to visit the page

E1.5 in between E1 and E2. The total complex (C̃Kh(D), D̃) is t-filtered chain-homotopy

equivalent to the t-filtered total complex (E1.5, D̃1.5), via a sequence of cancellations of

bi-degree (1,−1) with respect to (t, δ). Now E1.5 is the direct sum of groups K̃h(DI′), each

of which is supported in a single δ-grading of E1.5. If I ≤ J , then I ′ ≤ J ′ and the δ grading

of K̃h(DJ ′) is less than or equal to the δ grading of K̃h(DI′) by (5.1). So the fact that

D̃1.5 is positively t-filtered implies that D̃1.5 is negatively δ-filtered. In fact, D̃1.5 is strictly

negatively δ-filtered, as the δ-shift is odd by Lemma 2.5.2. Now (E1.5, D̃1.5) is t-filtered

chain-homotopy equivalent to the t-filtered total complex (K̃h(D), D̃′), again via a sequence

of cancellations of bi-degree (1,−1), so D̃′ shares the same properties with respect to the δ

grading on K̃h(D).

Corollary 8.1.9. If wfKh
(L) ≤ 3, then there exists a t-filtered differential D̃′ on K̃h(L)

which (i) shifts δ by precisely −1 and (ii) yields the (ť, δ̌)-graded pages Ek associated to L

for k ≥ 2.
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Remark 8.1.10. This theorem and corollary readily extend to the complex C̃Kh(D) ⊗

F2[[u†, u−1
† ]/F2[[u†]] with differential Ď and grading δ′′, by performing the above cancella-

tions u†-equivariantly in parallel.

So for links with wfKh
(L) ≤ 3, we will not be able to force a counterexample to Conjecture

8.1.7 using ranks alone. That is, for such links there will always exist higher differentials

on K̃h(L) which shift δ by −1 and are compatible with collapsing the rank to that of

H̃M•(−Σ(L)). Note that the first torus link of width four has 18 crossings, while the first

torus knot of width four has 20 crossings. This suggests that almost all links with fewer

than about 18 crossings have width three or less. The width bound holds for all non-split

almost alternating and 2-almost alternating links by Proposition 5.0.6, as well as for links

with Turaev genus at most two and thus all pretzel knots, which have Turaev genus at most

one.

This rigidity also suggests it may be necessary to compute Szabó’s spectral sequence on

rather complicated links to find a counterexample to

rkH∗(C̃Kh(D), DSz) = rk H̃M•(−Σ(L)),

if one exists at all.

8.2 The Brieskorn sphere −Σ(2, 3, 7)

On the other hand, we now show that the 2-almost alternating knot T (3, 7) serves as

counterexample to Conjectures 8.1.3 and 8.1.4. Let p, q, and r be pairwise relatively prime

positive integers. The Brieskorn integer homology sphere Σ(p, q, r) is the intersection of the

complex surface {xp + yq + zr = 0} ⊂ C3 with the unit 5-sphere. The Poincaré homology

sphere arises as Σ(2, 3, 5), and more generally the Brieskorn sphere Σ(2, q, r) arises as the

branched double-cover of the torus knot T (q, r). Note that for integer homology spheres,

the rational grading grQ lifts gr(2) over the unique spinc structure.

Proposition 8.2.1. We can choose a basis for

̂

HM ∗(−Σ(2, 3, 7)) over F2 such that, with
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respect to the grading grQ, we have

̂

HM j(−Σ(2, 3, 7)) =


F2〈x0〉 ⊕ F2〈y0〉 if j = 0

F2〈xj〉 if j = 2, 4, 6, . . .

0 otherwise

with U†xj = xj−2 for j 6= 0, and U†x0 = U†y0 = 0. In particular, we have

H̃M j(−Σ(2, 3, 7)) =


F2〈x0〉 ⊕ F2〈y0〉 if j = 0

F2〈y′0〉 if j = 1

0 otherwise

where y′0 represents the generator of the cokernel of U†. Furthermore,

ĤM j(−Σ(2, 3, 7)) =


F2〈v0〉 if j = 0

F2〈vj〉 if j = −1,−3,−5, . . .

0 otherwise

with U†vj = vj−2 for j 6= 0, and U†v0 = 0. Finally, with respect to the grading ḡrQ, we have

HM j(−Σ(2, 3, 7)) =


F2〈uj〉 if j is even

0 otherwise

with U†uj = uj−2 for all j.

Proof. The corresponding Heegaard Floer computation is done in Section 8.1 of [35], relying

entirely on structural properties (the surgery triangle, rational gradings, and module struc-

ture) that carry over to monopole Floer homology. The manifolds Σ(2, 3, 5) and −Σ(2, 3, 7)

arise via integral surgery on the left-handed trefoil knot T :

Σ(2, 3, 5) = S3
−1(T )

−Σ(2, 3, 7) = S3
1(T )

In the monopole setting, we may also exploit the fact that the Poincaré homology sphere

Σ(2, 3, 5) admits a metric of positive scalar curvature. By Theorem 7.3.1, we then havê

HM j(Σ(2, 3, 5)) =


F2〈wj〉 if j = 2, 4, 6, . . .

0 otherwise
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with U†wj = wj−2 for j 6= 2, where the grading is pinned down by viewing Σ(2, 3, 5) as the

oriented boundary of the negative-definite E8 plumbing.

It follows from the surgery exact triangle

· · · →

̂

HM •(S3
−1(T ))→

̂

HM •(S3
0(T ))→

̂

HM •(S3)→ · · ·

that ̂

HM j(S3
0(T )) =


F2〈zj〉 if j = 1, 2, 3, . . .

0 otherwise

with U†zj = zj−2 for j ≥ 3, and U†z1 = U†z2 = 0. Now the surgery triangle

· · · →

̂

HM •(S3)→

̂

HM •(S3
0(T ))→

̂

HM •(S3
1(T ))→ · · ·

determines

̂

HM •(−Σ(2, 3, 7)). In each of the above triangles, the map out of the middle

term has degree −1 when the others have degree zero. The first sequence is split, while

in the second sequence the map into
̂

HM •(S3) identifies y0 with the bottom generator of̂
HM •(S3). The structure of H̃M•(−Σ(2, 3, 7)) now follows from the exact sequence (2.20).

The structure of HM•(−Σ(2, 3, 7)) is as claimed for all integer homology spheres, and that

of ĤM•(−Σ(2, 3, 7)) now follows from the exact sequence (1.1).

Remark 8.2.2. Since T is a genus 1, fibered knot, the 3-manifold S3
0(T ) is a bundle over

S1 with fiber T 2. The monodromy is an automorphism of T 2 fixing a point and having

order 3. In fact, the monopole Floer homology of this flat 3-manifold is computed directly

in Section 37.4 of [24].

Proposition 8.2.3. In the spectral sequence for T (3, 7) converging to

̂

HM •(−Σ(2, 3, 7))

with total complex (X, Ď), the differential Ď does not decreases δ̌Q (or equivalently, δ′)

uniformly by −1.

Proof. First note that since σ(T (3, 7)) = 8, we have δ̌Q = δ′ − 4 on the E2 page, and both

δ̌Q and δ′ mod 2 coincide with gr(2) via the identification E∞ =

̂

HM •(−Σ(2, 3, 7)).

We now suppose by contradiction that Ď shifts δ′ uniformly by −1. Consider the upper

left diagram in Figure 8.1, which shows the E2 page of the

̂

HM • spectral sequence (ignore
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Figure 8.1: Each version of the E2 page for T (3, 7) is shown above, with adjacent copies of

K̃h(T (3, 7)) distinguished by color. We measure the t grading vertically and the δ′ grading

horizontally (with values decreasing from left to right). Clockwise from the upper left, these

spectral sequences converge to

̂

HM •(−Σ(2, 3, 7)), HM•(−Σ(2, 3, 7)), ĤM•(−Σ(2, 3, 7)), and

H̃M•(−Σ(2, 3, 7)). Since σ(T (3, 7)) = 8, the gr(2) grading on

̂

HM •(−Σ(2, 3, 7)) coincides

with δ′ mod 2 on the E∞ page, while that on ĤM•(−Σ(2, 3, 7)) coincides with δ′ + 1 mod

2. We have conjectured differentials so that, in each case, the bolded E∞ page is consistent

with the module structure and mod 2 grading given in Proposition 8.2.1. The residual U†

action on E∞ is indicated by horizontal gray arrows. The long, black components of the

differentials run between adjacent copies of K̃h(T (3, 7) and shift δ′ by −3. If the horizontal

axes measured δ′′ in place of δ′, then all copies of K̃h(T (3, 7)) would be superimposed.

Indeed, all components of the above differentials shift δ′′ by −1.
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the conjectural arrows). Since the remaining differentials di all increase t by at least 2, there

can be no further interaction between distinct copies of C̃Kh(D). On the other hand, by

the argument preceding Corollary 8.0.12, the higher differentials di on the rightmost blue

copy (regarded as a quotient complex) compute H̃M•(−Σ(2, 3, 7)). The latter has rank 1 in

odd gr(2) grading, so one generator in grading δ′ = 5 survives to E∞. This contradicts the

fact that

̂

HM •(−Σ(2, 3, 7)) is supported in even grading.

Remark 8.2.4. If we use a dealternator-connected diagram for T (3, 7), such as the right-

hand diagram in Figure 5.1, then Theorem 8.1.8 implies that there must be a non-trivial

component of a higher differential di that decreases δ̌Q by at least 3. There is therefore some

non-trivial component ĎI
J(s) of Ď with c2

1(s) = −8k < 0. We have indicated a plausible

candidate for each version of the spectral sequence in Figure 8.1. We have also conjectured

the shape of the ĤM• spectral sequence for torus knots of the form T (3, 6n± 1) in Figures

8.2 and 8.3.

The δ̌-graded E∞ page of the spectral sequence is an invariant of the 3-manifold −Σ(L).

On the other hand:

Proposition 8.2.5. Suppose that Conjecture 8.1.7 holds, so that the (t, δ) ranks are well-

defined invariants of the oriented link L. These bigraded ranks are not, in general, invariants

of the 3-manifold −Σ(L). Nor are the graded ranks of H̃M•(−Σ(L)) with respect to t, q, or

δ individually.

Proof. Both T (3, 7) and the pretzel knot P (−2, 3, 7) have double branched double-cover

Σ(2, 3, 7). While K̃h(P (−2, 3, 7)) and K̃h(T (3, 7)) both have rank 9, the support of K̃h(P (−2, 3, 7))

only overlaps the support of K̃h(T (3, 7)) in a single bigrading, where they each have rank

1 (see Figure 8.4). Since H̃M•(−Σ(2, 3, 7)) has rank 3, the bigraded ranks of the E∞ pages

must differ in either four or six bigradings.

For a more extreme example, consider Watson’s 17-crossing knot τ(−1) in [46] with

Σ(τ(−1)) = Σ(T (5, 11)) = Σ(2, 5, 11). The rank of K̃h(τ(−1)) is 17 while the rank of

K̃h(T (5, 11)) is 73. The support of K̃h(τ(−1)) is separated from the support of K̃h(T (5, 11))

by, for example, both the {q = 30} horizontal river and the {δ = 10} diagonal river in the

(t, q) plane. Furthermore, there is not sufficient overlap after projecting to the t grading to
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Figure 8.2: Conjectural ĤM• spectral sequence for torus knots of the form T (3, 6n ± 1).

These are consistent with Figure 6.5 (keeping in mind the different axes). Versions for

̂

HM •

and HM• may be inferred from Figure 8.1.
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Figure 8.3: Conjectural ĤM• spectral sequence for T (3, 19), indicating the general pattern

for T (3, 6n ± 1) consistent with Conjectures 6.2.1 and 6.2.2. Versions for

̂

HM • and HM•

may be inferred from Figure 8.1.
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fit the E∞ page, which has rank 7 in the Heegaard Floer case by [38] and therefore in the

monopole case by [28].

Remark 8.2.6. Both P (−2, 3, 7) and T (3, 7) are 2-almost alternating, so by Thereom 8.1.8,

we can choose diagrams such that Ď shifts δ by −1 uniformly, and thus E∞ inherits an

integer bigrading (although we have not proven that this bigrading is independent of the

choice of diagram). Note also that for any knot K, the support of K̃h(K) always intersects

the grading t = 0 due to the s invariant.

Figure 8.4: Each white dot represents an F2 summand of K̃h(T (3, 7)), while each black dot

represents and F2 summand of K̃h(P (−2, 3, 7)). The support of K̃h(T (3, 7)) overlaps the

support of K̃h(P (−2, 3, 7)) in the bigrading (t, q) = (8, 24) alone.

8.3 Beyond branched double-covers

We can transport certain observations of a combinatorial nature from branched-double

covers to general 3-manifolds using a theorem of Baldwin, which says that, in the sense of
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the link surgery spectral sequence, all 3-manifolds sit “kitty-corner” from a hypercube of

sums of S1 × S2. In fact, Baldwin proves a stronger statement:

Lemma 8.3.1 (Baldwin). Let Y be any closed, connected, oriented 3-manifold. Then there

exists a framed link L ⊂ Y such that:

(i) Y (I) is a connect sum of S1 × S2 for all I ∈ {0, 1}n.

(ii) W (IJ) is the trace of 0-surgery on an unknot or a circle factor in Y (I) for all I < J

immediate successors.

The notation Y (I) and W (IJ) above is as defined prior to Theorem 2.0.1. Baldwin

constructs L from an open book decomposition of Y , with monodromy expressed as a

composition of Dehn twists along the generating curves in Figure 5 of [6]. The link L has

one component for each Dehn twist. Such an open book decomposition is associated to the

branched double-cover of a braid B given by a diagram with n crossings; in this case, we

recover the same framed link L ⊂ −Σ(B) used to define the spectral sequence for B.

By combining Baldwin’s observation with the link surgery spectral sequence from The-

orem 2.0.1 with d0 = 0 as in Lemma 8.0.11, we obtain two corollaries:

Corollary 8.3.2. For general Y , the group

̂

HM •(Y ) arises as the homology of a filtered

complex whose underlying vector space E1 and first non-trivial differential d1 are defined

combinatorially from an open book decomposition of Y . The same is true for ĤM•(Y ) and

HM•(Y ).

Corollary 8.3.3. For general Y , the group H̃M•(Y ) is finitely-generated. In particular, it

arises as the homology of a filtered complex Ker(u1
†) whose underlying vector space is finitely-

generated and combinatorially-defined. The first non-trivial differential d̃1 is combinatorial

as well.

Remark 8.3.4. There is an alternative definition of H̃M• from the perspective of sutured

Floer homology [25], as explained at the end of Section 2. In this case, the underlying spinc

structures are all non-torsion, so the complex is a priori finitely-generated, although not

combinatorially-defined.
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Particularly in light of Szabo’s combinatorial spectral sequence, we hope that these

observations will yield new approaches to computing monopole Floer homology and insights

into its axiomatization and relationship with Heegaard Floer homology.
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Chapter 9

Appendix: Morse homology with

boundary via path algebras

Monopole Floer homology may be viewed as an infinite dimensional version of Morse homol-

ogy for manifolds with boundary. For a beautiful treatment of the finite dimensional model,

see Section 2 of [24]. We now give a brief presentation of its essential features, assuming

familiarity with Morse homology for closed manifolds. By recasting the combinatorics in

terms of path algebras, we hope to illuminate the classification of ends in Lemma 2.2.3 and

the form of the matrices (2.5), (2.7), (2.10), (2.11), and (2.13) used to define ĎI
J , Ľ, and

ǍIJ .

Consider a manifold M with boundary ∂M , equipped with a (sufficiently generic) Morse

function and metric that extend equivariantly to the double. In particular, the gradient

vector field is tangent along ∂M . The critical points in the boundary are classified as stable

or unstable, according to whether the flow in the normal direction is toward or away from

the boundary, respectively. We denote interior, boundary-stable, and boundary-unstable

critical points by o, s, and u, respectively. Note that interior gradient trajectories always

flow from o or u to o or s, whereas boundary trajectories flow from s or u to s or u. We

distinguish between interior and boundary trajectories from u to s, so there are eight types

in all.

On the surface M in Figure 9.1, we have marked one isolated gradient trajectory for
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Figure 9.1: Path algebras and Morse homology for manifolds with boundary.

each of these eight types, where those in ∂M (in red) are isolated with respect to ∂M .

The subscripts on the critical points denote Morse index with respect to M . While most

types of isolated trajectories lower Morse index by 1, there are two exceptions. The doubled

trajectory from u to s in ∂M lowers Morse index by 2, while the dashed trajectory from s

to u in ∂M fixes Morse index. This last type is called boundary-obstructed.

All of this information may be neatly encoded in a path algebra over F2, denoted A

(this was first pointed out to the author by Dylan Thurston). As an F2-vector space, A has

a basis given by the set of all paths in the directed graph at left in Figure 9.1. The product

of two paths is given by concatenation if the target of the first coincides with the source

of the second, and is zero otherwise. The weight of a path is the sum of the weights of its

edges, where the dashed, single, and doubled edges have weights 0, 1, and 2, respectively.

If we consider ∂M as a closed manifold in its own right, then the Morse index of each

boundary-unstable critical point is one less. So now all four types of isolated trajectories in

∂M lower Morse index by 1, as encoded in the path algebra B in Figure 9.1.

The groups H∗(∂M), H∗(M), and H∗(M,∂M) arise from the Morse complex generated

by critical points of types {s, u}, {o, s}, and {o, u}, respectively. The correspondence with
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the monopole Floer groups is reflected by the exact sequences

· · · −→ H∗(∂M) −→ H∗(M) −→ H∗(M,∂M) −→ · · ·

· · · −→ HM•(Y ) −→

̂

HM •(Y ) −→ ĤM•(Y ) −→ · · · .

Since we are primarily concerned with

̂

HM •(Y ), we focus on the absolute case H∗(M). The

Morse complex then has the form

C(M) = Co(M)⊕ Cs(M).

The differential ∂ may be thought of as an element of A, given by the sum of all weight 1

paths from {o, s} to {o, s}, as depicted in Figure 9.2. In matrix form, this becomes

∂ =

 ∂oo ∂uo ∂̄
s
u

∂os ∂̄ss + ∂us ∂̄
s
u

 .
We introduce an ideal I of A, generated by the eight elements in the second and third

rows of Figure 9.2. We have one relation for each interior (black) generator of A, given by

the sum all paths of weight 2 between its ends. We similarly have one relation for each

boundary (red) generator of A, given by the sum all paths of weight 2 between the ends of

the corresponding (blue) generator in B. These relations correspond precisely to the maps

counting the ends of 1-dimensional moduli spaces, and can be expressed in that form as

Aoo = ∂oo∂
o
o + ∂uo ∂̄

s
u∂

o
s Āss = ∂̄ss ∂̄

s
s + ∂̄us ∂̄

s
u

Aos = ∂os∂
o
o + ∂̄ss∂

o
s + ∂us ∂̄

s
u∂

o
s Āsu = ∂̄su∂̄

s
s + ∂̄uu ∂̄

s
u

Auo = ∂oo∂
u
o + ∂uo ∂̄

u
u + ∂uo ∂̄

s
u∂

u
s Āus = ∂̄ss ∂̄

u
s + ∂̄us ∂̄

u
u

Aus = ∂̄us + ∂os∂
u
o + ∂̄ss∂

u
s + ∂us ∂̄

u
u + ∂us ∂̄

s
u∂

u
s Āuu = ∂̄su∂̄

u
s + ∂̄uu ∂̄

u
u

We have illustrated two broken trajectories counted by the map Aoo on the surface N in

Figure 9.1. The 1-dimensional family of interior trajectories from o to o has one end with

two components and another end with three components, where the middle component is

boundary-obstructed. Note that the terms in the above relations correspond precisely to

those described in Lemma 2.2.3.

We next define a coboundary operator δ : A → A which acts on edges by sending ∂∗∗ to

A∗∗ and ∂̄∗∗ to Ā∗∗. We extend δ to paths by the Leibniz rule and to A linearly. Note that I
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Figure 9.2: The differential ∂ and identity A as elements of A. The bold line from o to o

is shorthand for Aoo, and similarly for the other bold lines. Thus, A lies in the ideal of A

generated by the eight relations of the form A∗∗ and Ā∗∗.
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is generated by the image of δ. Let A ∈ A be the image of ∂ under δ. In other words, A is

the sum of seven elements, each the result of replacing one edge in ∂ with the corresponding

relation. This is illustrated at the top right of Figure 9.2, with the relations bolded. As a

map, A is given by

A =

 Aoo Auo ∂̄
s
u + ∂uo Ā

s
u

Aos Āss +Aus ∂̄
s
u + ∂us Ā

s
u


Now it is easy to check that A and ∂2 coincide as elements of the path algebra A. One

observes cancellation of precisely those paths with no interior o or s (i.e., no good break).

Thus ∂2 is in the ideal generated by the relations as well, with the implication being that

∂ is a differential on the Morse complex.

Remark 9.0.5. The author and Dave Bayer wrote a program in Haskell which formally

implements the path algebra associated to a cobordism equipped with a permutohedron

of metrics as in Section 2.1. Indeed, the program verifies Lemma 2.2.7 in this language.

The case of a single metric is illustrated in Figure 9.3. The maps ∂̌0
0 = Ď0

0, m̌0
1 = Ď0

1, and

∂̌1
1 = Ď1

1 may be thought of as elements of the weighted path algebra A0
1 over the red and

black graph with 24 edges and 6 vertices. There is one relation for each black edge in A0
1

and one relation for each blue edge in B0
1, each consisting of all paths of weight 2 between

the corresponding ends. The coboundary map δ : A0
1 → A0

1 has image lying in the ideal I0
1

generated by these relations. Setting Ǎ0
1 = δm̌0

1, the computation m̌0
1∂̌

0
0 + ∂̌1

1m̌
0
1 = Ǎ0

1 ∈ I0
1

verifies that m̌0
1 : Č(Y0)→ Č(Y1) is a chain map. Similarly, (∂̌ii)

2 = δ∂̌ii ∈ I0
1 for i = 0, 1.

Figure 9.3: The path algebra of a cobordism W : Y0 → Y1 with fixed metric.

Remark 9.0.6. Kronheimer and Mrowka discuss functoriality in Morse homology in Sec-

tion 2.8 of [24]. The above path algebra interpretation generalizes to this setting and in-
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deed organizes the combinatorics necessary to define the Morse category of a manifold with

boundary. In the monopole Floer setting, we may extend the path algebra interpretation to

cobordisms equipped with polytopes of metrics and multiple incoming and outgoing ends,

by including one copy of o, s, and u for each end or interior hypersurface. A map which

counts unbroken trajectories on such a cobordism is represented by an “edge” whose source

and target are subsets of vertices. The notion of boundary-obstructedness generalizes in a

natural manner to determine the weight of such an edge (see boundary-obstructed of corank

c in Section 24.4 of [24]). It turns out that in the “to” (resp., “from”) theory, we must

restrict to cobordisms with exactly one incoming (resp., outgoing) end. We will elaborate

on this construction in future work, but as a prelude, we give an example with two incoming

ends and one outgoing end in Figure 9.4.



CHAPTER 9. APPENDIX: MORSE HOMOLOGY WITH BOUNDARY VIA PATH
ALGEBRAS 150

Figure 9.4: Here we represent the components of the chain map m̂ associated to a cobordism

with two incoming ends and one outgoing end as an element of the “path algebra” on the

weighted directed hypergraph A. The left-hand side of the above equation expands to 197

terms, of which the 62 terms with no good break cancel in pairs, leaving the 135 terms

which arise on the right-hand side.
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