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ABSTRACT

Rational Curves on Fano Threefolds of Picard
Number One

Mingmin Shen

In this article, we will study the space of very free rational curves on a Fano threefold of

Picard number one. We show that a general such rational curve behaves as expected from

a deformation point of view. Namely, it is shown that the normal bundle of a general very

free rational splits as “evenly” as possible into a direct sum of line bundles. To be more

precise, we call a component of rational curves balanced if the normal bundle generically

splits as O(a) ⊕ O(b) with |a − b| ≤ 1. Then all components of very free rational curves

on a Fano threefold of Picard number one are balanced with the only exception being the

space of conics on P3.
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Chapter 1

Introduction

The starting point of modern study of rational curves on varieties is the fundamental paper

[Mor79] by S. Mori. In that paper, a new technique, later called “Bend-and-Break”, was

developed to study rational curves on varieties. With this, S. Mori successfully proved

Hartshorne’s conjecture which says that the only smooth projective variety with ample

tangent bundle is the projective space. This paper can also be viewed as the starting point

of Mori’s “Minimal Model Program”, or MMP for short. In general after one runs the

MMP for a variety, he should get a minimal model of the variety. However, the MMP does

not produce a minimal model for uniruled varieties, namely those varieties that are covered

by rational curves. MMP predicts that such a variety is birational to a fiberspace with a

general fiber being a Fano variety. From this point of view, it is important to study Fano

varieties in birational geometry. As is shown in [Mor79], one idea to study Fano varieties is

to study the rational curves on them.

The essential tool to study rational curves on algebraic varieties, namely the “Bend-

and-Break” technique, was further developed by S. Mori, Y. Miyaoka and J. Kollár. In the

paper [KMM92b], the authors introduced a new concept called rationally (chain) connected

varieties. Roughly speaking, a variety is rationally (chain) connected if a general pair of

points can be connected by a (chain of) rational curve(s). Then it can be shown that Fano

varieties are rationally chain connected, see [Cam92], [KMM92a]; in characteristic 0, this

also implies rational connectedness.

A major achievement and example to show how the space of rational curves reflects the
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geometric and arithmetic property of the variety is the Graber-Harris-Starr theorem. It

says that a rationally connected fibration over a curve has a rational section, see [GHS03].

The same theorem in positive characteristic was proved by Johan de Jong and Jason Starr

in [dJS03]. However, this time they have to assume that a general fiber in the family is

separably rationally connected, which is a stronger condition than rational connectedness

in positive characteristic.

As we see that the space of rational curves on a Fano variety reflects many geometric and

arithmetic properties of the variety. Unfortunately, even for smooth hypersurfaces, some

basic properties, like the number of irreducible components of the space of rational curves

of given degree, are still not known. In this article, we try to investigate the irreducibility

of space of rational curves and relate it to the property “Fano with Picard number one”.

Let X/C be a smooth Fano variety of Picard number one. Then with respect to the ample

generator of the Picard group, every rational curve has a well-defined degree. Let Me be

the space of very free rational curves of degree e on X. One naturally asks

Question 1.0.1. Is Me irreducible?

One immediately sees that the answer is “yes” when X = Pn. Some results are known

for low degree hypersurfaces. The case of quadric hypersurfaces can be deduced from

[Tho98] or [KP01]; The case of cubic threefold can be found in [Sta00] and the case of

cubic hypersurface of dimension at least 4 is proved in [CS]. In [HRS04], the authors gave a

positive answer to the question when X ⊂ Pn is a general hypersurface of degree d <
n− 1

2
.

We will investigate Question 1.0.1 for dimX = 3. Unfortunately, we are unable to show

the irreducibility at this point. However, we can show that an invariant of a component of

rational curves is completely determined by the degree of rational curves that it parame-

terizes. Namely, for each component of the rational curves on X, the generic splitting type

of the normal bundle is an invariant of the component. In the case of dimension 3, we show

that the generic splitting type is determined by the degree of the rational curve under the

assumption “Fano with Picard number one”. The main idea of the proof is to reduced to

the study of low degree rational curves on X, namely rational curves with trivial normal

bundle. Then we use methods such as intermediate jacobian and ramification to study those

low degree rational curves. We also give an explicit construction of the space to conics on
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the Fano threefold of genus 12. This is used in the proof of main theorem.
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Chapter 2

Rational curves on Fano threefolds

of Picard number one

2.1 Statement of Main Theorem

Let X be a smooth projective variety over the field C of complex numbers. Assume that

dimX ≥ 3. Let M ⊂M0,0(X, β) be a component of the Kontsevich moduli space of genus

0 curves on X. Assume that for a general member [C] ∈ M , the corresponding rational

curve φ : P1 ∼= C → X is very free. Recall that φ being very free means that φ∗TX is ample,

see [Kol96]. We call M a component of very free rational curves on X. Then it follows that

φ : C → X is a closed immersion for general [C] ∈ M . The normal bundle of a general such

curve C in X has splitting type

NC/X
∼= O(a1)⊕O(a2)⊕ · · · ⊕ O(an−1), n = dim X,

with 1 ≤ a1 ≤ a2 ≤ · · · ≤ an−1. The sequence (a1, . . . , an−1) is an invariant of the

component M .

Definition 2.1.1. We say that M is balanced if an−1− a1 ≤ 1 and that M is unbalanced if

an−1 − a1 ≥ 2.

Definition 2.1.2. A variety X is called Fano if it is smooth projective with the anticanon-

ical class, −KX , being ample.



CHAPTER 2. RATIONAL CURVES ON FANO THREEFOLDS OF PICARD
NUMBER ONE 5

It is well known that Fano varieties are rationally connected. So there are a lot of

very free rational curves on a Fano variety X. A natural question is: What is the normal

bundle of a general very free rational curve on X? If the normal bundle is balanced, then

its splitting type is completely determined by its degree. However, there could be a lot of

unbalanced rational curves, for example if X = P1 × Pn. But when X has Picard number

one, a general rational curve should not move much more freely in some directions than in

others. So we expect that in this case there is no unbalanced component of very free rational

curves of large degree. In this chapter, we investigate this idea in the three dimensional

case.

Assume that a smooth Fano threefold X/C has an unbalanced component M of very

free rational curves. Then a general member of M has unbalanced normal bundle, so it

moves more freely in some direction. This gives a surface Σ (the construction is given in

section 2.2 in a more general setting). Actually we also show that the unbalancedness gives

a canonical foliation on M which is algebraically integrable. In section 2.3, we study those

surfaces Σ. There are two different types of surface Σ that we can get. Roughly speaking,

the normalization of Σ is either P2 or a Hirzebruch surface. Accordingly, M is either of conic

type or fibration type, see Definition 2.3.16. If M is of conic type, then C ⊂ X is étale locally

equivalent to a conic in P3; If M is of fibration type, then there is a rational component S of

rational curves on X with trivial normal bundle, see Theorem 2.3.15. After that, we focus

on the case when X is Fano of Picard number one. We review the classification of Fano

threefolds in section 2.4. In section 2.5, we show that the Abel-Jacobi mapping defined by

S is never trivial as long as X has nonzero intermediate jacobian; this shows that S is not

rational. In this way we can prove the most part of the following main theorem of this

paper is the following

Theorem 2.1.3. Let X be a Fano threefold of Picard number 1. If X has an unbalanced

component M of very free rational curves, then X = P3 and M is the space of conics on X.

When the intermediate jacobian of X is trivial, we can easily prove the above theorem in

the case when the index of X is 3 or 4. When the index of X is at most 2, the intermediate

jacobian of X is zero only if X = X5, a linear section of G(2, 5), or X = X22, prime

Fano threefold of genus 12. The cases X = X5 and X = X22 are ruled out using a
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ramification argument. The case X5 follows from the paper [FN89]. The author carries out

the construction of the space of conics on X22 in the appendix. We note that the above

theorem gives a new characterization of P3. Namely, P3 would be the only Fano threefold

of Picard number one which has an unbalanced component of very free rational curves.

2.2 Basic constructions

Notations and assumptions: Let X be a smooth projective variety over the field C

of complex numbers. Assume that dim X = n. Let M ⊂ M0,0(X, β) be an unbalanced

component of very free rational curves on X. For a general member [C] ∈ M , we assume

that the splitting type of the normal bundle to be

NC/X
∼= O(a)⊕(n−r−1) ⊕O(b1)⊕ · · · ⊕ O(br), (2.1)

where 3 ≤ a + 2 ≤ b1 ≤ · · · ≤ br. Let M0 ⊂ M be the open subscheme parametrizing

smooth rational curves C ∼= P1 ⊂ X with normal bundle (2.1). Let

U

²²

u // X

M

be the universal family over M . For any [C] ∈ M , let u[C] : C → X denote the corresponding

morphism. We say that C passes through a point P ∈ X or that P is on C if P is on the

image of u[C]. Let Pi ∈ X, i = 1, 2, . . . , k, be distinct points on X. We define

M0(P1, . . . , Pk) ⊂ M0

to be the subscheme that consists of [C] ∈ M0 such that C passes through all the points

Pi. We use U0(P1, . . . , Pk) → X to denote the universal family over M0(P1, . . . , Pk). Let

[C] ∈ M0(P1, . . . , Pk). The obstruction of deforming C in X passing through {P1, . . . , Pk}
is in H1(C, NC/X(−P1 − · · · − Pk)). Since NC/X has splitting type (2.1) for [C] ∈ M0, we

know that M0(P1, . . . , Pk) is smooth when k ≤ a + 1.

Definition 2.2.1. Notations and assumptions as above, we use

DefX(C;P1, . . . , Pk) ⊂ M0(P1, . . . , Pk)
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to denote the union of the irreducible components of M0(P1, . . . , Pk) containing [C]. And

we get the corresponding universal family.

U(C;P1, . . . , Pk)

π

²²

v=v(C;P1,...,Pk) // X

DefX(C;P1, . . . , Pk)

Let

σi : DefX(C;P1, . . . , Pk) → U(C;P1, . . . , Pk)

be the section that gets contracted by v to the point Pi ∈ X, where i = 1, . . . , k. We use

the notation Σ(C;P1, . . . , Pk) ⊂ X to denote the closure of the image of v(C;P1, . . . , Pk).

Remark 2.2.2. If [C] is a smooth point of M0(P1, . . . , Pk), for example when k ≤ a+1, then

DefX(C;P1, . . . , Pk) is irreducible and smooth at [C]. Actually, it is smooth everywhere if

k ≤ a + 1.

In our situation, let [C] ∈ M0 and we take k = a + 1 and pick {P1, . . . , Pa+1} to be

distinct points on C, hence DefX(C;P1, . . . , Pa+1) is smooth. Note that the Zariski tangent

space Tp of U(C;P1, . . . , Pk) at p ∈ π−1([C ′]) fits into the following short exact sequence

naturally

0 // TC′,p // Tp
dπ // H0(C ′,N ′(−a− 1)) // 0

for any point [C ′] ∈ DefX(C;P1, . . . , Pa+1), where N ′ = NC′/X . Consider the differential

of v at p, we have the following

0 // TC′,p

id

²²

// Tp

dv

²²

dπ // H0(C ′,N ′(−a− 1))

²²

// 0

0 // TC′,p // TX,p // TX,p/TC′,p = N ′
p

// 0

(2.2)

Here the last column is the evaluation of a section at the point p. It is easy to see that dv

has rank r + 1 if p /∈ σi for all i = 1, . . . , a + 1. Let Σ = Σ(C;P1, . . . , Pa+1) ⊂ X and we

have dim Σ = r + 1 since everything is over C. Let φ : Σ′ → Σ be the normalization of Σ

and φ̃ : Σ̃ → Σ′ be a resolution of Σ′. To make further constructions, we need the following
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Lemma 2.2.3. Let f : U → V be a morphism between smooth algebraic varieties over an

algebraically closed field k of characteristic 0. Assume that df is generically of rank r. Let

Σ ⊂ V be the closure of f(U) and Σ′ be the normalization of Σ. Then f naturally lifts to

f ′ : U → Σ′

U
f //

f ′ ÃÃ@
@@

@@
@@

Σ
i // V

Σ′

ρ

OO

and for any close point x ∈ U with df(x) having rank r, Σ′ is smooth at f ′(x) and df ′ has

rank r at x.

Proof. Let y = f(x) ∈ Σ ⊂ V and y′ = f ′(x). The problem is local, so we can choose

an r dimensional closed subvariety Z ⊂ U which is smooth at x and df(x) is injective on

TZ,x ⊗ k(x). We can replace U by Z. So we assume that U has dimension r. We have the

following local homomorphisms between local rings.

OV,y
i∗ // // OΣ,y

f∗ //

ρ∗

²²

OU,x

OΣ′,y′

f ′∗

;;wwwwwwwww

Choose a set of local parameters {t1, . . . , tn} of V at y such that {t1, . . . , tr} pull back to

local parameters of U at x. So we get the following diagram

k[t1, . . . , tr] ↪→ OΣ′,y′ ↪→ OU,x

with OΣ′,y′ being an intermediate normal domain of an étale ring extension. After taking

the completions, we get a splitting

k[[t1, . . . , tr]] ↪→ ÔΣ′,y′ → k[[t1, . . . , tr]]

with the composition being identity. So ÔΣ′,y′ = k[[t1, . . . , tr]] ⊕ I, where I is an ideal

of ÔΣ′,y′ and a module over k[[t1, . . . , tr]]. By the analytical irreducibility and analytical

normality of normal varieties, (see [ZS]), we know that ÔΣ′,y′ is an integrally closed integral

domain of dimension r. This forces I to be zero. Indeed for any a ∈ I, by dimension reason,

a should be algebraic over k[[t1, . . . , tr]]. Let

fnan + fn−1a
n−1 · · ·+ f0 = 0, with fi ∈ k[[t1, . . . , tr]]
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be an equation for a with minimal degree. Then f0 is also in I and hence has to be 0. This

means a = 0.

Apply the above lemma to v : U ′ → X and we get

Σ̃
φ̃ // Σ′

φ // Σ

U ′
v′

OO

v

??ÄÄÄÄÄÄÄÄ

where U ′ = U(C;P1, . . . , Pa+1). Let U ′0 := U ′ − ∪a+1
i=1 σi, where σi is the section that gets

contracted to Pi. Then we also know that the image v′(U ′0) is in the smooth locus of Σ′

and v′|U ′0 is a smooth morphism. Pick an arbitrary point [C ′] ∈ DefX(C;P1, . . . , Pk). If we

restrict the above maps to [C ′], we get

Σ̃ // Σ′ // Σ

C ′
ṽ[C′]

ffMMMMMMMMMMMMM
v′
[C′]

OO

v[C′]=u[C′]

88qqqqqqqqqqqqq

Note that DefX(C;P1, . . . , Pa+1) remains the same if we replace C by C ′. From now on, by

abuse of notation, we will use C in stead of C ′ to denote an arbitrary curve from the family

U(C;P1, . . . , Pa+1).

Lemma 2.2.4. For all points Q ∈ C − {P1, . . . , Pa+1}, Σ′ is smooth at v′[C](Q). The

morphism Σ̃ → Σ′ is an isomorphism along C.

Proof. Indeed, we already see that v′(U ′0) is in the smooth locus of Σ′.

Proposition 2.2.5. For any [C] ∈ M0, the variety Σ = Σ(C;P1, . . . , Pa+1) is independent

of the choice of {P1, . . . , Pa+1}.

Proof. Consider the morphism v′ : U ′ = U(C;P1, . . . , Pa+1) → Σ′. Let Q be a point of

C that is different from the Pi’s. Since Σ′ is smooth at v′[C](Q) and v′ is smooth above

the point v′[C](Q), we get Z = v′−1(v′[C](Q)) is smooth. Let Z0 be the component of Z

that contains the point Q above [C]. Note that U ′ is a smooth irreducible component of

U0(P1, . . . , Pa+1). Hence π(Z0) becomes a component of M0(P1, . . . , Pa+1, Q) on which [C]
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is a smooth point. By definition we have Z0
∼= π(Z0) ∼= DefX(C;P1, . . . , Pa+1, Q). Consider

the universal family

w : U ′′ = U(C;P1, . . . , Pa+1, Q) → X

Since U ′′ ⊂ U ′ and w = v|U ′′ , we see that the image of w is contained in Σ. Hence we get

w : U ′′ → Σ. Note that Z0 is smooth and hence U ′′ is smooth. So we can lift w to get

w′ : U ′′ → Σ′. By dimension count, we have

dimZ0 = dimU ′ − dimΣ′

= dim H0(C, NC/X(−a− 1)) + 1− (r + 1)

= Σr
i=1(bi − a)− r

= dim H0(C, NC/X(−a− 2))

This means that the deformation of C in X with the points {P1, . . . , Pa+1, Q} fixed is

actually unobstructed. Then we can use a same argument to show that the rank of dw′ is

generically r as we did for dv′. This implies Σ = Σ(P1, . . . , Pa+1, Q). Then we have

Σ(C;P1, . . . , Pa+1) = Σ(C;P1, . . . , Pa, Pa+1, P
′
a+1) = Σ(C;P1, . . . , Pa, P

′
a+1)

and hence by induction we can replace {Pi}a+1
i=1 by another set of a + 1 points. Thus Σ is

independent of the choice of {Pi}a+1
i=1 .

Definition 2.2.6. Let ϕ : U → V be a morphism between smooth varieties, we define the

normal sheaf of the morphism to be

NU/V = Nϕ = coker(dϕ : TU → ϕ∗TV ).

We say that ϕ has injective tangent map at a closed point x ∈ U if dϕ(x) is injective. Note

that Nϕ is locally free at points where ϕ has injective tangent map.

Corollary 2.2.7. Assume that [C] ∈ M0. Then the variety Σ′ is smooth along v′[C](C) ∼= C

and NC/Σ′
∼= O(b1)⊕ · · · ⊕ O(br). The normal bundle NΣ̃/X is locally free along the curve

ṽ[C](C) ∼= C and NΣ̃/X |C ∼= O(a)⊕(n−r−1).
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Proof. Let Q ∈ C be an arbitrary point. Pick a set of a + 1 distinct points {P1, . . . , Pa+1}
that are different from Q. Then by Proposition 2.2.5, we have Σ = Σ(C;P1, . . . , Pa+1).

By Lemma 2.2.4, we know that Σ′ is smooth at v′[C](Q). Consider the deformation of

v[C] : C → Σ′ with the points {P1, . . . , Pa+1} fixed. Such deformations still form a covering

family. This means that NC/Σ′(−a− 1) is globally generated. Assume that

NC/Σ′
∼= O(b′1)⊕ · · · ⊕ O(b′r)

then we get b′i ≥ a + 1 for all i = 1, . . . , r. We first show that NΣ̃/X is locally free along

C. For any point x ∈ C, pick a set {P1, . . . , Pa+1} of a + 1 distinct points on C that are

different from the given point x. Then we get the morphism

v : U ′ = U(C;P1, . . . , Pa+1) → X

which factors through v′ : U ′ → Σ′. Correspondingly we have the induced maps between

Zariski tangent spaces at x,

TU ′,x
dv′(x) // TΣ′,v′(x)

dφ(v′(x)) // TX,v(x)

and the composition is exactly dv(x). We already know that dv(x) and dv′(x) have rank

r + 1. Together with the fact that dimTΣ′,x = r + 1, we know that dφ(v′(x)) is injective.

So φ has injective tangent map along C. Note that Σ̃ → Σ′ is isomorphism along C. Hence

NΣ̃/X is locally free of rank n− r − 1 along C. Now let’s look at the following short exact

sequence

0 // NC/Σ̃
η // NC/X

θ // NΣ̃/X |C // 0

Since b′i ≥ a+1, the image of η lies in the summand
∑r

i=1O(bi). Then we get the following

diagram

O(a)⊕(n−r−1)
∼= // O(a)⊕(n−r−1)

0 // NC/Σ̃
η // NC/X

OO

θ // NΣ̃/X |C
θ′

OO

// 0

0 // NC/Σ̃
η′ //

∑r
i=1O(bi)

OO

// Q

OO

// 0
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where the second and third columns are also short exact sequences and Q is a torsion sheaf.

We have already shown that NΣ̃/X |C is locally free of rank n− r − 1. This forces Q to be

0. Hence η′ and θ′ are isomorphisms.

Definition 2.2.8. Given [C] ∈ M0, let Σ, Σ′ and Σ̃ be as above. Since the morphism

v[C] : C → X lifts to ṽ[C] : C → Σ̃, we can define β′ to be the homology class of C on Σ̃.

Let DefΣ̃ ⊂ M0,0(Σ̃, β′) be the space of curves C ∼= P1 → Σ̃ such that the composition

C → Σ̃ → X is a point on M0. Hence we can view ṽ[C] as a point on DefΣ̃. By abuse

of notation, we still use [C] to denote this point. Let DefΣ̃(C) ⊂ DefΣ̃ be the irreducible

component that contains the point [C]. From the corollary above, we know that DefΣ̃(C)

is actually a smooth open subscheme of M0,0(Σ̃, β′). By composing C → Σ̃ with Σ̃ → X,

we have a morphism between smooth varieties α : DefΣ̃(C) → M0.

Proposition 2.2.9. The morphism α is a closed immersion. Furthermore, there is a

nonempty open subscheme U ⊂ M0 and a smooth morphism ψ : U → B such that for any

[C] ∈ U we have ψ−1(ψ([C])) = DefΣ̃(C) ∩ U . The quotient B is smooth of dimension

(a + 1)(n− r − 1).

Proof. For simplicity, we set D(C) = DefΣ̃(C). First, we show that α separates points. If

C1 and C2 on Σ̃ map to the same C on X, then Σ has two branches along the curve C. But

this is impossible since in the definition of Σ, the nearby deformation of C should swipe out

a unique branch of Σ. Now we prove that the differential dα(t) = dα⊗ k(t) is injective for

all closed points t ∈ D(C) and that D(C) is closed in M0. Consider the universal family

π0 : U0 → M0. Let N be the cokernel of TU0/M0 → (u0)∗TX where u0 : U0 → X is the

universal morphism. Then by the definition of M0, the sheaf N is locally free and splits

uniformly along the closed fibers of π0. Let Vη ⊂ Nη be the part of Harder-Narasimhan

filtration on the generic fiber that corresponds to ⊕r
i=1O(bi) on the geometric generic fiber,

c.f. [HL97]. Since the splitting of N is uniform, Vη extends to a subbundle V of N .

Actually, we can write down V explicitly as in [BD09]. Let D = (π0)∗V ⊂ TM0 = (π0)∗N

be the corresponding subbundle. If we write down the the differential dα([C]) explicitly, we

have

dα([C]) : TD(C),[C] = H0(C, NC/Σ̃) → TM0,[C] = H0(C, NC/X).
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Since we already see that NC/Σ̃ maps isomorphically onto V |C inside NC/X = N |C . This

implies that TD(C),[C] = D ⊗ k([C]) and in particular, the differential dα(t) is injective for

all closed point t ∈ D(C). Thus D defines a foliation on M0 and D(C) = DefΣ̃(C) defines

a leaf of D , c.f. [ENBT99]. Let D̄(C) be the Zariski closure of D(C) in M0. Since D is a

subbundle of TM0 , we conclude that D̄(C) is smooth and still a leaf, c.f. [ENBT99] (Lemma

2.3 there). Now we claim that D(C) = D̄(C). Otherwise, let [C ′] ∈ D̄(C) be a point that

is not contained in D(C). Then both D(C ′) and D̄(C) are leaves through [C ′]; they have

to agree on an open part. Thus D(C ′) and D(C) meet each other. This can happen only

when D(C) = D(C ′). This means that [C ′] ∈ D(C), which is a contradiction. Hence we

proved that α is a closed immersion. Since all the leaves of the foliation D are algebraic,

hence D is algebraically integrable. This means that there is a nonempty open U ⊂ M0

and a morphism ψ : U → B such that TU/B = D |U , c.f. [ENBT99] (Proposition 2.1 there).

The smoothness results are from direct local computations.

2.3 Three dimensional case

Situation 2.3.1. In this whole section, we fix the following assumptions and notations:

• X/C is a smooth projective algebraic variety with dimX = 3.

• M ⊂M0,0(X, β) is an unbalanced component of very free rational curves on X. Let

M0 ⊂ M be as in the previous section. We always use C to denote a curve on X such

that [C] ∈ M0.

• NC/X
∼= O(a)⊕O(b) with 1 ≤ a ≤ b− 2.

• Let ΣC = Σ(C;P1, . . . , Pa+1) be the surface as is constructed in the previous section;

Let Σ′C be the normalization of ΣC and Σ̃C be a resolution of Σ′C . We frequently drop

the subscript C when there is no confusion.

Definition 2.3.2. ([Har69]) Let Ci ⊂ Xi be a curve on a variety Xi, i = 1, 2. We say that

C1 ⊂ X1 is equivalent to C2 ⊂ X2 and write (C1 ⊂ X1) ∼= (C2 ⊂ X2) if there is an open

neighborhood Vi of Ci in Xi and an isomorphism f : V1 → V2 with f |C1 : C1 → C2 being

also an isomorphism.
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Proposition 2.3.3. The pair C ⊂ Σ′ = Σ′C is equivalent to one of the following

(i) σ ⊂ Fn, where Fn = P(O(−n) ⊕ O) → P1 is the Hirzebruch surface and σ is a

section;

(ii) a smooth conic on P2.

Proof. Since we only care about a neighborhood of C ⊂ Σ′, we may replace Σ′ by Σ̃, see

Lemma 2.2.4. Consider the complete linear system |C|. Since C is a very free rational curve

on Σ̃, we know that Σ̃ is a smooth rational surface and hence hi(Σ̃,OΣ̃) = 0 for i = 1, 2.

From the long exact sequence associated to the following short exact sequence

0 // OΣ̃
// OΣ̃(C) // OP1(b) // 0

we get dim |C| = b + 1. Since h1(Σ̃,OΣ̃) = 0, any nearby deformation of C in Σ̃ is in |C|.
Then the fact that C being very free implies that |C| separates points and tangent vectors

along C. Hence |C| defines an immersion φ = φ|C| on a neighborhood of C. Let Σ̄ ⊂ Pb+1

be the closure of the image of φ. Then deg Σ̄ = C2 = b, this means that Σ̄ is a surface

of minimal degree. The proposition is a direct application of a theorem of Del Pezzo and

Bertini (c.f.[EH87]).

2.3.1 Case I: Smooth conic on P2

Situation 2.3.4. In this subsection, we make the following further assumptions in addition

to Situation 2.3.1.

• C ⊂ Σ′C is equivalent to a smooth conic on P2.

• Let U ′ = U ′
C ⊂ Σ′ = Σ′C be the largest open neighborhood of C such that C ⊂ U ′

is isomorphic to an open neighborhood of a smooth conic on P2 and NU ′/X is locally

free.

• A curve on U ′ is called a line/conic if it is so when we identify U ′ with an open subset

of P2.

Lemma 2.3.5. With the above assumptions, we have a = 2 and b = 4.
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Proof. Since C ⊂ Σ′ is equivalent to a smooth conic on P2, by Lemma 2.2.7, we have

O(b) ∼= NC/Σ′ = O(4). Hence we have b = 4. Then a is equal to either 1 or 2. Let L′ ⊂ U ′

be a line and assume that NU ′/X |L ∼= O(c). Then O(a) ∼= NU ′/X |C ∼= O(2c). This implies

that a = 2c = 2 is the only possibility.

Definition 2.3.6. Let L ∼= P1 ⊂ X be a smooth rational curve. We say that L is a pseudo-

line on X if there exists some [C] ∈ M0 such that L is the image of a line L′ ⊂ U ′
C ⊂ P2.

Let

F (X) = {[L] ∈ Hilb(X) |L ∼= P1 ⊂ X is a pseudo-line} ⊂ Hilb(X)

be the moduli space of pseudo-lines on X. Given point x ∈ X, let

Fx(X) = {[L] ∈ F (X) |x ∈ L} ⊂ F (X)

be the space of pseudo-lines on X that pass through the point x. We use P (X) and Px(X)

to denote the universal family of pseudo-lines over F (X) and Fx(X) respectively.

Remark 2.3.7. We will see from the next proposition that F (X) is actually an irreducible

smooth open subscheme of Hilb(X).

Proposition 2.3.8. Let L be a pseudo-line on X. Then the following are true

(i) The normal bundle NL/X
∼= O(1)⊕O(1);

(ii) The definition of a pseudo-line is independent of the choice of L′ ⊂ Σ′ in the

following sense: If there is another [C1] ∈ M0 and L′1 ∼= P1 ⊂ U ′
C1

is a rational curve whose

image is a curve L1
∼= P1 ⊂ X with NL1/X

∼= O(1)⊕O(1), then L′1 is a line and hence L1

is a pseudo-line;

(iii) Any nearby deformation of L in X is still a pseudo-line on X. Namely, if Y → T

is a family of rational curves on X and Yt0 is a pseudo-line, then there is a nonempty open

T 0 ⊂ T such that Yt is a pseudo-line for all t ∈ T 0;

(iv) The space F (X) is smooth and irreducible;

(v) Let L1 and L2 be two intersecting pseudo-lines on X, then they are lying on a unique

Σ;

(vi) The space Fx(X) is smooth and irreducible;

(vii) Through a general pair of points on X, there are only finitely many pseudo-lines.
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Proof. (i)Let L′ ⊂ U ′ be the line that maps to L. Since NU ′/X |C ∼= O(a) = O(2), we

get NU ′/X |L′ ∼= O(1). Since NL′/U ′ = O(1), part (i) of the proposition follows from the

following short exact sequence

0 // NL′/U ′ // NL/X // NU ′/X |L′ // 0 .

(ii)Let L′1 ⊂ U ′
C1
⊂ Σ′C1

be a rational curve that maps to L1. Then we still have the

corresponding short exact sequence as above. Since the left term NL′1/U ′C1
is ample (note

that L′1 can be viewed as a curve on P2) and the middle term is still O(1) ⊕ O(1) by

assumption, we get NL′1/U ′C1

∼= O(1). Hence L′1 is a line.

To prove (iii), let Y → T be a family of smooth curves on X such that Yt0 is a pseudo-

line, where T is a smooth curve. We want to show that Yt is a pseudo-line on X for general

t ∈ T . We may assume that the normal bundle of Yt in X is isomorphic to O(1) ⊕ O(1).

After shrinking T and replacing T by a finite cover if necessary, we can find a family,

Z → T , of pseudo-lines on X such that Zt and Yt meet at a single point and both Zt0

and Yt0 lie on the same Σ′ associated to some [C] ∈ M0. Then Yt0 ∨ Zt0 is a degeneration

of C and hence [Yt0 ∨ Zt0 ] ∈ M . Deformation theory tells us that the obstruction of

deforming Yt ∨ Zt is in the second hyper-extension group of the cotangent complex, of the

morphism φ : C ′
t = Yt ∨ Zt → X, by the structure sheaf of C ′

t. Namely, the obstruction

is in Ext2OC′t
(L∗φ,OC′t), where L∗φ is the cotangent complex of φ, see [LT98]. A long exact

sequence associated to the spectral sequence is

· · · // Ext1OC′t
(φ∗Ω1

X/k,OC′t) // Ext2OC′t
(L∗φ,OC′t) // Ext2OC′t

(ΩC′t/k,OC′t)

This shows that Yt ∨ Zt is unobstructed in X, see [She10]. Hence {Yt ∨ Zt : t ∈ T} corre-

sponds to a curve inside the smooth locus of M . To show that Yt is a pseudo-line, we pick

points P1, P2 ∈ Yt and Q ∈ Zt which are different from the node. The deformation of Yt∨Zt

in X passing through P1, P2 and Q is still unobstructed and a general deformation gives

a smooth rational curve C1 ⊂ X. This can be seen from the same long exact sequence as

above with all the sheaves twisted by OC′t(P1 +P2 +Q). Hence Yt is on the surface Σ1 that

is associated to C1. Since Yt is a component of the degeneration of C1 on Σ1, we get that

Yt is a pseudo-line on X.

(iv)Now we know that F (X) is an open subscheme of the Hilbert scheme of X. The
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smoothness follows directly from the unobstructedness of pseudo-lines on X. To show that

F (X) is irreducible, one only needs to show that it is connected. According to Proposition

2.2.9, there is an open subscheme U ⊂ M0 with a quotient map ψ : U → B. Let U0|U → X

be the universal family over U . Consider the following diagram.

U0|U //

π0|U
²² !!CC

CC
CC

CC
X × U

1×ψ

²²
U

ψ ""EE
EE

EE
EE

E V //

²²

X ×B

{{ww
ww

ww
ww

w

B

(2.3)

Here V is the closure of the image of U0|U in X × B. Let V ′ → V be the normalization

and Ṽ → V be a resolution of singularity. For each b ∈ B, there is a canonically associated

Σb. Then for general b ∈ B, Ṽb = Σ̃b and V ′b = Σ′b. Let L1 ⊂ Σb1 and L2 ⊂ Σb2 be two

general pseudo-lines on X. By deforming L1 in Ṽ, we can connect L1 with a pseudo-line

L3 ⊂ Σb2 by a one dimensional family of pseudo-lines. Note that here we use the fact that

B is irreducible which is a consequence of the irreducibility of M . By deforming L2 inside

Σ′b2 , we can connect L2 with L3 by another one dimensional family of pseudo-lines. This

shows that F (X) is connected.

To prove (v), let L1 and L2 be two intersecting pseudo-lines with intersection point

x ∈ X. We only need to show that [L1 ∨ L2] ∈ M . By deforming L1 ∨ L2, we may assume

that x is a general point. Fix another pair of general intersecting pseudo-lines [L3∨L4] ∈ M

with intersection point y. The next step is to construct a one dimensional family of pairs

of intersecting pseudo-lines with L1 ∨L2 and L3 ∨L4 being two special fibers. Consider the

universal family of pseudo-lines on X.

P (X)
f //

p

²²

X

F (X)

(2.4)

By Bertini theorem, we can find a smooth irreducible curve Γ ⊂ X that passes through

x and y such that f−1(Γ) is smooth irreducible. Note that the morphism f−1(Γ) → Γ is

smooth. Let Γ′ be the normalization of Γ inside f−1(Γ), then f−1(Γ) → Γ′ has connected



CHAPTER 2. RATIONAL CURVES ON FANO THREEFOLDS OF PICARD
NUMBER ONE 18

fibers. The pseudo-lines Li determine points Qi ∈ f−1(Γ). After taking some finite covering

Γ̃ of Γ′ we may assume that there are sections σ1, σ2 of C = f−1(Γ) ×Γ′ Γ̃ → Γ̃ such that

Q1, Q3 ∈ σ1(Γ̃) and Q2, Q4 ∈ σ2(Γ̃). By composing with the morphism p in (2.4), each of

the σ1 and σ2 defines a family of pseudo-lines. The two families of pseudo-lines defined by

σi give a family of intersecting pseudo-lines Y → Γ̃ such that L1 ∨ L2 and L3 ∨ L4 are two

fibers. Since [L3 ∨ L4] ∈ M , we get [L1 ∨ L2] ∈ M . The existence and uniqueness of Σ

containing L1 and L2 follows from deforming L1 ∨ L2 with three points fixed as before.

(vi)By deformation theory, we see that Fx(X) is smooth, so we only need to show that it

is connected. Let L1 and L2 be two pseudo-lines passing through x, by (v) we get a unique

Σ. By deformation inside Σ, we see that there is a curve connecting [L1] and [L2] in Fx(X).

(vii)Given two general points on X, all pseudo-lines passing through the two points form

a zero dimensional subvariety of F (X) and hence finite.

Lemma 2.3.9. Assume that there is a unique pseudo-line through a general pair of points

on X, then C ⊂ X is equivalent to a conic in P3 for [C] ∈ M0 and pseudo-lines on X

correspond to lines on P3.

Proof. Let UC ⊂ ΣC be the image of U ′
C ⊂ Σ′C . First we claim that under the assumption

of the lemma, the surface UC is smooth. In fact, if U is not smooth then there are two

points P1, P2 ∈ U ′
C ⊂ Σ′C that map to the same point P ∈ U . Pick a general point Q′ ∈ U ′

which maps to Q ∈ U . The two lines connecting Q′ with P1, P2 will give two pseudo-lines

on X connecting P and Q, which is a contradiction. Then we claim that the complete

linear system |Σ| is three dimensional. Since X is rationally connected, hi(X,OX) = 0 for

i ≥ 1. Hence rational equivalence is the same as algebraic equivalence for divisors on X.

Let Z → T be a flat family of divisors on X over a one dimensional smooth base T . Assume

that Zt0 = Σ0 and let C0 be a curve that defines Σ0. Consider the deformation of C0 in

Z. By the first claim we know that C0 is in the smooth locus of Z. Hence C0 moves to

nearby divisors. Hence Zt = Σt is swept out by some Ct for general t ∈ T . This shows that

B ⊂ |Σ| ∼= P3 is an open subset, where B is the quotient as in Proposition 2.2.9 which is

three dimensional. Let ϕ = ϕ|Σ| : X 99K P3 be the map defined by the linear system |Σ|.
Next we show that ϕ defines an isomorphism on a neighborhood of C in X and maps C to



CHAPTER 2. RATIONAL CURVES ON FANO THREEFOLDS OF PICARD
NUMBER ONE 19

a smooth conic. But this is clear. Since C is very free on X, one sees that |Σ| separates

points and also separates tangent vectors in a neighborhood of C. The splitting of NC/X

shows that C maps to a conic on P3.

Consider the universal family of pseudo-lines passing through a general point x ∈ X.

We write Px := Px(X) and Fx := Fx(X). Then we have the following diagram

Px
fx //

πx

²²

X

Fx

where πx has a section sx : Fx → Px, which is contracted by fx to the point x. Let

P 0
x = Px − sx(Fx), then fx is étale on P 0

x . Let Y be the normalization of X inside the

function field of Px via fx. Then we have the following diagram.

Px
p2 //

φ

²²

X

P 0
x

i′ //

i
>>}}}}}}}
Y

π

??~~~~~~~~
Σoo

OO

Σ′

σ

`` OO

(2.5)

In the above diagram i and i′ are open immersions; Σ is one of the surfaces that pass

through x and Σ′ its normalization. The existence of σ is due to the fact that for a general

point y ∈ Σ′, there is a unique line L ⊂ Σ′ connecting x and y. Since σ is defined on an

open set whose complement has at least codimension 2, we may assume that σ is defined

on a neighborhood of C ⊂ Σ′ and by choosing Σ general, we may also assume that σ(C) is

in the smooth locus of Y .

Proposition 2.3.10. Under the assumptions of Situation 2.3.4, there exists a normal va-

riety Y and a finite morphism π : Y → X with the following properties

(i) There is an open subset V ⊂ X such that π|π−1(V ) : π−1(V ) → V is étale and C ⊂ V

for general [C] ∈ M . There is an open immersion ρ : π−1(V ) → P3 such that for general

[C] ∈ M with C ⊂ V , any lifting C ⊂ π−1(V ) is equivalent to a conic on P3 under ρ.

(ii) A general line L′ ⊂ π−1(V ) maps to a pseudo-line L ⊂ X.
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(iii) The degree d = deg(π) of the morphism π is equal to the number of pseudo-lines con-

necting a general pair of points on X. The inverse image π−1(L) of a general pseudo-line

L ⊂ X is a disjoint union of d lines in π−1(V ).

Proof. Pick a general point x ∈ X and let Y be the normalization of X in the function field

of Px as in (2.5). The proof of the proposition will be divided into several steps.

Step 1: For general [C] ∈ M0, the curve C ⊂ X can always be lifted to a curve on Y

such that π is étale along the lifting.

Proof of step 1. Pick a surface Σ′ = Σ′C as in (2.5) with x ∈ ΣC . Then σ gives a lifting

of C to Y . Fix such a curve, we show that π is étale along σ(C). Pick an arbitrary point

x′ ∈ C. We can always find a conic C1 on U ′
C ⊂ Σ′C such that x, x′ ∈ C1 and [C1] ∈ M0.

Hence we also get that Σ1 := ΣC1 is the same as Σ and σ1 : Σ′1 99K Y is the same as

σ. It is easy to see that the image of dπ(σ(x′)) : TY ⊗ k(σ(x′)) → TX ⊗ k(x′) contains

Im(TΣ′1 ⊗ k(x′) → TX ⊗ k(x′)). This is true as long as C1 passes through both x and x′.

By deforming C1 in X passing through the fixed points x and x′, we get a family T of Σ1’s

passing through x and x′. The Zariski tangent space TX ⊗ k(x′) is generated by the images

Im(TΣ′1 ⊗ k(x′) → TX ⊗ k(x′)) as Σ1 runs through the family T . So dπ(σ(x′)) is surjective

and hence π is étale at σ(x′). Since x′ ∈ C is arbitrary, we know that π is étale along

σ(C). As a result we have Nσ(C)/Y
∼= NC/X . It follows that the deformation of σ(C) in Y

covers an open neighborhood of [C] in M0. Hence for a general [C] ∈ M0 there is always a

lifting of C to Y and π is étale along the lifting (note that we don’t require x ∈ ΣC anymore).

Notations. By lifting C ⊂ X to Y , we might get many unbalanced components of very

free rational curves on Y of the same generic splitting type of the normal bundle. Let M ′ be

one of these components such that π is étale along C ′ for a general [C ′] ∈ M ′. With respect

to this M ′, we can do the same constructions on Y as in the previous section. We use the

notation ΠC′ instead of ΣC′ for the surface constructed from a general point [C ′] ∈ M ′.

Similarly we will use Π′ and Π̃ instead of Σ′ and Σ̃.

Step 2. For a general [C ′] ∈ M ′, the pair C ′ ⊂ Π′C′ is also equivalent to a conic on P2.
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Hence we also have the concept of pseudo-lines on Y .

Proof of step 2. Let C ⊂ X be the image of C ′ via π. We know that π is étale along C ′.

The nearby deformations of C ′ in Y with three points fixed induce the nearby deformations

of C in X with the three image points fixed. Hence π induces a morphism πC′ : ΠC′ → ΣC

and π′C′ : Π′C′ → Σ′C . For any point y0 ∈ C ′ ⊂ Π′C′ , let x0 = π′C′(y0) ∈ C ⊂ Σ′C be the

image. Consider the following diagram

Π′ = Π′C′ //

π′
C′

²²

Y

π

²²
Σ′ = Σ′C // X

Since both TΠ′,y0 ⊗ k(y0) → TY,y0 ⊗ k(y0) and TΣ′,x0 ⊗ k(x0) → TX,x0 ⊗ k(x0) are injective.

Together with the fact that π is étale at y0, we know dπ′C′ : TΠ′,y0 ⊗ k(y0) → TΣ′,x0 ⊗ k(x0)

is an isomorphism. Hence π′C′ is étale along C ′. Hence (π′C′)
−1(C) is a disjoint union of

C ′ with some other divisor D′ ⊂ Π′. We already know that as a divisor, C is nef and big

on Σ′. This implies that (π′C′)
−1(C) is also nef and big and hence connected. Thus we get

D = ∅. Hence π′C′ is finite of degree 1, which means that it is isomorphism since Σ′ is normal.

Step 3. The morphism π maps a general pseudo-line on Y to a pseudo-line on X.

Proof of step 3. Let L′ ⊂ Y be a general pseudo-line on Y . Then by definition, there

is some general point [C ′] ∈ M ′ such that L′ is the image of a line L′1 ⊂ Π′C′ . Since π′C′ is

an isomorphism, L1 := π′C′(L
′
1) is a line on Σ′C , where C ⊂ X is the image of C ′. Then

L = π(L′), as the image of L1 ⊂ Σ′C , is a pseudo-line by definition.

Step 4. For a general pseudo-line L ⊂ X, π−1(L) is a disjoint union of d pseudo-lines

on Y . On Y , there is a unique pseudo-line connecting a general pair of points.

Proof of step 4. It is easy to see from the definition of Y that the degree d = deg(π)

is the number of pseudo-lines connecting a general pair of points on X. Let d′ be the

number of pseudo-lines on Y connecting a general pair of points. Let (x, y) ∈ X × X be

a general pair of points on X and L1, . . . , Ld be the pseudo-lines connecting them. Let

π−1(x) = {x1, . . . , xd} and π−1(y) = {y1, . . . , yd}. There are d′d2 pseudo-lines L′ijk connect-

ing xi and yj , where i, j = 1, . . . , d and k = 1, . . . , d′. Their images under π are exactly the
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pseudo-lines {Li} connecting x and y. On the other hand, the inverse image π−1(Li) can

contain at most d pseudo-lines for the degree reason. It follows that d′ = 1 and π−1(Li)

consists of d pseudo-lines. These pseudo-lines are disjoint since π is étale along any of them.

Proof of Proposition. From Step 4 and Lemma 2.3.9, we know that C ′ ⊂ Y is equivalent

to a conic on P3 for general [C ′] ∈ M ′. Let U ⊂ Y be the maximal open subset with an

open immersion ρ̃ : U → P3 that realizes the above equivalence. Then a pseudo-line L′ ⊂ U

corresponds to a line on P3 and hence we will call L′ a line instead of a pseudo-line. We

already see that for a general pseudo-line L ⊂ X, π is étale along π−1(L) ⊂ U . Hence there

is an open subscheme V ⊂ X such that π|π−1(V ) : π−1(V ) → V is étale and π−1(V ) ⊂ U .

Define ρ = ρ̃|π−1(V ) then the proposition follows.

2.3.2 Case II: Section of Hirzebruch surface

Situation 2.3.11. In this whole subsection we will assume Situation 2.3.1 with one further

assumption that C ⊂ Σ′C is equivalent to a positive section of the Hirzebruch surface Fn

for general [C] ∈ M .

Recall that by definition, there is a natural fibration πn : Fn = P(O ⊕ O(−n)) → P1.

By blowing up at smooth points, we may assume that the above equivalence is given by a

morphism σ : Σ̃ = Σ̃C → Fn, which is an isomorphism on a neighborhood of C and the image

of C is a positive section of πn. On Σ̃, there is a distinguished divisor D that corresponds

to the negative section of Fn with D2 = −n. Note that D need not be irreducible but there

is a unique component Dh which is a horizontal section. It is easy to see that C can only

meet D at points of Dh which are not nodes of D, since Σ̃ → Fn is blowing up centered

away from C. Let F ⊂ Σ̃ be a general fiber of πn ◦σ : Σ̃ → P1. Then F is a smooth rational

curve on Σ̃.

Definition 2.3.12. Let Γ = ∪Γi be a nodal curve, and Y be a smooth projective variety.

Let ϕ : Γ → Y be a morphism such that ϕ is an immersion on a neighborhood of each node

and dϕ(x) : TΓ ⊗ k(x) → TY ⊗ k(ϕ(x)) is injective for all smooth point x of Γ. We define
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the normal bundle of ϕ to be

NΓ/Y = Nϕ = [ker(ϕ∗Ω1
Y → Ω1

Γ)]∨

Note that the above definition agrees with Definition 2.2.6 when Γ is smooth. Since a

nodal curve is always a local complete intersection, we know that NΓ/Y is locally free. To

better understand the normal bundle at the nodal points, let’s assume that Γ = Γ1 ∪ Γ2 be

a union to two smooth curves and let p be the nodal point. We always have the following

exact sequence, see [GHS03] and [Sta09],

0 // NΓ1/Y // NΓ/Y |Γ1
// k(p) // 0

This realizes NΓ/Y |Γ1 as the sheaf of sections of NΓ1/Y that are either regular or have a

simple pole at p in the direction of TΓ1,p. A similar interpretation holds on Γ2. The following

sheaf

T := Ext1OΓ
(Ω1

Γ,OΓ)

is torsion sheaf supported at p whose fiber is canonically isomorphic to

T |p = TΓ1,p ⊗ TΓ2,p.

The natural quotient map NΓ/Y ³ T induces isomorphisms

(NΓ/Y |Γ1)/NΓ1/Y
∼= T .

With the above preparation, we are ready to prove the following

Lemma 2.3.13. Under Situation 2.3.11, the following does not happen: on Σ̃, the curve

C meets D at least once and for a general fiber F we have NF/X
∼= O ⊕O(1).

Proof. We prove the lemma by contradiction. So we assume the above situation happens.

Since C ·D ≥ 1, the curve C degenerates to a general fiber F and another positive section

C ′. We have the following picture.
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Σ̃
D

rP1 rPa· · ·

F

rQ
C ′p

Since (C ′)2 = (C−F )2 = C2−2(C ·F ) = b−2, we have NC′/Σ̃
∼= O(b−2). Since C ·D ≥ 1

and the tangent map dφ̃ of φ̃ : Σ̃ → X is injective along C, we know that dφ̃ is also injective

along a general fiber F . Hence we have the following short exact sequence

0 // NF/Σ̃
// NF/X // NΣ̃/X |F // 0.

It follows from the above sequence and the assumption that NΣ̃/X |F ∼= O(1). Since

NΣ̃/X |C ∼= O(a), see Corollary 2.2.7, we get that NΣ̃/X |C′ ∼= O(a − 1). Consider the

following short exact sequence

0 // NC′/Σ̃
// NC′/X // NΣ̃/X |C′ // 0

and we get NC′/X
∼= O(b− 2)⊕O(a− 1). Let Γ = F ∪C ′ ⊂ Σ̃ and let p be the nodal point.

Consider the natural morphism ϕ : Γ → X. The deformation problem of ϕ with only the

target X being fixed is controlled by the cotangent complex of ϕ,

L∗ϕ := {0 → ϕ∗Ω1
X → Ω1

Γ → 0}.

Namely, the first order deformation is given by Ext1Γ(L∗ϕ,OΓ) and the obstruction space

is in Ext2Γ(L∗ϕ,OΓ), see [LT98]. If we choose F and C ′ general, then dϕ is injective at all

smooth points of Γ and ϕ is an immersion on an open neighborhood of the node p. Hence

we know that L∗ϕ is quasi-isomorphic to N ∨
ϕ centered at degree −1. Hence we have the

following isomorphisms

Ext1Γ(L∗ϕ,OΓ) ∼= H0(Γ,Nϕ), Ext2Γ(L∗ϕ,OΓ) ∼= H1(Γ,Nϕ).
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We pick Q ∈ F and P1, . . . , Pa ∈ C ′ to be general points. Consider the same deformation

problem while we require the deformations to pass through the points {Q,P1, . . . , Pa}.
Then the first order deformations and obstructions are given by H0(Γ,E ) and H1(Γ,E )

respectively, where E = Nϕ(−Q −∑a
i=1 Pi). Since F has trivial normal bundle in Σ̃, the

O(1) direction in NF/X is pointing outside Σ̃. The previous discussion shows that E |F is

the sheaf of sections of NF/X(−Q) that are either regular or have a simple pole at p along

the direction of TC′,p. This shows that the restriction morphism

H0(F, E |F ) −→ E ⊗ k(p) = Nϕ ⊗ k(p)

is surjective. In fact we have NF/X(−Q) ∼= O(−1) ⊕ O. The global section from the O
factor and the rational section pointing to TC′,p with a simple pole at p form a basis for

H0(F, E |F ). They restrict to two linearly independent vectors in N ⊗ k(p). To compute

the cohomology groups of E , we consider the following exact sequence.

0 // E // E |F ⊕ E |C′ // E ⊗ k(p) // 0 (2.6)

It follows easily from the interpretation of E |F and E |C′ that

H1(F, E |F ) = 0, H1(C ′,E |C′) = 0

and

dimH0(F, E |F ) = 2 dimH0(C ′,E |C′) = b− a.

Hence the long exact sequence associated to (2.6) becomes

0 // H0(Γ,E ) // H0(F, E |F )⊕H0(C ′,E |C′) α // E ⊗ k(p)

// H1(Γ,E ) // 0

We already know that α is surjective. Hence we have

dimH0(Γ,E ) = b− a, dimH1(Γ,E ) = 0

So the deformation problem above is unobstructed. Note that the deformation that keeps

the configuration F ∪C ′ is (b−a− 1)-dimensional and hence a general deformation smooth
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out the node and gives a curve [C1] ∈ M0 passing through {Q,P1, . . . , Pa}. Now we deform

F → X a little bit to get F ′ ∼= P1 → X where the image of F ′ still passes through ϕ(p)

and TF ′,p is not contained in TΣ′,p. Then we get a morphism ϕ′ : Γ′ = F ′ ∪p′ C
′ → X. Pick

Q′ ∈ F ′ we do the same deformation with respect to {Q′, P1, . . . , Pa}. Since the vanishing

of obstruction is an open condition, we know that this new deformation problem is still

unobstructed which gives a different curve [C2] ∈ M0. From C1 we get the surface Σ1 = Σ

and from C2 we get a different surface Σ2. Now since C ′ is component of the degeneration

of both C1 and C2 with a + 1 points fixed, C ′ lies on both of Σ1 and Σ2. Consider the

deformation of C ′ in X passing through {P1, . . . , Pa}. If we consider C ′ as a curve on Σ′1,

and we can do the deformation of C ′ in Σ′1; Similarly we can also do the same deformation

on Σ′2. As a result, the curve C ′ can move along both of the directions TF,p and TF ′,p at

the point p. But this is impossible since NC′/X(−∑a
i=1 Pi) ∼= O(−1)⊕O(b− a− 2) is not

globally generated.

The main result of this subsection is the following

Proposition 2.3.14. Assume that the anti-canonical divisor −KX is nef together with

Situation 2.3.11, then for a general fiber F ⊂ Σ̃, the morphism F → X has at worst nodal

image and NF/X = O ⊕O.

Proof. On Σ̃ we have the divisor class C = D+cF for some integer c. We have the following

basic relations

C2 = D2 + 2c(D · F ) = −n + 2c = b ⇒ c =
b + n

2
(2.7)

C ·D = D2 + c = −n + c ≥ 0 ⇒ c ≥ n (2.8)

The above relations imply that b ≥ n. We still use KX to denote the pullback of KX to Σ̃.

From the following

a + b + 2 = C · (−KX) = D · (−KX) + cF · (−KX)

and the assumption that −KX is nef, we get

F · (−KX) ≤ a + b + 2
c

=
2(a + b + 2)

b + n
≤ 4b

b
= 4. (2.9)



CHAPTER 2. RATIONAL CURVES ON FANO THREEFOLDS OF PICARD
NUMBER ONE 27

By construction, a general F passes through a general point of X and hence F is free. As a

result, the intersection number F · (−KX) can only be 2, 3 or 4. To prove the proposition,

we only need to rule out the cases F · (−KX) being 3 or 4.

If F · (−KX) = 4 then n = 0, b = a + 2 and D · (−KX) = 0. In this case, the divisor

D is just the other ruling of P1 × P1 and hence a general member of the class of D is a

rational curve that passes through a general point of X and hence is free. This implies that

D · (−KX) ≥ 2, which is a contradiction.

If F · (−KX) = 3 then we first show that C · D ≥ 1. In fact, if C · D = 0, i.e.

D2 + cF ·D = 0, then c = n. From (2.7), we get b = n. Then in (2.9), we get

3 = F · (−KX) ≤ 2(a + b + 2)
b + n

=
2(a + b + 2)

2b
=

a + b + 2
b

≤ 2.

Hence we get contradiction again. Recall that there is an open neighborhood Ũ of C inside

Σ̃ such that the morphism Ũ → X has injective tangent map at each point. The fact that

C ·D ≥ 1 implies that F ⊂ Ũ for general F . This implies that F → X has injective tangent

map at all points and hence NF/X
∼= O ⊕O(1), which is impossible by Lemma 2.3.13.

2.3.3 Conclusion

Here we summarize the previous two subsections in the following theorem.

Theorem 2.3.15. Let X be a smooth projective variety over an algebraically closed field k

of characteristic 0 with dimX = 3. Let M be an unbalanced component of very free rational

curves such that for general [C] ∈ M , C is a smooth rational curve on X with normal

bundle NC/X
∼= O(a) ⊕ O(b), where b − 2 ≥ a ≥ 1. Let Σ be the surface swept out by

deforming C with a + 1 points fixed as before. Let Σ′ be its normalization. Then we have

one of the following two cases.

Case I: The pair C ⊂ Σ′ is equivalent to a conic in P2. In this case, there is a finite

morphism π : Y → X and an open neighborhood V ⊂ X of C such that π−1(V ) → V

is étale. Furthermore, there is an open immersion ρ : π−1(V ) → P3 such that any lift

C → π−1(V ) is a conic on P3.

Case II: The pair C ⊂ Σ′ is equivalent to a positive section of a Hirzebruch surface Fn.

In this case, if we assume further that −KX is nef then a general fiber F of Σ̃ gives a free
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rational curve on X with trivial normal bundle, i.e. NF/X
∼= O⊕O. Let S be the component

of the M0,0(X, β) that parameterizes such curves F . Then the natural morphism ϕ : C → S

is a rational curve on S that connects a general pair of points on S. In particular, S is

rationally connected and hence rational.

Proof. The theorem is pretty much the combination of Proposition 2.3.3, Proposition 2.3.10

and Proposition 2.3.14. We only need to show that S is rationally connected in case II. Fix

a general point [F ] ∈ S, then there is some C ⊂ Σ and F ⊂ Σ. Let x be the point that C

meets F . By deforming C passing through the fixed point x, we get a family of Σ’s. The

fiber of any such Σ at the point x is always the fixed F . Hence we get a covering family of

rational curves on S passing through the fixed point [F ]. This means that S is rationally

connected.

Definition 2.3.16. Let X and M be as in the theorem. When Case I happens, we say

that M is an unbalanced component of conic type; when Case II happens, we say that M

is of fibration type.

Corollary 2.3.17. Let X be a smooth projective threefold of Picard number 1. If X has an

unbalanced component M of very free rational curves of conic type, then X ∼= P3 and M is

the space of conics on X.

Proof. Let π : Y → X be the finite morphism we get from the theorem. Then π is étale

above V ⊂ X. Since V contains a general curve C and X has Picard number 1, the

complement of V in X has dimension less than or equal to 1. Since X is simply connected

(notice that it is rationally connected), we get that V is also simply connected. This implies

that deg(π) = 1 and hence V = π−1(V ) ⊂ P3. We have the identification of the Picard

groups Pic(X) = Pic(V ) = ZH. From the fact that OX(−KX)|V ∼= Ω3
V = OV (−4H), we

get −KX
∼= 4H. So X is Fano threefold of index 4, which implies that X ∼= P3.

2.4 Fano threefolds with Picard number one

In this section we summarize what is known about Fano threefolds of picard number one.

Main references for this section are [IP99], [Isk], [Isk90] and [Cut89]. We fix X being a three
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dimensional smooth projective algebraic variety over the field C of complex numbers.

Definition 2.4.1. We say that X is Fano if −KX is ample. When the Picard number

ρ(X) = 1, then Pic(X) ∼= Z and there is a unique ample generator H of the Picard group.

Hence −KX = rH for some positive integer r. This number r is called the index of X,

denoted by Ind(X). A rational curve f : P1 → X is called an line (resp. conic) if f∗H has

degree 1 (resp. 2). If X is of index 1, then (−KX)3 = 2g − 2 where g = g(X) is called the

genus of X. We also call X prime if it is of index 1 and Picard number 1.

We summarize some basic facts about lines and conics on a Fano threefold in the fol-

lowing theorems. In this section, a line always means an H-line and a conic means an

H-conic.

Theorem 2.4.2. ([IP99], 4.2) Let X be a Fano threefold of Picard number 1 and index 1.

Assume that −KX is very ample. Then

(i) On X, there exists lines and smooth conics.

(ii) The normal bundle of a line l ⊂ X is of one of the following cases

(0,−1) : Nl/X
∼= O ⊕O(−1);

(1,−2) : Nl/X
∼= O(1)⊕O(−2)

(iii) Assume that g ≥ 5. The normal bundle of a smooth conic C ⊂ X is of one of the

following cases

(0, 0) : NC/X
∼= O ⊕O

(1,−1) : NC/X
∼= O(1)⊕O(−1)

(2,−2) : NC/X
∼= O(2)⊕O(−2)

Definition 2.4.3. A smooth rational curve C ∼= P1 on a smooth threefold X is called a

(−2)-curve if the normal bundle of C in X is either O(−1)⊕O(−1) or O ⊕O(−2).

A classical method in the classification of Fano threefolds is “double projection from

a line”. This method bounds to the following diagram where we assume that g ≥ 6, see
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[IP99], [Isk90] and [Cut89].

X̃
χ //

σ

²²

ϕ′ ÂÂ?
??

??
??

X̃+

ϕ

²²

ϕ+
~~||

||
||

||

X̄

X Y

(2.10)

Such a diagram always exists. Here σ is blow-up along a line l ⊂ X and X̃+ is also smooth.

Let H∗ := σ∗H and E := σ−1(l) be the exceptional divisor. We set H ′ := −KX̃ = H∗−E.

The morphism ϕ′ = ϕ|H′| is a small contraction and X̄ is its image. The map χ is a flop and

ϕ is an extremal contraction. When g ≥ 7, we have very good description of the flop χ and

the morphism ϕ in the following way, see [Isk90]. Let Z1, . . . , Zm be the lines on X that

intersects the given line l and let Z ′1, . . . , Z
′
m be the strict transforms in X̃. Let Z ′0 ⊂ E be

the negative section if l is of type (−2, 1). Then the set of points where χ is not defined is

exactly the union of (Z ′0, )Z
′
1, . . . , Z

′
m. By [Cut89], all the curves Z ′i are (−2)-curves, here

i = (0, )1, . . . , m; χ is the flop of these curves. Let Z+
i be the corresponding rational curves

on X̃+, i = (0, )1, . . . , m. Let C ⊂ X be a conic that meets l, C ′ ⊂ X̃ be its strict transform

and C+ := χ∗(C ′). Then NE(X̃+) = R≥0[C+] +R≥0[A+], where A+ is the numerical class

of Z+
i , i = (0, )1, . . . , m. Set E+ = χ∗(E) and H+ = χ∗(H ′) and they generate the Picard

group of X̃+. The morphism ϕ is the contraction define by the extremal ray R≥0[C+]. We

have the following classification theorem.

Theorem 2.4.4. (see [IP99]) Let X be a Fano threefold of Picard number 1. Set r to be

the index of X, i.e. −KX = rH. Then X is one of the following cases.

Case r = 4, X ∼= P3.

Case r = 3, X ∼= Q ⊂ P4 is a quadric hypersurface.

Case r = 2, let d = H3.

B2,1: d = 1, X is a hypersurface of degree 6 in P(3, 2, 1, 1, 1).

B2,2: d = 2, X → P3 is a double cover of P3 ramified along a smooth quartic surface.

A2,3: d = 3, X = X3 ⊂ P4 is a cubic threefold.

A2,4: d = 4, X = X4 = Q1 ·Q2 ⊂ P5 is the intersection of two quadrics.

A2,5: d = 5, X = X5 = Gr(2, 5)∩H1∩H2∩H3 ⊂ P6 is a linear section of Grassmannian.
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Case r = 1

B1,2: g = 2, X → P3 is a double cover ramified along a smooth surface of degree 6.

B1,3: g = 3, X → Q ⊂ P4 is a double cover of a smooth quadric threefold, ramified along

a surface of degree 8.

A1,3: g = 3, X = X4 ⊂ P4 is a smooth quartic hypersurface.

A1,4: g = 4, X = X6 ⊂ P5 is an intersection of a cubic and a quadric.

A1,5: g = 5, X = X8 = Q1 ·Q2 ·Q3 ⊂ P6 is an intersection of three quadic hypersurfaces.

A1,6: g = 6, X = X10 ⊂ P7. In (2.10), Y = Y10 ⊂ P7 is a nonsingular prime Fano

threefold of genus 6, ϕ contracts D ∼ −KX̃+ − E+ onto a line Γ ⊂ Y .

A1,7: g = 7, X = X12 ⊂ P8. In (2.10), Y ∼= P1 and ϕ is a pencil of del Pezzo surfaces

of degree 5. In this case we have ϕ∗O(1) ∼ −KX̃+ − E+.

A1,8: g = 8, X = X14 ⊂ P9. In (2.10), Y ∼= P2 and ϕ is a standard conic bundle with

deg(∆) = 5. Here ∆ is the discriminant and we also have ϕ∗O(1) ∼ −KX̃+ − E+.

A1,9: g = 9, X = X16 ⊂ P10. in (2.10), Y ∼= P3 and ϕ contracts the divisor D ∼
−3KX̃+ − 4E+ onto a smooth non-hyper-elliptic curve Γ ⊂ P3 of degree 7 and genus 3.

A1,10: g = 10, X = X18 ⊂ P11. In (2.10), Y ∼= Q ⊂ P4 is a smooth quadric hypersurface

and ϕ contracts the divisor D ∼ −2KX̃+ −3E+ onto a smooth curve Γ ⊂ Q of degree 7 and

genus 2.

A1,12: g = 12, X = X22 ⊂ P13. In (2.10), Y = Y5 ⊂ P6 is a Fano threefold of index

2 and ϕ contracts the divisor D ∼ −KX̃+ − 2E+ onto a smooth rational curve Γ ⊂ Y of

degree 5.

Furhtermore, in all the cases labeled with “B”, the ample divisor H is not very ample; H

is very ample in all the other cases.

2.5 Non-triviality of the Abel-Jacobi mapping

In this section, we use the technique of intermediate Jacobian and the Abel-Jacobi mapping

to prove Theorem 2.1.3 in most cases.
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2.5.1 Intermediate Jacobian and Abel-Jacobi mapping

The main reference to this section are [CG72], [Tyu72], [Bea], [Bel85], [S.Y85] and [Kan89].

Let X be a smooth projective variety over C, dim X = 3. We use H∗(X) to denote

H∗(X,Z)/torsion. We have the following Hodge decomposition.

H3(X)⊗ C = H3,0(X)⊕H2,1(X)⊕H1,2(X)⊕H0,3(X)

Let W (X) := H1,2(X)⊕H0,3(X) and let U(X) ⊂ W (X) be the lattice defined by the image

of H3(X) under the projection. We define a Hermitian form on W (X) by

(α, β) = h(α, β) := 2i

∫

X
α ∧ β̄

Then the imaginary part of h restricts to an integral, unimodular, alternating form on

U(X).

Definition 2.5.1. Let X be a smooth projective variety of dimension 3, the triple (W (X), U(X), h)

is called the intermediate Jacobian of X and denoted by J(X).

Proposition 2.5.2. ([CG72]) If H1(X) = 0 and H0,3(X) = 0 then J(X) is a principally

polarized abelian variety. In particular, if X is Fano then J(X) is a principally polarized

abelian variety.

From now on, we always keep the assumption of the proposition above. The following

proposition is well known, see [CG72] and [Tyu72].

Proposition 2.5.3. Let X be a smooth projective threefold with H1(X) = 0 and H0,3(X) =

0, and C ⊂ X be a smooth curve on X. Let X̃ be the blow-up of X along the curve C, then

we have canonical isomorphism

J(X̃) ∼= J(X)⊕ J(C)

as principally polarized abelian varieties, where J(C) is the jacobian of the curve.

We also need the following basic property on the behavior of the intermediate Jacobian

under the operation of a flop.
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Proposition 2.5.4. Let X be a smooth projective threefold and let χ : X 99K X+ be a flop

of (−2)-curves. Then J(X+) ∼= J(X) canonically.

Proof. By the definition of a flop, we have a diagram

X
χ //

f ÃÃ@
@@

@@
@@

@ X+

f+
}}{{

{{
{{

{{

Y

where both f and f+ are small proper birational morphism. By a result of [Sch98], χ is a

composition of sequence of blow-ups and blow-downs centered along smooth rational curves.

The proposition follows from the previous one.

Let

C
f //

π

²²

X

S

be a family of curves on X, i.e. Cs is a curve on X for all s ∈ S. After fixing a general

point s0 ∈ S, we get a map

Φ = ΦS : S → J(X).

This is actually a morphism which induces

Ψ = ΨS : Alb(S) → J(X).

On the level of homology classes, Ψ can be described in the following way: Ψ(γ) = f∗(π−1γ),

where γ is a topological 1-cycle. We refer to [CG72] and [Tyu72] for more details.

Definition 2.5.5. Both Φ and Ψ are called the Abel-Jacobi mapping associate to the family

C → S.

Now let’s consider the infinitesimal version of the Abel-Jacobi mapping. Fix a smooth

curve C ⊂ X, then we have the following exact sequence

0 // N ∨
C/X

// Ω1
X |C // Ω1

C
// 0 .

This induces an exact sequence as the following

0 // ∧2(N ∨
C/X) // Ω2

X |C // Ω1
C ⊗N ∨

C/X
// 0 .
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By taking the associated long exact sequence, we get an natural surjection

α : H1(C,Ω2
X |C) −→ H1(C,Ω1

C ⊗N ∨
C/X) ∼= H0(C, NC/X)∨,

where the isomorphism is Serre duality. Note that if H1(C,∧2N ∨
C/X) = 0 then α is an

isomorphism. Let

r : H1(X, Ω2
X) −→ H1(C,Ω2

X |C)

be the natural restriction map. When C → S is the universal family, the composition

φ = α ◦ r is the dual of d(ΦS) at the point [C]. We call φ the infinitesimal Abel-Jacobi

mapping.

Proposition 2.5.6. ([Wel] Lemma 2.8) Suppose X can be embedded in a smooth 4 dimen-

sional variety W . Then there is a commutative diagram as following

H0(X, NX/W ⊗ Ω3
X) //

rC

²²

H1(X, Ω2
X)

φ

²²
H0(C, NX/W ⊗ Ω3

X ⊗OC)
βC // H0(C, NC/X)∨

Here the map βC fits into the following long exact sequence

H0(C, NX/W ⊗ Ω3
X ⊗OC)

βC // H0(C, NC/X)∨

→ H1(C, NC/W ⊗ Ω3
X) // H1(C, NX/W ⊗ Ω3

X ⊗OC) // 0

Corollary 2.5.7. Notations and assumptions as above, if NC/X
∼= O⊕O and the following

two conditions hold, then the infinitesimal Abel-Jacobi mapping φ is nontrivial.

(1). The restriction map rC : H0(X, NX/W ⊗Ω3
X) → H0(C, NX/W ⊗Ω3

X⊗OC) is surjective;

(2). h1(C, NC/W ⊗ Ω3
X)− h1(C,NX/W ⊗ Ω3

X ⊗OC) ≤ 1.

2.5.2 Nontriviality of Abel-Jacobi mapping

To prove the main result of this section, we need a description of double covers. Let

π : X → V be a double cover between smooth algebraic varieties, R ⊂ X be the ramification

locus and B ⊂ V be the image of R. Then R ∼= B are smooth and there is a line bundle L
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on V such that L ⊗2 ∼= OV (B). There is a section σ ∈ Γ(V, L ⊗2) such that B = div(σ).

We have the following diagram

X
i //

π
ÃÃA

AA
AA

AA
U

p

²²
V

(2.11)

where U = SpecV (Sym∗(L −1)) is the space of L . On U , there is a canonical section

y ∈ Γ(U, p∗L ) and X = div(y2 − p∗σ). It is easy to see that TU/V = p∗L and hence we

have the following exact sequence

0 // p∗L // TU
// p∗TV

// 0 . (2.12)

Then it is easy to see that NX/U
∼= p∗L ⊗2 and ωX

∼= π∗(ωV ⊗L ).

Lemma 2.5.8. Assume that Q ⊂ Pn, n ≥ 4, is a quadric hypersurface. Let C ⊂ Q be a

smooth conic rational curve in the smooth locus of Q. Let Π = Π(C) be the plane spanned

by C. Then NC/Q has a direct summand of OP1(4) if and only if Q contains Π.

Proof. Consider the following short exact sequence

0 // NC/Q // NC/Pn // NQ/Pn |C // 0

It is easy to see that NC/Pn ∼= O(4) ⊕ O(2)⊕(n−2) and the O(4) summand is canonically

isomorphic to NC/Π. If NC/Q contains an O(4) summand, then this summand has to map

isomorphically onto the NC/Π summand of NC/Pn . This means that Π is tangent to Q

along C. This can happen only if Π ⊂ Q. The other direction is easy.

With the above preparations, we are ready to prove the following

Theorem 2.5.9. Let X be a Fano threefold of index 1 or 2 and of Picard number 1. Assume

that the intermediate Jacobian J(X) is not zero. Let S be a component of rational curves

on X with trivial normal bundle. Then the Abel-Jacobi mapping

Φ : S → J(X)

is nontrivial. In particular, S is not rational.
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Remark: The intermediate Jacobian J(X) is trivial only when X = X5 is of index 2 and

degree 5 or when X = X22 is of index 1 and genus 12.

Proof. We prove the theorem case by case. We use C to denote a general member of the

family S.

First let’s consider the case when the index of X is 1 and in this case the rational curves

with trivial normal bundle are conics on X. Recall that for those of high genus, we have

the “double projection from a line” method and get the following diagram.

X̃
χ //

σ

²²

ϕ′ ÂÂ?
??

??
??

X̃+

ϕ

²²

ϕ+
~~||

||
||

||

X̄

X Y

(2.13)

Let Z ⊂ S be the curve that parameterizes a component of the conics which meet l where

l is a line on X and the center of the blow-up σ. Such Z always exists since we can pick l

general. Let CZ → Z be the family over Z. After blowing up and the flop, this gives a family

C +
Z → Z of rational curves on X̃+. Since χ is a flop of (−2)-curves, by Proposition 2.5.1,

we know that there is a canonical isomorphism J(X) ∼= J(X̃+) and we get the following

commutative diagram

Z
ΦZ //

²²

J(X̃+)

∼=
²²

S
ΦS // J(X)

(2.14)

Note that all curve in the family C +
Z → Z are contracted by ϕ and if we can show that ΦZ

is nontrivial then ΦS is also nontrivial.

g=10: In this case, ϕ : X̃+ → Y blows down a divisor onto a smooth curve of genus

2 on Y ∼= Q ⊂ P4. This implies that Z is of genus 2 and J(X̃+) ∼= J(Z) and hence ΦZ is

nontrivial.

g=9: In this case, ϕ : X̃+ → Y blows down a divisor onto a smooth curve of genus 3 on

Y ∼= P3. This implies that Z is of genus 3 and J(X̃+) ∼= J(Z) and hence ΦZ is nontrivial.

g=8: In this case ϕ : X̃+ → Y is a standard conic bundle over Y ∼= P2 with discriminant

∆ ⊂ P2 being of degree 5. In this case J(X̃+) is the prim variety Pr(∆̃/∆) of the double
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cover ∆̃ → ∆, see [S.Y85] and [Bea]. Then Z → ∆0 is a double cover of a component ∆0 of

∆. Let ∆1 be the union of the remaining components of ∆. If deg ∆0 = 1, then ∆0 ·∆1 = 4

which means that Z → ∆0 ramifies above 4 points. Hence Z is an elliptic curve. Then

Pr(Z/∆0) = J(Z) gives a factor of the J(X) ∼= Pr(∆̃/∆) and the Abel-Jacobi mapping ΦZ

maps Z nontrivially to the factor Pr(Z/∆0). If deg(∆0) = 2, then Z → ∆0 ramifies above

6 points and Z has genus 2. Then ΦZ maps nontrivially to J(Z) which forms a factor of

J(X̃+). If deg(∆0) = 3 then Z has genus 2 or 3, depending on whether ∆0 has a node or

not; If deg(∆0) = 4, then Z has genus 7, 6, 5 or 4, depending on the number of nodes of ∆0;

If ∆0 = ∆ then Z ∼= ∆̃. In any of the above cases, it is easy to check that the morphism

ΦZ is nontrivial in a similar way.

g=7: In [IM07] (Proposition 2.2), it is proved that S ∼= Γ(2) the symmetric product

to a smooth curve Γ of genus 7. It is also known that the intermediate Jacobian of X is

isomorphic to the Jacobian of Γ. Hence ΦS is nontrivial.

For the remaining cases, we will use Corollary 2.5.7 to show the nontriviality of Abel-

Jacobi mapping. We refer to the conditions in Corollary 2.5.7 as condition (1) and condition

(2).

g=6: In this case, X is either (i)a section of the Grassmannian G(2, 5) embedded by

Plücker into P9 by a linear P7 and a quadric or (ii)the section by a quadric of a cone Ṽ5 ⊂ P7

over V5 ⊂ P6 where V5 is a Fano threefold of Picard number 1, index 2 and degree 5, see

[IP99] §5.1.

In case (i), we take

C ⊂ X ⊂ W = G(2, 5) ∩ P7 = G(2, 5) ∩H1 ∩H2

Then we have NX/W
∼= OX(2H) and Ω3

X
∼= O(−H). Consider the following natural com-

mutative diagram.

H0(X,OX(H))
rC // H0(C,O(2))

H0(P9,OP9(H))

OO

r′C

66mmmmmmmmmmmm
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where r′C is surjective. This implies that

rC : H0(X, NX/W ⊗ Ω3
X) → H0(C,NX/W ⊗ Ω3

X ⊗OC) ∼= H0(C,O(2))

is surjective and hence condition (1) holds. Set G = G(2, 5), then we have the following

0 // NC/X // NC/W // NX/W |C // 0

Note that NX/W |C ∼= O(4) and NC/X
∼= O ⊕ O. Then it is easy to see that if NC/W

does not have a summand O(4) then condition (2) also holds and hence we know that the

Abel-Jacobi mapping is nontrivial. So we only need to prove that NC/W can not have a

summand of O(4). We prove this by contradiction. Assume that NC/W
∼= O(4)⊕O(2)⊕2.

It is well known that G = Gr(2, 5) ⊂ P2 is cut out by quadrics, see [GH78]. Suppose Q is a

quadric hypersurface of P9 that contains G. Since NC/G injects into NC/Q, we know that if

NC/G has an O(4) summand then so does NC/Q. By Lemma 2.5.8, we have Π = Π(C) ⊂ Q,

where Π(C) is the plane spanned by C. Since Q is arbitrary, one sees that NC/G contains

an O(4) summand if and only if the plane Π(C) is contained in G. From the following exact

sequence

0 // NC/W // NC/G // O(2)⊕2 // 0

one sees easily that if NC/W
∼= O⊕2 ⊕O(4), then NC/G will have an O(4) summand. As a

result, for a general conic C on X we have Π(C) ⊂ G and hence Π(C) ⊂ W . This means

that W has a 2-dimensional family of planes. However, it is known that the planes on W

form a 1-dimensional family, see [Log] (3.2).

In case (ii), the projection from the node of Ṽ5 realizes X as a double cover of V5 that

ramifies along a smooth divisor B ∈ |2H|. Use the notations above for double covers, we

take W = U and then we have NX/W
∼= OX(2H) and Ω3

X
∼= OX(−H). This gives the

surjection condition (1) as before. To verify the condition (2), consider the following exact

sequence.

0 // NC/X // NC/V5
// Q // 0

Note that NC/X
∼= O⊕O. The cokernel Q is a skyscraper sheaf of degree 2 since C ·R = 2,

where R is the ramification divisor. Then we get NC/V5
∼= O ⊕ O(2) or O(1) ⊕ O(1). We
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also have the following short exact sequence

0 // TW/V5
|C // NC/W // NC/V5

// 0

Since TW/V5
∼= π∗OV5(1), we have TW/V5

|C ∼= O(2). Then the sequence shows that NC/W
∼=

O ⊕O(2)⊕2 or O(1)⊕2 ⊕O(2). Condition (2) holds in either case.

g=5: X = Q1 ∩ Q2 ∩ Q3 ⊂ P6 is a complete intersection of 3 quadrics. We take

W = Qi ∩Qj where 1 ≤ i ≤ j ≤ 3. Then we have NX/W
∼= OX(2H) and Ω3

X
∼= OX(−H).

Condition (1) is readily verified. For condition (2), we consider

0 // NC/X
∼= O⊕2 // NC/W // NX/W |C ∼= O(4) // 0

From this one sees that condition (2) holds if NC/W does not have a summand of O(4). Now

suppose that NC/W has an O(4) summand for all possible choice of W , then the sequence

0 // NC/W // NC/Qi
// O(4) // 0

implies that NC/Qi
also has a summand of O(4). By Lemma 2.5.8, the plane Π(C) is

contained in Qi. This is true for all i = 1, 2, 3. Then X should contain a linear P2. This

is impossible because by adjunction formula, any smooth surface on X is either K3 or of

general type.

g=4: X = Q ∩ Y ⊂ P5 is a complete intersection of a quadric and a cubic. Let’s take

W = Q to be the quadric. We have NX/W
∼= OX(3H) and Ω3

X
∼= OX(−H). We can verify

condition (1) easily. Consider the exact sequence

0 // NC/X
∼= O⊕2 // NC/W // O(6) // 0

We easily see that condition (2) holds as long as NC/W � O⊕2 ⊕O(6). On the other hand

we have

0 // NC/W // NC/P5
∼= O(2)⊕3 ⊕O(4) // O(4) // 0

and this implies that NC/W can not have a summand of degree greater than 4. Hence

condition (2) holds.

g=3: X = X4 ⊂ P4 and we take W = P4. We have NX/W = O(4H) and Ω3
X
∼=

OX(−H) and condition (1) follows easily. Condition (2) also easily follows from the fact

that NC/W
∼= O(2)⊕2 ⊕O(4).
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g=3: X → Q ⊂ P4 is a double cover of a quadric threefold that ramifies along a surface

B of degree 8. With the notations for double covers, we take W = U and here V = Q and

L = OV (2H). The we easily get Ω3
X
∼= π∗OV (−H) and NX/W

∼= π∗OV (4H). Condition

(1) is again easy to verify. For condition (2), we consider the following

0 // TW/V |C ∼= O(4) // NC/W // NC/V // 0

On the quadric threefold V we always have NC/V
∼= O(2) ⊕ O(2) and hence NC/W

∼=
O(4)⊕O(2)⊕O(2). Thus the condition (2) holds.

g=2: X → P3 is double cover of P3 which ramifies along a smooth surface of degree

6. Take W = U , V = P3 and we get Ω3
X
∼= π∗OV (−H) and NX/W

∼= π∗OV (6H). Hence

condition (1) holds. The exact sequence

0 // TW/V |C ∼= O(6) // NC/W // NC/V
∼= O(2)⊕O(4) // 0

shows that NC/W
∼= O(6)⊕O(4)⊕O(2). Thus condition (2) also holds.

Now we consider the cases when the index of X is 2. We prove case by case according

to the d = H3. Note that in this case, the curve C is a line on X. We still use Corollary

2.5.7 to show nontriviality of Abel-Jacobi mapping.

d=4: X = Q1∩Q2 ⊂ P5 is a complete intersection of two quadrics in P5. Take W = Q1

and we have NX/W
∼= OX(2H) and Ω3

X
∼= OX(−2H). It is still easy to verify condition (1).

We have the following two short exact sequences

0 // NC/X
∼= O ⊕O // NC/W // O(2) // 0

and

0 // NC/W // NC/P5
∼= O(1)4 // O(2) // 0

It follows easily that NC/W
∼= O(1)2 ⊕O. Hence condition (2) holds.

d=3: X is a smooth cubic threefold. This case is well known, see [CG72].

d=2: X → P3 is a double cover of P3 that ramifies along a smooth surface of degree 4.

This case is studied in [Wel], Proposition (2.13).

d=1: X is a smooth hypersurface of degree 6 in the weighted projective space P =

P(3, 2, 1, 1, 1) with weighted homogeneous coordinates (x0, x1, x2, x3, x4). Since X is smooth,
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it must be contained inside the smooth locus of P. Let pr : P 99K P2 be the projection to

the last three coordinates. Let C ⊂ X be a general line on X. Consider

C //

²²

X //

pr|X
²²

P

pr
ÄÄ

pr(C) // P2

(2.15)

This shows that the homomorphisms

H0(P,OP(n)) −→ H0(C,O(n))

is surjective for all n ≥ 0, if pr(C) is not a single point. But it is clear that pr(C) is not

a single point for general C. Otherwise, a general fiber of pr|X always contains a line and

hence reducible. But this is impossible by Bertini’s theorem. Now we take W = P and we

have NX/W
∼= OX(6) and Ω3

X
∼= OX(−2). Then the above surjection implies condition (1).

For condition (2), note that C is a line in the smooth locus of P and pr(C) 6= pt, we know

that NC/W is ample. Hence H1(C, NC/W ⊗ Ω3
X) = 0, which implies condition (2).

2.5.3 Proof of main theorem

Now we are ready to prove the main theorem of this article.

Theorem 2.5.10. Let X be a Fano threefold of Picard number 1. If X has an unbalanced

component M of very free rational curves, then X = P3 and M is the space of conics on X.

Proof. If M is of conic type, then by Corollary 2.3.17, we know that X is P3 and M is the

space of conics on X. If M is of fibration type, then by Theorem 2.3.15, a component S of

the space of rational curves with trivial normal bundle is rational. For index 3 and 4 cases,

there is no such rational curves on X. For index 1 and 2 cases, the non-triviality of the

associated Abel-Jacobi mapping implies that S is not rational unless X = X5 or X = X22.

When X = X5, let S be the space of lines on X. Then by [FN89], we know S = P2 with the

universal family being a projective bundle P(E ) over S and the (−1, 1)-curves corresponds

to a conic curve D ⊂ S. Consider the universal family

P(E )
f //

π

²²

X

S
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The morphism f ramifies along R = π−1(D). Let B = f(R). Now let [C] ∈ M be a general

point. Then by constructing the surface Σ associated to C, we get a family of lines Σ′ → P1

with a section σ. This gives a morphism ϕ : P1 → S which has a lift σ′ : P1 → P(E ).

Σ′ //

²²

P(E )
f //

π

²²

X

P1
ϕ //

σ′
==zzzzzzzz
S

Where f ◦ σ′ gives the curve C. Since σ′(P1) meets R, the curve C is always tangent to B.

This is impossible since C is a general point in a component of very free rational curves.

The case X = X22 can be ruled out similarly. In this case we also have S ∼= P2 and the

only difference is that f ramifies along R = π−1(D) where D is a degree 4 divisor on S. See

the appendix for details.
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Appendix A

Conics on the Fano Threefold X22

A.1.1. In this appendix, we work over the field C of complex numbers. Let E be a vec-

tor bundle on a variety Z, then we use G(k, E ) to denote the scheme that parameterizes

k dimensional fiberwise subspaces of E . Hence G(k, E ) is a Grassmannian bundle over

Z. When k=1, it can also be written as P(E ∗). We similarly define G(k1, k2, . . . , kr,E ),

0 < k1 < · · · < kr < rank(E ), to be the relative Flag variety over Z.

A.1.2. Let X = X22 ⊂ P13 to be a prime Fano threefold of genus 12. In particular,

this means that X is a smooth projective variety whose anti-canonical class −KX is very

ample and generates Pic(X) ∼= Z. The embedding X ⊂ P13 is given by the complete linear

system | − KX | and the intersection of two general hyperplane sections gives a canonical

curve of genus 12. To better understand the structure of X, we introduce several notations.

Let V be a vector space. A net of alternating forms on V is a surjective homomorphism

η : ∧2V → N with dimN = 3. We use G(k, V ; η) to denote
{
E ∈ G(k, V ) : η(∧2E) = 0

}
.

We have the following structure theorem.

Theorem A.1.3. (Mukai [Muk92]) Let X = X22 ⊂ P13 be a prime Fano threefold of

genus 12. Then there is a 7 dimensional vector space V and a net of alternating forms,

η : ∧2V → N , such that X = G(3, V ; η). Conversely, for a general such η, the variety

X = G(3, V ; η) is prime Fano threefold of genus 12.

A.1.4. From now on, we fix a 7 dimensional vector space V and a net of alternating forms
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η as above such that X = G(3, V ; η) is a Fano threefold of genus 12. We use E3 to denote

the canonical rank 3 subbundle of the trivial bundle V ⊗OX . Let C ∼= P1 ⊂ X be a conic

on X, then

E3|C ∼= O ⊕O(−1)⊕2, V/E3
∼= O⊕2 ⊕O(1)⊕2.

Associated to C, there are canonical subspaces V1 ⊂ V5 ⊂ V , such that V1 is the intersection

of E3(x) as x runs through all points on C and that V5 is generated by E3(x) as x runs through

all points on C. If we vary C ⊂ X, we get a line bundle E1 and a vector bundle E5 of rank

5 on S0, where S0 is space of smooth conics. Let

C 0
f0

//

π0

²²

X

S0

be the universal family. Then we have

(π0)∗E1 ⊂ (f0)∗E3 ⊂ (π0)∗E5 ⊂ V

By abuse of notation, we omit the “pull-back” and write

E1 ⊂ E3 ⊂ E5 ⊂ V

Hence we have a canonical morphism

ϕ0 : S0 → G(1, 5, V ),

where G(1, 5, V ) is the flag variety. We still use E1 ⊂ E5 ⊂ V to denote the canonical rank

1 and rank 5 subbundles of V on G(1, 5, V ). Note that η induces

η′ : E1 ⊗ (E5/E1) → N

Let S ⊂ G(1, 5, V ) be the closed subscheme defined by η′ = 0.

Lemma A.1.5. Notations and assumptions as above, the following are true:

(i) S ⊃ Im(ϕ0);

(ii) The morphism S0 → S induces inclusion S0(C) ⊂ S(C).
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Proof. Given a smooth conic C ⊂ X, one easily checks that V1⊗V5/V1 → N vanishes. This

proves (i). To prove (ii), let V1 ⊂ V5 ⊂ V be a pair with η(V1 ⊗ V5/V1) = 0.

{x ∈ X : V1 ⊂ E3(x) ⊂ V5} =
{
V3/V1 ∈ G(2, V5/V1) : ∧2(V3/V1) → N is 0

}

= G(2, V5/V1) ∩ P2 in P5

= conic on X

The last equality is because otherwise X contains a P2 which is impossible. Hence C is

uniquely determined by the pair V1 ⊂ V5.

Proposition A.1.6. The following are true.

(i) The scheme S has pure dimension 2. In particular, S is local complete intersection and

hence reduced.

(ii) S0 → S is open immersion and S0 ⊂ S is dense.

(iii) Over S there is a canonical family C of conics on X which is constructed in the fol-

lowing way:

X C //

π

²²

foo G(2,E5/E1)

²²

Plüker // P(∧2(E5/E1)∗)

S // G(1, 5, V )

where

C = G(2, (E5/E1)|S) ∩ {λ = 0} in P(∧2(E5/E1)∗|S)

with λ : Ltaut|S → ∧2(E5/E1)|S → N being the natural homomorphism. Furthermore, we

have C 0 = C |S0.

Proof. The construction in (iii) is just the proof of the second part of Lemma A.1.5 in a

family. The expected dimension of S is 2, hence dim S ≥ 2. If S is not of pure dimension

2, there would be a 3-dimensional family of broken conics on X which is impossible. Hence

we proved (i). The fact that the broken conics on X form a 1-dimensional family implies

that S0 → S is open and dense. This proves (ii).

A.1.7. Consider the natural morphism

φ : S ↪→ G(1, 5, V ) → G(1, V ) = P(V ∗) ∼= P6
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where the second morphism is the natural projection.

Proposition A.1.8. We have the following.

(i)The image of φ can be characterized in the following way

Im(φ) = {x ∈ P(V ∗) : rankx(E1 ⊗ V/E1 → N) ≤ 2}

= {x ∈ P(V ∗) : rankx(E1 ⊗ V/E1 → N) = 2}

(ii) φ is a closed immersion.

(iii) On S, we have

E1 ⊗ (V/E5) ∼= N2 ↪→ N

is a rank 2 subbundle of N . This gives

ρ : S → G(2, N) = P(N) ∼= P2.

Proof. If there is a 1-dimensional subspace V1 ⊂ V such that rank(V1 ⊗ V/V1 → N) = 1,

then there is a 6-dimensional subspace V6 ⊂ V such that

η(V1 ⊗ V6/V1) = 0

Then G(2, V6/V1; η) ⊂ X where

G(2, V6/V1; η) =
{
E/V1 ⊂ V6/V1 : η(∧2E) = 0 and dimE = 3

}

= G(2, 5) ∩H1 ∩H2 ∩H3

This implies that X = G(2, 5)∩H1∩H2∩H3 and hence X is a Fano threefold of index 2 and

degree 5. This is a contradiction. Now suppose we are given V1 ⊂ V with rank(V1⊗V/V1 →
N) = 2. Then there is a unique V5 ⊂ V such that η(V1 ⊗ V5/V1) = 0. This proves (i).

Let Z ⊂ P(V ∗) be the closed subscheme defined by the degeneration of the homomorphism

E1⊗V/E1 → N . The above argument also shows that S → Z is isomorphism hence we have

(ii). The rank condition in (i) implies that N2 = Im(E1⊗V/E1 → N) is a rank 2 subbundle

of N . Hence (iii) follows easily.

A.1.9. There is a natural linear map

Sym3(∧2V ∗) −→ ∧6V ∗ ∼= V
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This induces

V ∗ τ // Sym3(∧2V )
Sym3(η) // Sym3(N)

which induces

φ′ : P(N) ∼= P2 −→ P(V ∗) = G(1, V )

Eventually, we want to show that S
ρ // P(N)

φ′ // P(V ∗) is the same as φ.

A.1.10. Let α = (α1, α2, . . . , α2n) be an ordered set of distinct symbols. A set Λ =

{Λ1,Λ2, . . . ,Λn} is called a 2-partition of α and we write Λ ≺2 α, if Λi = (λi,1, λi,2) with

λi,1 < λi,2 and
⋃n

i=1 Λi = α as sets. Then we define the sign of Λ to be

sign(Λ) = signα(Λ) = sign


 α1 α2 α3 α4 · · · α2n

λ1,1 λ1,2 λ2,1 λ2,2 · · · λn,2




Then the natural linear map τ : V ∗ → Sym3(∧2V ) is given by

τ(e∗i ) = (−1)i−1
∑

Λ≺2(1,2,...,̂i,...,7)

sign(Λ)eΛ1eΛ2eΛ3

where {e1, . . . , e7} is a basis of V and {e∗1, . . . , e∗7} is the dual basis of V ∗; eΛi = eλi,1
∧ eλi,2

.

So the morphism φ′∗ : V ∗ → Sym3(N) is given by

e∗i 7→ (−1)i−1
∑

Λ≺2(1,2,...,̂i,...,7)

sign(Λ)η(eΛ1)η(eΛ2)η(eΛ3)

Lemma A.1.11. For any linear functional l : N → C, i.e. a point [l] ∈ P(N), let v ∈ V be

given by

v =
7∑

i=1

(−1)i−1ei

∑

Λ≺2(1,2,...,̂i,...,7)

sign(Λ)l ◦ η(eΛ1)l ◦ η(eΛ2)l ◦ η(eΛ3) (A.1)

Then φ′([l]) = [Cv] and l ◦ η(v′ ∧ v) = 0 for all v′ ∈ V .

Proof. The fact that φ′([l]) = [Cv] follows directly from the above explicit computations.

To prove the second equation, we only need to do so for v′ = ej . By symmetry, we only need

to do the case j = 1. To make the computation easier to understand, we use the symbol 1′
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to replace j = 1.

l ◦ η(e1 ∧ v) = l ◦ η(e1′ ∧ v)

=
7∑

i=1

(−1)i−1l ◦ η(e1′ ∧ ei)
∑

Λ≺2(1,2,...,̂i,...,7)

sign(Λ)l ◦ η(eΛ1)l ◦ η(eΛ2)l ◦ η(eΛ3)

=
7∑

i=1

∑

Λ≺2(1,2,...,̂i,...,7)

(−1)i−1 sign


1′ i 1 · · · î · · · 7

1′ i λ1,1 · · · · · · · λ3,2


 · l ◦ η(e1′ ∧ ei)

· l ◦ η(eΛ1) · l ◦ η(eΛ2) · l ◦ η(eΛ3)

=
7∑

i=1

∑

Λ≺2(1,2,...,̂i,...,7)

sign


1′ 1 2 · · · i · · · 7

1′ i λ1,1 · · · λ3,2


 l ◦ η(e1′ ∧ ei)

· l ◦ η(eΛ1) · l ◦ η(eΛ2) · l ◦ η(eΛ3)

=
∑

Λ′≺2(1′,1,...,7)

sign(Λ′)
4∏

i=1

l ◦ η(eΛ′i)

= −
∑

Λ′≺2(1,1′,...,7)

sign(Λ′)
4∏

i=1

l ◦ η(eΛ′i)

= −l ◦ η(e1 ∧ v)

This implies that l ◦ η(e1 ∧ v) = 0.

Proposition A.1.12. The following are true.

(i) The composition S
ρ // P(N)

φ′ // P(V ∗) is the same as φ : S → P(V ∗).

(ii) The morphism ρ : S → P(N) is isomorphism.

Proof. Let s = [V1 ⊂ V5] ∈ S be an arbitrary closed point, then we get N2 = η(V1 ⊗
V/V1) ⊂ N is a 2-dimensional subspace with N2

∼= V1 ⊗ V/V5. Then ρ(s) = [l] where

l : N → N/N2
∼= C. We choose a basis of V such that V1 = Ce1 and {e1, . . . , e5} form a

basis of V5. Then by (A.1), we get

v =
7∑

i=1

(−1)i−1ei

∑

Λ≺2(1,2,...,̂i,...,7)

sign(Λ)l ◦ η(eΛ1)l ◦ η(eΛ2)l ◦ η(eΛ3)

= e1

∑

Λ≺2(2,3,...,7)

sign(Λ)l ◦ η(eΛ1)l ◦ η(eΛ2)l ◦ η(eΛ3)
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the second equality holds since l◦η(e1∧w) = 0 for all w ∈ V . It follows that φ(s) = φ′◦ρ(s).

Since S is reduced, we get φ = φ′ ◦ ρ by Hilbert Nullstellensatz. This proves (i). Then

ρ : S → P(N) is bijective on points and has smooth image. Then ρ has to be an isomorphism

and hence (ii).

A.1.13. We have already constructed the canonical family C of conics on X over the base

scheme S. Now we want to study more details about the conic bundle C → S. On S, we

have an induced homomorphism ∧2(E5/E1) → N . Let F be its kernel which is a rank 3

vector bundle on S. Then we have the following short exact sequence,

0 // F // ∧2(E5/E1) // N // 0 (A.2)

By construction, C = G(2,E5/E1)∩G(1,F ) in P(∧2(E5/E1)∗) = G(1,∧2(E5/E1)). Then we

have the following commutative diagram

C

π

²²

Â Ä // P(F ∗)

||xx
xx

xx
xx

x

S

The divisor G(2,E5/E1) on G(1,∧2(E5/E1)) is given be vanishing of the section

σ : Sym2(L ) −→ Sym2(∧2(E5/E1)) −→ ∧4(E5/E1)

Here L → ∧2(E5/E1) is the tautological rank 1 subbundle on the scheme G(1,∧2(E5/E1)).

Then we have

σ|P(F∗) ∈ H0(P(F ∗),L −2 ⊗ ∧4(E5/E1))

= H0(S, π∗(L −2)⊗ ∧4(E5/E1))

= H0(S, Sym2(F ∗)⊗ ∧4(E5/E1))

⊂ Hom(F ,F ∗ ⊗ ∧4(E5/E1))

It is a basic fact, see [Sar82], that the degeneration divisor or discriminant ∆ ⊂ S is given

by the vanishing of

det(σ|P(F∗)) ∈ H0(S, det(F ∗)⊗2 ⊗ det(E5/E1)⊗3)
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Namely, ∆ = div(det(σ|P(F∗))). This implies that the divisor class of ∆ is −2c1(F ) +

3c1(E5/E1). By (A.2), we know that c1(F ) = c1(∧2(E5/E1)) = 3c1(E5/E1). Hence we

eventually have

∆ ∼ −3c1(E5/E1). (A.3)

Lemma A.1.14. On S ∼= P(N) ∼= P2 we have the following relations on divisor classes:

c1(E1) = −3h, c1(E5) = −5h

where h is the class of a line on P2.

Proof. Since E1
∼= φ∗OP(V ∗)(−1) ∼= OP2(−3), we get c1(E1) = −3h. We also have E1 ⊗

V/E5
∼= N2 ⊂ N , this implies that c1(E5) = −5h.

Proposition A.1.15. The degeneration divisor ∆ of the conic bundle π : C → S is equiv-

alent to 6 h, where h is the class of a line on S ∼= P2.

A.1.16. In this section, we would like to study the ramification of the natural map f :

C → X. To do this, we consider the following diagram.

C
j′′ //

iC
²²

Y
p′2 //

iY
²²

X

iX
²²

G(2,E5/E1)
j′ //

p′13
²²

G(1, 3, 5, V )
p2 //

p13

²²

G(3, V )

S
j // G(1, 5, V )

(A.4)

where all squares are fiber-product squares. The closed immersion iX gives the following

short exact sequence

0 // ∧2E3|X ⊗N∗ // Ω1
G(3,V )|X

i∗X // Ω1
X

// 0 (A.5)

The morphism p′2 realizes Y as a G(1, 3) × G(2, 4)-bundle over X and hence Y is smooth.

We have a similar sequence for iY .

0 // ∧2E3|Y ⊗N∗ // Ω1
G(1,3,5,V )

i∗Y // Ω1
Y

// 0 (A.6)

Note that j′′ : C → Y is given by the vanishing of E1 ⊗ (E5/E3) → N . This gives

0 // E1 ⊗ (E5/E3)|C ⊗N∗ // Ω1
Y |C

j′′∗ // Ω1
C

// 0 . (A.7)
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We put all the above sequences together and get the following commutative diagram.

0

²²

0

²²

0

²²
0 // ∧2E3|C ⊗N∗ //

²²

Ω1
G(3,V )|C

²²

// Ω1
X |C //

f∗

²²

0

0 // K //

²²

Ω1
G(1,3,5,V )|C //

²²

Ω1
C

//

²²

0

0 // E1 ⊗ (E5/E3)|C ⊗N∗ q //

²²

E1 ⊗ (E3/E1)∗ ⊕ (E5/E3)⊗ (V/E5)∗ //

²²

coker f∗

²²

// 0

0 0 0

It follows that the ramification divisor R of the morphism of f : C → X is given by

R = div(det(q)), where

det(q) ∈ H0 (C ,det((E1 ⊗ E5/E3)∗|C ⊗N)⊗ det(E1 ⊗ (E3/E1)∗ ⊕ (E5/E3)⊗ (V/E5)∗))

It follows easily that R ∼ π∗(−3c1(E1) + c1(E5)).

Proposition A.1.17. The ramification divisor R of the morphism f : C → X can be

written as R = π∗ div(s0) as divisors. Here we identify S with P2 and s0 ∈ H0(P2,OP2(4)).

A.1.18. After the author wrote up this appendix, Professor J. Kollár informed the author

that the construction of the space of conics can also be found in [KS04]. See also [Sch01].
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