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ABSTRACT

The discrete Dirac operator and the discrete

generalized Weierstrass representation in

pseudo-Euclidean spaces

Dmitry Zakharov

In this thesis we consider the problem of finding a integrable discretization of the Dirac

operator. We show that an appropriate deformation of the spectral properties of the eigen-

function of the smooth Dirac operator leads to a discrete integrable Dirac operator. We

use this discrete Dirac operator to construct a discrete analogue of the modified Novikov–

Veselov hierarchy and a discrete analogue of the generalized Weierstrass representation of

isotropically embedded surfaces in pseudo-Euclidean spaces.
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CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

An important recent development in soliton theory is the growing interest in the study of

discrete integrable systems—nonlinear difference equations possesing integrability properties

similar to their continuous counterparts.

There are many reasons why discrete integrable systems are interesting. Discrete systems

are more fundamental from a mathematical viewpoint, because a discrete equation admits

a unique continuous limit, while constructing an integrable discretization of a differential

equation is a non-trivial problem. Discrete integrable systems are also interesting in their

own right and have numerous applications to other areas of mathematics. For example,

the recent works of Krichever and others on the characterization of Jacobian varieties [16;

17] and Prym varieties [18] are based on the study of discrete integrable systems.

Another application of the theory of discrete integrable systems is the recent emergence

of a field known as discrete differential geometry [3]. Classical differential geometry studies

smooth geometric shapes, many of which are known to be described by integrable equa-

tions. Discrete differential geometry aims to find lattice analogues of the methods and

constructions of the smooth theory which are described by integrable discretizations of the

corresponding equations.
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In this thesis, we consider the problem of finding an integrable discretization of the

Dirac operator:

D =


 0 ∂z

−∂z̄ 0


−


 u 0

0 u


 , u = ū. (1.1)

The Dirac operator is related to a classical construction in differential geometry known as

the Weierstrass representation. It is also the auxiliary operator for the integrable hierarchy

known as the modified Novikov–Veselov hierarchy.

Based on an appropriate deformation of the spectral data of the Dirac operator, we

construct the following integrable discretization of the Dirac operator:

D =


 T2 0

0 T1


+


 α β

β α


 , α2 − β2 = 1. (1.2)

We then use this operator to construct a difference analogue of the modified Novikov–

Veselov hierarchy and a discrete analogue of a certain generalization of the Weierstrass

representation.

The thesis is organized as follows. In Chapter 2, we describe the classical Weierstrass

representation of conformally embedded surfaces in R
3, its relationship to the Dirac equa-

tion, and several generalizations of this construction that have recently been found. In

Chapter 3, we describe an integrable discretization of the generalized Dirac operator and

of the modified Novikov–Veselov hierarchy. In Chapter 4, we use this discretization to con-

struct a discrete analogue of the generalized Weierstrass representation of isotropic surfaces

in pseudo-Euclidean spaces.

The author’s results have been published in the two papers [27] and [28], which corre-

spond to Chapters 3 and 4, respectively.
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Chapter 2

The Weierstrass representation

The Weierstrass representation is a classical construction of differential geometry that has

received significant attention in recent years due to its relationship with the theory of

integrable systems. In a nutshell, the Weierstrass representation is a convenient way of

parameterizing an arbitrary smoothly embedded surface in R
3.

2.1 The classical Weierstrass representation

We begin with a definition.

Definition. Let (M,g) be a Riemannian manifold of dimension n, let U ⊂ S be an open

subset, and let x1, . . . , xn be coordinates on U . We say that the coordinates xi are conformal

or isothermal if in terms of these coordinates the metric tensor has the form

ds2 = eϕ(dx2
1 + · · · + dx2

n)

for some function ϕ, i.e. if the metric tensor is a scalar multiple of the Euclidean metric

tensor.

On a Riemannian manifold of dimension two, conformal coordinates can always be found

in the neighborhood of any point. This is a consequence of the existence theorem for the

Beltrami equation ∂z̄w = µ∂zw. In particular, any embedded surface in a Riemannian

manifold locally admits conformal coordinates. In dimensions n ≥ 3, a necessary and
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sufficient condition for the existence of conformal coordinates is the vanishing of the Cotton

tensor (for n = 3) or the Weyl tensor (for n ≥ 4).

The Weierstrass representation is a natural way of parameterizing a surface embedded

in R
3 with conformal coordinates. By the existence theorem stated above, conformal coor-

dinates can always be locally found on any embedded surface, so this parametrization can

describe an arbitrary embedded surface.

Let ~X : S → R
3 be a smooth immersion. Let U ⊂ S be an open set, and let x, y be

conformal coordinates on U with respect to the metric on S induced by the embedding.

The condition that the coordinates x and y are conformal is equivalent to the following

condition: 〈
∂ ~X

∂x
,
∂ ~X

∂x

〉
=

〈
∂ ~X

∂y
,
∂ ~X

∂y

〉
,

〈
∂ ~X

∂x
,
∂ ~X

∂y

〉
= 0, (2.1)

where 〈·, ·〉 is the scalar product in R
3. Introducing the complex coordinate z = x+ iy, we

can write this condition in an equivalent form:
〈
∂ ~X

∂z
,
∂ ~X

∂z

〉
=

(
∂X1

∂z

)2

+

(
∂X2

∂z

)2

+

(
∂X3

∂z

)2

= 0. (2.2)

We parametrize solutions of this equation by Pythagorean triples as follows:

∂X1

∂z
=
ψ2

1 − ψ̄2
2

2
,

∂X2

∂z
= i

ψ2
1 + ψ̄2

2

2
,

∂X3

∂z
= ψ1ψ̄2, (2.3)

where ψ1, ψ2 are some complex-valued functions on U , not necessarily holomorphic. In

terms of these functions, the embedding ~X can then be expressed in the following way:

X1 = 1
2

∫
(ψ2

1 − ψ̄2
2)dz + (ψ̄2

1 − ψ2
2)dz̄,

X2 = i
2

∫
(ψ2

1 + ψ̄2
2)dz − (ψ̄2

1 + ψ2
2)dz̄,

X3 =

∫
ψ1ψ̄2dz + ψ̄1ψ2dz̄.

(2.4)

The consistency condition for these expressions has the form

∂z̄ψ1 = uψ2, ∂zψ2 = −uψ1, ū = u, (2.5)

where u is some real-valued function on U . Conversely, given a solution of equation (2.5) on a

simply-connected domain U , we can use formulas (2.4) to construct a conformal embedding
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of U into R
3. The metric and the mean curvature on U have the form

ds2 = e2α(dx2 + dy2), H =
2u

eα
, eα = |ψ2

1 | + |ψ2
2 |. (2.6)

This construction is known as the Weierstrass representation. It was originally intro-

duced by Weierstrass to describe minimal surfaces (corresponding to u = 0) and later

extended by arbitrary surfaces by Eisenhart in [8]. It was first written in the above form

by Konopelchenko in [10].

The Weierstrass representation has received significant attention in recent years due to

its relationship with the theory of integrable systems and its application to the Willmore

conjecture. The consistency condition (2.5) above is known as the Dirac equation. It can

be written in the form Dψ = 0, where ψ = (ψ1, ψ2)
T and D is the Dirac operator:

D =


 0 ∂z

−∂z̄ 0


+


 u 0

0 u


 , u = ū. (2.7)

The Dirac operator is the auxiliary linear operator for the modified Novikov–Veselov hierar-

chy, which will be described in detail in Chapter 3. It is an infinite hierarchy of commuting

flows on the space of Dirac operators (2.7). The flows of the hierarchy define deformations of

the corresponding embedded surface S that preserve the value of the integral of the squared

mean curvature over the surface, known as the Willmore functional:

W (S) =

∫

S

H2dµ. (2.8)

2.2 Generalized Weierstrass representations

There exist numerous ways to generalize the classical Weierstrass representation. In [2;

23] Taimanov constructed a Weierstrass representation of surfaces in three-dimensional Lie

groups. Konopelchenko extended the Weierstrass representation to conformally embedded

surfaces in R
4:

Theorem 2.2.1 [13] Suppose that the vector functions ϕ = (ϕ1, ϕ2) and ψ = (ψ1, ψ2) are
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defined on some simply-connected domain U and satisfy the following Dirac equations




 0 ∂z

−∂z̄ 0


+


 ū 0

0 u






 ϕ1

ϕ2


 = 0,




 0 ∂z

−∂z̄ 0


+


 u 0

0 ū






 ψ1

ψ2


 = 0,

(2.9)

where the potential u is complex-valued. Then the formulas

X1 = 1
2

∫
(−ϕ1ψ1 + ϕ̄2ψ̄2)dz + (−ϕ̄1ψ̄1 + ϕ2ψ2)dz̄,

X2 = i
2

∫
(ϕ1ψ1 + ϕ̄2ψ̄2)dz − (ϕ̄1ψ̄1 + ϕ2ψ2)dz̄,

X3 = 1
2

∫
(ϕ1ψ̄2 + ϕ̄2ψ1)dz + (ϕ̄1ψ2 + ϕ2ψ̄1)dz̄,

X4 = i
2

∫
(−ϕ1ψ̄2 + ϕ̄2ψ1)dz + (ϕ̄1ψ2 − ϕ2ψ̄1)dz̄,

(2.10)

define an embedding ~X : U → R
4 such that the coordinates x and y on U are conformal.

In this thesis we study a generalization of the Weierstrass representation that de-

scribes surfaces embedded in pseudo-Euclidean spaces. This construction was described

by Konopelchenko in [10; 11; 12].

Let S be a surface embedded in a pseudo-Riemannian manifold. At every point of S

the restriction of the metric tensor to S is either positive (or negative) definite, or it is

indefinite. In the first case, it is possible to locally introduce conformal coordinates on

S, multiplying the metric tensor by −1 if it is negative definite. If the metric tensor has

signature (1, 1), the natural analogue of conformal coordinates are the coordinates in which

the metric tensor is off-diagonal:

Definition. Let (M,g) be a pseudo-Euclidean manifold of dimension two, where the metric

g has signature (1, 1), let U ⊂ M be an open subset, let x and y be coordinates on U . We

say that the coordinates x and y are isotropic if the metric tensor has the form

ds2 = eϕdxdy

for some function ϕ(x, y). The geometric meaning of isotropic coordinates is that the

tangent vectors to the coordinate lines x = const and y = const are isotropic vectors, i.e.

have zero length.
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The Weierstrass representation can be extended to surfaces embedded with isotropic

coordinates in the pseudo-Euclidean spaces R
2,1, R

3,1 and R
2,2. The corresponding formulas

are obtained by a Wick rotation of the representations (2.4) and (2.10) in R
3 and R

4. The

operators in the consistency conditions for these representations are various reductions of

the generalized Dirac operator [11]:

D =


 0 ∂z

−∂w 0


+


 u 0

0 v


 . (2.11)

where z and w are complex variables. We describe these three cases individually and give

explicit formulas. All of these formulas are taken directly from the paper [11].

2.2.1 The R2,1 case

Suppose that the complex-valued functions ψ1, ψ2 are defined on some simply-connected

domain U ⊂ R
2 and satisfy the equations




 0 ∂x

∂y 0


−


 p 0

0 p






 ψ1

ψ2


 = 0, p̄ = p. (2.12)

Then the formulas

X1 = 1
2

∫ [
(ψ2

1 + ψ̄2
1)dx+ (ψ2

2 + ψ̄2
2)dy

]
,

X2 = i
2

∫ [
(ψ2

1 − ψ̄2
1)dx+ (ψ2

2 − ψ̄2
2)dy

]
,

X3 =

∫ [
ψ1ψ̄1dx+ ψ2ψ̄2dy

]
,

(2.13)

define an embedding ~X : U → R
2,1, such that the induced metric on U has signature

(1, 1) and the coordinates x and y are isotropic. Conversely, any surface embedded in R
2,1

locally admits such a representation if the restriction of the metric tensor has signature

(1, 1) everywhere.
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2.2.2 The R3,1 case

Suppose that the complex-valued functions ϕi, ψi, i = 1, 2 are defined on some simply-

connected domain U ⊂ R
2 and satisfy the equations




 0 ∂x

∂y 0


−


 p̄ 0

0 p






 ϕ1

ϕ2


 = 0,




 0 ∂x

∂y 0


−


 p̄ 0

0 p






 ψ1

ψ2


 = 0.

(2.14)

Then the formulas

X1 = 1
2

∫ [
(ϕ1ψ̄1 + ϕ̄1ψ1)dx+ (ϕ2ψ̄2 + ϕ̄2ψ2)dy

]
,

X2 = i
2

∫ [
(ϕ1ψ̄1 − ϕ̄1ψ1)dx+ (ϕ2ψ̄2 − ϕ̄2ψ2)dy

]
,

X3 = 1
2

∫ [
(ϕ1ϕ̄1 − ψ1ψ̄1)dx+ (ϕ2ϕ̄2 − ψ2ψ̄2)dy

]
,

X4 = 1
2

∫ [
(ϕ1ϕ̄1 + ψ1ψ̄1)dx+ (ϕ2ϕ̄2 + ψ2ψ̄2)dy

]
,

(2.15)

define an embedding ~X : U → R
3,1, such that the induced metric on U has signature

(1, 1) and the coordinates x and y are isotropic. Conversely, any surface embedded in R
3,1

locally admits such a representation if the restriction of the metric tensor has signature

(1, 1) everywhere.

2.2.3 The R2,2 case

Suppose that the functions ϕi, ψi, i = 1, 2 are defined on some simply-connected domain

U ⊂ R
2 and satisfy the equations




 0 ∂x

∂y 0


−


 q 0

0 p






 ϕ1

ϕ2


 = 0,




 0 ∂x

∂y 0


−


 p 0

0 q






 ψ1

ψ2


 = 0,

(2.16)

where p̄ = p and q̄ = q. Then the formulas

X1 = 1
2

∫ [
(ϕ1ψ1 + ϕ̄1ψ̄1)dx+ (ϕ2ψ2 + ϕ̄2ψ̄2)dy

]
,

X2 = i
2

∫ [
(ϕ1ψ1 − ϕ̄1ψ̄1)dx+ (ϕ2ψ2 − ϕ̄2ψ̄2)dy

]
,

X3 = 1
2

∫ [
(ϕ1ψ̄1 + ϕ̄1ψ1)dx+ (ϕ2ψ̄2 + ϕ̄2ψ2dy

]
,

X4 = i
2

∫ [
(ϕ1ψ̄1 − ϕ̄1ψ1)dx+ (ϕ2ψ̄2 − ϕ̄2ψ2dy

]
,

(2.17)
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define an embedding ~X : U → R
2,2, such that the induced metric on U has signature

(1, 1) and the coordinates x and y are isotropic. Conversely, any surface embedded in R
2,2

locally admits such a representation if the restriction of the metric tensor has signature

(1, 1) everywhere.

2.3 The author’s results

The principal result of this thesis is an integrable discretization of the generalized Dirac

operator (2.11) and an integrable reduction of this discretization. We will see that several

versions of this reduction can be used to construct discrete analogues of the generalized

Weierstrass representations (2.13), (2.15), and (2.17). These discrete representations de-

scribe Z
2 lattices in pseudo-Euclidean spaces with the geometric property that every edge

is an isotropic vector.
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Chapter 3

The discrete Dirac operator

In this section, we construct a discretization of the generalized Dirac operator (2.11) and

an integrable reduction of this discretization. We also construct an integrable hierarchy of

equations based on this discrete Dirac operator.

3.1 Discretization of finite-gap operators

The problem of constructing an integrable discretization of an integrable differential equa-

tion is not mathematically well-posed and does not have a universal solution. Several

methods for constructing integrable discretizations have been developed in soliton theory.

They are generally based on constructing a discrete analogue of the auxiliary linear prob-

lems, which involves an appropriate deformation of the analytic properties of the solutions

of these linear problems.

One of the most interesting aspects of the theory of integrable systems is its relation-

ship to the algebraic geometry of curves. This theory is known as the theory of finite-gap

integration and was developed in [21; 7; 19]. A finite-gap operator is an integrable linear

operator whose eigenfunctions are defined on a compact Riemann surface known as the spec-

tral curve. The eigenfunction has singularities of a prescribed type on the spectral curve

and can be uniquely characterized by these singularities. In the framework of the theory of

finite-gap integration, there exists a natural approach to the discretization problem, based
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on deforming the singularities of the eigenfunctions.

To illustrate this approach, let us consider the following simple example. Consider the

linear equation

∂xψ(x, λ) = λψ(x, λ), ψ(0, λ) = 1. (3.1)

where x is a complex variable and the spectral parameter λ is defined on the Riemann

sphere CP
1. The solution to this problem is the exponential function

ψ(x, λ) = eλx. (3.2)

The function ψ(x, λ) is the unique function on CP
1 satisfying the following conditions:

• ψ(x, λ) is holomorphic in λ on CP
1\{∞}.

• At the infinite point, ψ(x, λ) has an essential singularity of the form

ψ(x, λ) = eλx(1 +O(λ−1)). (3.3)

It is also easy to show that any function satisfying the above conditions also satisfies equation

(3.1), in other words equation (3.1) can be reconstructed from the spectral properties of its

solution.

We now consider a discretization of equation (3.1). Let n ∈ Z be a discrete variable,

and consider the equation

ψ(n+ 1, λ) − ψ(n, λ) = λψ(n, λ), ψ(0, λ) = 1. (3.4)

The solution to this equation is the meromorphic function

ψ(n, λ) = (1 + λ)n. (3.5)

The function ψ(n, λ) can be uniquely specified by the following conditions:

• ψ(n, λ) is meromorphic in λ on CP
1.

• ψ(n, λ) has a zero of order n at λ = −1 and a pole of order n at ∞ of the form

ψ(n, λ) = λn +O(λn−1). (3.6)



CHAPTER 3. THE DISCRETE DIRAC OPERATOR 12

Conversely, a function satisfying these conditions also satisfies the discrete equation (3.4),

so we can reconstruct equation (3.4) from the spectral properties.

To obtain the differential equation (3.1) as a continuous limit of the discrete equation

(3.4), introduce a small parameter h and consider the function

ψh(n, λ) = (1 + hλ)n. (3.7)

This function has a zero of order n at λ = −1/h and satisfies the difference equation

ψh(n+ 1, λ) − ψh(n, λ) = hλψh(n, λ), ψh(0, λ) = 1, (3.8)

which is a rescaling of (3.4). Let n → ∞ and h → 0 so that x = nh remains constant. We

have that

ψh(n, λ) = exp(n log(1 + hλ)) = exp(n(hλ+O(h2))) → eλx = ψ(x, λ), (3.9)

while

ψh(n+ 1, λ) − ψh(n, λ) − hλψ(x, λ) → h(∂xψ(x, λ) − λψ(x, λ)), (3.10)

so in the limit we obtain equation (3.1).

In general, the eigenfunction of a finite-gap linear differential operator, known as the

Baker–Akhiezer function, is defined on an algebraic Riemann surface and has exponential

singularities controlled by the continuous variables at one or more marked points of the

surface. To construct a discrete analogue of the operator, we replace each exponential sin-

gularity with a pair of meromorphic singularities consisting of a pole and a zero of the same

order, which we view as the discrete variable. This deformed eigenfunction then satisfies a

difference equation that is a discretization of the original differential equation. The contin-

uous limit in a discrete variable is obtained by merging the pole and zero corresponding to

that variable as described in the example above.

This method was first used for constructing algebro-geometric solutions of the Ablowitz–

Ladik equation [1], [20], which is a discretization of the nonlinear Schrödinger equation. In

[15], Krichever used this approach to construct a discretization of the Schrödinger operator

in a magnetic field

H = ∂z∂z̄ + v∂z̄ + u, (3.11)
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which is equivalent (by excluding a component of the eigenfunction) to the generalized Dirac

operator (2.11).

In this section we give a matrix variant of Krichever’s construction. We will see that

using this approach to discretize the generalized Dirac operator (2.11) leads to the following

discrete equation, which we call the generalized discrete Dirac equation:

Dψ =




 T2 0

0 T1


−


 α β

γ δ






 ψ1

ψ2


 = 0. (3.12)

Here ψ = (ψ1(n,m), ψ2(n,m))T is a vector function of two discrete variables n,m ∈ Z,


 α β

γ δ


 =


 α(n,m) β(n,m)

γ(n,m) δ(n,m)


 (3.13)

is a (2 × 2)-matrix function of the discrete variables, and T1 and T2 denote the translation

operators in the discrete variables

T1f(n,m) = f(n+ 1,m), T2f(n,m) = f(n,m+ 1). (3.14)

We also obtain the following integrable reduction of this generalized Dirac equation:

Dψ =




 T2 0

0 T1


−


 α β

β α






 ψ1

ψ2


 = 0, α2 − β2 = 1. (3.15)

We will then use this reduction to construct discretizations of the generalized Weierstrass

representations (2.12)-(2.17).

3.2 The finite-gap Dirac operator and the modified Novikov–

Veselov hierarchy

To construct an integrable discretization of the generalized Dirac operator (2.11) we need to

know the spectral properties of its finite-gap eigenfunctions. This theory has been developed

by Taimanov in [24; 25].

The spectral curve of the generalized Dirac operator (2.11) can be arbitrary, and the

eigenfunction has two essential singularities on the curve. The reduction to the elliptic



CHAPTER 3. THE DISCRETE DIRAC OPERATOR 14

Dirac operator (2.7) corresponds to considering spectral curves which admit a pair of in-

volutions, one holomorphic and one anti-holomorphic, such that the essential singularities

satisfy certain symmetry conditions with respect to the involutions. The exact statement

is the following:

Theorem 3.2.1 [24] A. Let X be a compact Riemann surface with the following data:

• A pair of distinct marked points P±.

• Local parameters z± = k−1
± defined in some neighborhoods of these points.

• A nonspecial effective divisor D of degree g+1 on X supported away from the marked

points.

Then

1. There exists a unique vector-function ψ(z,w, P ) = (ψ1, ψ2) which is meromorphic in

P on X\{P±} with poles only at the divisor D, and which has the following expansion

near the marked points:

ψ = exp(k+z)




 1

0


+O(k−1

+ )


 near P+, (3.16)

ψ = exp(k−w)




 0

1


+O(k−1

− )


 near P−. (3.17)

2. There exist functions u(z,w) and v(z,w) such that the function ψ satisfies the gener-

alized Dirac equation




 0 ∂z

−∂w 0


+


 u 0

0 v






 ψ1

ψ2


 = 0. (3.18)

B. Suppose that the following additional data are given:

• A holomorphic involution σ : X → X such that σ(P±) = P± and σ(k±) = −k±.
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• A meromorphic differential ω on X having two poles of degree two at the points P±

with principal parts (±k2
± +O(k−1

± ))dk−1
± and zeroes in D + σ(D).

Then the potentials of the Dirac equation (3.18) satisfy the condition v = −u.
C. Set w = z̄, and suppose that the following additional data are given:

• An anti-holomorphic involution τ : X → X such that τ(P±) = P∓ and τ(k±) = k̄∓.

• A meromorphic function f on X with divisor σ(D) − τ(D) such that f(P±) = ±1.

Then the potential of the Dirac equation (3.18) is real-valued: ū = u.

The Dirac operator (2.7) is an auxiliary linear operator for the modified Novikov–Veselov

hierarchy, introduced by Bogdanov in [4; 5]. This is an integrable hierarchy of equations

that have the form of Manakov triples:

∂D

∂tn
= DAn +BnD, (3.19)

where D is the Dirac operator, tn is an infinite sequence of times, and An and Bn are matrix

differential operators, where the operator An has order 2n + 1 and has a leading term of

the form

An =


 ∂2n+1 + ∂̄2n+1 0

0 ∂2n+1 + ∂̄2n+1


+ · · · (3.20)

These equations are the consistency conditions for the overdetermined linear system

Dψ = 0, (3.21)

∂ψ

∂tn
+Anψ = 0, (3.22)

where ψ = (ψ1, ψ2)
T . The first equation (n = 1) has the following form:

ut =

(
uzzz + 3uzv +

3

2
uvz

)
+

(
uz̄z̄z̄ + 3uz̄ v̄ +

3

2
uv̄z̄

)
, (3.23)

where

vz̄ = (u2)z (3.24)
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To construct finite-gap solutions to the modified Novikov–Veselov hierarchy, Taimanov

introduces the time-dependent Baker–Akhiezer function ψ(z, z̄, t1, t2, . . . , P ) on the spectral

curve.

Theorem 3.2.2 [24] Suppose that X is a compact Riemann surface with the data P±, k±,

D, σ, ω, τ and f as described above above. Then

• There exists a unique vector function ψ(z, z̄, t1, . . . , P ) = (ψ1, ψ2) on X depending on

the variables z, z̄ and on the time variables t1, . . ., which is meromorphic in P on

X\{P±} and has poles only in the divisor D, and has the following expansions at the

marked points:

ψ = exp
(
k+z + k3

+t1 + · · · + k2n+1
+ tn + · · ·

)



 1

0


+O(k−1

+ )


 near P+, (3.25)

ψ = exp
(
k−z̄ + k3

−t1 + · · · + k2n+1
− tn + · · ·

)



 0

1


+O(k−1

− )


 near P−. (3.26)

• There is a unique operator D of the form (2.7) and unique operators An of degrees

2n+ 1 with principal parts (3.20) such that equations (3.21)-(3.22) are satisfied.

• The potential u(z, z̄, t1, . . .) of the Dirac operator D satisfies the modified Novikov–

Veselov equations (3.19).

Later in this chapter, we will see that it is possible to construct an integrable hierarchy of

differential-difference equations for which the discrete Dirac operator (3.15) is the auxiliary

linear operator. We call this hierarchy of equations the discrete modified Novikov–Veselov

hierarchy.

3.3 Discretization of the Dirac equation

We now construct a discretization of the Dirac equation, taking Th.3.2.1 as our starting

point. As we have seen, the eigenfunctions of the Dirac equation have two essential singu-

larities on the spectral curve and in addition poles at a certain divisor. We replace each of
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the two exponential singularities of the eigenfunction by a pole and a zero of the same order,

and construct a discrete equation satisfied by such a function. We then impose reductions

on this equation by introducing symmetries on the curve, as in parts B and C of Th.3.2.1.

For convenience, we provide a short summary of the theory of divisors on Riemann surfaces.

Let X be a smooth compact Riemann surface of genus g. We denote the ring of mero-

morphic functions on X by Mer(X). A divisor on X is an element of the free abelian

group generated by the points of X, that is to say, a finite set of points of X counted with

integer coefficients. The degree of a divisor D, denoted degD, is the sum of its coefficients.

A divisor is called effective if all of its coefficients are non-negative; if D and D′ are two

divisors, we write D ≥ D′ if D−D′ if an effective divisor. If f ∈ Mer(X) is a meromorphic

function on X, its associated divisor (f) is the set of zeroes of f minus the set of poles of f ,

each point being counted with the appropriate multiplicity (so for example the divisor of

the function x2 −x on CP 1 is 1 · 0 + 1 · 1− 2 ·∞); in the same way we define the associated

divisor (ω) of a meromorphic 1-form ω. A divisor associated to a meromorphic function is

called principal; two divisors D and D′ are called linearly equivalent if their difference is

principal. The canonical class K of X is the divisor associated to a non-trivial meromorphic

1-form on X (any two such divisors are linearly equivalent).

It is natural to formulate the following question: given a finite set of points on a Riemann

surface X, does there exist a meromorphic function having poles only at those points, with

some maximum specified orders, and no other singularities? What if we also require the

function to have zeroes at some other points of the surface, with some minimum specified

orders? In terms of divisors, we can formulate this question as follows. Given a divisor

D, what is the dimension of the vector space H0(D) = {f ∈ Mer(X)|(f) +D ≥ 0}? This

dimension only depends on the linear equivalence class of D, and can be found using the

Riemann–Roch theorem. Denote h0(D) = dimH0(D) and h1(D) = dimH0(K −D). Then

the theorem states that

h0(D) = 1 − g + degD + h1(D). (3.27)

We now proceed with our construction. Let X be a smooth compact Riemann surface

of genus g. We consider the following data on X:
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Data A.

• Four distinct marked points P±
1 , P

±
2 on X.

• Local parameters z±i = (k±i )−1 defined in some neighborhoods of these points.

• An effective divisor D = γ1 + · · · + γg+1 of degree g + 1 on X, supported away from

the marked points, which satisfies the following condition of general position:

h1(D + (n− 1)P+
1 − nP−

1 + (m− 1)P+
2 −mP−

2 ) = 0 for all n,m ∈ Z. (3.28)

To construct solutions of equation (2.7), we consider spaces of meromorphic functions

on X with singularities controlled by the discrete variables (functions of this type were first

introduced by Krichever in [15]):

Ψn,m = H0(D + nP+
1 − nP−

1 +mP+
2 −mP−

2 ) ⊂ Mer(X), n,m ∈ Z.

The Riemann-Roch theorem implies the following

Proposition 3.3.1 Suppose that X is a Riemann surface with data A defined above. Then

each of the spaces Ψn,m is two-dimensional:

dimΨn,m = h0(D + nP+
1 − nP−

1 +mP+
2 −mP−

2 ) = 2 for all n,m ∈ Z,

the intersection of two of these spaces at adjacent lattice points is one-dimensional:

dimΨn,m ∩ Ψn,m−1 = h0(D + nP+
1 − nP−

1 + (m− 1)P+
2 −mP−

2 ) = 1 for all n,m ∈ Z,

dimΨn,m ∩ Ψn−1,m = h0(D + (n− 1)P+
1 − nP−

1 +mP+
2 −mP−

2 ) = 1 for all n,m ∈ Z,

and these two one-dimensional subspaces of Ψn,m span the entire space, i.e. their intersec-

tion is trivial:

dim Ψn,m ∩ Ψn,m−1 ∩ Ψn−1,m = h0(D + (n− 1)P+
1 − nP−

1 + (m− 1)P+
2 −mP−

2 ) = 0.
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Therefore, we can fix a basis ψ1(n,m,P ), ψ2(n,m,P ) in each of the spaces Ψn,m by

letting ψ1(n,m,P ) be any non-zero element of Ψn,m ∩ Ψn,m−1, and letting ψ2(n,m,P ) to

be any non-zero element of Ψn,m ∩ Ψn−1,m:

ψ1(n,m,P ) ∈ H0(D + nP+
1 − nP−

1 + (m− 1)P+
2 −mP−

2 ) − {0}, (3.29)

ψ2(n,m,P ) ∈ H0(D + (n− 1)P+
1 − nP−

1 +mP+
2 −mP−

2 ) − {0}. (3.30)

The principal observation concerning these functions can be summarized in the following

statement:

Proposition 3.3.2 Suppose that X is a Riemann surface with data A as defined above.

Then there exist functions α(n,m), β(n,m), γ(n,m), δ(n,m) such that the functions ψ1(P )

and ψ2(P ) defined by (3.29)-(3.30) satisfy the Dirac equation:

Dψ =




 T2 0

0 T1


−


 α β

γ δ






 ψ1

ψ2


 = 0. (3.31)

Proof. Indeed, by construction, both ψ1(n,m + 1, P ) and ψ2(n + 1,m, P ) actually lie

in the space Ψn,m, hence they can be expressed as linear combinations of the basis func-

tions ψ1(n,m,P ) and ψ2(n,m,P ), which is equivalent to saying that they satisfy the Dirac

equation (3.31).

Therefore, a Riemann surface X together with the additional data given above allows us

to construct a family of solutions (ψ1(n,m,P ), ψ2(n,m,P ))T of the Dirac equation (3.31),

parametrized by the points P of X.

In order to construct reductions on the Dirac equation (3.31), we first express the co-

efficients α(n,m), β(n,m), γ(n,m) and δ(n,m) in terms of the principal parts of the basis

functions at the marked points. In terms of the chosen local coordinates, the basis functions

ψ1(n,m,P ) and ψ2(n,m,P ) have the following expansions at the marked points, where k

denotes the appropriate local coordinate k±i :

ψ1(n,m,P ) =





a+
1 (n,m)kn +O(kn−1), as P → P+

1

a−1 (n,m)k−n +O(k−n−1), as P → P−
1

O(km−1), as P → P+
2

a−2 (n,m)k−m +O(k−m−1), as P → P−
2

(3.32)
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ψ2(n,m,P ) =





O(kn−1), as P → P 1
+

b−1 (n,m)k−n +O(k−n−1), as P → P 1
−

b+2 (n,m)km +O(km−1), as P → P 2
+

b−2 (n,m)k−m +O(k−m−1), as P → P 2
−

(3.33)

where the a±i (n,m) and b±i (n,m) are functions of the discrete variables n and m. Consider-

ing the Dirac equation (3.31) near the marked points P±
1 , P

±
2 gives us the following system

of equations (in what follows, we usually suppress the indices n and m and replace them

with the translation operators T1 and T2):

T2a
+
1 = αa+

1 ,

T2a
−
1 = αa−1 + βb−1 ,

0 = αa−2 + βa+
2 ,

0 = γa−1 + δb−1 ,

T1b
+
2 = δb+2 ,

T1b
−
2 = γa−2 + δb−2 .

(3.34)

The functions ψ1 and ψ2 have so far been defined up to multiplication by a constant fac-

tor dependent on n and m. We impose the following additional conditions on the functions

ψ1 and ψ2:

a+
1 a

−
1 = 1, b+2 b

−
2 = 1. (3.35)

It is easy to show using (3.34) that these conditions imply the following relations on the

coefficients α, β, γ, δ:

αδ − βγ =
α

δ
=
δ

α
=

(T2a
+
1 )(T1b

−
2 )

a+
1 b

−
2

= ±1. (3.36)

Condition (3.35) defines the constants a+
1 and b−2 , and hence the functions ψ1 and ψ2, only

up to a factor of ±1 that depends on n and m. This allows us to impose the following

additional condition on the functions ψ1 and ψ2:

(T2a
+
1 )(T1b

−
2 ) = a+

1 b
−
2 . (3.37)

In other words, we can choose the sign for the function ψ2 arbitrarily, and then choose the

sign for the function ψ1 using the above relation. With this condition, the sign in equation

(3.36) is positive. Therefore, reductions (3.35) and (3.37) impose the following relations on

the coefficients of the Dirac operator (3.31):

αδ − βγ = 1, α = δ. (3.38)
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In other words, the coefficients of a general Dirac operator of the form (3.31) depend, up

to gauge equivalence, on two arbitrary functions of the discrete variables.

We now introduce a reduction under which the coefficients of the Dirac operator (3.31)

depend on only one function of the variables n, m. Suppose that, in addition to data A

described above, the spectral curve X has the following:

Data B.

• A holomorphic involution σ :X → X that interchanges the marked points and the

local parameters at the marked points as follows:

σ(P±
i ) = P∓

i , σ(k±i ) = k∓i . (3.39)

• A meromorphic 1-form ω on X which has simple poles at the marked points P±
i with

residues ±1 and no other singularities, whose zero divisor is D + σ(D), and which is

odd with respect to the involution.

Consider the meromorphic 1-form ψ1(n,m,P )ψ2(n,m, σ(P ))ω(P ). Comparing the singu-

larities of the three terms, we see that this 1-form has simple poles at P+
1 and P−

2 with

residues a+
1 b

−
1 and −a−2 b+2 , respectively, and no other singularities. Hence, the existence of

the additional data above implies that the coefficients of the functions ψ1 and ψ2 satisfy

the following additional condition:

a+
1 b

−
1 = a−2 b

+
2 . (3.40)

Using (3.34) and (3.35), it is easy to show that this condition implies the following additional

relation on the coefficients of the Dirac operator:

β = γ. (3.41)

Using the involution σ we can rewrite the normalization conditions (3.35) and (3.37) in the

following equivalent form:

ψ1(P )ψ1(σ(P ))|P=P+

1

= 1, (3.42)

ψ2(P )ψ2(σ(P ))|P=P+

2

= 1, (3.43)
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T2ψ1(P )

ψ1(P )

∣∣∣∣
P=P+

1

=
T1ψ2(P )

ψ2(P )

∣∣∣∣
P=P−

2

. (3.44)

Therefore, we can summarize the result of this reduction as follows.

Proposition 3.3.3 Suppose that X is a Riemann surface with data A and data B as defined

above, and suppose the functions ψ1(P ) and ψ2(P ) defined by (3.29) and (3.30) satisfy the

normalization conditions (3.42)-(3.44). Then there exist functions of the discrete variables

α and β that satisfy the relation

α2 − β2 = 1 (3.45)

and such that the functions ψ1(P ) and ψ2(P ) satisfy the discrete Dirac equation:

Dψ =




 T2 0

0 T1


−


 α β

β α






 ψ1

ψ2


 = 0. (3.46)

We now construct a further reduction of the discrete Dirac equation (3.46) which is

the discrete analogue of the real-valued reduction in the differential case. Suppose that, in

addition to data A and data B above, the spectral curve X has the following:

Data C.

• An anti-holomorphic involution τ :X → X that interchanges the marked points and

acts on the local parameters at the marked points as follows:

τ(P±
1 ) = P±

2 , τ(P±
2 ) = P±

1 , τ(k±1 ) = k̄±2 , τ(k±2 ) = k̄±1 . (3.47)

• A meromorphic function f(P ) on X with divisor (f) = D − τ(D) satisfying the

conditions

f(P )f̄(τ(P )) = −1 for all P ∈ X, f(P+
1 )f(P−

1 ) = 1. (3.48)

For a function f(n,m) of the discrete variables, we introduce the notation f∗(n,m) =

f̄(m,n). Consider the two functions ψ∗
2(n,m, τ(P )) and ψ1(n,m,P )f(P ). Both these func-

tions are meromorphic and lie in the one-dimensional space H0(τ(D) + (n− 1)P+
2 −nP−

2 +

mP+
1 −mP−

1 ), hence there exists a function C(n,m) of n and m such that

ψ̄2(m,n, τ(P )) = ψ1(n,m,P )f(P )C(n,m). (3.49)
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Considering this equation at P = P+
1 and P = P−

1 and using conditions (3.35) and (3.48),

we see that

C(n,m)2 = 1 for all n,m ∈ Z. (3.50)

We recall that the function ψ2 was normalized by condition (3.35), which specifies it up

to multiplication by a factor ±1 dependent on n and m. Therefore, we can choose this

factor in such a way that C(n,m) = 1 for all n and m, in other words we may impose the

additional following condition:

ψ̄2(m,n, τ(P )) = ψ1(n,m,P )f(P ). (3.51)

Equation (3.48) then implies that the functions ψ1 and ψ2 chosen in this way satisfy the

following relations:

ψ̄2(m,n, τ(P )) = ψ1(n,m,P )f(P ), ψ̄1(m,n, τ(P )) = −ψ2(n,m,P )f(P ). (3.52)

Plugging these relations into the reduced Dirac equation (3.46) gives us the following rela-

tions on the coefficients of the operator:

α∗ = α, β∗ = −β. (3.53)

We summarize the results of this reduction in the following proposition:

Proposition 3.3.4 Suppose that X is a Riemann surface with data A, B and C as defined

above, and suppose the functions ψ1(P ) and ψ2(P ) defined by (3.29) and (3.30) satisfy the

normalization conditions (3.42)-(3.44) and (3.51). Then there exist functions of the discrete

variables α and β that satisfy the relations

α2 − β2 = 1, α∗ = α, β∗ = −β (3.54)

that the functions ψ1(P ) and ψ2(P ) satisfy the discrete Dirac equation:

Dψ =




 T2 0

0 T1


−


 α β

β α






 ψ1

ψ2


 = 0. (3.55)



CHAPTER 3. THE DISCRETE DIRAC OPERATOR 24

3.4 The discrete modified Novikov–Veselov hierarchy

In the previous section, we constructed algebro-geometric solutions of the discrete Dirac

operator (3.31) and its reductions (3.46) and (3.55) by considering spaces of meromorphic

functions Ψn,m on a Riemann surface X with poles and zeroes determined by the numbers

n and m. In this section, we embed these meromorphic solutions into a family of transcen-

dental functions, called Baker–Akhiezer functions, and construct a hierarchy of commuting

flows on the space of these functions. The set of compatibility conditions of these flows is

the discrete analogue of the modified Novikov–Veselov hierarchy.

Let t =
{
t1s, t

2
s, s = 1, 2, . . .

}
∈ C

∞ ⊕ C
∞ denote two sequences of complex numbers,

only finitely many of which are non-zero, which we think of as continuous time variables.

We construct deformations Ψn,m,t of the function spaces Ψn,m constructed in the previous

section by considering functions which in addition have essential singularities at the marked

points controlled by the times t.

Proposition 3.4.1 Suppose that X is a Riemann surface with data A and data B given as

in the previous section. Denote by X̃ = X − P+
1 − P−

1 − P+
2 − P−

2 the surface X with the

marked points removed. Consider the space Ψn,m,t ∈ Mer(X̃) of functions on X̃ defined by

the following conditions

1. For all ψ(n,m, t, P ) ∈ Ψn,m,t we have (ψ) + D ≥ 0, where (ψ) is the divisor of ψ.

2. At the marked points P±
i the elements ψ(n,m, t, P ) of Ψn,m,t have essential singu-

larities of the following form, where by k we denote the appropriate local coordinate

k±i :

ψ(n,m, t, P ) = exp

(
±

∞∑

s=1

t1µk
µ

)
O(k±n) as P → P±

1 ,

ψ(n,m, t, P ) = exp

(
±

∞∑

s=1

t2µk
µ

)
O(k±m) as P → P±

2 .

(3.56)

Then for sufficiently small t each of the spaces Ψn,m,t is two-dimensional:

dimΨn,m,t = 2 for all n,m ∈ Z, (3.57)
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the intersection of two of these spaces at adjacent lattice points is one-dimensional:

dimΨn,m,t ∩ Ψn,m−1,t = 1 for all n,m ∈ Z, (3.58)

dimΨn,m,t ∩ Ψn−1,m,t = 1 for all n,m ∈ Z, (3.59)

and these two one-dimensional subspaces of Ψn,m,t span the entire space, i.e. their inter-

section is trivial:

dimΨn,m,t ∩ Ψn,m−1,t ∩ Ψn−1,m,t = 0 for all n,m ∈ Z. (3.60)

Proof. The proof of this proposition is a standard application of the Riemann–Roch theo-

rem.

This proposition allows us to define functions ψ1(n,m, t, P ) and ψ2(n,m, t, P ) using

the same relations as in the previous section. We observe the normalization conditions

(3.42)-(3.44) can be applied to elements of Ψn,m,t, since the exponential singularities cancel

out.

Proposition 3.4.2 There exist unique functions ψ1(n,m, t, P ) and ψ2(n,m, t, P ) that form

a basis for the vector space Ψn,m,t such that

ψ1(n,m, t, P ) ∈ Ψn,m,t ∩ Ψn,m−1,t − {0}, (3.61)

ψ2(n,m, t, P ) ∈ Ψn,m,t ∩ Ψn−1,m,t − {0}. (3.62)

and which satisfy the normalization conditions (3.42)-(3.44). These functions satisfy the

discrete Dirac equation

Dψ =




 T2 0

0 T1


−


 α β

β α






 ψ1

ψ2


 = 0, (3.63)

where α and β are functions of the variables n, m, and t satisfying the condition

α2 − β2 = 1. (3.64)
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We later give explicit formulas for the functions ψi in terms of the theta functions of the

curve X

We now show that these functions satisfy a system of commuting linear equations.

Let R denote the ring of functions in the variables n, m and t. We consider the ring

O = R[T1, T
−1
1 , T2, T

−1
2 ] of finite difference operators with coefficients in R, and the ring

M of (2 × 2) matrix operators with coefficients in O. By ψ we denote the column vector

(ψ1(n,m, t, P ), ψ2(n,m, t, P ))T .

Proposition 3.4.3 There exist unique matrix difference operators Aiµ in M

Aiµ =


 Aiµ,1 0

0 Aiµ,2


 , i = 1, 2, µ = 1, 2, . . . (3.65)

Aiµ,j =

µ∑

s=−µ

f iµ,j,s(n,m, t)T
s
i , (3.66)

such that the functions ψ1(n,m, t, P ) and ψ2(n,m, t, P ) satisfy the following system of dif-

ferential equations:
∂

∂tiµ
ψ = Aiµψ. (3.67)

Proof. The proof is standard. For a given µ we show how to construct the operator A1
µ,1,

the other cases being similar.

The derivative of the function ψ1(n,m, t, P ) with respect to t1µ has the following ex-

pansions at the marked points P±
i , where by k we denote the appropriate local coordinate

k±i :

∂

∂t1µ
ψ1(n,m, t, P ) = exp

(
±

∞∑

ν=1

t1νk
ν

)
·O(k±n+µ) as P → P±

1 , (3.68)

∂

∂t1µ
ψ1(n,m, t, P ) = exp

(
∞∑

i=1

t2νk
ν

)
O(km−1) as P → P+

2 , (3.69)

∂

∂t1µ
ψ1(n,m, t, P ) = exp

(
−

∞∑

ν=1

t2νk
ν

)
·O(k−m) as P → P−

2 . (3.70)

Therefore, for an appropriate choice of functions f1
µ,i,s(n,m, t), the function

ψ̃(n,m, t, P ) =
∂

∂t1µ
ψ1(n,m, t, P ) −

µ∑

s=−µ

f1
µ,1,s(n,m, t)ψ1(n+ s,m, t, P ) (3.71)
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has the following expansions at P±
1 :

ψ̃(n,m, t, P ) = exp

(
∞∑

ν=1

t1νk
ν

)
·O(kn−1) as P → P+

1 , (3.72)

ψ̃(n,m, t, P ) = exp

(
−

∞∑

ν=1

t1νk
ν

)
·O(k−n) as P → P−

1 , (3.73)

and the same expansions (3.69)-(3.70) at P±
2 as ∂

∂t1µ
ψ1(n,m, t, P ). Therefore, by (3.60) this

function is identically zero on X. Therefore, the function ψ1(n,m, t, P ) satisfies the system

of equations (3.67).

Proposition 3.4.4 The left ideal of matrix difference operators in M that annihilate ψ is

the principal left ideal generated by the operator D.

Proof. Suppose that A and B are two operators in O that satisfy the following equation:

Aψ1 +Bψ2 = 0. (3.74)

We need to show that there exist operators C,D ∈ O such that A = C(T2 − α) −Dβ and

B = −Cβ +D(T1 − α).

First, we multiply equation (3.74) on the left by sufficiently high powers of T1 and T2 so

that the operators A and B become polynomial in T1 and T2. Next, we show that we can

eliminate all terms containing mixed powers of T1 and T2. Indeed, suppose

A =

n−1∑

i=1

aiT
i
1T

n−i
2 + (terms with no T1T2) + (terms of order < n),

B =

n−1∑

i=1

biT
i
1T

n−i
2 + (terms with no T1T2) + (terms of order < n),

then we can write

A =
n−1∑

i=1

[
aiT

i
1T

n−i−1
2 (T2 − α) − biT

i
1T

n−i−1
2 β

]
+(terms with no T1T2)+(terms of order < n),

B =

n−1∑

i=1

[
biT

i
1T

n−i−1
2 (T1 − α) − aiT

i
1T

n−i−1
2 α

]
+(terms with no T1T2)+(terms of order < n),
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and proceeding in this way, we can eliminate all terms which are not powers of only T1 or

T2. Therefore, we can assume that A = A1(T1) +A2(T2), B = B1(T1) +B2(T2), where the

Ai, Bi are polynomials in only Ti.

Suppose that A1 =
∑n

i=0 aiT
i
1 and B1 =

∑m
j=0 bjT

j
1 . Comparing the singularities in

(3.74) at the point P+
1 , we see that m = n+1. Subtracting bn+1T

n
1 [(T1 − α)ψ2 − βψ1] from

(3.74), we reduce the degree of B1, and hence of A1. In this way we can eliminate A1, and

similarly B2. Therefore, we are left with showing that if A = A2(T2) and B = B1(T1) are

linear polynomials satisfying (3.74), then they can be expressed as A = f(T2 −α)− gβ and

B = −fβ + g(T1 − α) for some functions f and g, which can be easily shown.

Proposition 3.4.5 There exist matrix difference operators Bi
µ in M such that the following

equations are satisfied:

− ∂

∂tiµ
D = DAiµ +Bi

µD (3.75)

Proof. Equations (3.63) and (3.67) imply that

[
∂

∂tiµ
−Aiµ,D

]
ψ = 0. (3.76)

Since the operator in the left hand side does not contain derivation in time, it is inside M,

hence by the above proposition it is a left multiple of D, which proves the statement.

Theorem 3.4.1 The equations

∂

∂tiµ
D +DAiµ ≡ 0 mod D (3.77)

define a commuting hierarchy of differential-difference equations.

We call this system the discrete modified Novikov–Veselov (dmNV) hierarchy. In the

next section, we give the explicit form of the first two pairs of equations of the dmNV

hierarchy.
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3.5 First and second equations: explicit forms

In this section, we write down the explicit form of the dmNV hierarchy corresponding to

times t11, t
2
1, t

1
2 and t22. We give the explicit calculations for t11, the derivations for the other

times being similar.

It is difficult to write down the dmNV as they are defined in (3.77), since this involves

performing division with remainder in a matrix algebra over a non-commutative operator

ring. To circumvent this difficulty, we notice that the discrete Dirac equation (3.63), which

is a difference equation of degree one on the two functions ψ1 and ψ2, is equivalent to a

degree two difference equation on one of the ψ1 or ψ2.

Proposition 3.5.1 Suppose the functions ψ1 and ψ2 satisfy the discrete Dirac equation

(3.63). Then these functions individually satisfy the following discrete Schrödinger equa-

tions

H1ψ1 =

[
T1T2 − (T1α)T1 −

α(T1β)

β
T2 +

T1β

β

]
ψ1 = 0 (3.78)

H2ψ2 =

[
T1T2 − (T2α)T2 −

α(T2β)

β
T1 +

T2β

β

]
ψ2 = 0. (3.79)

Proof. This follows from excluding ψ1 or ψ2 from the system (3.63).

Conversely, we have an analogue of Prop.3.4.4 for the operators Hi:

Proposition 3.5.2 The left ideal of difference operators in O that annihilate ψi is the

principal left ideal generated by the operator Hi.

Proof. Suppose that A ∈ O is an operator such that Aψ1 = 0. Then Proposition 3.4

implies that there exist operators C,D ∈ O such that

A = C(T2 − α) −Dβ, −Cβ +D(T1 − α) = 0.

Expressing C = D(T1 − α)(β)−1 from the second equation and plugging it in to the first,

we get that A = D(T1β)−1H1. The case of ψ2 is similar.

These two propositions allow us to write our hierarchy as a system of rank one difference

equations of degree two.
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Proposition 3.5.3 The discrete modified Novikov–Veselov hierarchy (3.77) is equivalent

to either of the following two systems of equations

∂

∂tiµ
H1 +H1A

i
µ,1 ≡ 0 mod H1, (3.80)

∂

∂tiµ
H2 +H2A

i
µ,2 ≡ 0 mod H2. (3.81)

We now use this approach to construct the equations corresponding to times t11, t
2
1, t

1
2 and

t22.

The functions ψ1 and ψ2 have the following power series expansions at the marked points

P±
i , where by k we denote the appropriate local coordinate k±i :

ψ1(n,m, t, P ) = k±n exp


±

∞∑

µ=1

t1µk
µ


 ·




∞∑

j=0

ξ±1,j(n,m, t)k
−j


 as P → P±

1 ,

ψ1(n,m, t, P ) = k±m exp


±

∞∑

µ=1

t2µk
µ


 ·




∞∑

j=0

ξ±2,j(n,m, t)k
−j


 as P → P±

2 ,

ψ2(n,m, t, P ) = k±n exp


±

∞∑

µ=1

t1µk
µ


 ·




∞∑

j=0

χ±
1,j(n,m, t)k

−j


 as P → P±

1 ,

ψ2(n,m, t, P ) = k±m exp


±

∞∑

µ=1

t2µk
µ


 ·




∞∑

j=0

χ±
2,j(n,m, t)k

−j


 as P → P±

2 ,

(3.82)

where the ξ±i,µ(n,m, t) and χ±
i,µ(n,m, t) are analytic functions in the variables t, and ξ+2,0 = 0,

χ+
1,0 = 0. To make our notation consistent with (3.32)-(3.33), we denote

a±i = ξ±i,0, b±i = χ±
i,0 (3.83)

c±i = ξ±i,1, d±i = χ±
i,1 (3.84)

Plugging these expressions into (3.63), we see that these coefficients satisfy the following

system of equations:

T2ξ
±
1,j = αξ±1,j + βχ±

1,j (3.85)

T2ξ
±
2,j±1 = αξ±2,j + βχ±

2,j (3.86)

T1χ
±
1,j±1 = βξ±1,j + αχ±

1,j (3.87)
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T1χ
±
2,j = βξ±2,j + αχ±

2,j (3.88)

Because the functions ψ1 and ψ2 satisfy the normalization conditions (3.42)-(3.44), we also

have

a+
1 a

−
1 = 1, b+2 b

−
2 = 1. (3.89)

We now derive the dmNV equation corresponding to time t11 using its equivalent form

(3.80). Let ḟ denote differentiation by t11. We denote A1
1,1 = AT1 + BT−1

1 + C and H1 =

T1T2 + xT1 + yT2 + z. The equation in time T 1
1 has the form

− ẋT1 − ẏT2 − ż ≡ (T1T2 + xT1 + yT2 + z)(AT1 +BT−1
1 + C) mod H1. (3.90)

First, we express all of the coefficients of the above equation in terms of the variables a+
1 ,

b+2 , α and β. The coefficients x, y, z of H1 were found above in Prop.3.5.1:

x = −T1α, y = −α(T1β)

β
, z =

T1β

β
. (3.91)

To calculate the coefficients of the operator A1
1,1, we use the method of Prop.3.4.3. Com-

paring singularities, we see that if

A = f1
1,1,1 =

a+
1

T1a
+
1

, B = f1
1,1,−1 = − a−1

T−1
1 a−1

= −T
−1
1 a+

1

a+
1

, (3.92)

then the functions ψ1 and ψ̇1 −AT1ψ1 −BT−1
1 ψ are proportional. Hence we can determine

the third coefficient C = f1
1,1,0 by comparing these two functions at either P+

2 or P−
2 , which

gives us two alternative expressions:

C = f1
1,1,0 =

1

c+2

(
∂c+2
∂t11

− a+
1

T1a
+
1

T1c
+
2 +

a−1
T−1

1 a−1
T−1

1 c+2

)
=

=
1

a−2

(
∂a−2
∂t11

− a+
1

T1a
+
1

T1a
−
2 +

a−1
T−1

1 a−1
T−1

1 a−2

)
. (3.93)

We first these expressions by removing the coefficients a−2 and c+2 . From the system (3.85)-

(3.88) we get that c+2 = (T−1
2 β)(T−1

2 b+2 ) and a−2 = −β/(αb+2 ). Using T1b
+
2 = αb+2 , the first

expression becomes

C =
T−1

2 β̇

T−1
2 β

+
T−1

2 ḃ+2
T−1

2 b+2
− a+

1

T1a
+
1

(T−1
2 α)(T1T

−1
2 β)

T−1
2 β

+
T−1

1 a+
1

a+
1

T−1
1 T−1

2 β

(T−1
2 β)(T−1

1 T−1
2 α)
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and the second expression becomes

C = f1
1,1,0 =

β̇

β
− α̇

α
− ḃ+2
b+2

− a+
1

T1a
+
1

T1β

β(T1α)
+
T−1

1 a+
1

a+
1

α(T−1
1 β)

β
.

Expanding the right hand side of (3.90), we get

H1A
1
1,1 = (T1T2A)T 2

1 T2 + x(T1A)T 2
1 + [T1T2C + y(T2A)]T1T2 + [x(T1C) + zA]T1+

+ [T1T2B + y(T2C)]T2 + x(T1B) + zC + y(T2B)T−1
1 T2 + zBT−1

1 .

This expression is a Laurent polynomial in T1 and T2 whose terms have degrees i and j in

T1 and T2, respectively, where i = −1, 0, 1, 2 and j = 0, 1. We need to express it as a left

multiple of H1 plus an operator containing terms of degrees (0, 0), (0, 1) and (1, 0). First,

to cancel the term containing T 2
1 T2, we subtract the following left multiple of H1:

(T1T2A)T1H1 = (T1T2A)T 2
1 T2 + (T1T2A)(T1x)T

2
1 + (T1T2A)(T1y)T1T2 + (T1T2A)(T1z)T1.

Using (3.78), (3.92) and (3.85), we see that the coefficient in front of T 2
1 in this difference

vanishes:

x(T1A) − (T1x)(T1T2A) = −(T1α)
T1a

+
1

T 2
1 a

+
1

+ (T 2
1α)

T1T2a
+
1

T 2
1 T2a

+
1

= 0.

Similarly, to cancel the term containing T−1
1 T2, we subtract

y(T2B)T−1
1 y−1H1 =

y(T2B)

T−1
1 y

T2 +
y(T2B)

T−1
1 y

(T−1
1 x) + y(T2B)T−1

1 T2 +
y(T2B)

T−1
1 y

(T−1
1 z)T−1

1 ,

and using (3.78), (3.92), (3.85) and the relation (3.89), we show that the coefficient in front

of T−1
1 vanishes:

zB − y(T2B)

T−1
1 y

(T−1
1 z) = 0.

Hence, we see that

H1A
1
1,1 ≡ [T1T2C + y(T2A) − (T1T2A)(T1y)]T1T2 + [x(T1C) + zA− (T1T2A)(T1z)]T1+

+

[
T1T2B + y(T2C) − y(T2B)

T−1
1 y

]
T2 + x(T1B) + zC − y(T2B)

T−1
1 y

(T−1
1 x) mod H1.

Finally, to obtain the evolution equation, we subtract [T1T2C + y(T2A) − (T1T2A)(T1y)]H1

from the right hand side of the equation, and obtain the following equations:

− ẋ = x(T1C) + zA− (T1T2A)(T1z) − x [T1T2C + y(T2A) − (T1T2A)(T1y)] , (3.94)
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− ẏ = T1T2B + y(T2C) − y(T2B)

T−1
1 y

− y [T1T2C + y(T2A) − (T1T2A)(T1y)] , (3.95)

− ż = x(T1B) + zC − y(T2B)

T−1
1 y

(T−1
1 x) − [T1T2C + y(T2A) − (T1T2A)(T1y)] . (3.96)

Since the coefficients x, y, z of H are expressed in terms of α and β, which are in turn related

by the equation α2 − β2 = 1, it is sufficient to find one of the derivatives, for example ẋ.

Expanding the expression for ẋ and using the expressions for the coefficients x, y, z and A,

B, C obtained above (using the first expression for C in T1T2C and using the second one

in T1C), we obtain the following equation

T1ḃ
+
2

T1b
+
2

=
a+

1

T1a
+
1

β(T1β)

T1α
, (3.97)

which is the first equation of the dmNV hierarchy.

It seems natural to replace the variables a+
1 and b+2 with their logarithms, i.e. to intro-

duce new variables a+
1 = eϕ and b+2 = eψ. Since α = T2a

+
1 /a

+
1 = T1b

+
2 /b

+
2 , these variables

are related by the equation

T2ϕ− ϕ = T1ψ − ψ. (3.98)

Writing the evolution equation (3.97) in terms of these new variables, we get

∂ψ

∂t11
=

√(
e2T

−1

1
T2ϕ − e2T

−1

1
ϕ
)

(e−2ϕ − e−2T2ϕ) (3.99)

To derive the evolution equation for time t21, we use its equivalent form (3.81). The

calculations in this case are identical to those performed above. In fact, since our problem

is symmetric with respect to exchanging the marked points P±
1 and P±

2 , we can obtain

the desired equation simply by exchanging the functions a+
1 and b+2 and simultaneously

exchanging the shift operators T1 and T2 in the evolution equation in time t11 (3.99). This

gives us the following equation:

T2ȧ
+
1

T2a
+
1

=
β(T2β)

T2α

b+2
T2b

+
2

. (3.100)

In terms of the logarithmic variables, this equation reads

∂ϕ

∂t21
=

√(
e2T1T

−1

2
ψ − e2T

−1

2
ψ
)

(e−2ψ − e−2T1ψ) (3.101)
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The derivation of the equations for times t12 and t22 involves similar calculations. For

time t12, we use the equivalent form (3.80):

− ∂H1

∂t12
= H1A

1
2,1 mod H1. (3.102)

Here A2,1 is a Laurent polynomial in T1 with terms of degree −2 to 3. As above, we

successively subtract appropriate left multiples of H1 to cancel the terms containing T i1T2

for i = 3,−2, 2,−1. At every step, the corresponding T i1 term vanishes. Finally, canceling

the T1T2 term gives us the following equation:

T1ḃ
+
2

T1b
+
2

=
β(T1β)

T1α

1

T1a
+
1

c+1 − β(T1β)

T1α

a+
1

(T1a
+
1 )(T 2

1 a
+
1 )
T 2

1 c
+
1 +

+
β(T 2

1 β)

(T1α)(T 2
1 α)

a+
1

T 2
1 a

+
1

+
α(T−1

1 β)(T1β)

T1α

T−1
1 a+

1

T1a
+
1

, (3.103)

where the functions a+
1 , b+2 , c+1 , α and β in the equation satisfy the following relations:

α =
T2a

+
1

a+
1

=
T1b

+
2

b+2
, α2 − β2 = 1, T2c

+
1 = αc+1 + β(T−1

1 β)(T−1
1 a+

1 ). (3.104)

3.6 Theta function formulas

In this section we give explicit formulas for the functions ψi(n,m, t, P ) in terms of the theta

functions of the surface X. Choose a basis aj , bj , j = 1, . . . , g of H1(X,Z) with canonical

intersection form, i.e. such that aj ◦ ak = 0, bj ◦ bk = 0, aj ◦ bk = δjk. Let B be the

period matrix of the surface X with respect to this basis. Let Ω1 and Ω2 denote Abelian

differentials of the third kind with poles at P±
1 and P±

2 :

Ωi = d(k±i )−1
(
∓k±i +O(1)

)
as P → P±

i

which are normalized to have zero periods over the a-cycles. Let Ωµ
i denote Abelian differ-

entials of the second kind with poles at P±
i and principal parts

Ωµ
i = d(k±i )−1

(
∓µ(k±i )µ+1 +O(1)

)
as P → P±

i ,

and with zero a-periods, and which are odd with respect to the involution σ. It is a standard

fact that these differentials exist and are unique. Let Ui and Uµi denote the vectors of the
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b-periods of these differentials:

(Ui)j =
1

2π
√
−1

∮

bj

Ωi, (Uµi )j =
1

2π
√
−1

∮

bj

Ωµ
i .

Choose a base point P0 ∈ X away from the marked points P±
i and the divisor D, and let

A : X → J(X) denote the Abel map with base point P0, where J(X) is the Jacobian variety

of X. Let θ(z|B) denote the theta function of J(X) for z ∈ C
g. Introduce the functions

r1(P ) =
θ(A(P ) −A(P+

2 ) −∑g
i=2A(Pi) −K|B)θ(A(P ) −∑g+1

i=1 A(Pi) +A(P+
2 ) −K|B)

θ(A(P ) −∑g
i=1A(Pi) −K|B)θ(A(P ) −∑g+1

i=2 A(Pi) −K|B)
,

r2(P ) =
θ(A(P ) −A(P+

1 ) −
∑g

i=2A(Pi) −K|B)θ(A(P ) −
∑g+1

i=1 A(Pi) +A(P+
1 ) −K|B)

θ(A(P ) −∑g
i=1A(Pi) −K|B)θ(A(P ) −∑g+1

i=2 A(Pi) −K|B)
.

By construction, these are meromorphic functions on X whose pole divisor is D =
∑g+1

i=1 Pi

and whose zero divisors are P+
2 +D1 and P+

1 +D2, respectively, where D1 and D2 are some

divisors of degree g.

We define the functions ψ1 and ψ2 by the following formulas:

ψi(n,m, t, P ) = ri(P )Ci(n,m, t)Fi(n,m, t, P )×

× exp


n
∫ P

P0

Ω1 +m

∫ P

P0

Ω2 +

∞∑

µ=1

2∑

l=1

tlµ

∫ P

P0

Ωµ
l


 , (3.105)

where the function F (n,m, t, P ) is defined as

Fi(n,m, t;P ) =

θ


A(P ) −A(Di) + nU1 +mU2 +

∞∑

µ=1

2∑

l=1

tlµU
µ
l




θ (A(P ) −A(Di) −K)

and the path of integration in the exponent is the same as in the Abel map in Fi. By

construction, these are single-valued functions on the surface X, having the required mero-

morphic and exponential singularities at the marked points, and having pole divisor D away

from the marked points.

The constants Ci(n,m, t) are determined by the normalization conditions (3.42)-(3.44).

Choose paths of integration γi : [0, 1] → X from P0 to P+
i and a path γ from P0 to σ(P0).

We assume that the integration path in ψi(P ) is γi and that the path in ψi(σ(P )) is γ
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followed by the image of γi under σ. Writing out the expression for ψi(P )ψi(σ(P )) using

(3.105), we see that we need to choose the constants Ci(n,m, t) as follows:

1

Ci(n,m, t)2
= ri(P

+
i )ri(P

−
i )Fi(n,m, t, P

+
i )Fi(n,m, t, P

−
i )×

× exp


nI1

i +mI2
i +

∞∑

µ=1

2∑

i=1

tlµ

∫

γ

Ωµ
l


 (3.106)

where the path of integration in the Fi(n,m, t, P
−
i ) factor is γ followed by σ(γi), and the

constants I1
i and I2

i are the principal values of the integrals of Ω1 and Ω2 along the path

−γi + γ + σ(γi):

Iki = lim
t→1

(∫ γ(t)

γ(0)
Ωk +

∫

γ

Ωk +

∫ σ(γ(t))

σ(γ(0))
Ωk

)
, k = 1, 2. (3.107)

Finally, we choose the signs of Ci(n,m, t) in such a way that the functions ψi satisfy

the equation (3.44).
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Chapter 4

Discretization of the generalized

Weierstrass representation

In this section, we use various reductions of the discrete Dirac operator (3.12) constructed

in the previous section to construct discrete analogues of the generalized Weierstrass rep-

resentations (2.12)-(2.17) of isotropic surfaces in pseudo-Euclidean spaces. These discrete

Weierstrass representations are maps of the regular Z
2 lattice into the pseudo-Euclidean

spaces R
2,1, R

3,1 and R
2,2 with the property that every edge of the lattice is an isotropic

vector.

4.1 Discrete surfaces

Let V be a vector space. A discrete surface ~X in V is a map ~X : Z
2 → V . The edges of a

discrete surface ~X are the vectors

~F (n,m) = ~X(n+ 1,m) − ~X(n,m), ~G(n,m) = ~X(n,m+ 1) − ~X(n,m). (4.1)

Conversely, a pair of functions ~F : Z
2 → V and ~G : Z

2 → V defines a discrete surface (up

to translation) if and only if they satisfy the consistency condition

~F (n,m+ 1) − ~F (n,m) = ~G(n+ 1,m) − ~G(n,m) (4.2)
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guaranteeing that the edges link up. We use the following notation for a discrete surface ~X

defined in terms of its edges:

~X =
∑(

~F∆1 + ~G∆2

)
. (4.3)

A discrete surface is called non-degenerate if its edges are linearly independent at every

lattice point. A discrete surface in R
n,m is called isotropic if all of its edges are light-like

vectors:

〈~F (n,m), ~F (n,m)〉 = 0, 〈 ~G(n,m), ~G(n,m)〉 = 0, (4.4)

where 〈·, ·〉 denotes the scalar product in R
n,m.

The main result of this chapter is that isotropic discrete surfaces in R
2,1, R

3,1 and R
2,2

satisfying a certain monotonicity condition are described by solutions of a discrete Dirac

equation, using essentially the same formulas as in the continuous case.

4.2 The R2,1 case

Proposition 4.2.1 Suppose that the functions ψ1, ψ2 satisfy the following discrete Dirac

equation: 


 T2 0

0 T1


−


 α β

β α






 ψ1

ψ2


 = 0, (4.5)

where ᾱ = α, β̄ = β, α2 − β2 = 1. Then the formulas

X1 =
1

2

∑[
(ψ2

1 + ψ̄2
1)∆1 + (ψ2

2 + ψ̄2
2)∆2

]
, (4.6)

X2 =
i

2

∑[
(ψ2

1 − ψ̄2
1)∆1 + (ψ2

2 − ψ̄2
2)∆2

]
, (4.7)

X3 =
∑[

ψ1ψ̄1∆1 + ψ2ψ̄2∆2

]
, (4.8)

define an isotropic discrete surface ~X : Z
2 → R

2,1. Conversely, if ~X : Z
2 → R

2,1 is a

non-degenerate isotropic discrete surface that satisfies the following condition

X3(n+ 1,m) −X3(n,m) > 0, X3(n,m+ 1) −X3(n,m) > 0 for all n,m ∈ Z
2, (4.9)

then there exist functions ψ1 and ψ2 satisfying equation (4.5) such that equations (4.6)-(4.8)

hold.
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Proof. Given functions ψ1, ψ2 satisfying (4.5), a direct calculation shows that the edges

given by equations (4.6)-(4.8) are isotropic (4.4) and satisfy the consistency condition (4.2),

and therefore define an isotropic discrete surface in R
2,1.

Conversely, suppose that ~X : Z
2 → R

2,1 is an isotropic discrete surface satisfying the

monotonicity condition (4.9). The edges of the lattice satisfy the equations

F 2
1 + F 2

2 = F 2
3 , G2

1 +G2
2 = G2

3, F3 > 0, G3 > 0, (4.10)

therefore there exist functions ψ1 and ψ2, defined up to multiplication by ±1, such that the

edges are given by the formulas (4.6)-(4.8). The consistency condition (4.2) implies that

these functions satisfy the following equations

(T2ψ1)
2 − ψ2

1 = (T1ψ2)
2 − ψ2

2 , (4.11)

(T2ψ1)(T2ψ̄1) − ψ1ψ̄1 = (T1ψ2)(T1ψ̄2) − ψ2ψ̄2, (4.12)

and the non-degeneracy condition implies that

ψ1ψ̄2 − ψ̄1ψ2 6= 0. (4.13)

The above equation implies that there exist unique real-valued functions α, β, γ and δ

such that the following system of equations is satisfied:



 T2 0

0 T1


−


 α β

γ δ






 ψ1

ψ2


 = 0, (4.14)

Solving this system, we get

α =
ψ̄2(T2ψ1) − ψ2(T2ψ̄1)

ψ1ψ̄2 − ψ̄1ψ2
, β =

ψ1(T2ψ̄1) − ψ̄1(T2ψ1)

ψ1ψ̄2 − ψ̄1ψ2
, (4.15)

γ =
ψ̄2(T1ψ2) − ψ2(T1ψ̄2)

ψ1ψ̄2 − ψ̄1ψ2
, δ =

ψ1(T1ψ̄2) − ψ̄1(T1ψ2)

ψ1ψ̄2 − ψ̄1ψ2
, (4.16)

and a direct calculation using (4.11)-(4.12) shows that

α2 − γ2 = 1, δ2 − β2 = 1, αβ = γδ. (4.17)

Solving this system we get that δ = λα and γ = λβ, where λ = ±1. Changing the signs of

ψ2 at every point if necessary, we can set λ = 1, so that the functions ψ1 and ψ2 satisfy the

system (4.5). This proves the proposition.
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4.3 The R3,1 case

Proposition 4.3.1 Suppose that the functions ϕi, ψi, i = 1, 2 satisfy the following discrete

Dirac equations:




 T2 0

0 T1


−


 α β

β̄ ᾱ






 ϕ1

ϕ2


 = 0,




 T2 0

0 T1


−


 α β

β̄ ᾱ






 ψ1

ψ2


 = 0,

(4.18)

where |α|2 − |β|2 = 1. Then the formulas

X1 =
1

2

∑[
(ϕ1ψ̄1 + ϕ̄1ψ1)∆1 + (ϕ2ψ̄2 + ϕ̄2ψ2)∆2

]
, (4.19)

X2 =
i

2

∑[
(ϕ1ψ̄1 − ϕ̄1ψ1)∆1 + (ϕ2ψ̄2 − ϕ̄2ψ2)∆2

]
, (4.20)

X3 =
1

2

∑[
(ϕ1ϕ̄1 − ψ1ψ̄1)∆1 + (ϕ2ϕ̄2 − ψ2ψ̄2)∆2

]
, (4.21)

X4 =
1

2

∑[
(ϕ1ϕ̄1 + ψ1ψ̄1)∆1 + (ϕ2ϕ̄2 + ψ2ψ̄2)∆2

]
, (4.22)

define an isotropic discrete surface ~X : Z
2 → R

3,1. Conversely, if ~X : Z
2 → R

3,1 is a

non-degenerate isotropic discrete surface that satisfies the following condition

X4(n+ 1,m) −X4(n,m) > 0, X4(n,m+ 1) −X4(n,m) > 0 for all n,m ∈ Z
2, (4.23)

then there exist functions ϕi, ψi, i = 1, 2 satisfying equation (4.18) such that equations

(4.19)-(4.22) hold.

Proof. Given functions ϕi, ψi, i = 1, 2 satisfying (4.18), a direct calculation shows that

the edges given by equations (4.19)-(4.22) are isotropic (4.4) and satisfy the consistency

condition (4.2), hence define an isotropic discrete surface in R
3,1.

Conversely, suppose that ~X : Z
2 → R

3,1 is an isotropic discrete surface satisfying the

monotonicity condition (4.23). The edges of the lattice satisfy the equations

F 2
1 + F 2

2 + F 2
3 = F 2

4 , G2
1 +G2

2 +G2
3 = G2

4, F4 > 0, G4 > 0, (4.24)

therefore, there exist functions ϕi and ψi, where i = 1, 2, such that the edges are given

by the formulas (4.19)-(4.22). These functions are defined up to the following local gauge
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equivalence:

ϕ1 → eiζϕ1, ψ1 → eiζψ1, ϕ2 → eiξψ1, ψ2 → eiξϕ2, (4.25)

where ζ and ξ are real-valued functions. The consistency condition (4.2) implies that these

functions satisfy the following equations

(T2ϕ1)(T2ϕ̄1) − ϕ1ϕ̄1 = (T1ψ1)(T1ψ̄1) − ψ1ψ̄1, (4.26)

(T2ϕ1)(T2ψ̄1) − ϕ1ψ̄1 = (T1ϕ2)(T1ψ̄2) − ϕ2ψ̄2, (4.27)

(T2ψ1)(T2ψ̄1) − ψ1ψ̄1 = (T1ψ2)(T1ψ̄2) − ψ2ψ̄2, (4.28)

and the non-degeneracy condition implies that

ϕ1ψ2 − ψ1ϕ2 6= 0. (4.29)

The above equation implies that there exist unique complex-valued functions α, β, γ

and δ such that the following system of equations is satisfied:



 T2 0

0 T1


−


 α β

γ δ






 ϕ1

ϕ2


 = 0,




 T2 0

0 T1


−


 α β

γ δ






 ψ1

ψ2


 = 0,

(4.30)

We can explicitly solve these equations to obtain

α =
ψ2(T2ϕ1) − ϕ2(T2ψ1)

ϕ1ψ2 − ψ1ϕ2
, β =

ϕ1(T2ψ1) − ψ1(T2ϕ1)

ϕ1ψ2 − ψ1ϕ2
, (4.31)

γ =
ψ2(T1ϕ2) − ϕ2(T1ψ2)

ϕ1ψ2 − ψ1ϕ2
, δ =

ϕ1(T1ψ2) − ψ1(T1ϕ2)

ϕ1ψ2 − ψ1ϕ2
. (4.32)

and a direct calculation using (4.26)-(4.28) shows that

αᾱ − γγ̄ = 1, δδ̄ − ββ̄ = 1, αβ̄ − γδ̄ = 0. (4.33)

Solving this system we get that δ = λᾱ and γ = λβ̄, where λλ̄ = 1. A gauge transformation

(4.25) acts on λ as follows:

λ→ ei(ζ+ξ−T2ζ−T1ξ)λ. (4.34)

hence we can set λ = 1. Therefore, the functions ϕi and ψi satisfy the system (4.18). This

proves the proposition.

We note that the R
2,1 case can be obtained as a reduction by setting ψ1 = ϕ̄1, ψ2 = ϕ̄2.
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4.4 The R2,2 case

Proposition 4.4.1 Suppose that the functions ϕi, ψi, i = 1, 2 satisfy the following discrete

Dirac equation:




 T2 0

0 T1


−


 α β

γ δ






 ϕ1

ϕ2


 = 0,




 T2 0

0 T1


−


 δ γ

β α






 ψ1

ψ2


 = 0,

(4.35)

where α, β, γ and δ are real and αδ − βγ = 1. Then the formulas

X1 =
1

2

∑[
(ϕ1ψ1 + ϕ̄1ψ̄1)∆1 + (ϕ2ψ2 + ϕ̄2ψ̄2)∆2

]
, (4.36)

X2 =
i

2

∑[
(ϕ1ψ1 − ϕ̄1ψ̄1)∆1 + (ϕ2ψ2 − ϕ̄2ψ̄2)∆2

]
, (4.37)

X3 =
1

2

∑[
(ϕ1ψ̄1 + ϕ̄1ψ1)∆1 + (ϕ2ψ̄2 + ϕ̄2ψ2)∆2

]
, (4.38)

X4 =
i

2

∑[
(ϕ1ψ̄1 − ϕ̄1ψ1)∆1 + (ϕ2ψ̄2 − ϕ̄2ψ2)∆2

]
, (4.39)

define an isotropic discrete surface ~X : Z
2 → R

2,2. Conversely, if ~X : Z
2 → R

2,2 is a non-

degenerate isotropic discrete surface, then there exist functions ϕi, ψi, i = 1, 2 satisfying

equation (4.35) such that equations (4.36)-(4.39) hold.

Proof. Given functions ϕi, ψi, i = 1, 2 satisfying (4.35), a direct calculation shows that

the edges given by equations (4.36)-(4.39) are isotropic (4.4) and satisfy the consistency

condition (4.2), hence define an isotropic discrete surface in R
2,2.

Conversely, suppose that ~X : Z
2 → R

2,2 is a non-degenerate isotropic discrete surface.

The edges of the lattice satisfy the equations

F 2
1 + F 2

2 = F 2
3 + F 2

4 , G2
1 +G2

2 = G2
3 +G2

4, (4.40)

therefore, there exist functions ϕi and ψi, where i = 1, 2, such that the edges are given

by the formulas (4.36)-(4.39). These functions are defined up to the following local gauge

equivalence:

ϕ1 → µϕ1, ψ1 → µ−1ψ1, ϕ2 → νϕ2, ψ2 → ν−1ψ2, (4.41)
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where µ and ν are real-valued functions. The consistency condition (4.2) implies that these

functions satisfy the following equations

(T2ϕ1)(T2ψ1) − ϕ1ψ1 = (T1ϕ2)(T1ψ2) − ϕ2ψ2, (4.42)

(T2ϕ1)(T2ψ̄1) − ϕ1ψ̄1 = (T1ϕ2)(T1ψ̄2) − ϕ2ψ̄2, (4.43)

and the non-degeneracy condition implies that

ϕ1ϕ̄2 − ϕ̄1ϕ2 6= 0, ψ1ψ̄2 − ψ̄1ψ2 6= 0. (4.44)

The above equations imply that there exist unique real-valued functions αi, βi, γi and

δi, where i = 1, 2, such that the following system of equations is satisfied:



 T2 0

0 T1


−


 α1 β1

γ1 δ1






 ϕ1

ϕ2


 = 0,




 T2 0

0 T1


−


 α2 β2

γ2 δ2






 ψ1

ψ2


 = 0.

(4.45)

We can explicitly solve these to obtain

α1 =
ϕ̄2(T2ϕ1) − ϕ2(T2ϕ̄1)

ϕ1ϕ̄2 − ϕ̄1ϕ2
, β1 =

ϕ1(T2ϕ̄1) − ϕ̄1(T2ϕ1)

ϕ1ϕ̄2 − ϕ̄1ϕ2
, (4.46)

γ1 =
ϕ̄2(T1ϕ2) − ϕ2(T1ϕ̄2)

ϕ1ϕ̄2 − ϕ̄1ϕ2
, δ1 =

ϕ1(T1ϕ̄2) − ϕ̄1(T1ϕ2)

ϕ1ϕ̄2 − ϕ̄1ϕ2
, (4.47)

α2 =
ψ̄2(T2ψ1) − ψ2(T2ψ̄1)

ψ1ψ̄2 − ψ̄1ψ2
, β2 =

ψ1(T2ψ̄1) − ψ̄1(T2ψ1)

ψ1ψ̄2 − ψ̄1ψ2
, (4.48)

γ2 =
ψ̄2(T1ψ2) − ψ2(T1ψ̄2)

ψ1ψ̄2 − ψ̄1ψ2
, δ2 =

ψ1(T1ψ̄2) − ψ̄1(T1ψ2)

ψ1ψ̄2 − ψ̄1ψ2
, (4.49)

and a direct calculation using (4.42)-(4.43) shows that

α1α2 − γ1γ2 = 1, δ1δ2 − β1β2 = 1, α1β2 − γ1δ2 = 0, α2β1 − γ2δ1 = 0. (4.50)

Solving this system we get that α2 = λδ1, β2 = λγ1, γ2 = λβ1 and δ2 = λα1. A gauge

transformation (4.41) acts on λ as follows:

λ→ (T2µ)(T1ν)µ
−1ν−1λ. (4.51)

hence we can set λ = 1. Therefore, the functions ϕi and ψi satisfy the system (4.35). This

proves the proposition.
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4.5 The continuous limit

In this section we show that in the continuous limit, the reductions (4.5), (4.18), (4.35)

of the Dirac operator (3.12) converge to their continuous counterparts (2.13), (2.15) and

(2.17).

First, consider the operator (4.5). Let h denote the size of the mesh, so that

ψ1(x, y + h) = α(x, y)ψ1(x, y) + β(x, y)ψ2(x, y), (4.52)

ψ2(x+ h, y) = β(x, y)ψ1(x, y) + α(x, y)ψ2(x, y), (4.53)

where α and β are real and α2 − β2 = 1. Setting β = hp, we get that α = 1 + O(h2), and

expanding the above equation up to O(h2) gives us

ψ1 + h∂yψ1 = ψ1 + hpψ2 +O(h2), ψ2 + h∂xψ2 = hpψ1 + ψ2 +O(h2), (4.54)

so in the limit h→ 0 we get equation (2.12).

Similarly, for the operator (4.18) introducing mesh size h we see

ϕ1(x, y + h) = α(x, y)ϕ1(x, y) + β(x, y)ϕ2(x, y), (4.55)

ϕ2(x+ h, y) = β̄(x, y)ϕ1(x, y) + ᾱ(x, y)ϕ2(x, y), (4.56)

ψ1(x, y + h) = α(x, y)ψ1(x, y) + β(x, y)ψ2(x, y), (4.57)

ψ2(x+ h, y) = β̄(x, y)ψ1(x, y) + ᾱ(x, y)ψ2(x, y), (4.58)

where |α|2 − |β|2 = 1. Again, setting β = hp gives is α = 1 + O(h2), and expanding the

above equation up to O(h2) gives us

ϕ1 + h∂yϕ1 = ϕ1 + hpϕ2 +O(h2), ϕ2 + h∂xϕ2 = hp̄ϕ1 + ϕ2 +O(h2), (4.59)

ψ1 + h∂yψ1 = ψ1 + hpψ2 +O(h2), ψ2 + h∂xψ2 = hp̄ψ1 + ψ2 +O(h2), (4.60)

so in the limit h→ 0 we get equation (2.14).

For the operator (4.35), we introduce a mesh size h to get

ϕ1(x, y + h) = α(x, y)ϕ1(x, y) + β(x, y)ϕ2(x, y), (4.61)
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ϕ2(x+ h, y) = γ(x, y)ϕ1(x, y) + δ(x, y)ϕ2(x, y), (4.62)

ψ1(x, y + h) = δ(x, y)ψ1(x, y) + γ(x, y)ψ2(x, y), (4.63)

ψ2(x+ h, y) = β(x, y)ψ2(x, y) + α(x, y)ψ2(x, y). (4.64)

We now use the remaining gauge symmetry (4.41) to set α = δ. Therefore, if we have a

mesh size of h, then setting β = hp, γ = hq, we see that α = 1 +O(h2) and δ = 1 +O(h2),

so expanding the above equation up to O(h2) gives us

ϕ1 + h∂yϕ1 = ϕ1 + hpϕ2 +O(h2), ϕ2 + h∂xϕ2 = hqϕ1 + ϕ2 +O(h2), (4.65)

ψ1 + h∂yψ1 = ψ1 + hqψ2 +O(h2), ψ2 + h∂xψ2 = hpψ1 + ψ2 +O(h2), (4.66)

so in the limit h→ 0 we get equation (2.16).
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Chapter 5

Conclusions

In this thesis we considered the problem of constructing an integrable discretization of the

Dirac operator (2.7) and a discrete analogue of the Weierstrass representation. We saw that

the generalized finite-gap Dirac operator (2.11) admits a natural discretization (3.12), which

can be constructed by deforming the spectral properties of the eigenfunctions of (2.11). By

introducing additional symmetries on the spectral curve and appropriate normalization

conditions, we obtained the reduction (3.15) and constructed a discrete analogue of the

modified Novikov–Veselov hierarchy (3.77).

The continuous limit of the reduced discrete Dirac operator (3.15) that we obtained is

a hyperbolic differential operator (2.12), while the original Dirac operator (2.7) is elliptic.

Therefore, the operator (3.15) cannot be used to discretize the classical Weierstrass rep-

resentation. However, we saw that it can be used to construct a discrete analogue of the

generalized Weierstrass representation in R
2,1. Similar operators (4.18), (4.35) can be used

to give discrete Weierstrass representations in R
3,1 and R

2,2.

It remains an open problem to construct an integrable discretization of the original

Dirac operator (2.7), which is an elliptic reduction of the generalized Dirac operator (2.11).

In general, elliptic operators seem to have more complicated discretizations than hyperbolic

ones, for example, the discretization of the Laplace operator involves a five-point scheme [6]

defined on a sublattice of a four-point discretization of the Moutard equation. It also remains

an open problem to construct the discrete analogue of the notion of a conformal coordinate
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system and the corresponding discrete analogue of the classical Weierstrass representation.
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