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Abstract

Applications of Heegaard Floer Homology to Knot and Link

Concordance

Adam Simon Levine

We consider several applications of Heegaard Floer homology to the study of knot
and link concordance.

Using the techniques of bordered Heegaard Floer homology developed recently
by Lipshitz, Ozsvath, and Thurston, we compute the concordance invariant 7 for a
family of satellite knots that generalizes Whitehead doubles. We use this computation
to show that the all-positive Whitehead doubles of certain links obtained by iterated
Bing doubling are not smoothly slice.

We also present an algorithm for computing the knot Floer homology of the in-
verse image of a knot in its m-fold cyclic branched cover. Using this algorithm, as well
as earlier work of Ozsvath and Szabd on the Floer homology of double branched cov-
ers, we determine the smooth concordance orders of numerous knots through eleven

crossings.
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Chapter 1

Introduction

A knot in the 3-sphere is called topologically slice if it bounds a locally flatly embed-
ded disk in the 4-ball, and smoothly slice if the disk can be taken to be smoothly
embedded. Two knots are called (topologically or smoothly) concordant if they are
the ends of an embedded annulus in S® x I; thus, a knot is slice if and only if it is
concordant to the unknot. More generally, a link is (topologically or smoothly) slice
if it bounds a disjoint union of appropriately embedded disks. The study of con-
cordance — especially regarding the relationship between the notions of topological
and smooth sliceness — is one of the major areas of active research in knot theory,
and it is closely tied to the perplexing differences between topological and smooth
4-manifold theory.

The study of concordance began in the 1950s with the work of Fox and Milnor [0,
who showed that many classical knot invariants, such as the Alexander polynomial
and the signature, can be used to obstruct a knot from being slice. In the 1960s and
1970s, the work of Levine [33, B2, Casson—Gordon [], and many others revealed many
more sophisticated invariants that obstruct knots from being slice. These authors were
primarily interested in smooth concordance, since the only known constructions of
slice disks were smooth; nevertheless, their tools are essentially descriptions of the

algebraic topology of the knot complement, so they only obstruct a knot from being
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Why(K)

Figure 1: The positive and negative Whitehead doubles and the Bing double of the
figure-eight knot.

topologically slice.

Two major revolutions in four-dimensional topology in the 1980s began to illus-
trate the vast differences between topological and smooth concordance. As part of
his major work on topological 4-manifolds and surgery, Freedman [I1] showed that
any knot whose Alexander polynomial is 1 is topologically slice, even though it is
difficult to describe the slice disks explicitly. In particular, the untwisted, positive
and negative Whitehead doubles of any knot K, denoted Why (K) (Figure [), are
topologically slice. Moreover, some of the major outstanding conjectures regarding
topological 4-manifolds — notably, whether the surgery techniques Freedman used to
classify simply-connected 4-manifolds can be extended to 4-manifolds with arbitrary
fundamental group — are equivalent to conjectures about the sliceness of particular
families of links in S3.

Around the same time, the advent of Donaldson’s gauge theory made it possible to
show that some of Freedman’s examples of topologically slice knots are not smoothly
slice. Akbulut [unpublished] first proved in 1983 that the positive, untwisted White-
head double of the right-handed trefoil is not smoothly slice. Later, using results of
Kronheimer and Mrowka on Seiberg—Witten theory, Rudolph [60] showed that any
nontrivial knot that is strongly quasipositive cannot be smoothly slice. In partic-
ular, the positive, untwisted Whitehead double of a strongly quasipositive knot is

strongly quasipositive; thus, by induction, any iterated positive Whitehead double of
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a strongly quasipositive knot is topologically but not smoothly slice. Bizaca [2] used
this result to give explicit constructions of exotic smooth structures on R*.

In the 2000s, Ozsvath and Szabé B0, B3| introduced Heegaard Floer homology, a
package of invariants for 3- and 4-dimensional manifolds that are conjecturally equiv-
alent to earlier gauge-theoretic invariants but whose construction is much more topo-
logical in flavor. In its simplest form, given a Heegaard diagram H for a 3-manifold
Y (a certain combinatorial description of the manifold), the theory assigns a chain
complex CF (H) whose chain homotopy type is independent of the choice of diagram;
thus, the homology IfITT(Y) = H*(éf‘ (H)) is an invariant of the 3-manifold. A 4-
dimensional cobordism between two 3-manifolds induces a well-defined map between
their Heegaard Floer homology groups. Ozsvath and Szabdé 9] and Rasmussen [56]
also showed that a nulhomologous knot K C Y induces a filtration on the chain com-
plex of a suitably defined Heegaard diagram, yielding an knot invariant }TFT((Y, K)
that is the E' page of a spectral sequence converging to }/IF(Y) For knots in S, the
invariant ITFT{(S?’, K) categorifies the Alexander polynomial A, and it is powerful
enough to detect the unknot 8] and whether or not K is fibered [T2, E4].

Furthermore, the spectral sequence from }TFT((S 3 K) to }/IF(S?’) & 7 provides an
integer-valued concordance invariant 7(K’), which yields a lower bound on genus of
smooth surfaces in the four-ball bounded by K: |7(K)| < g4(K) [H6]. In particular,
any smoothly slice knot must have 7(K) = 0. The 7 invariant obstructs many topo-
logically slice knots from being smoothly slice. For example, Hedden [20] computed

the value of 7 for all twisted Whitehead doubles in terms of 7 of the original knot:

1 t<27(K)
T(Why(K,t)) = (1.1)

0 t>27(K).
(An analogous formula for negative Whitehead doubles follows from the fact that
7(K) = —7(K).) In particular, if 7(K) > 0, then 7(Wh(K,0)) = 1, so Wh(K,0)
(the untwisted Whitehead double of K') is not smoothly slice. Since the 7 invariant of

a strongly quasipositive knot is equal to its genus [36], Rudolph’s result follows from



CHAPTER 1. INTRODUCTION 4

(a) (b)
| J, s | Kt J, s \\

Figure 2: (a) The knot D (K, t). (b) A genus-1 Seifert surface for D; (K, 1).

Hedden’s.

We consider the following generalization of Whitehead doubling. For knots J, K
and integers s, ¢, let D (K, t) denote the knot shown in Figure P(a); the box marked
K.t (resp. J,s) indicates that the strands are tied along t-framed (resp. s-framed)
parallel copies of the tangle K ~ {pt} (resp. J ~ {pt}. (We give a more formal
definition in Chapter B1) If J is the unknot and s = =£1, then D, (K, t) is the
t-twisted F+ Whitehead double of K.

A genus-1 Seifert surface for D (K, t) is shown in Figure BI(b). From the Seifert

form of this surface, we can compute that the Alexander polynomial of D ¢( K1) is
Ap, (kp(T) = stT + (1 —2st) + stT 1.

In particular, this equals 1 whenever s = 0 or ¢t = 0. By Freedman’s theorem,
D, 4(K,0) is therefore topologically slice. Moreover, if K is smoothly slice, then
D;s(K,0) is smoothly slice for any (.J,s). To see this, perform a ribbon move to
eliminate the band that is tied into J; the resulting two-component link, consisting of
two parallel copies of K with linking number 0, is then the boundary of two parallel
copies of a slice disk for K. There is a famous conjecture (Problem 1.38 on Kirby’s
problem list [26]) that the untwisted Whitehead double of K is smoothly slice if and
only if K is smoothly slice; this conjecture has many potential generalizations in
terms of D 4(K,0) satellites.

As a partial result in this direction, we prove the following theorem:
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Theorem 1.1. Let J and K be knots, and let s,t € Z. Then

(

1 s<27(J) and t < 27(K)
T(Dys(K.t) =4 -1 s> 27(J) and t > 27(K)

0 otherwise.

(

In particular, if 7(K) > 0 and s < 27(J), or if 7(K) < 0 and s > 27(J), then
D, 4(K,0) is topologically but not smoothly slice.

Although the definition of the Heegaard Floer invariants is more topological than
that of the earlier gauge-theoretic invariants, it still depends on studying moduli
spaces of holomorphic curves, which is in general a difficult analytic problem. Many
recent advances [T, A2, 62 [T, B3] make it possible to compute any particular Heegaard
Floer invariant algorithmically, but they require large amounts of computing power
and generally cannot be used to prove statements about infinite families of manifolds
or knots, such as Theorem [[J1 The theory of bordered Heegaard Floer homology,
developed recently by Lipshitz, Ozsvath, and Thurston [0, B4], is well-suited to
this problem. Briefly, it associates to a 3-manifold with boundary a module over an
algebra associated to the boundary, so that if Y = ¥; U Y5, the chain complex CF (Y)
may be computed as the derived tensor product of the invariants associated to Y; and
Y5. If a knot K is contained in, say, Y7, then we may obtain the filtration on CF (Y)
corresponding to K via a filtration on the algebraic invariant of Y;. (We give a longer
description of this theory in Section BIl) Satellite knots such as D (K, t) are easily
described in terms of such gluings, so the bordered package is useful for computing
the Heegaard Floer invariants of such knots.

Theorem [Tl has a useful application to the study of Whitehead doubles of links
(which was the author’s original motivation for considering it). Specifically, we con-
sider the Whitehead doubles of links obtained by iterated Bing doubling. Given a
knot K, the (untwisted) Bing double of K is the two-component link BD(K') shown

in Figure [l More generally, given a link L, we may replace a component by its
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Bing double (contained in a tubular neighborhood of that component), and iterate
this procedure. Bing doubling one component of the Hopf link yields the Borromean
rings; accordingly, we define the family of generalized Borromean links as the set of

all links obtained as iterated Bing doubles of the Hopf link. We prove:
Theorem 1.2. Let L be any link obtained by iterated Bing doubling from either:
1. Any knot K with 7(K) > 0, or
2. The Hopf link.
Then the all-positive Whitehead double of L, Wh. (L), is not smoothly slice.

The links considered in Theorem play an important role in the work of Freed-
man on topological 4-manifolds. First, notice that any iterated Bing double of a knot
is a boundary link, i.e., its components bound disjoint Seifert surfaces. (See, e.g.,
[8] for a proof.) Freedman proved that the Whitehead doubles (with any choice of
signs of the clasps) of any boundary link are topologically slice. Theorem thus
provides a large family of links that are topologically but not smoothly slice. On the
other hand, the generalized Borromean links are not boundary links, and whether
or not their Whitehead doubles (again, with any signs) are topologically slice is a
major open question in 4-manifold theory, equivalent to the surgery conjecture for
4-manifolds with arbitrary fundamental group. Most experts nowadays conjecture
that Whitehead doubles of generalized Borromean links are not topologically slice,
but the problem remains unsolved after nearly twenty-five years.

The requirement that we consider all-positive Whitehead doubles is necessary for
our proof of Theorem By taking mirrors, we also see that the all-negative White-
head doubles of iterated Bing doubles of knots with 7(K’) < 0 or of generalized Bor-
romean links are not smoothly slice, but our method always fails when both positive
and negative Whitehead doubling are used. Indeed, all of the gauge-theoretic invari-

ants known to date suffer from the same asymmetry; it is still not known whether,



CHAPTER 1. INTRODUCTION 7

for instance, the positive untwisted Whitehead double of the left-handed trefoil is
smoothly slice.

Because the proof of Theorem [[T] is quite technical, we begin by proving its
corollary, Theorem [[Z in Chapter B (That proof first appeared in [B0].) We then
provide an introduction to bordered Heegaard Floer homology and prove Theorem
[CT in Chapter Bl

In another direction, the Heegaard Floer homology of branched covers of knots
can be used to study the smooth knot concordance group. Because the connect sum of
a knot and its reversed-orientation mirror is always smoothly slice, the set of smooth
concordance classes of oriented knots forms an abelian group C; under the connect
sum operation. The smooth concordance order of a knot is the order of K in C;. The
structure of the torsion in C; is of considerable interest, especially by comparison to
the higher-dimensional concordance groups C, (consisting of concordance classes of
knotted n-dimensional spheres in S™*2 for n odd). J. Levine [33, B2] showed in the
1960s that for n > 1, certain algebraic invariants coming from Seifert forms completely
determine the concordance class of an n-knot. Specifically, his invariants determine
a map

S, :C, =L DLY BLY,

which is an isomorphism for n > 1. In contrast, for n = 1, this classification theorem
fails. While @, is surjective, Casson and Gordon [] found knots that are algebraically
slice but not smoothly (or even topologically) slice and hence represent nontrivial
elements of ker ;. Moreover, the only known torsion in C; is 2-torsion coming from
amphichiral knots; no knots of finite concordance order greater than 2 are known. At
the same time, obstructing knots from representing torsion elements of C; is difficult.
In particular, integer-valued concordance invariants that are additive under connected
sum — such as the classical signature, 7, the Manolescu—Owens § invariant [40], and
Rasmussen’s s invariant coming from Khovanov homology [b5] — necessarily vanish

for any knot that is torsion.
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Around 2000, Livingston and Naik [87, B8] used Casson—-Gordon invariants to find
the first known examples of knots that have algebraic concordance order 4 but infinite
smooth concordance order. Shortly thereafter, Jabuka and Naik [24] and Grigsby,
Ruberman, and Strle [I6] used the correction terms coming from Heegaard Floer
homology to find other such examples. Both of these arguments rely on obstructing
the intersection forms of 4-manifolds that are bounded by cyclic branched covers of
a knot K; thus, computing the Heegaard Floer homology of these covers acquires
great importance. Grigsby, Ruberman, and Strle also found invariants coming from
the knot Floer homology of the preimage of a knot in its cyclic branched covers,
providing further obstructions to finite concordance order.

Using techniques of Ozsvath and Szabd for computing correction terms, we show
that many of the knots through eleven crossings whose smooth concordance orders
were previously unknown have infinite order [29]. Additionally, we describe an algo-
rithm for computing the knot Floer homology of the preimage of a knot in any cyclic
branched cover [31] and use it to compute the Grigsby—Ruberman—Strle invariants of

some of the remaining knots on the list. This work is presented in Chapter H.
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Chapter 2

Whitehead doubles of iterated
Bing doubles

In this chapter, we prove Theorem [L2, making use of Theorem [Tl An earlier version

of this work appeared in [30].

2.1 Infection and doubling operators

We begin by giving more precise definitions of some of the terms used in the Intro-
duction.

We always work with oriented knots and links. For any knot K C S3, let K"
denote K with reversed orientation, let K denote the mirror of K (the image of K
under a reflection of S%), and let —K = K". As K#—K is always smoothly slice, the
concordance classes of K and —K are inverses in C;, which justifies this choice of no-
tation. Note that the invariants coming from Heegaard Floer homology (@(S 3 K),
T(K), etc.) are sensitive to mirroring but not to reversing the orientation of a knot.

Suppose L is a link in S3, and « is an oriented curve in S® \. L that is unknotted in
S3. For any knot K C S% and t € Z, we may form a new link I, x,(L), the t-twisted

infection of L by K along 7y, by deleting a neighborhood of v and gluing in a copy of
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the exterior of K by a map that takes a Seifert-framed longitude of K to a meridian
of v and a meridian of K to a t-framed longitude of v. Since S\ v = S* x D?, the
resulting 3-manifold is simply co surgery on K, i.e. S%; the new link I, j+(L) is defined
as the image of L. Alternately, let K C D?x I be the (1, 1)-tangle obtained by cutting
K at a point, oriented from K ND?x {0} to K ND?x {1}. If D is an oriented disk in
S? with boundary v, meeting L transversely in n points, we may obtain I, x,(L) by
cutting open L along D and inserting the tangle consisting of n parallel copies of K,
following the ¢ framing. In a link diagram, a box labeled K.t in a group of parallel
strands indicates t-twisted infection by K along the boundary of a disk perpendicular
to those strands. To be precise, we adopt the following orientation convention: If the
label Kt is written horizontally and right-side-up, then K is oriented either from
bottom to top or from left to right, depending on whether the strands meeting the
box are positioned vertically or horizontallyﬂ Using this convention, we may easily
verify that the two oriented knots in Figure @ are isotopic.

Given unlinked infection curves 71,72, the image of v2 in I, , +, (L U"2) is again
an unknot, so we may then infect by another pair Ks,t,. We obtain the same result
if we infect along 7, first and then ~;. In general, given an unlink v4,...,7,, we may
infect simultaneously along all the 7;; the result may be denoted I, r, t: ;7. Kt (L),
and the order of the tuples (v;, K;,t;) does not matter.

If P is a knot (or link) in the standardly embedded solid torus in S* and K is
any knot, the t-twisted satellite of K with pattern P, P(K,t), is defined as I, i +(P),
where ~ is the core of the complementary solid torus. The knot K is called the
companion. More generally, if we have a link L, we may replace a component of L
by its satellite with pattern P, working in a tubular neighborhood disjoint from the
other components.

Let B = B, U By U By denote the Borromean rings in S®, oriented as shown

in Figure Bl Then D, (K, t) is the knot obtained from Bj by performing s-twisted

"'We allow both types of notation to avoid writing labels vertically.
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Figure 3: The Borromean rings.

infection by J along B; and t-twisted infection by K along Bs:

D, (K, t) = Ip, s Byxt(Bs).

In particular, Do 11 (K, t) = Ip, 0.41.8,.k.(Bs) is the t-twisted F Whitehead double of
K (where O denotes the unknot). Under our orientation conventions, this definition
agrees with the definition of D (K, t) given in the Introduction. The symmetries of

the Borromean rings imply:

DJ,S(Kv t)r = DJ’",S(Ku t) = DJ,s(Krat> = DK,t(J7 S)

DJ78(Ka t) - Dj,—s(K> _t)

We also introduce the convention that when the ¢ argument is omitted, it is taken to
be zero: D (K) = Dy (K,0).

The Bing double of K may be defined as BD(K') = I, k0(B2 U Bs); we may also
see this as a satellite operation where the pattern is a two-component link. We may
consider iterated Bing doubles of any link: at each stage in the iteration, we replace
some component by its Bing double. Specifically, given a knot K, a binary tree T
specifies such a link Br(K), as illustrated in Figure I, with one component for each
leaf of T'. For a link L = K; U---U K,, and binary trees 71, ..., T},, we may similarly

obtain a link By, 1, (L) = Bp, (K1) U---U Bp, (K,,). As stated in the Introduction,

the generalized Borromean links are those obtained as By, 7, (H ), where H is the Hopf
link.
The all-positive Whitehead double of a link L, Wh, (L), is obtained by replacing

every component of L by its untwisted, positive Whitehead double.
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ﬁ

s

)

Figure 4: A binary tree T and the corresponding iterated Bing double By (K).

Using this terminology, a more precise statement of Theorem is as follows:
Theorem 2.1.

1. Let K be a knot with 7(K) > 0, and let T be any binary tree. Then the all-
positive Whitehead double of Br(K), Wh(Br(K)), is not smoothly slice.

2. Let H = Ky U Ky denote the Hopf link, and let Ty, Ty be binary trees. Then
Why(Br, 1,(H)) is not smoothly slice.

The basic strategy in the proof of the first part of Theorem EZTlis to use the covering
link calculus developed by Cha and Kim [5] to obtain from Wh.(Br(K)) a new knot
K', such that if Wh, (Br(K)) is smoothly slice, then K’ is rationally smoothly slice
— i.e., it bounds a smoothly embedded disk in a smooth rational homology 4-ball
with boundary S®. The knot K’ is a satellite of the form Dy, 4, 0---0 D, o (K),
where s; < 27(J;) for each i. If 7(K) > 0, induction using Theorem [Tl (which we
prove in Chapter Bl) shows that 7(K’) = 1, so K’ cannot be rationally smoothly slice,
so Wh(Dr(K)) cannot be smoothly sliceH A similar argument works for the second

part of the theorem. These proofs are found in the next section.

2Cha and Kim used this technique to study when iterated Bing doubles of a knot are slice, which
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2.2 Covering link calculus

Let R denote any of the rings Z, Q, or Z,) (for p prime). A link L in an R-homology
3-sphere Y is called topologically (resp. smoothly) R-slice if there exists a topological
(resp. smooth) 4-manifold X such that 0X =Y, H.(X;R) = H.(B* R), and L
bounds a locally flat (resp. smoothly embedded), disjoint union of disks in X. A link
that is Z-slice (in either category) is Z,)-slice for all p, and a link that is Z,)-slice for
some p is Q-slice. Also, a link in S? that is slice (in B*) is clearly Z-slice. The key
result of Ozsvath and Szabé 6] is that the 7 invariant of any knot that is smoothly
Q-slice is 0.

Cha and Kim [5] define two moves on links in Z,)-homology spheres, called cov-

ering Moves:
1. Given a link L C Y, consider a sublink L' C L.

2. Given a link L C Y, choose a component K with trivial self-linking. For any
a € N, the p®-fold cyclic branched cover of Y branched over K, denoted Y, is a

Zpy-homology sphere, and we consider the preimage L' of L in Y.

We say that L' C Y’ is a p-covering link of L C Y if L' can be obtained from Y’
using these moves. If L is Z,)-slice, then any p-covering link of L is also Z) slice (in
either category). For the second move, the p®-fold cyclic branched cover of X over
a slice disk for K becomes the new 4-manifold bounded by Y it is a Zpy-homology
sphere by a well-known argument [25], page 346]. Henceforth, we restrict to the case
where p = 2 and omit further reference to p.

Note that if L is a link in S® whose components are unknotted, then the branched
cover branched over one component is again S*. The putative 4-manifold containing

a slice disk, however, may change.

is challenging since the classical sliceness obstructions all vanish [8 []. They showed that if any
iterated Bing double of K is topologically slice, then K is algebraically slice; if it is smoothly slice,
then 7(K) = 0. Our techniques are based on their work and a reformulation by Van Cott [G3].
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To prove Theorem BTl we need the following lemmas:

Lemma 2.2. Let L be a link in S®, and suppose there is an unknotted solid torus
U c S% such that L N U consists of two components K,, Ky embedded as follows:
if Ay, Ay are the components of the untwisted Bing double of the core C' of U, then
Ky = Dp, s, 0---0Dp (A1) and Ky = Dg,4, 0 -+ 0 Dg, 1, (As), for some knots
Py,..., P, Q1,...,Q; and integers sy,..., Sk, t1,...,t;. Let L' be the link obtained

from L by replacing K; and Ky by the satellite knot
C/:DPk,sk O"'Ol)pl’s1 ODRM(C) (21)
of C', where

ro2t =1
(R,u) = (@i, 20) (2.2)
(DQl,tl ©---0 DQ172¢172 (DQFMZA(QI#Q% 2tl)>v O) [>1.

Then L' is a covering link of L.

Proof. Let T = 5%\ U; then L \ (K; U Kj) is contained in T. Note that K; and
K, are each unknotted, since D;4(0,0) = O for any J,s. We may untangle K, as in
Figures BHAl Specifically, L is shown in Figures B(a) and (b). To obtain Figure El(c),
we pull the two strands of the companion curve for K; through the infection region
marked Q)1,%;, and then untangle the companion curve for K5. We then repeat this
procedure to obtain Figure Bl(d), and [ — 2 more times to obtain Figure B

The branched double cover of S?® branched along K, is again S?%; consider the
preimage of Ky U (L NT), shown in Figure[@d (The knot orientation conventions for
infections are important here, since the knots ); need not be reversible.) Since T is
contained in a ball disjoint from K7, the sublink L N7 lifts to two identical copies,
each contained in a solid torus. The preimage of K5 also consists of two components,
and each is the Dp, ;, o---0Dp, 4 satellite of the companion curve shown. A sublink

consisting of one lift of each component (either the blue or the black part of Figure
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[DkaSk o Dpy s, ]

[DPksSk "'DP1VS1]

Figure 5: The link described in Lemma All but the two components shown
are contained in the interior of the solid torus 7. We denote a satellite knot by
writing the pattern in brackets near the companion curve; thus, for instance, K; =

Dp, s, 0+ 0Dp, (A1), where A; is the curve shown.
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Q2,t2

[DPk,Sk”'DPhSl] K3

Figure 6: The link described in Lemma 2] after isotopies. A shaded region with a

number represents that many parallel strands.
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[DPkaSk ~Dpys]

&ed

[DPA-»SA-, - Dpy s ]

Figure 7: The preimage of the link in Figure B in the double-branched cover of S3

over Ky (shown without the upstairs branch set).
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(b) [DkaSk "'DPLSJ

\@7

oI

St

ti—1 =T
g e
—/
o1 |

Figure 8: The sublink shown in blue in Figure [ is the Dp, 5, o --- 0 Dp, ,, satellite

of: (a) when [ = 1, Dg,4qr2:,(C); (b) when [ > 1, Dgo(C), where R is the knot in
Figure @

______

Q2,12

[
AN

@ ...... /21_2_ o %

-1 =2
C_/_ Qi#Q7, 24
2l—2

Figure 9: The knot R in the proof of Lemma P22
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[0) is redrawn in Figure B(a) in the case where [ = 1 and in Figure B(b) in the case
where [ > 1. In the former case, the companion curve shown is Dg,4qr 21, (C), where
C'is the core circle of the complement of 7. In the latter case, it is Dgo(C), where we
obtain R by connecting the ends of one of the two parallel strands that pass through
the red box in Figure B(b). (A local computation shows that the linking number of
these two strands is zero, so Dgy is the correct operator.) The knot R, shown in

Figure @, is then identified as

DQ17t1 ©---0 DQL—thl—Q (DQzﬂ,tzq (Ql#Q% 2tl))' O

Lemma 2.3. Let C' be a knot, let U be a reqular neighborhood of C', and let Ay, Ay C U
be the components of BD(C'). Let K1 = Dp, 5, ©---0 Dp, 5, (A1) and Ky = Dg,, ©
---0Dg, 1, (Aa), for some knots Py, ..., Py, Q1,...,Q; and integers sy, ..., Sk, t1, ... 1.
Let C' be the knot defined by ) and [ZZ). Then C is a covering link of Ky U K.

Proof. The proof is almost identical to that of Lemma EZ2. The only difference is
that S® \ U is now a knot complement rather than a solid torus containing some
additional link components. The double branched cover over K, contains consists of
the complement of the two solid tori shown in Figure [ glued to two copies of S\ U,
gluing Seifert-framed longitude to meridian and vice versa. The resulting manifold
is again S3, however. The rest of the proof proceeds mutatis mutandis. (Alternately,
we may simply replace each of the solid tori in Figures BHA by a box marked C', 0, and

proceed as before.) O

A labeled binary tree is a binary tree with each leaf labeled with a satellite op-
eration. Given a knot K and binary tree 7 with underlying tree T', let S7(K) be
the link obtained from By (K') by replacing each component with the satellite spec-
ified by the label of the corresponding leaf. If 7 has two adjacent leaves labeled
Dp, s, 0---0Dp s and Dg, 4 0---0 Dg, 4, form a new labeled tree 7' by deleting
these two leaves and labeling the new leaf either Dp, ,, o0 Dp, 5 © Dg,4qr 21, (C)

or Dp, s 0---0Dp, 5, 0Dpgy, according to whether [ = 1 or [ > 1, respectively, where,
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R =Dg, 4, 0-0Dg, ot (Do, (QiFQ],2t1)) in the latter case. We call this
move a collapse. Lemmas and then say that Sz/(K) is a covering link of
St(K).

Theorem [[J] and equations (Z1]) and (Z32), along with the additivity of 7 under

connect sum, imply:

Proposition 2.4. Suppose T' is obtained from T by collapsing leaves labeled Dp, 4, o

-0 Dp, s, and Dg,4, 0 -0 Dg, 4, where s; < 27(P;) and t; < 27(Q;) for all i.
Then the label of the new leaf of T' has the form Dg, ., © -+ © Dg,u,, where
u; < 27(Ry). O

Proof of Theorem [Zl. For the first part of the theorem, note that in the new notation,
Why(Br(K)) = S7(K), where every leaf of 7 is labeled Dy ;. Every label in T
satisfies the hypotheses of Proposition 241 Using this proposition, we inductively
collapse every pair of leaves of 7 until we have a single vertex labeled Dp, 5, 0 --- 0
Dp, s, for knots Py, ..., P, and integers s1,...,s; with s; < 27(F;). Thus, the knot
Dp, s, 0---0Dp, 5 (K) is a covering link of Wh.(Br(K)). By Theorem [Tl 7(Dp, s, ©
-0 Dp, (K)) = 1. Thus, Dp, 5, 00 Dp 5 (K) cannot be smoothly slice in a
rational homology 4-ball, so Wh(Br(K)) cannot be smoothly slice.
For the second part, the same argument as above shows that by using covering
moves, we may replace Why (B, (K1) U By, (K3)) with a two-component link of the
form

DPImSk ©---0 DP1,s1(K1) U DQz,tz ©--+0 DQo7to(K2)>

shown in Figure [(a), where s; < 27(F;) and t; < 27(Q;) for all i. (We start with
Qo and t, for notational reasons.) After the isotopies in Figure [(a—c), note the
similarity to Figure . We may thus proceed just as in the proof of Lemma B2 with
suitable modifications to Figures BHR to obtain the knot shown in Figure [[(d) as a
covering link of Wh (Br, (K1) U Br,(K3)). This knot is

DPImSk ©:---0 DP1781 (DR,H(Q()v tO))7
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(a) (b) (c)

[DPk Sk DP1 Ql] [DPk EF DP1 sl] [DPk,sk te Dpl,sl]

Qo, to
DQI t1 Do, to] Ko
[DQI ty " ‘Dq, 1] Q

[Dletl o 'DQl«,h]

(d) [DPk-,Sk'”DPLSl]
Lﬁ
Qo,to
Q1,1
L f_‘ ......
Q2,t2 f

N

ti—1 =T
@“; e
—/
2l—1 e —

Figure 10: The proof of the second part of Theorem 1

21
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where (R, u) is as in (22). This knot has 7 = 1 by Theorem [ completing the
proof. O

2.3 Strongly quasipositive knots and sliceness

We conclude this section with a brief discussion of strongly quasipositive knots, which
played a role in an earlier version of Theorem 11

A knot or link L is called quasipositive if it is the closure of a braid that is the
product of conjugates of the standard positive braid generators o; (but not their
inverses). It is called strongly quasipositive if it is the closure of a braid that is
the product of words of the form o;.. .aj_lajaj__ll ..ot for i < j. A strongly
quasipositive link naturally admits a particular type of Seifert surface determined by
this braid form, and an embedded surface in S® is called quasipositive if it is isotopic
to such a surface. In other words, a link is strongly quasipositive if and only if it
bounds a quasipositive Seifert surface.

A link L is quasipositive if and only if it is a transverse C-link: the transverse
intersection of S3 C C? with a complex curve V. If L is strongly quasipositive, then
the Seifert surface determined by the braid form is isotopic to V N B,

For a knot K and t € Z, let A(K,t) be an annulus in S® whose core circle is K
and whose two boundary components are t-framed longitudes of the core. Given two
unlinked annuli A and A’, let A x A" denote the surface obtained by plumbing A and
A" together. (To be precise, we must orient the core circles of A and A’ and specify
the sign of their intersection in A x A’.)

The following is a summary of some of Rudolph’s results [59, 60 1] on strongly

quasipositive knots:
Theorem 2.5.

1. If K is a strongly quasipositive knot other than the unknot, then K is not

smoothly slice.
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2. A knot K is strongly quasipositive if and only if A(K,0) is a quasipositive sur-

face.
3. If K and K' are strongly quasipositive, then K#K' is strongly quasipositive.

4. The annulus A(K,t) is quasipositive if and only if t < TB(K), where T B(K)

denotes the maximal Thurston—Bennequin number of K.

5. If A and A" are annuli, then the surface Ax A’ is quasipositive if and only if A

and A" are both quasipositive.

Rudolph’s original proof of (1) relies on the fact that complex curves are genus-
minimizing, a major theorem proven by Kronheimer and Mrowka [27] using gauge
theory. Since a strongly quasipositive knot K has a Seifert surface that is isomorphic
to a complex curve, we thus see that g4(K) = g(K); in particular, if K is nontrivial,
then g4(K) > 0. Subsequently, Livingston [36] proved that both of these genera
are equal to 7(K) when K is strongly quasipositive. (For more on the relationship
between 7 and quasipositivity, see Hedden [19].)

The untwisted & Whitehead double of K, Why (K), is the boundary of A(K,0)
A(O,F1), where O denotes the unknot. Thus, Theorem implies that if K is
strongly quasipositive and nontrivial, then Wh, (K) is strongly quasipositive and
nontrivial, hence not smoothly slice. More generally, the Seifert surface for D (K, t)
shown in Figure B(b) is A(J,s) * A(K,t), so if J and K are strongly quasipositive
and s,t < 0, then D, (K,t) is strongly quasipositive. Moreover, if neither of the
pairs (J,s) and (K, t) equals (O,0), then D, 4(K,t) is nontrivial, hence not smoothly
slice. Furthermore, in this case 7(D (K, t)) = 1 since the 7 invariant of a strongly
quasipositive knot is equal to its genus by a result of Livingston [36]. Using this
observation, we may prove a weakened version of Theorem BTl in which the knot K is
assumed to be strongly quasipositive without ever making reference to Theorem [Tl

(See [30] for this argument.)
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Chapter 3

Bordered Heegaard Floer
homology and knot doubling

operators

In this chapter, we shall prove Theorem [l which we restate here:

Theorem 3.1. Let J and K be knots, and let s,t € Z. Then

(

1 s<27(J) and t < 27(K)
T(Dys(K 1) =4 =1 s> 2r(J) and t > 27(K)

0 otherwise.

Notice that it suffices to consider only the cases where s < 27(J), since if s >
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27(.J), the behavior of 7 under mirroring implies:

(DK 1) = =7 (D2 (K1)

= _T(Dj,—s(Kv _t))

4

-1 —t<27(K)

0 —t>27(K)

We shall introduce the assumption that s < 27(J) at an appropriate point in the
discussion that follows.

Recall the construction of D (/K t) given in the previous chapter as the knot ob-
tained from one component of the Borromean rings (B = By U By U Bs) after twisted
infection on the other two components. Specifically, let X ; and X denote the exteri-
ors of J and K, respectively, and let Y denote the exterior of B; U By, with boundary
components denoted 0,Y and 0rY. Then Bjs is a nulhomologous knot in Y with a
genus-1 Seifert surface. There is an identification of S® with (Y Us, y X 7)Us,y Xk, with
suitable gluing maps, taking Bs C Y to D 4(K,t). We shall define bordered structures
Y, X3, and Xk on Y, X, and Xk, respectively, so as to induce the correct gluing
maps on the boundaries. The theory of bordered Heegaard Floer homology [B5, B4] as-
sociates an algebraic object to each of these bordered structures, denoted C/PT)(X ),
(ﬁ?TD(X}{), and C/FA\A()},Bg,O). By the gluing theorem of Lipshitz, Ozsvath, and
Thurston, we may compute the filtered chain complex C/FT((S?’, D;s(K,t)) as a de-

rived tensor product of these objects:
CFK(S3, D,,(K, 1)) = (CFAA(Y, B;,0) ® CFD(X3)) K CFD(XL). (3.1)

The invariant 7(D (K, t)) may then be extracted from this filtered chain complex.
In Section BTl we recall some of the terminology and background for bordered Hee-

gaard Floer homology, including the complete description of C/PT)(X %) and (Tﬁ)()( .
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Next, in Section B2l we compute C/FA\A(J) , B3, 0) using an explicit count of holomor-
phic disks in a bordered Heegaard diagram. In Section B3, we then evaluate the two
tensor products in (BI) to obtain the filtered chain complex ﬁ(S?’, D, (K,t)). By
taking the homology of this complex while keeping track of the filtration, we compute
the value of 7(D;4(K,t)). While the proof is fairly technical, it illustrates the power
of the new bordered techniques: using a single computation involving holomorphic
disks (which can in principle be performed entirely combinatorially) and some lengthy
but straightforward algebra, we are able to obtain a statement about the Floer ho-
mology an infinite family of knots. With only slightly more bookkeeping, we could
also write down a formula for the knot Floer homology groups }TFT((D 7s(K, 1)), but
since we are primarily interested in the value of 7 and its applications to knot and
link concordance, we do not bother to do that here

Finally, in Section B4l we present a few other results regarding knots of the form
D, (K, t). Specifically, we prove a partial version of Theorem [l that holds for any
invariant v that shares some of the formal properties of 7, and we exhibit instances

where D (K, t) is actually smoothly slice.

3.1 Background on bordered Heegaard Floer ho-
mology

In this section, we give a brief description of the bordered Heegaard Floer invariants,
with the aim of defining the terms used later in the paper and illustrating the proce-
dures for computation. We discuss only bordered manifolds with toroidal boundary
components, which has the advantage of greatly simplifying some of the definitions.

All of this material can be found in the two magna opera of Lipshitz, Ozsvath, and

Thurston [35], B34].

!The reader is also advised to consult the author’s paper [30), Section 4], which presents a simpler

version of the argument in which the knot J is assumed to be the unknot.
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3.1.1 Algebraic objects

We recall the main algebraic constructions used in [35 B4], with the aim of describing
how to work with them computationally. Let (A, d) be a unital differential algebra
over F = Fy. (All of the definitions that follow can be stated in terms of differential
graded algebras, but we suppress all grading information for brevity.) Let Z C A
denote the subring of idempotents in A, and assume that {;} is an orthogonal basis

for Z over F with the property that ). ¢; = 1, the identity element of A.

e A (right) Ay algebra or type A structure over A is an F-vector space M,
equipped with a right action of 7 such that M = @, M; as a vector space, and

multiplication maps

Met1: M7 ARz @12 A— M
—_——

k times

satisfying the A, relations: for any x € M and aq,...,a, € A,

n

0= Zmn_i+1(mi+1($, ai, ..., ai), (07 N an)

=0
n

+ Z mn+1($, A1y .vey Ajoq, d(ai>7 Qjt1y.0 0y an) (32)
=1
n—1

+ Zmn(fv,al, ey i1, QO 1, G, - - ().
=1

We also require that my(x,1) = = and mg(z,...,1,...) =0 for k > 2.

The module M is called bounded if m; = 0 for all k sufficiently large. If M
is a bounded type A structure with basis {xi,...,x,}, we encode the multi-
plications using a matrix whose entries are formal sums of finite sequences of
elements of A, where having an (ay, ..., a;) term in the i, j** entry means that
the coefficient of x; in my1(x;, aq, ..., a;) is nonzero. We write 1 rather than
an empty sequence to signify the m; multiplication. For brevity, we frequently
write aq---ag rather than (aq,...,ax); in this context, concatenation is not

interpreted as multiplication in the algebra A.
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o A (left) type D structure over A is an F-vector space N, equipped with a left
action of 7 such that N = €D, 1; N, and a map

01: N— A®r N
satisfying the relation
(L ®idy) o (idg ®d71) 0 61 + (d ®idy) 0 67 = 0, (3.3)

where 1: A® A — A denotes the multiplication on A.

If N is a type D structure, the tensor product A ®z N is naturally a left
differential module over A, with module structure given by a- (b® ) = ab® =,
and differential d(a ® z) = a - 6;(z) + d(a) ® x. Condition ([B3) translates to
9*=0.

Given a type-D module N, define maps

0p: N = A®7- - @7 AN
—_——

k times
by o = idy and 6 = (idger—1 ®0d1) 0 ;1. We say N is bounded if §; = 0 for
all k sufficiently large.

Given a basis {y1,...,y,} for N, we may encode 0; as an n x n matrix (b;;)
with entries in A, such that d,2; = Z?:l b;j ® z;. To encode J;, in matrix form,
we take the k™" power of the matrix for §;, except that instead of evaluating

multiplication in A, we simply concatenate tensor products of elements.

If d =0, B3) is equivalent to the statement that the square of the matrix for

91 (where now we do evaluate multiplication in A) is zero.

o If M is a right type A structure, N is a left type D structure, and at least one
of them is bounded, we may form the box tensor product M X N. As a vector

space, this is M ®7 N, with differential

o0

Moy = Z(mk+1 ® idn)(z @ 0k (y))-

k=0
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Given matrix representations of the multiplications on M and the J;, maps on

N, it is easy to write down the differential on M X N in terms of the basis
{z:i ®y;}.
e Now let (A,dy) and (B,dg) be differential algebras. Lipshitz, Ozsvath, and

Thurston [34] define various types of (\A, B)-bimodules. We do not define these

in full detail, but we mention some of the basic notions.

A type DD structure is simply a type D structure over the ring A ®p B. That

is, the map d; outputs terms of the form a ® b ® x, where a € A and b € B.

A type AA structure consists of a vector space M with multiplications
my; ;. M ® A®i ® B% — M,

satisfying a version of the A, relation [B2). As above, all tensor products are
taken over the rings of idempotents, Z, C A and Z, C B. Our notation differs
a bit from that of [34] in that we think of both algebras as acting on the right.

A type DA structure is a vector space N with maps
O NeBY - A® N

satisfying an appropriate relation that combines [B2) and B3). A type AD

structure is defined similarly, except that the roles of A and B are interchanged.

The box tensor product of two bimodules, or of a module and a bimodule, can
be defined assuming at least one of the factors is bounded (in an appropriate

sense). See [34] Subsection 2.3.2] for details.

o A filtration on a type A structure M is a filtration --- C F, C F,4q C ...
of M as a vector space, such that my.(F, ® A®¥) C F, for any ai,...,a.
Similarly, a filtration on a type D structure N is a filtration of N such that
01(F,) € A® F,. It is easy to extend these definitions to the various types of
bimodules. A filtration on M or N naturally induces a filtration on M X N.
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3.1.2 The torus algebra

The pointed matched circle for the torus, Z, consists of an oriented circle Z, equipped
with a basepoint z € Z, a tuple a = (ay, as, as,ay) of points in Z ~ {z} (ordered
according to the orientation on Z~{z}), and the equivalence relation a; ~ as, as ~ ay.
The genus-1, one-boundary-component surface F'°(Z) is obtained by identifying Z
with the boundary of a disk D and attaching 1-handles h; and hs that connect a;
to ag and as to a4, respectively. By attaching a 2-handle along 0F°(Z), we obtain
the closed surface F'(Z). There is an orientation-reversing involution r: 7 — Z
that fixes z, interchanges a; and ay4, and interchanges as and az, which extends to a
diffeomorphism r: F(Z) — —F(Z) that interchanges h; and hs.

The algebra A = A(Z,0) is generated as a vector space over F by two idempotents
Lo, 11 and six Reeb elements p1, pa, p3, P12, P23, P123- For each sequence of consecutive
integers I = (iy,...,%) C {1,2,3}, we have v, _11p; = priji,) = pr, where [j] denotes
the residue of j modulo 2. The nonzero multiplications among the Reeb elements
are: pips = P12, P2P3 = P23, P1P23 = P12p3 = p123- All other products are zero. Let 7
denote the subring of idempotents of A; it is generated as a vector space by g and
t1. The identity element is 1 = 1o + ¢1.

By abuse of notation, we identify p; with the oriented arc of Z from a; to as, po
with the arc from as to as, p3 with the arc from ag to a4, and p19, pos, and pio3 with

the appropriate concatenations.

3.1.3 Bordered 3-manifolds and their invariants

A bordered 3-manifold with boundary F(Z) consists of the data Y = (Y, A, 2/, ¢),
where Y is an oriented 3-manifold with a single boundary component, A is a disk in
Y, 2 € 0A, and ¢ : F(Z) — I0(Y) is a diffeomorphism taking D to A and z to
Z'. The map ¢ is specified (up to isotopy fixing A pointwise) by the images of the

core arcs of the two one-handles in F°(Z). We may analogously define a bordered

3-manifold with boundary —F(Z). The diffeomorphism r: F(Z) — —F(Z) provides
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a one-to-one correspondence between these two types of bordered manifolds.

A bordered 3-manifold Y may be presented by a bordered Heegaard diagram

H=(3{af,...,ap y,af, a5}, {01, .., B}, 2),

where X is a surface of genus g with one boundary components, {af,...,ag ;} and
{01,...,B,} are tuples of homologically linearly independent, disjoint circles in X,
and af and af are properly embedded arcs that are disjoint from the « circles and
linearly independent from them in H,(X,0%). If we identify (0%, z, 0¥ N (af U a3))
with Z — where 0% is given the boundary orientation — we obtain a bordered 3-
manifold with boundary parametrized by F'(Z) by attaching handles along the o and
[ circles. If instead we identify 0% with —Z, we obtain a bordered 3-manifold with
boundary parametrized by —F(Z).

Let G(H) denote the set of unordered g-tuples of points x = {xy,...,z,} such
that each « circle and each  circle contains exactly one point of x and each « arc
contains at most one point of x. Let X (H) denote the Fy-vector space spanned by
S(H).

For generators x,y € G(H), let m(x,y) denote the set of homology classes of
maps u: S — X x [0, 1] x [-2,2], where S is a surface with boundary, taking 05 to

(ax {1} U B x{2} U (0¥~ 2)x[0,1]) x [-2,2]) U
(x> [0, 1] x {=2}) U (y x [0,1] x {2})
and mapping to the relative fundamental homology class of (x x [0,1] x {—2}) U
(y x [0,1] x {2}). Each element B € my(x,y) is determined by its domain, the pro-
jection of B to Ho(X, U B U IX;Z). The group Ho(X, e U B U IX;Z) is freely
generated by the closures of the components of ¥ \ (a U 3), which we call regions.

The domain of any B € my(x,y) satisfies the following conditions:

e The multiplicity of the region containing the basepoint z is OH

2In classical Heegaard Floer homology, the definition of 72 (x, y) does not include this requirement.
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e For each point p € N B, if we identify an oriented neighborhood of p with R2,
taking p to the origin and the o and (§ segments containing p to the x- and y-
axes, respectively, and let ny(p), na(p), n3(p), and ny(p) denote the multiplicities

in D of the regions in the four quadrants, then

;

1 pEXNY

ni(p) —n2(p) +n3(p) —na(p) =9 -1 pey~x (3.4)

0 otherwise.
\

Thus, finding the elements of my(x, y) is a simple matter of linear algebra. A homology
class B € my(x,y) is called positive if the regions in its domain all have non-negative
multiplicity; only positive classes can support holomorphic representatives.

We shall describe only the invariant CFD here, since we do not compute CFA
explicitly from a Heegaard diagram in this thesis.

We identify the boundary of 3 with —Z. Assume that the « arcs are labeled so
that of N 0X = {a1, a3} and o N OX = {ag, a4}.

Define a function Ip: S(H) — {wp, 1} by

I(x) — i xNay#o (3.5)

1 xNaf #a.
Define a left action of Z on X (H) by ¢; - x = §(1, Ip(x))x, where § is the Kronecker
delta.

For each of the oriented arcs p; C Z, let —p; denote p; with its opposite ori-
entation. (That is, —p; goes from asy to ag, etc.) Given x € G(H) and a sequence
p=(—pn,--.,—pr,), the pair (x, p) is called strongly boundary monotonic if the ini-
tial point of —py, is on the same « circle as x, and for each ¢ > 1, the initial point of
—pr, and the final point of —p;, | are paired in Z.

If B € my(x,y) is a positive class, then 9°B (the intersection of the domain of

B with the boundary of ¥) may be expressed (non-uniquely) as a sum of arcs —py,.
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Specifically, we say that the pair (B, p) is compatible if (x,p) is strongly boundary
monotonic and 8B = S2F (—p;). If (B,7) is compatible, the index of (B,7) is
defined in [B5, Definition 5.46] as

ind(B, p) = e(B) + ng(B) + ny(B) + |p] + ¢(p), (3.6)

where e(B) is the Euler measure of B; ny(B) (resp. ny(B)) is the sum over points
x; € x (resp. y; € y) of the average of the multiplicities of the regions incident to
x; (resp. v;), |p] is the number of entries in p, and ¢(p) is a combinatorially defined
quantity [35, Equation 5.44] that measures the overlapping of the arcs p;,. The
index ind (B, p) is equal to one plus the expected dimension of a certain moduli space
MB(x,y, p) of J-holomorphic curves in ¥ x [0, 1] x R in the homology class B whose
asymptotics near 0% x [0, 1] xR are specified by p. In particular, if ind(B, p) = 1, then
this moduli space contains finitely many points. We do not give the full definition
here; see [35), Section 5] for the details.
For each x,y € &(x) and B € my(x,y), define
afzy = Z H(MB(x,y,0) pr, - - .pr, € A,

{ﬁ:(_pfl 7777 —Plk) |
(B,p) compatible,
ind(B,p)=1}

where the count of points in MZ(x,y, p) is taken modulo 2. We define 6,: X (H) —
A®7 X(H) by

= > > a (3.7)

YEG(H) Bema(x,y)
This defines a type D structure, which we denote CFD(H). The verification of ([B3)

is a version of the standard 9? = 0 argument in Floer theory.
Proposition 3.2.

1. The only sequences of chords that can contribute nonzero terms to 61 are the
emply sequence, (_pl)’ (—02); (—03), (_p17_p2); (_02,—03); (_0123)’ and
(—p1, —p2, —p3). Therefore, only classes whose multiplicities in the boundary

regions of ¥ are 0 or 1 can count for d;.
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2. If B € my(x,y) is a positive class whose domain has multiplicity 1 in the regions
abutting p1 and ps (resp. pa and p3) and 0 in the region abutting ps (resp. p1),
then B may count for the differential only if x and y contain points of af
(resp. o).

Proof. For the first statement, the only other sequences of chords for which the
product of algebra elements in the definition of ay, is nonzero are (—pi2), (—pa2s3),
(—p1, —po3), and (—p12, —p3). The two latter sequences are not strongly boundary
monotonic. If B € my(x,y) is a positive class compatible with (—p;5), then x and
y both contain points on «f, since otherwise B would have a boundary component
without a [ segment. Therefore, Ip(y) = ¢1. Since the tensor product is taken over

the ring of idempotents,

P2y = pr2a @ uy = pat1 Yy =0,

so the contribution of B to d;(x) is zero. A similar argument applies for the sequence

(—p23). The second statement follows immediately from the same argument. O

The invariant CFA is a type A structure associated to a bordered Heegaard dia-
gram whose boundary is identified with Z. We do not give all the details here. The
analogue of Proposition does not hold for GF\A; one must consider domains with
arbitrary multiplicities on the boundary and a much larger family of sequences of

chords. Therefore, it is generally easier to compute CFD.

We conclude this section with the gluing theorem:

Theorem 3.3 (Lipshitz-Ozsvath-Thurston [BB]). Suppose Yy and Yy are bordered 3-
manifolds, and 'Y =Y U, Yy is the manifold obtained by gluing them together along
their boundaries, where ¢: —JY; — 0Y5 is the map induced by the bordered structures.
Then

CF(Y) =~ CFA(Y)) K CFD(J),
provided that at least one of the modules is bounded (so that the box tensor product is

defined).
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3.1.4 Bimodules

In [34], Lipshitz, Ozsvath, and Thurston also define invariants for a bordered manifold
with two boundary components. Essentially, this consists of a manifold Y with two
torus boundary components 0. Y and drY’, with parametrizations of the two bound-
ary components just like in the single-component case, and a framed arc connecting
the two boundary components. (See [B4, Chapter 5] for the full definition.)

If both boundary components are parametrized by —F(Z), the associated invari-
ant is a type DD structure over two copies of A, denoted @(y); if both are
parametrized by F'(Z), the invariant is a type AA structure, denoted C/FA\A()/); and
similarly there are invariants C/FA\D()/) and C/FD\A(y) We denote the two copies of
A by A, and A,; in the latter, the Reeb elements are written oy, o, etc.

In fact, we shall consider only a direct summand of each bimodule, denoted
C/F]j)(y, 0), (m(y, 0), etc., which is all that is necessary to compute the Floer
complex of a manifold obtained by gluing two separate one-boundary-component
manifolds to the two boundary components of Y. The other summands are only
necessary if one wishes to glue together the two boundary components of Y.

As in the previous discussion, we describe only the construction of CFDD. A
bordered manifold with two toroidal boundary components may be presented by an

arced bordered Heegaard diagram

H=(X{af,... ,a;_z,af,aé,af,af}, {B1,...,B4},2),

where now 0% has two components 9.3 and 9z, on which the arcs oF and ol have
their respective boundaries, and z is an arc in the complement of all the a and /3
circles and « arcs connecting the two boundary components.

We define &(H) and X(H) just in the single-boundary-component case. Let
S(H, 0) be the subset of G(H) consisting of g-tuples x containing one point in afUaZ
and one point in affUak, and let X (H, 0) be the F-vector space generated by &(H, 0).
This is the underlying vector space for the invariants @(H, 0), C/FA\A(H, 0), etc.
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To define @(H, 0), identify both boundary components of ¥ with —Z. Each
generator of C/FﬁD(H, 0) has associated idempotents in A, and A,, as in ([B3). The
differential

0 X(H,0) = (A, ® A,) ®7,07, X(H,0)

is then defined essentially the same way as with CFD of a single-boundary-component
diagram. Specifically, for a homology class B € my(x,y) and sequences of chords
p=(=pn,...,—pr,) and @ = (—0oy,,...,—0y) on the two boundary components,
the definitions of compatibility and of the index ind(B, p, &) are as above. Define

af’y: Z #ME(x,y,0,8) pr, ... p1, @y, ... 05 €A, @ A,

(P,5) |
(B,p,0) compatible,
nd(B,7,3)=1)

The map d; is then given by ([B) just as above. An analogue of Proposition also
holds in this setting. For further details, see |34, Section 6].

The gluing theorem generalizes naturally to bimodules. For instance, if Y; has
a single boundary component parametrized by F'(Z), Y, has two boundary compo-
nents parametrized by —F(Z), and ¢: — JY; — 9.Y; is the map induced by the

parametrizations, then
CFD(YV) Uy V) ~ CFA()y) K4, CEDD(V,,0).

The remaining generalizations are found in [34, Theorems 11, 12].

Finally, we mention the identity AA bimodule [34, Subsection 10.1]. Consider
the manifold I = F(Z) x I. Parametrize 0rY = F(Z) x {1} by inclusion and
0Y = F(Z) x {0} (whose boundary-induced orientation is opposite to the standard
orientation of F(Z)) by the composition F(Z) & —F(Z) — F(Z) x {0}; thus,
both boundary components are parametrized by F(Z) as opposed to —F(Z). The
bijection between bordered manifolds with boundary —F'(Z) and bordered manifolds
with boundary F'(Z) may be given by Y — Y UZ. Thus, if H is any bordered
Heegaard diagram with one boundary component, then the type A module @(H)
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Figure 11: The identity AA bimodule, CFAA(Z,0).
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(where we identify 0% with Z) is chain homotopy equivalent to C/FEA(H, 0) @(TF\D(H)
(where, in the second factor, we identify 0% with —Z). As mentioned above, it is
easier to compute CFD explicitly from a Heegaard diagram than C/FX; by taking a
tensor product with C/FA\A(]I, 0), we can always avoid the latter.

Theorem 3.4 (Lipshitz-Ozsvath-Thurston). The type AA module C/FA\A(]I, 0) has

generators wy, we, T, Y, 21, z2, with Ay multiplications as illustrated in Figure [Tl

3.1.5 Knots in bordered manifolds

A doubly-pointed bordered Heegaard diagram consists of a bordered Heegaard diagram
H = (¥, a, B, z) along with an additional basepoint w € ¥\ (aU). As explained in
[35, Section 10.4], a doubly-pointed diagram determines a knot K C Y with a single
point of K meeting the basepoint on dY’, invariant up to isotopy fixing this point
under Heegaard moves missing w. Lipshitz, Ozsvath, and Thurston define invariants
CEFD™ (Y, K) and CFA™ (Y, K) by working over the algebra A ® F[U], where the U

powers record the multiplicity of w in each domain that counts for the differential or
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multiplications.

If the knot K is nulhomologous in Y, we prefer the following alternate perspective.
Let F' be a Seifert surface for K. Just as in ordinary knot Floer homology 9, b6, each
generator x € G(H) has an associated relative spin® structure s, ,,(x) € Spin®(Y, K),

and we may define an Alexander grading on &(H) by

1

Al@) = 5 {alsw(x), [F]), (3.8)

where ¢;(s,.,(x)) € H*(Y,K) and [F] € Hy(Y, K). The grading difference between
two generators is given by

A() = Aly) = nu(B) (3.9)

where B € my(x,y) is any domain from x to y. To verify that the right-hand side
of B3) is well-defined, note that for any periodic class P € my(x,x), n,(P) equals
the intersection number of K with the homology class in Hy(Y,0Y) corresponding
to P, which must be zero since K is nulhomologous. Further details are completely
analogous to [49, 6]

The Alexander grading on X (H) determines a filtration on @(H) or (TFT)(H),
since any domain that counts for the differential or A, multiplications has non-
negative multiplicity at w. We denote the filtered chain homotopy type by GF\A(JJ , K)
or (TFT)()/ K.

When we evaluate a tensor product C/FK(JA) &@()}2), a filtration on one factor
extends naturally to a filtration on the whole complex, and the induced filtration
agrees with the one that the knot induces on CF (Y1 UY3).

A nulhomologous knot in a bordered manifold with two boundary components
may be handled similarly. For invariance, one point of the knot must be constrained
to lie on the arc connecting the two boundary components, and isotopies must be

fixed in a neighborhood of that point.
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3.1.6 The edge reduction algorithm

We now describe the well-known “edge reduction” procedure for chain complexes and
its extension to A., modules.

Suppose (C,0) is a free chain complex with basis {x1,...,x,} over a ring R. For
each i, 7, let a;; be the coefficient of z; in dx; with respect to this basis. If some a;;
is invertible in R, define a new basis {yi,...,y,} by setting v; = z;, y; = Jz;, and
for each k # 4,7, yp = xp — akjai_jlati, where ay; is the coefficient of x; in dxj,. With
respect to the new basis, the coefficient of y; in dyy, is zero, so the subspace spanned
by y; and y; is a direct summand subcomplex with trivial homology. Thus, C'is chain
homotopy equivalent to the subcomplex C” spanned by {yx | & # 4,7}, in which the
coefficient of y; in Oy is ay — akjai_jlail.

When R = 5, a convenient way to represent a chain complex (C,d) with basis
{x;} is a directed graph I'c s r,,) With vertices corresponding to basis elements and
an edge from x; to x; whenever a;; = 1. To obtain I'cv g g,y from I'c 5 (.} as above,
we delete the vertices z; and x; and any edges going into or out of them. For each
k and [ with edges x;, — x; and z; — z;, we either add an edge from x; to z; (if
there was not one previously) or eliminate the edge from x; to x; (if there was one).
We call this procedure canceling the edge from x; to x;. The vertices of the resulting
graph should be labeled with {y, | k # 4, j}, but by abuse of notation we frequently
continue to refer to them with {xy | k # i, j} instead.

By iterating this procedure until no more edges remain, we compute the homology
of C. If the matrix (a;;) is sparse, this tends to be a very efficient algorithm for
computing homology. If C'is a graded complex and the basis {1, ..., z,} consists of
homogeneous elements, then v is clearly homogeneous with the same grading as xy,
so we can compute the homology as a graded group.

If C has afiltration - - - C F}, C Fj, 11 C - - -, the filtration level of an element of C'is
the unique p for which that element is in £}, \ F,,_;. To compute the spectral sequence

associated to the filtration, we cancel edges in increasing order of the amount by
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which they decrease filtration level. At each stage, this guarantees that the filtration
level of y, equals that of z;. The complex that remains after we delete all edges
that decrease filtration level by k is the E**' page in the spectral sequence, and
the vertices that remain after all edges are deleted is the E* page. In particular,
when C' = (/]F(S?’, K), the filtered complex associated to a knot K C S3, the total
homology of C' is }/IF(S?’; F) 2 F, so a unique vertex survives after all cancellations
are complete. The filtration level of this vertex is, by definition, the invariant 7(K).

More generally, over an arbitrary ring R, we may represent (C,d) by a labeled,
directed graph, where now we label an edge from z; to x; by a;;, often omitting the
label when a;; = 1. When we cancel an unlabeled edge from z; to z;, we replace a
zigzag

akj a;
Tp — Tj — T; — 2y

with an edge

—QaR1aq]
T —— X

if no such edge existed previously, and either relabel or delete such an edge if it did
exist. Of course, when R is not a field, this procedure is not guaranteed to eliminate
all edges or to yield a result that is independent of the choice of the order in which
the edges are deleted, but it is still often a useful way to simplify a chain complex.

The same procedure works for type D structures over the torus algebra A, as can
be seen by looking at the ordinary differential module obtained by taking the tensor
product with A as above.

Edge cancellation for type A structures is slightly more complicated. We work
only with bounded modules for simplicity. Suppose M is a bounded type A structure
over A with a basis {z1,...,z,}. Asabove, we may describe the multiplications using
a matrix of formal sums of finite sequences of elements of A, and we may represent
the nonzero entries using a labeled graph. If there is an unmarked edge from z; to z;
(and no other edge), then we may cancel z; and z;, replacing a zigzag

(alv"'val)) (blv---vbQ)
T ——— .:Cj S Xy —— Xy
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by an edge

(al ----- apybl ----- bq)
Ty ——————— ]

(or eliminating such an edge if one already exists). The A, module M’ described by
the resulting graph is then A, chain homotopic to M. If M is a filtered A,.-module
and the edge being canceled is filtration-preserving (i.e., ; and z; have the same
filtration level), then M’ is filtered A,, chain homotopic to M. Similar techniques
may also be used for bimodules.

The author has written a Mathematica package that implements these procedures
for modules over the torus algebra, as well as the box tensor product. This package

is available online at http://www.math.columbia.edu/~topology/programs.html.

3.1.7 CFD of knot complements

For any knot K, let Xy denote the exterior of K. For t € Z, let X}, denote the
bordered structure on Xy determined by a map ¢ : —F(Z) — 0Xk sending h; to
a t-framed longitude (relative to the Seifert framing) and hs to a meridian of K.
Lipshitz, Ozsvath, and Thurston [35] give a complete computation of C/PT)(X 1) in
terms of the knot Floer complex of K, which we now describe.

In the computation that follows, we will need to work with two different framed
knot complements, X5 and Xf. We first state the results for @(X %) and then
indicate how to modify the notation for (TF\D(X};) Define r = |27(J) — s/, and say
that dim AFK(S?, J) = 2n + 1.

We may find two distinguished bases for CFK™ (53, J): a “vertically reduced” basis
{&, ... En}, with “vertical arrows” éj_l — éj of length k; € N, and a “horizontally
reduced” basis {7, ..., Mon}, with “horizontal arrows” 52]-_1 — 52]- of length I, € N.
(See [38, Chapter 10] for the definitions.) Denote the change-of-basis matrices by
(xp4) and (y,,), so that

2n 2n
& = Z Tpqllg and 7, = Zypng- (3.10)
q=0

q=0


http://www.math.columbia.edu/~topology/programs.html
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In all known instances, the two bases may be taken to be equal as sets (up to a
permutation), but it has not been proven that this holds in general.

According to [35), Theorems 10.17, 11.7], the structure of (ﬁ(é\fj) is as follows.
The part in idempotent ¢q (i.e., Lo@(?( %)) has dimension 2n + 1, with designated
bases {&o, ..., &n} and {no, ..., 12, } related by (BI0) without the tildes. The part in
idempotent ¢; (i.e., Ll(TFT)(Xj)) has dimension 7 + 37, (k; + 1;), with basis

{n oyl YU U N Y
j=1 j=1

For j = 1,...,n, corresponding to the vertical arrow 7jy;_1 — 17);, there are
differentials
p123_  j P23 p23_ §  p1

(In other words, &,(&y;) has a pias @ &) term, and so on.) We refer to the subspace
of C/PT)(X %) spanned by the generators in (BI]) as a vertical stable chain. Similarly,
corresponding to the horizontal arrow 79;_; — 1)2; of length [;, there are differentials

and the generators here span a horizontal stable chain. Finally, the generators

€0,7M0s V15 - - -, Yr Span the unstable chain, with differentials depending on s and 7(J):

p

R e 0

Eo 5 1o s = 2r(J) (3.13)
fo 5 2 By By s> 21()).

\

In some instances, as with the unknot and the figure-eight knot, we may have &, = 7.

For @(X 1), we modify the preceding two paragraphs by replacing all lower-
case letters with capital letters. Specifically, LO@(X;{) has bases {Z,...,Zan}
and {Ho, ..., Hon} related by change-of-basis matrices (Xpg) and (Yp ) as in BI0);
LlC/PT)(X}}) has basis

N N
{Flw"arR}LJLJ{ij'“aI<éJ}LJLJ{A{a“'aAiJh

J=1 J=1
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and the differentials are just as in (BI1l), (B12), and BIJ), suitably modiﬁedH In
the discussion below, we shall treat @(X 1) as a type D structure over a copy of
A, in which the elements are referred to as oy, 09, etc., to facilitate taking the double
tensor product.

In Section B3, we shall frequently use the following proposition to simplify com-

putations:

Proposition 3.5. In the matrixz entries for the higher maps oy for @(Xj), there

are no sequences of elements containing p1 @ pa, p1 @ pa3, P2 X p3, or p12 X Ps3.

Proof. The only instances of p; in (TFT{(X 2) are £ L H?Qj in the vertical chains
and & 2 4, in the unstable chain when s < 27(.J), and 51(%]_) = 01(7y-) = 0. Thus,
p1®py and p; ® peg may not occur in ;. Similarly, the only instances of py and py, are
)xf] 22, 1y, in the horizontal chains, 7, 2% 7y in the unstable chain when s > 27(.J),
and & 2% ny when s = 27(J), and the only instances of py are 75, 1 2% X in the
horizontal chains and 79 2 4, in the unstable chain when s < 27(.J). Thus, no

element that is at the head of a py or p15 arrow is also at the tail of a p3 arrow. [

3.2 Direct computation of CF/A\A(Y, Bs)

As above, let B = B; U By U By C S? denote the Borromean rings. Let Y denote the
complement of a neighborhood of By U By; then Bj is a nulhomologous knot in Y.
Let 01Y and OrY be the boundary components coming from B; and Bs, respectively.
We define a strongly bordered structure ) on Y (in the sense of [34), Definition 5.1])
so that the map ¢ : F(Z) — 9.Y (resp. ¢r : FI(Z) — 0rY') takes h; to a meridian
of By (resp. By) and hy to a Seifert-framed longitude of By (resp. Bs). It follows
that the glued manifold (Y Up,y X§) Ua,y X}, is S3, and the image of Bs is the knot

3The reader should take care to distinguish capital eta (H) and kappa (K) from the Roman letters
H and K. We find that the mnemonic advantage of using parallel notation for the generators of

@TD(X ) and @TD(X t) outweighs any confusion that may arise.
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D, (K, t)H Thus, we must compute the filtered type AA bimodule C/FA\A(JJ, Bs,0).
We do this explicitly using a Heegaard diagram.

Proposition 3.6. The arced Heegaard diagram H (with extra basepoint w) shown in

Figure[IQ determines the pair (), Bs).

Proof. As in B4, Construction 5.4], by cutting along the arc z, we obtain a bordered
Heegaard diagram with a single boundary component, Hy,., which we view as rectangle
with two tunnels attached. After attaching 2-handles to Hg, x [0, 1] along 3 x {1} and
attaching a single 3-handle, we may view the resulting manifold Y (Hg.) as [—1,1] x
R x [0,00) C R?, minus two tunnels in the upper half-plane, plus the point at infinity
(Figure [3)). The boundary of Y (Hg,) is the union of two embedded copies of F°(Z)
that are determined by the a arcs on each side; they intersect along a circle A. The
extra basepoint w determines a knot C'in Y (Hg,) with a single point on the boundary:
the union of an arc connecting w to z in the complement of the o arcs and an arc
connecting z to w in the complement of the [ circles, pushed into the interior of
Y (Har) except at z. The curves A and C' are both shown in Figure [3

We obtain Figure [[4l from Figure [ by an isotopy that slides the tunnel on the
right underneath the tunnel on the left. The circle A can then be identified with
the y-axis plus the point at infinity. To obtain Y (H), we attach a three-dimensional
two-handle along A, which can be seen as [—¢,¢] x R x (—o0,0] plus the point at
infinity. Then Y (H) is the complement of a two-component unlink (B; U By) in S
and the knot C' inside Y (H) is Bs. When we identify each component of 0% with Z,
we see that the a arc connecting the points a; and ag is a meridian, and the « arc

connecting as and a4 is a O-framed longitude, as in the definition of ). O

If we try to compute C/FA\A(H, 0) directly, we run into difficulties counting the

holomorphic curves, largely because there is a 14-sided region that runs over both

4Because we are gluing the two boundary components of ) to separate single-boundary-
component bordered manifolds, the choice of framed arc connecting dpY and 0rY does not affect

the final computation of the tensor product, so we suppress all reference to it.
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Figure 12: The arced Heegaard diagram H.
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Figure 13: The manifold Y (Hg,.). The « arcs from H (the thin red and green curves)
and the circle A (purple) sit in the xy-plane, while the knot C' (turquoise) sits in the
interior of Y (Hg,) except at the point z.
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47

Figure 14: The result of isotoping Figure [[3l Each boundary component is identified

with Z.
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handles and shares edges with itself. Instead, it is easier to perform a sequence of
isotopies on the « arcs to obtain the diagram H’ shown in Figure [ While H’ is not
a nice diagram in the sense of Sarkar and Wang [62], the analysis needed to count
the relevant holomorphic curves is vastly simpler. Of course, the drawback is that
the number of generators is much larger.

By Theorem Bl it suffices to compute C/F]E(H’ ,0), as described previously.
Thus, we identify each component of 9% with —Z. We now describe this computation.

In ‘H’, we label the intersection points of the o and 3 curves x1, ..., x5, as indi-
cated by the colored numbers in Figure These points are distributed among the

various « and 3 circles as follows:

B Bo
L
%) L2, T4, X6, 10, L11, L15, L22, T29 T37, X415 L42, T46
L
Qs X3, Ts5 T36
R

Q" | X8, L13, T17, L20, L24, L27,T31, L34 | T39, Ta4, T48, T51

r| %17, %9, T12, T14; T165 L18, 19 XT38, X405 L43, L45

Ta1, T25, L26, L28, L32, L33, T35 La7, X49, T50, 52

The underlying vector space for C/Fﬁ)(H’ ,0) is generated by the set S(H’,0), con-
sisting pairs of intersection points with one point on each [ circle, one point on either
ok or o and one point on either aff or aff. A simple count shows that there are 245
generators.

The bimodule @(H’, 0) is a type DD structure over two copies of the torus
algebra A. We denote these copies by A, and A,, corresponding to the left and right
boundary components of H'. In A,, the Reeb elements are denoted oy, o9, etc. The
idempotents in A, are denoted ¢f and ¢/, and those in A, are denoted ¢J and . The
idempotent maps I, : S(H',0) — {uf, ¢/} and 17 : S(H',0) — {7,:]} are defined
just as in (B3).

®While many authors use different letters to distinguish between intersection points on different

« or 3 curves, we use a single indexing set here in order to facilitate computer calculations.
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1 of
35 4 01
34 35 op)
33 34 03
32 1
31 33
30 32
29 31
28 30
27 29
26 28
25 27
2 26
23 25
22 7
21 8
20 24
19 23
18 22
17 21
16 20
15 19
14 18
3 17
12 16
1 15
0w 14
9 13
8 12
7 11
6 10
5 9
P3 4 8
P2 36 3 7
P1 2 2 6
ak L i
(o
1
1 3
2
7

Figure 15: The Heegaard diagram H’, with the boundary labeled consistent with the

conventions for type D structures.
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Denote the regions of ¥’ ~\ (e U 3) by Ry,..., Rs2, as indicated by the black
numbers in Figure [H

For generators x and y, we may find all the domains in 7 (x,y) by solving the
system of linear equations (B4]). The multiplicity of each of the boundary regions
(Ry, Ry, Ry, Rss, Rss, and Rs;) must be 0 or 1; each of the 2° possible choices
for these multiplicities gives a further set of constraints that guarantees a unique
solution. We may then list only those solutions which represent positive classes and
which have index 1 for some compatible p; subject to the restrictions of Proposition
B2 Using Mathematica to perform these linear algebra computations, we find some
1,051 domains meeting these requirements.

It would not be feasible to list every single domain and whether or not it supports
holomorphic representatives, but we shall describe a number of typical examples, and

leave further details to the highly motivated reader.

Bigons and quadrilaterals. In the context of closed Heegaard diagrams, Sarkar
and Wang [62] showed that in a Heegaard diagram in which every non-basepointed
region is either a bigon or a quadrilateral, the domains with Maslov index 1 are pre-
cisely the embedded bigons and quadrilaterals that are embedded in the Heegaard
diagram, and these all support support a unique holomorphic representatives. Lip-
shitz, Ozsvéth, and Thurston proved an analogous result for bordered diagrams [35,
Proposition 8.4], where now we extend the definition of “quadrilateral” to include a
region with boundary consisting of one segment of a 3 circle, two segments of « arcs,
and one segment of 9. The only non-basepointed regions in H’ that are not bigons
or quadrilaterals are Ry, Ry, R7, and Rg, which are hexagons. Therefore, any index-1
domain on our list that does not use one of these four regions automatically supports

a unique holomorphic representative.
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T15

alL P3 P2 B

RO

T23

L45

Figure 16: The domains D; (a), Do (b), and Dj (c).
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Domains contributing p.3. Consider the domains

D3:D2+R4+R5+R10+R11+R17+R18+R24+R25+R29+R30+R32

+ Rsg + Rag + Ra7 + Ry + Rsp,

which respectively represent index-1 classes in mo (2152, To2Z; ), To(TooTys5, To3Tys), and
7o (23546, ToZug), Where x; € By N (el Uadl) and i < 47. (If i € {47,...,52}, the
index of Dj is too high.) To obtain a representative of each domain compatible with
the sequence (—py, —p3), as required by Proposition B2, we cut along af all the way
to the boundary, as shown in Figure [[l The source curve for D is the disjoint union
of two bigons: one with two boundary punctures mapped to the Reeb chords —ps
and —p3, and one mapped trivially to {z;} x [0,1] x R. The source curve for Dy or
D3 is a quadrilateral, with two boundary punctures on one o edge mapping to —ps
and —p3 and (for D3) a boundary puncture on the other a edge mapping to oy. It is
easy to see that these classes all support holomorphic representatives. Thus, we have
differentials x15x; LN TooXj, T99Lys5 P28, To3T46, and 35X 46 P28, ToT4s.

On the other hand, let Dy = R; + Rg + R3¢ + R37; this domain represents a class
in 7o (2917, T93;), where z; € B2 N (af U k). This domain is illustrated in Figure
M@ If z; € o, then then this class is excluded for idempotent reasons by Proposition
B2 On the other hand, if x; € af, then the index of this class is 0. Therefore, D,

cannot count for the differential for any choice of z;.

Decomposable annuli. Let A = R;+ Rg+ Ryg+ Ry9+ R30+ R31; this is the domain
for an index-0 annulus in my(x3245, 25247). Consider the index-1 annuli

Ds = A+ Rss € ma(@4Tus5, T5a7)

D¢ = A+ Rgy € (w3245, Tay7)

D7 = A+ Rys + Ras + Ror + Ras + Rag + Rso + Rs1 + Ry € mo(23%45, 25252).
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Z21

X22

T23

Figure 17: The domain Dj.

each of which is the sum of A with a bigon (possibly with a Reeb chord on the
boundary). The mod-2 count of holomorphic representatives of each of these domains
depends nontrivially on the choice of complex structure. We claim that either all
three domains count for the differential or none of them do. To see this, we use
a standard argument in conformal geometry that occurs frequently in computing
Heegaard Floer complexes, which we find convenient to state in more generality than
is strictly needed for this example. (See, e.g., Ozsvath and Szabd’s first paper on

Heegaard Floer homology [B0].)

Lemma 3.7. Suppose that a Heegaard diagram contains an annulus A and some or
all of the bigons By, ..., Bg shown in Figure[I8, where each of the arcs that cuts into
A crosses to the opposite boundary component. Let E; be the domain A + B;, which
has Maslov index 1. Then either Ey, Es, Eg, and Eg count for the differential and

E>, E,, Es, and E; do not, or vice versa.

Proof. Define the standard annulus Ay to be S x [0, 1], with coordinates (s,t), with
the complex structure given by j0, = 0;, jO, = —0,. Up to rotation in the S! factor,
there is a unique holomorphic map U : Ay — A taking S* x {0} to the inner boundary
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Figure 18: Annuli for which the number of holomorphic representatives depends

nontrivially on the choice of complex structure as in Lemma B
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(AN (agUpBy)) and S* x {1} to the outer boundary (AN (a3 UB3;)). Fori € {0,1}, let
a; and b; denote the inverse images of «; and [3;, respectively. Define ©; = ¢(a;)/¢(b;),
the ratio of the length of the a; to the length of b;. For generic choices of the complex

structure on X, we may assume that O # ©;.

We consider Fy = A + Bj; the analysis for the other seven cases is extremely
similar. The domain FE; (going from pop; to riq;) has a one-parameter family of
conformal structures, determined by how far we cut into A at r;. We specify the
length of the cut by ¢ € R, where ¢ < 0 corresponds to cutting along oy and ¢ > 0
corresponds to cutting along (. For each value of ¢, there is a conformal map
u¢: Ag — Fy, unique up to rotation in the S! factor. As above, let a$, b$ C S* x {i}
be the preimages of o; and §; under u°, and let 65 = ((a$)/(bS). Whenever 05 = 6,
there is a holomorphic involution Ay interchanging af with af and bf with bf. Thus,

the signed count of the zeroes of the function f(c) = 65— 65 equals the signed number

of points in the moduli space M (E71). We may assume that f is transverse to zero.

Consider the limiting behavior of f(c). As we cut along [, the arcs by and a; grow
in length, approaching all of S* x {0} and S' x {1}, respectively. Thus lim._, 65 = 0
and lim., ., 0 = oo, so lim, ., f(¢) = —oo. In the opposite direction, as we cut
along ap, Gromov compactness implies that the maps u¢ limit to a broken flowline
consisting of holomorphic representatives for By and A, so the limiting values of 6§
and 0f are equal the corresponding values for U : Ay — A. That is, lim.,_ f(c) =

Oy — ©. By transversality and the intermediate value theorem, we thus see that

—

#M(E,) is odd if and only if Oy < O;.

For the remaining domains F», ..., Eg, we apply the same sort of analysis. As
before, we parametrize the cut by ¢ € R, with ¢ < 0 corresponding to cutting along

the « circle and ¢ > 0 corresponding to cutting along the [ circle. The limits are in
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the following table:

lim.._ f(c) (cutting along «) | lim._.o f(c) (cutting along 3)
by, By Oy — 6, —00
Es E, 00 Oy — 6,
Es, Eq O — 6, 00
Eg, Ex —00 Oy — 6,

Thus, Ei, E3, Eg, and Eg count for the differential if and only if ©g < ©4, and Ej,
E4, E5, and E; count otherwise. O

In our Heegaard diagram H’, we identify ag, By, a1, and £y in Figure [@ with o,
By, aff and B, in Figure [, respectively. For the bigons, we may take By = Ray,
By = Rss, and By = Ras + Rog + Rar + Rog + Rog + Rs0 + Rs1 + Rsa, so that the
domains Dj, Dg, and D; have the forms of Ey, Fs, and E, respectively. (For D5 and
Dg, the source surface should actually be A = Ay ~ (p,0), where p is some point
in S, and the puncture is sent to the Reeb chord ps or ps. The analysis is exactly
the same, however.) By Lemma B, either all three of these domains count for the
differential or none of them do, depending on the value of Oy — ©;. If we arrange

that Oy < ©1, we see that none of these domains count.

Moreover, the other annuli in H’ with Maslov index 0 are obtained by adding
rectangular strips (e.g., Rg+ Ry or Roy + Ros + Ra7 + Rso + Rag + R32) to this one, and
we may easily arrange that the values of ©y — ©; for all of these annuli are arbitrarily
close together. Therefore, the annuli obtained by adding rectangular strips to Ds,

D¢, and D7 also do not count for the differential.

More annuli. Let Dg = Ro+ Rg+ R7+ Rs+ R14+ R3¢+ R37+ Ry, which determines
an annulus in (291236, T23x37) With a single p1o3 chord on one boundary component
(Figure[[(a)). Let ¢ € R represent the cut parameter at x3g, where ¢ < 0 corresponds

to cutting along o and ¢ > 0 corresponds to cutting along (3. As above, for each
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T21

Z23

Figure 19: The domains Dy (a) and Dy (b).

value of ¢ there is a unique holomorphic map u® from the source annulus Aj, taking
(ST < p) x {0} to af U al U By, the puncture (p,0) to the Reeb chord pie3, and
(St x {1}) to affU 3,. With notation as in the proof of Lemma B, we must consider
the limits of f(c) = 65 — 07 as ¢ — +oo. As we cut along (3, the arcs b5 = (u®)~'(5)
and a$ = (u¢)"*(a) become arbitrarily long relative to their complements, so

lim f(c) = lim 65 — lim 6] = 0 — co = —o0.

C—00 C—00 C—00

As we cut along af out toward the puncture, the arc a§ becomes arbitrarily long
relative to bf, while the ratio of the lengths of a{ and 0f approaches some finite value
0, so

lim f(c) = lim f5— lim 67 =oc0o—©O = oo.

By transversality, we see that f always has an odd number of zeroes, so the class

given by Dg always counts for the differential.

Next, consider the domain

Dg:R7+R8+R20—|—R24+R25—|—R29+R30

+ R31 + Rap + Rgs + Ry3 + Ra7 + Rag + Rag + R,
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(b)

Figure 20: (a) The genus-1 domain Dy;. (b) A Heegaard diagram for S* x S? con-

taining a domain biholomorphic to Dy;.

which represents an annulus in my (23244, 5247) With a single o Reeb chord (Figure
T9(b)). Once again, we specify the cut parameter at x4; by ¢ € R and consider
the limiting behavior of a function f(c¢) defined as in previous examples. In the as
¢ — F00, the domain decomposes into a bigon By with a single boundary puncture
and an annulus Ay with Maslov index 0, so by Gromov compactness, lim._, ., f(c) =
OF — 07, where OF and ©7 are the conformal angle ratios of A+ as in the proof of
Lemma Bl As mentioned previously, we may assume that ©f — O] and 6, — O]
are arbitrarily close together; in particular, they have the same sign. Thus, Dy does

not count for the differential. A similar argument applies for

Dy = Ry + Rs + Ry + Rg + Ry + Ris + R3o + R31 + Rag + Rag + Rag.

Genus-1 classes. Let Di; = R;+ Rg+- - -+ Roy (Figure Bll(a)), which determines a
class in mo(r3252, T2336) represented by an embedded punctured torus. Determining
whether domains with positive genus support holomorphic representatives is often one
of the biggest difficulties in computing Heegaard Floer homology directly. In this case,
the trick is to notice that the genus-2 Heegaard diagram for S! x S? shown in Figure

P(b) has a domain (connecting the generators DE and AF’) that is biholomorphic
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to Dq1. By counting the remaining disks in this diagram, it is easy to see that the
toroidal domain must count in order for the homology to be correct. Therefore, Ds
must also support a holomorphic representative. The same analysis applies to any
domain of the form Z?:a R;, where 4 < a <7 and 24 < b < 33, provided that a and
b are chosen such that the two a segments of the boundary do not lie on the same «

curve. A similar analysis also works for the domain

and others like it.

Next, consider the domains

Dis=Rg+---+ Ros € 7T2(234ZE47> 55225547)
Dy =Ry + -+ Rig+ R3o + R31 + Rus + Rag € (3245, T16T36)
D15 = Rg + Roog + Ra1 + Raog + Raog + Roy + Rsr € mo(16%36, T22Ta7).

The domains D3 and D5 obviously do count for the differential: D;3 is an annulus
that always has a holomorphic representative (by a standard argument), and D15 is a
rectangle with a single Reeb chord. The domain Dy4, however, is a punctured torus.
Notice that Dg + D13 and Dy4 + D15 both determine the same homology class in
o (3245, Too47), With index 2. More precisely, we there is a one-parameter family
of disks limiting in one direction to the broken flowline Dg % Dq3 and in the other
direction to Dy4 % Dy5, which can be seen explicitly by varying the cut parameter at
x47. It follows that Dy counts for the differential if and only if Dg does. By our

assumption above, D4 does not count.

Miscellaneous domains. Let Dg = R;+2Rg+ Ro+ R+ - -+ Ros+ R31+ Rs7+ Rys;
this is a domain from x3x45 to xo3146. Because the region Rg, which as drawn in Figure
goes over one of the handles, is used twice, it is a little bit tricky to see what the
source surface should be; the only possibility is indicated in Figure Il Topologically,

this is an immersed annulus with one boundary component having two « and two (3
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R

To3 &%) T46
Ry Rys| Rs1| B2

R7 T 45

B «Q 1L
Ry
Ry Rsq| 3
x3 aQL

Figure 21: The only possible source surface for the domain D4, which does not satisfy

the correct boundary conditions.

segments (and a single Reeb chord), and the other component consisting of all of (s,
so it does not satisfy the necessary boundary conditions. Thus, D¢ cannot count for

the differential.

By inspecting the long list of the index-1 domains in H’, we see that they all
fall into one of the classes just described. We may thus sort the list into those that
support holomorphic representatives and those that do not. Using this list, we may
then record the differential on C/FED(H’ ,0) as a 245 x 245 matrix with entries in
A, ® A,, although for obvious reasons we do not record this matrix here.

By counting the multiplicity of w in each domain (whether it counts for the dif-
ferential or not), we can determine the relative Alexander gradings of all of the gen-
erators. We find that the generators of C/FIE(H’ ,0) all fall into three consecutive
gradings, which for now we arbitrarily declare to be —1, 0, and 1. In the end, after

we evaluate all tensor products, the symmetry of C/PT{(Si)’, D, (K, t)) will show that
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this was the correct choice. We do not explicitly list all of the gradings here, however.

We may then use the edge cancellation algorithm explained in Subsection
to simplify C/FIE(H’ ,0), canceling only edges that preserve the filtration level. By
abuse of notation, we denote the resulting module by C/FﬁD(y , B3, 0).

Theorem 3.8. The type DD structure C/F]j)(y, Bs,0) has a basis {y1, ..., y10} with

the following properties:

1. The Alexander gradings of the basis elements are:

(

-1 =1

Aly) =30 i=2,...,10

2. The associated idempotents in A, and A, of the generators are:

1 ih
Lo | Yas Ys, Y7, Y115 Y13, Y17, Y19 | Y8, Y10, Y145 Y16
Ly Y3, Y6, Y12, Y18 Y1, Y2, Y9, Y15

3. The differential is given by

19
o (yi) = Z aij & Yj,
j=1
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where (a;;) is the following matriz:

0 0 0 00 0 O 0 0 oo o 00 0O O O 0 O
1 0 0 00 0 0 o2 0 oo o 00 0O O O 0 O
p1 0 0 00 0 O 0 0 oo o 00 0O O O O O
pP10123 p103 o3 0 0 O O 0 0 oo o 00 0O O O O0 O
0 p3o123 +pi2zo3 0 0 0 o3 0O O psoi23 p3| 0 O O O O O O O O
p123 0 0 00 0 o2 O 3 oo o 00 0 O O 0 O
0 0 0 00 0 0 p3 0 oo o 00 0 O O 0 O
0 0 p2or 0 0 0 O 0 0 oo o 00 0O O O O0 O
0 0 p2 0 0 0 0 o2 0 oo o 00 0O O O 0 O
0123 0 0 p2 0 0 O 0 o3 oo o 00 0O O O 0 O
0 P11 o1 00 0 0 m pP101 ofo o0 00O O O O o0 O
0 1 1 00 0 O 0 0 Oflocc O O OO O O O O
0 0 o123 1 0 0 O 0 0 00 o3 0O OO 0 O O O
0 0 0 01 0 O 0 0 00 O O O0o3 0O O 0O p3
0 P123 0 00 1 0 0 0 0j]0 O O 0 0 o2 0 p3 O
0 0 0 000 1 pas 0O 0|0 0 000 0 pg 0 0
0 0 0 00 0 O 1 0 Ofp2 O O OO 0O O O O
0 0 0 00 0 O 0 1 0|0 p2 0 0O O 0 o2 0 O
0 0123 0 00 0 O 0 0123 110 0 p2 0 0 0 O o3 O

The block decomposition indicates the filtration levels.

Finally, to compute C/FA\A()/, Bs,0), we use the AA identity bimodule described
in Theorem B4k

CFAA(Y, By, 0) ~ CFAA(I, 0) K4, (CFAA(I, 0) K4, CFDD(Y, B3, 0)).

We evaluate this tensor product using our Mathematica package. The filtration on
C/F—D\D(y, Bs,0) induces a filtration on C/FA\A(J/, Bs,0), and we again use the edge

cancellation procedure to reduce the number of generators.

Theorem 3.9. The filtered AA-module C/F—EA(J), Bs,0) has a basis
{al,. .. ,a5,bl,. . .,bﬁ,Cl,dl, .. .,d4,61,62,63}

with the following properties:
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1. The Alexander gradings of the basis elements are:

2. The associated idempotents in A, and A, of the generators are:

p p
) 41

Lg ay, as, aq, bla b3> b4a bﬁ d17 d37 €1,€3

a27a57627b5 Cl7d27d4762

3. The A. multiplications are presented in the matrices that follow. For x,y €
{a,b,c,d, e}, the entry in the i™ row and j™ column of the matriz M.,, records
the multiplications taking x; to y;, as described in Subsection [Z11 The ma-
trices Muy,, My, Meg, Mee, Mg, and My, are necessarily zero because of the

Alexander grading.

0 g1 12 P12 o123p12 + 01p3p2P12

0 0 o2 0 023p12 + p12
Maa =l 0o o0 0 0 03p12

0 0 0 0 o1

0 0 0 0 0

0123pP123 + 01230230123 + 030201p123 + 01023P3P20123
+ 0123023p3p2p1 + 030201 p3p2P1 + 01023p30203P2P1
M. — 023p123 + p3p2p1 + 023023p123 + 023023030201
ac
03023p123 + 03p3p201 + 03023030201
0123p3 + 03020103

023pP3

012p123 + 012302p123 + T12p3p2p1 + O102p3p20123
p1 O 0123p1 + 01P3P2P1

+ 012302p3p2p1 + 0102p3p203P2p01

Mad _ 0  p1 o2p123 + 02302p123 + 02p302p1 + 0230203p2p1 0231
0 0 o302p123 + 0302p3p2p1 + p1 o3p1
0 0 o12p3 0
0 0 o2p3 0
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Mbd =

1 0 0 o302p123p2 +0302p3p2p1p2  0123p3P2P12 + 01P3P2P302P12
0 1 0 0 p3p2p12 + 023P3P2012
Mba _ 0 0 1 0 03P3P2P12
0 0 0 14 o302p3p2 0123
0 0 0 0 1+ o023
0o 0 O 0 o3
0 o1 o012 pi2 O 0
0 0 o2 0 pi2 O
Mbb _ 0 0 0 0 0 P12
0 0 0 0 o1 012
0 0 0 0 0 o2
0 0 0 0 0 0
03020123P123P23 + 0123023p3P2P123 + 012303P2P3P2P1 + 01023030203020123
+ 03020302010123p23 + 0302012303P201P23 + 012302303P203P2P1
+ 01023p3p2P3p2P3P2P1 + 0302030201 p302P1023
Mbc _ 023030P2P123 + P3P203P2P1 + 0230230302123 + 0230230302P3P2P1
03023P3P2P123 + 03P3P2P3P2P1 + T30230302030201
0302012303023 + 0302030201 03023
0
0
0302012123023 1+ 012302p3P20123 0123p123 + 0302010123
0 o123p123 + 0123p3P2p1 + 0102p3p2p3p2p123 + 0302012030201 023 + o1p3p2p3P2P1
+ 012302p3p203P2P1 + 0102p302P3P203P2P1 + 030201p3p2p1
0 aspias + oaspspapy 02p3P2P123 + 02302P3P2P123 + 02P3P203P201 28125 + p3papy
+ 02302p3p2P3P2P1
0 o3p123 + 03p3p2p1 PapRPL T 03020320123 03pP123
+ 0302p3p2p3p2P1 + P123
0 o123p3 030201203023 0123p3 + 03020103
0 o23p3 0 02303
0 o3p3 P3 a303
p1 O 0
0 p1 O
Mbe = A
0 0 0
0 0 0
0 0 0
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0 0 0 p2 O
00 0 0 po
Mgy, =
00 0 0 0
00 0 0 po

0123p23 + 030201023 + 0123

o 023p23 + 023
M. =
o3
1+ o23p23
0 o1 o12p234+012 O
0 0 ogp23 +o2 0O
My, =
0 O 0 0
0 0 02023 0
0 0 0 o302p23p2 O
Meo=1]0 0 o0 0 0
0 0 O 0 0
00 0 po 0 0O
Mgp=0 00 0 p o0
00 0 0 0 ps
03020123 023023
M., = 0
0

1 o123p23  0302012p23p23 0123023 + 030201p23 + 0123
Med — | 0 14 o023p23 0 02323 + 023

0 03023 1+ p23 o3p23 + 03

Because we are ultimately interested in the tensor product of C/FA\A()/, Bs,0)
with C/PT)(X %) and (TFT)(X 1), we may disregard any higher multiplication that uses
sequences of algebra elements that cannot occur in these type D structures. Specifi-
cally, by Proposition B3, we may disregard any sequence containing psps, p1p2, P1023,
0903, 0109, Or 01093. Accordingly, for the discussion that follows, we may replace

My, Myg, My,, M., and Mg with the following:
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0123p123 + 0123023p123 + 0302010123 + 0123023p3P201 + 030201P302P1
023p123 + P3p2pP1 + 023023p123 + 023023P3P201
Mch = 03023p123 + 03p3p2p1 + 03023p3p2p1
0123p3 + 03020103

023pP3

p1 0 o12p123 + 012302p123 + 01203p2P1 + 012302P3P201  0123P1 + 01P3P2p1

0 m 020123 + 02302p123 + 02p3p2p1 + 02302030201 02301
Mclud - 0 0 0302123 + 0302p3p2p1 + p1 o3p1
0 0 01203 0
0 0 0203 0
1 0 0 o302p123p2 0123 P302012
0 1 0 0 p3p2p12 + T23p3P2P12
M = 0 0 1 0 03p3P2012
ba 0 0 O 1+ o0302p3p2 0123
0 0 O 0 1+ o023
0 0 O 0 o3
03020123p123023 + 0123023P3P2p123
023p3pP2P123 + 0230230302123
/ 03023P3P2p123
Mbc B 030201230323
0
0
0  o0123p123 +0123p3P2p1  0302012p123P23 + 0123023020123 7123128 + T302010123
+ 030201p3p2p1
0 o23p123 + 023p3p201 02p3p2pP123 + 02302P3P20123 023p123 + p3p2P1
Ml;d = 0 o3p123 +03p3p2p1 p3p2p1 + 0302p3p2p123 + p123 o3p123
0 o123p3 030201203023 0123p3 + 0302013
0 o23p3 0 02303
0 o3p3 P3 o3p3

3.3 Evaluation of the tensor product

Using the computation of C/FA\A()/ , B3, 0) given in the previous section, we may now

compute the double tensor product

(CFAA(Y, B3, 0) K4, CFD(X;)) B4, CFD(X).
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In what follows, we evaluate the tensor product over A, and simplify the resulting
filtered type A module before evaluating the tensor product over A,. Then we use
the edge cancellation algorithm to compute 7(D;4(K,1)).

As discussed above, we assume from now on that s < 27(.J).

3.3.1 Tensor product over A,

Let V denote the bordered solid torus obtained by gluing together }V and X7, and
let D;s denote the image of the knot Bs in the union. By the gluing theorem,
@(V, D)~ C/FA\A()/, B3, 0) Xy, (ﬁ(é\fj) We shall describe this tensor product
as a direct sum of subspaces corresponding to the stable and unstable chains in
C/PT)(X #). This decomposition will not be a direct sum of A, modules, but we will
be able to keep track of the few multiplications that do not respect the decomposition,
and ultimately they will not affect the computation of 7(D (K, t)).

The generators of Ll(ﬁ(‘){ #) all lie in the interiors of the chains, so the corre-
sponding generators of the tensor product can be grouped in a natural way, but it
is not obvious a priori how to divide up the generators coming from LO@(X 2.
Consider the two specified bases for LO@(Xj): {nos-..,man} and {&o, ..., &n}. De-
pending on the structure of the unstable chain, the generators & have outgoing ar-
rows labeled p1, p1a, or pia3, while the n; have outgoing arrows labeled ps and in-
coming arrows labeled py or pio. Accordingly, we should try to pair the generators
of C/FA\A(J/, Bs,0)t9 with the & or n; depending on which of these two conditions
they satisfy. If we consider only the A, maps in C/FA\A(J/, Bs,0) that use a sin-
gle element of A,, we notice that each of the generators a;,...,as and by,...,bg

satisfies exactly one such condition. Specifically, define the following subspaces of
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CFAA(Y, Bs,0) K, CFD(X3):

Pl = (aq,as, by, bs, bs) B (€951, &)

+ (c1,d1, do, d3, day er, e, e3) B (1] | 1 <0 < k)
Pl = {ay,a, as, by, by, bs) & (1951, 1)

+ (e, d, day ds, dayeryea,e3) RN |1 <0 < 1) (3.14)
Punst = (a4, as, by, bs, bﬁ) X (fo)

+ (a1, as, as, by, by, b3) X (1)

+ <Cl7d17d27d37d47€17€27€3> X <>\2 ‘ 1 S ! S T) .

We thus obtain a direct sum decomposition of C/FA\A(JJ, B3, 0) Xy, C/PT)(X:;) as

a vector space:
CFAA(Y, B3, 0) K, CFD(X3) = @ Pl & P P, @ Punst- (3.15)
j=1 j=1

By inspecting the matrices M,,, we see that any .4, multiplication on the tensor
product that comes from a multiplication in C/FA\A()/, Bs,0) that uses at most one
element of A, preserves this decomposition. These multiplications are illustrated in
Figures 22 through 23 In these and subsequent figures, the dashed arrows represent
repeated sections. For instance, the dashed arrow from eln{ to dg/{ij in Figure
means that there are multiplications e;r] 725 dg/{gﬂ foreachi=1,...,k; — 1. The
Alexander grading is indicated by horizontal position, increasing from left to right.
In addition, there are a few more multiplications that preserve the splitting, com-
ing from multiplications in C/FA\A()/, Bs,0) that use sequences like p3pa, pspas, or
pas3pa3. These multiplications are not shown in Figures B2 through BA They are as

follows:

o In P’

vert»

when k; > 1, there are multiplications

0302012 J 03020123 J
bi1&aj —— d3ky bi1&aj —— C1Ky
(3.16)

j 0302012 i j 03020123 j . ‘
e1k; — d3ki e1k] ——— 1k,  (t=1,...,kj—2).
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0123
o123+

0123023+
0309071

723

093
o123+ 73
) 030201 )
dlnjl e1 K]
03023 7 /J
%
/Jl 7 / 1\
¢ J o\ s
J
/ /

023+
023023

7 4 J
o238 , s d3r —€3K]
/ ;4 =
g12 /
037 / | / y 37 / //% //
b / ] o3 / /o3 / s/,
c1Ky - dary Voss 1o 1,
/.7 /
o123+ /7 /// ; 7/ /
030201/ 023 4
Vi v VA
/ sowst /0y
// , 030201/, /
) /
d1H'7
T
J

¢

azé2;—1

Figure 22: The subspace P7_,, corresponding to a vertical stable chain §2; LN f-z{ 2,

vert)
P23 i P1
— K — i—1-
kj 529 1
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o123+
030201

7143
7273
o3
0123+/ 73
/ cl,\ﬂ\

7 )\j
28, —€311
/ o / Z - //
12 o £
737 // / ! v / -/ //
b / o123 / /o3 /sy
edy 7 Vows 1o/,
/ /
o123+ / /7 // ;7 /
30201/ ; 7 '3'23/ 0'3/
7 vl /

/ so128t , /7
030201/, /

v

/
4
/

~~

7
//
T3
agnz; bano;
1 0123 J\Ll
012
ashzj 1+o023 55772]'
—
be12;

Figure 23: The subspace P’ corresponding to a horizontal stable chain 1;_; 2,

hor»

j P23 P23 7 P2
Al = T A T Ty

70
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0123+
030201

a3

02
0123+/
030201
/

o3
7
/ Y g
o123 / / o3/ 7,
023 // / / /

71

Figure 24: The subspace P,,s when s < 27(J), corresponding to the unstable chain

p3 P23 P23 P1
Ny — Y — - — Ys — &o-
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Figure 25: The subspace P,,s when s = 27(J), corresponding to the unstable chain

P
o 22 To-
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o In P’

hors When [; = 1, there is a multiplication bsna;—1 %, ayn;. When [; > 1,

there are multiplications

0302012 i 03020123 i
banaj_1 —— dzXy bangj_1 —— C1\y
j 0302
j 0302012 J j 03020123 J .
e N 2N, oM, e N BB N (=1, —2),

e In P, in the case when s < 27(J) — 1, there are multiplications

0302012 03020123

bymo —— d3z72 bano —— 172
(3.18)
€17 w dg’yi+2 €17 % C17i42 (Z = 1, e, T = 2)

Finally, we must consider the multiplications in the tensor product that do not
respect the splitting in (BIH). These arise from sequences of arrows in (ﬁ:‘T)(X %) that
involve multiple stable or unstable chains, and they depend on the change-of-basis
coefficients relating {no, ..., ne,} and {&o, ..., &n}-

For instance, if 7y; = &, (where j,h € {1,...,n}), then (TFT)(X;) contains a

string of arrows of the form

N2j—1 s, )\{ L NN )\{_ p2 P23 h P23 P23 h
g

H’nz‘j—>/€1%"'—>/€kh.

Any multiplication in C/FEA()), Bs, 0) that uses a contiguous subsequence of

P35 0235 - -5 P23, P2, P1235 P23 - - -5 P23
—— SN——
lj—1 times kp—1 times

contributes a nonzero multiplication in the tensor product that need not respect the

splitting. Similarly, if 7y; = £o,—1, then the same is true for contiguous subsequences

of

P35 P23, - - -5 P23, P2, P1-

lj—1 times
Similar sequences may also occur near the unstable chain, where we take &, instead of

&onq or &9, By Proposition B these are the only such sequences that occur. More
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generally, if the coefficient of &, in 7,; is nonzero, we obtain multiplications that do
not respect the splitting in (BIH). We make this notion more precise below.

By inspecting the matrices M,,,, we see that the only sequences of this form that
actually occur in C/FA\A()), Bs,0) are pspapi2s, p3papie, and pspapr, which occur in the
first three rows of M,., Myq, My,, My., and My;. Accordingly, the only multiplications
that do not preserve the splitting arise when there is a horizontal edge 79,1 — 12; of
length 1, and they act on the elements a; M 17551 and b; Xy, (1 = 1,2, 3).

Notice that there are no multiplications into or out of any of the subspaces
P} . Therefore, each P/ is actually a direct summand (as an A, submodule)
of @(V, Dy,), asis P = @?:1 PJ . @ P,s. This implies that the tensor product
@(V, Dy,) @(TFT)(X}() (whose total homology, ignoring the filtration, is @(53) =
F) will also split as a direct sum. We shall eventually see that the direct summand
coming from P contributes F to the total homology, which means that each summand
coming from P/ is acyclic and thus does not affect the computation of 7(D (K, 1)).
Therefore, we shall henceforth ignore the submodules P/ .

It is preferable to describe all of the multiplications that do not respect the split-
ting in terms of the bases specified in ([BI4]). Recall that (z,,) and (y,,) are the
change-of-basis matrices, so that §, = 2310 Tp.gNq and 1, = Zzio Up.a&q- Let j denote
the set {j € {1,...,n} | ; = 1}. For each p € {0,...,2n} and h € {1,...,n}, each
J € j for which x,9;_1 = 1 and ys; 9,1 = 1 contributes multiplications (which we will
specify shortly) from a;&, and/or b;¢, (i = 1,2,3) into P, via the sequence pspapi23.
Of course, multiple values of j may satisfy this criterion, but they all contribute the
same multiplications, so we really only care about the count of such j modulo 2. That
is, define u, ;= > ,c; p2j-1Yj2n—1; there are multiplications from a;§, and b,§, into

Ph

vert lff up7h =1.
Similarly, each j for which 2,91 = 1 and yaj0, (h = 1,...,n) contributes
multiplications via pspep1, so define v, ) = Zjej Tp2j—1Y2;2n. Finally, we set w, =

> iei Tp2j—1Y2n,0; this determines whether there are additional multiplications from
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012302
02302

o'}g

€1 fih'

J

n

ey
¢% - e y
03/”’/””’///’/

€3k

Figure 26: Multiplications coming from a sequence pspapia3 when u, ), = 1.

a;&p and b;&, into the unstable chain via pspap1, psp2pi2, Or pspapies, according to
whether s < 27(J), s = 27(J) or s > 27(K), respectively (although we are ignoring
the third case).

We now specify these multiplications:

o If u,, =1, the sequence pspsp123 provides the multiplications shown in Figure

o If v,;, = 1, the sequence p3psp; provides the multiplications shown in Figure

o If s < 27(J) and w, = 1, the sequence p3p2p; provides the multiplications

shown in Figure P4, where we replace mgh by 7.

e Finally, if s = 27(K) and w, = 1, the sequence p3pap12 provides the following
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Figure 27: Multiplications coming from a sequence ps3psp; when v, = 1. If w, =1

and s < 27(K), we obtain the same multiplications by replacing /ﬁzh by 7.
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multiplications:

o1

alfp — as7o
0123

bi1&p — asmo

(3.19)

b 14023
2lp — a5Mo

b3&p <> asno.

3.3.2 Simplification of @(V, Dys)

Next, we may simplify ﬁ(v, D) by canceling unmarked edges that preserve the
filtration level. In order to keep track of additional edges that may appear, we must
look carefully at the order of cancellation. As mentioned above, we ignore the direct
summands P/_. Define P® = P, and P/ = P/ .

Assume first that s < 27(J).

For each j € {1,...,n}, in P/, we may cancel the differentials b1y 1 — 61%{%,
baaj—1 — egm{%, baoj—1 — egm{%, and a;1§-1 — dmij. Since the targets of those
arrows do not lie at the heads of any other arrows, no additional arrows are introduced.
Similarly, in PY, cancel b;&y — €17y, b2&o — €aYr, b2y — €2y, and a1&y — di,.

Next, we cancel the differentials ag&s;—1 — dg/{ij and as€y — doy,-. Because of the

g y . y . . . .
edge az8;—1 RELN dwij, canceling az&;—1 — dgliij introduces new multiplications:

j 012302 J 0123023 d J

1R, — az€aj—1 C1RY; 1 =7 QaR,
J 72302 j 023023 i

Coky, 1 — @381 eatiy _y —— dakiy, (3.20)
7 0302 7 03023 7

€3k, 1 — 438251 esky, g — daky, .

(If k; = 1, then replace emij_l by b;&2; in (B2).) We shall examine the effects of
these cancellations on the edges that do not respect the splitting momentarily.

g3 ] . ]
Next, because of the edge aséyj—1 — d4f€;€j, canceling ass;_1 — dgl{';fj removes
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the edge 63/‘6{%_1 2 dmij and adds edges

7 01203 7
dllikj_l —_— d4/<akj

j o208 g
Aty T (3.21)

jo o208 g
d4"€kj—1 - d4"€kj

i 030201203 i
€1 ’%kj—2 - d4l€kj .

Because we will ultimately tensor with C/PT)(X%), in which the sequences o903 and
01203 do not appear, we may disregard these four edges. We also eliminate the edge
63/€£j_1 Z, dmij_l. The same thing occurs in P when we cancel as&y — ds,.

Let ()7 denote the module resulting from P after the cancellations just described.
The multiplications on @’ are shown in Figures Yl and B9 and equations (BI6) and
BIx).

Now we keep track of what these cancellations do to the edges that do not respect
the splitting, as shown in Figures Bf and 27

If u,; = 1, then there are edges from b;§, to dsk!, as shown in Figure BB If
k; = 1, then canceling asfsj—1 — dgl‘f,{ will introduce new multiplications coming
from b;§,, but all of these multiplications involve o903 or o203 and may thus be
disregarded. Also, when p = 2m + 1 or p = 0 these edges are eliminated when we
cancel bi{am 1 — €k, or by — e;,, respectively.

If v, ; = 1, when we cancel az&;_1 — dgff]ij, we obtain multiplications

b1fp S a352j—1 b1fp B, dw{;j

ba&p 2 agbaj batp 22 d4”f£j (3.22)
g30 ] O30

bs&p = duriy, bs&p = az€aj1

in addition to the ones already appearing in Figure 7. When we then cancel
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o123+
0123023+
030201

o023+
033023

c1K9

/
o123+ / |
03/02 o1/

/ so123t ,/

/// 0:;0201// /
/
/
J / / / / / Hj
N ;7T k-1
N A2 J
W A !
}W‘”/// / j/ 712
K K
2Fg;—1 7 2R, —1

1 J,
]/// ?23 \j/

J
k-7 3R 1
J J
/// 23
V2 o5 oos
W/ /0123 09230923

J J
Cl1K dyk
1 kj—1 4 kj—1 0123023+ 030723
G30207,
a2
23
ki J
c1k dak
k; kj

Figure 28: The subspace Q7 (j > 0) obtained from P’_, by canceling edges.

vert

79
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Figure 29:

o3
g
o123+ 3
030201
€171

7
o123 / / o3/ /,
loas Lo 1,

Vi
/
//// /7

/s 77
/ ,0123+ ;7
030201/, /

0123023+
g30207]

C17r d4“{7‘

80

The subspace Q° obtained from P, by canceling edges, when s < 27(J).
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bljjm
J

ba&am
oo &1 0123023+ Jz ofs
Y
b3&om
+ o3+

023023 o003

Figure 30: Reduced form of Figure BZ1 when p = 2m, m > 0.

aszaj—1 — d3l€?€j, we obtain new multiplications:

01203+01230203 J
%
a1y d4f€kj

0203+0230203 d4l€j
k;j

a2y
030203 ]
agfp — d4 K'kj

(3.23)

g3 i
bgfp — d4l‘€kj

Most of these may be disregarded by Proposition BA If p = 2m for m > 0, the
resulting reduced form of Figure is shown in Figure Bll. On the other hand,
if p = 2m + 1, we also cancel the edges a; o1 — diky and biomy1 — €Ky,
introducing the multiplications shown in Figure BIl Similarly, if p = 0, we cancel the
edges a;&y — d;y, and b;{y — €;7,, introducing similar multiplications.

We now return to the case where s = 27(J). In Py, the edges a1&y — aqmno,
b1&y — bamo, b€y — bsno, and bs&y — bgny cancel, and since their targets do not
have any other incoming edges, no new multiplications are introduced. The only

three remaining generators are asy, asy, and asng, all in filtration level 0, with the
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c1 th d4l€2’h
o3+ o123+

023+

03023023 0123023023
023023023
diky o e1RE 1
0J1 Jl\
o012 4/ g12
daryr 4 e2Rp g

oL 0133 GL
i /4 e S

3Rk —1 km—1
023 023
3 o3 23+
m = Toia3 023023
“m

Figure 31: Reduced form of Figure in the case where p = 2m + 1 (or p = 0,
replacing 3! _; by v,—1 and &}’ by v,).
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following multiplications:
aséo

WA (3.24)

(9§ y——1+23—=0A5T)0

As above, aséy and azéy may have some outgoing edges, and asny may have some

incoming ones. The rest of the argument goes through unchanged.

3.3.3 Tensor product over A,

Let Q = @?:0 ()7, with multiplications as described in the previous subsection. We
consider the tensor product @ Xy, (ﬁ?TD(X}{) Again, the goal is to obtain a de-
composition of the tensor product according to the stable and unstable chains in
CFD(XL).

It is convenient to give the generators of () new names, somewhat similar to the

notation used in B0, Section 4]. For j=1,...,nandi=1,...,k; — 1, define:

Al = alfzj AT = 61523' EZJ = dlfij Ez{j = elfig

i

| 1j J _ J j_ J
B = a2§2j B7 = b2€2j Fz = dgl‘{,i Fz = €2k
i

CF = a3ty C7 =3y Gl =dsn] GV = ez

J — J 1j J J_ J 1j_ J
D —Cllikj D —d4likj Hz = C1R; Hz —d4l€

When s < 27(J), for i = 1,...,r — 1, define:

AY = Q4o A = bano E) = dyv; EZ{O = €17

)

B’ = asTo B’ = bs1o F) = day; Filo = €27

7

C"” =beno G =dsy; G? =esy

2

D’ =c1y, D°=dyy, H=cry H?=dyy

7

Also, for notational convenience, define kg = r.
We divide up the generators of the subspaces @7 by Alexander grading and idem-
potent:
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A=-1 A=0 A=1
0§ Al CI B! G| AT Y B GY
W | DI),H) | B, DY F’ H B4, F/

In Figures P8 and B9, notice that of the generators in idempotent ¢, A7, A, E7,
and EY have outgoing edges labeled oy, o9, and o195, while C7, ¢, G, and G7
have outgoing edges labeled o3 and incoming edges labeled o, and o15. Accordingly,

it makes sense to associate the former with the vertical chains and the latter with the

horizontal chains. That is, for each J € {1,..., N} and j € {0,...,n}, define:

Zu, = (A, A7 B E7)Y R (Zp7_1,Eag)
+(B,B", D, D" FI FY HI HPYR (K] |1 <T<K,)
Z% = (C9,CY,GI,GY) R (Hyy—1, Hay)
+ (B, B, D), D" FI FY HI HIYR (A |1<1<Ly) (3.25)
L = (A1 A" B E7) R (Z))
+(C?,C",GI,GY) K (Hy)
+(B,B", D), D" F} F’ H! H’YR(T; |1<T<R).

Then, as a vector space,

QRCED(XY) = @@ zk o @ Zh & P L (3.26)
J:é ..... N J_:é ..... N §j=0
J=U5- n 7=0,..., n

: Jox o n J.j
For fixed J, we write Zy = @) Zvety, and so on.

vert?

As before, it is easy to verify that the differentials on the tensor product coming
from m; and ms multiplications in Figures EY and B9 respect the splitting (B20).
These differentials are illustrated in Figures through Note that we obtain
slightly different differentials depending on whether j = 0 or j > 0. The double-
dotted arrows correspond to the dashed arrows in Figures 22 through for instance,
in Figure B2, the double-dotted arrow from Ef =y to H l;j] _,K{ really means that there

: : = ORI for i —
are differentials F;'=y; — H\ K{ fori=1,... k; — 2.
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AlBay_4 AVE 5

E{E?J—l E{j5:21—1

Ei]._l.EZJ—l E;;J;._l.EZJ—l
. J.q1 . . . —_ 0123
Figure 32: The subspace Z.2,, corresponding to a vertical stable chain Z5; —>

J 023 023 J 01 =
Ky = — Ky, =351



CHAPTER 3. KNOT DOUBLING OPERATORS 86

OjHQJ—l/'[MCleQJ—l

J.j

o3

Figure 33: The subspace Z; ., corresponding to a horizontal stable chain Hyy_; —

g g g
IVECRNER VN

or’
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CIHy < §>0 C'iH,

S i
Fl _Tp F!

e
J -1 R
A=y A=

J — 15—
E{_:O Elj.:f)
i = 7=

Ekjflub Ekj71~0

Figure 34: The subspace Z/

uns

. when t < 27(K), corresponding to the unstable chain

g3 023 023 01 —
Hy—TI1 — ... —=TIg—E,.
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Figure 35: The subspace Z7 . when ¢ > 27(K), corresponding to the unstable chain

—_ 0123 023 023 02
:0—>F1—>"'—>FR—>H0.
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AlT=g

15—
Eljz.o

=
Ekj —1=0

5 >0 Cleo

r
= -G'leo

y
GY _ Ho
J

Figure 36: The subspace Z7 , when t = 27(K), corresponding to the unstable chain

Next, we must consider the differentials coming from the remaining multiplications
on (). First, we look at differentials that respect the splitting. If k; > 1, the relevant

multiplications on 7 are:

AT 2%, B %, Y cl 22, & if >0
Ald 9123923 pyrj B 9292, Ol 9392, i if kj —1
E,g_l 2123923, 1y F,g_l 723923, 1y G%—l 2B, DY itk > 1.
Therefore:
e In Z2J., if K; > 1, there are differentials Eg7152j — DYKy and F,gile —
DK},

e In Z7 if K; > 1, there are differentials G%%Hg‘]_l — D'AJ and F,gilA{ —
D' A{ 9. Additionally, when j > 0, there are differentials CiHyy_ 4 — G{Hg g if
K;=1,and BIAY,,_, — GiHyy if K; > 1.

o InZ’

unst»

if £ < 27(K)—1, there are differentials G%%HO — DTy and F,gflfl —
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DT,y If t = 27(K) + 1, there are differentials A7Zy — GIH, for j > 0. If
t > 27(K) + 1, there are differentials El/ci,lEO — DTy and F,gflfl — DT,
for all j, and B'T'p_; — G{HO for 5 > 0.

Next, we may have some differentials that preserve the decomposition
D Zi & D Ziir @ Zinw
J J

but which come from the multiplications on ) that do not preserve the splitting
Q =@ Q’, shown in Figures 8 B, and BTl The resulting differentials are shown
in Table [l In each line that involves expressions like K7, A7, and I';, we assume
that K, L;, or R is sufficiently large for the indices to make sense and that I ranges
over appropriate bounds. The symbol * denotes both primed and unprimed symbols;
thus, for instance, the notation A*Z,; — D*th means that there are differentials
A=y, — D'KJ and AY=,; — D'MKJ. Additionally, note that if k;, = 1, then we
replace H}' by D" where it appears; if k; = 1, we replace E,/i__l, F,g_l, and Gg_l by
A B and C"Y, respectively.

Notice that almost all of the differentials in Table [ drop the filtration level by a
nonzero amount. The two exceptions are A7Zy; 1 — DKy and A’Zy — DT’ in
the second column.

Finally, we must look at differentials that do not respect the splitting at all. Notice
that the sequence o30907 occurs several times in Figures Pl and B9, and the sequences
0309012 and 030907123 occur in Equations (BI0) and (BIF), and these are the only

such sequences that appear. More precisely, in @7 with k; > 1, we have the following
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U25,h = 1, ]7h >0

vojn =1 7>0

V2j—1,h = 1 or wp = 1

vert

1j= hieJ
1j1ed hyrd
B]KI —>H1KI+1

B — HiK,

AYEy; — DK
BYK{ — D*'K{
BYK{ - D*"K{,,

j— thyeJ
AJ:QJ_I — D KKJ

lj = hyrJ
lj = hyrJ

15 J hyed
ij—lKI — D K1+1

/j J hyed
Fk;j—lKI —>D K1+3

ZJ

hor

IfLy=1:
C"Hay_1 — GiHay
IfL;>1:
C"Hyjy_1 — HMAJ
B/jAg - H{LA{—H
B/jAg - H{LA{+2

15 A h
B]AKJ—l — Gl H2J_1

C*Hgy_1 — D*A{
C*jHQJ_l — D*JAZJ
BYA{ — D*"A{

B*jA{ - D*hA{-i-Q

15 haJ
J
1j hAJ
G,gj_lHQJ_l — D A3
1j J haJ
F A1 = DA,

iiooAd hpJ
Fi A1 = DPA73

Zunst7

t < 27(K)

C"Hy — HIT,
BT’y — HIT 44

BTy — HPT 49

C*'Hy — D*'I';
C*Hy — D*'T'y
B*T; — D*'T;
BT — D*"T';

AlZy — DTy

G{ _Ho— DTy
G{ _Ho— D'Ty
Fl T —D'Trp

F T — D'Tris

Zunst7

t > 27(K)

IfR=1:
ATz, — GhH,
IfR>1:
A=y — HIT,
BT; — HM 1y
BT — HTy,9

BT'p_1 — GI'Hy

A=y — D,
BT, — D*'1y

B¥T; — D*'T'; 1,

= h
Elgj—l‘:O—)D Fl
= h
Elgj—l‘:O—)D F3

15 h
Bl Tr— D'

F Ty — D'Tris

Table 1: Differentials arising from the multiplications in Figures @, BO, and BTl
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multiplications:
j 030201 J 1j 030201 15
Al B2, AT T2
j 030201 7 /j 030201 15 .
E’l )HZ-"-]. EZ )HZ-"-]. (Z—l,...,k]_2)
7 030201 7 4 030201 7
Ekj—l — D Ekj—l — D (3 27)
15 0302012 J /5 03020123 7 .
Al B0, Al 372008, ]
/3 0302012 J /3 03020123 J .
Ei —)Gi+2 Ei —>Hz+2 (Z_lﬁ""kj_?’)
2 03020123 7
Bl , ZE5ED

If k; = 1, then we simply have A7 2275 DJ and A =25 D', Finally, from Figure
BO, if vy; 5, = 1, then there are multiplications A7 275 DM and A7 2224 D',
Notice that all of these multiplications come out of A7, A E? or EV all of which
are paired with {Z,...,Zon} rather than {Ho, ..., Hony} in (B2H). It follows that
each group Z;”* is actually a direct summand as a chain complex. We shall see that
® 7

the generator of the total homology comes from @ ; Z;; S

vort SO we may ignore

nst?’
each of these summands. Furthermore, if we define Up s, Vpar, and Wp analogously
to upp, Upm, and w, above, then we obtain differentials from A’=p, A=Zp, E!=Zp,
and/or E; = p to elements of ZM vert and Zyngy whenever Up ar, Vpar, or Wp is nonzero.

Specifically:

o If Vpr =1, then there are differentials

AJ:P — H]KK]W A/']E — HUKK]%
EBlZp — HI K EiZp — HL KM (i=1,....k—2) (3.28)
Eij_lEP - DjK]\K/[M Elli-—lEP - D/]K]\K/[M

if k;, > 1, and A’Zp — DjKMM and A"ZEp — D’JKKM if k; = 1. Also, if
vgj, = 1, then there are differentials A/Zp — D"K}! ~and A"Zp — DK} .

Similarly, if Wp = 1 and ¢t < 27(K), then we obtain similar differentials going
into Zunst, replacing Ky by Ig.
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o If Upyr =1, then there are differentials
ATZp — HIKY

E'Zp — HL KM (i=1,... k —3) (3.29)
B} ,Zp — DK}

Similarly, if Wp = 1 and ¢ > 27(K), then we obtain similar differentials going
into Zyne, replacing KM by I';.

e Finally, if Wp =1 and ¢t = 27(K), there are differentials

A/jEP — G%H()
y , (3.30)
EZ-JEP — G§+2H0 (Z = 1, .. .,]{Zj - 3)

3.3.4 Computation of 7(D;4(K,t))

We now describe the edge cancellations that occur in each of the pieces. Recall
that we must cancel edges in increasing order of the amount by which they drop
filtration level. We shall see that a single generator survives. The filtration level of
this generator, by definition, is 7(Ds(K,1)).

We start by canceling the filtration-preserving edges in Z 7J Note that there are

vert*
are no other edges into B7K?. , or ﬂ/j K. ,» 50 eliminating the edges coming from these

does not introduce any new edges. If Vo, 1, M =1, or if Wy, 1 = 1 and t < 27(K),

—_
—

then canceling the edges A7Z5; 1 — B'KY, and E/ — F/K{, introduces some new
edges, which all reduce filtration level by 2. Note also that the filtration-preserving
edges A/Zy; 1 — DK, (j > 0) in Table [are eliminated, since B/Ky has no other
incoming edges when j > 0.

In 77

*nsts mutatis

when ¢ < 27(K), we perform the same cancellations as in Z27,

mutandis. When t > 27(K), there are 2k; filtration-preserving edges to cancel when
j > 0 (namely, BYT® — C*H, and F'T® — GH, for i = 1,...,k; — 1), but

only 2kg — 1 such edges in Z° .. since the generator CoHy does not exist. Thus,

unst’

the generator B°T'F survives after these cancellations. Also, note that canceling
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BT — CH, and F/T"® — G/Hy may introduce some new differentials using the
arrows in Table [, but they all filtration level by 2.
When t = 27(K), the only generator in ZC

however, that by (B2H), there is a differential A°Zy — H{K}! for any M with
Vo.m = 1. All the generators of Z7

unst

that survives is A°Z;. Notice,

for j > 0 are canceled.
We have now canceled all edges that preserve the filtration level, so we now begin

canceling differentials that drop filtration level by 1. Specifically, in Z27, | cancel every

vert)

horizontal edge X’ — X, starting at the top of Figure B and working down. We use

the following key observations:

e If X is in filtration level 0 and X’ is in level 1, then X has no other incoming
edges, since by induction we have already eliminated everything above X and
X', and Table [ and Equations [B28) and (B29) contain no differentials that

go into A7=y;, E/Z,;, B'K{, or F/K{ from elsewhere.

e If X is in filtration level —1 and X’ is in level 0, then X’ has no other outgoing
edges, since Table [l and Equations (B28) and (B2Z9) contain no differentials
that go out of H’KY or DVK.

Thus, we can completely cancel Z;]e’{t.
If t = 27(K), we have now eliminated all generators except A°Z,, which is in
filtration level 0, so 7(Dy,(K,t)) = 0 when s < 27(J) and t = 27(K).

If t > 27(K), we proceed with Z7 . just as with Z:/

vert®

When j > 0, all generators
in cancel; when j = 0, the one surviving generator is B°T', which is in filtration level
0. Thus, 7(Dy,(K,t)) =0 when s < 27(J) and t > 27(K).

If t < 27(K), when j > 0, we start by canceling C"Hy — C’H, and proceeding
downward in Figure B4l as before, eliminating all generators. When j = 0, we start
by canceling G/lj Hy — G{HO and proceed downward, and we thus see that the only
surviving generator is C"”Hy, which is in filtration level 1. Thus, (D, (K,t)) = 1
when s < 27(J) and t < 27(K).
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Finally, we must return to the case where s = 27(J). Recall that )y in this
case consists of three generators, all in filtration level 0, as in (B24]). For j > 0, the
definitions of Z2/,, Z}{(’i, and Z7 . go through the same way, and we see again that all

of the resulting generators eventually cancel. It follows that the surviving generator

must be in filtration level 0, so 7(D;s(K,t)) = 0 whenever s = 27(K). O

3.4 Other results regarding D (K, 1)

Prior to Hedden’s complete computation of AFK and 7 of all twisted Whitehead
doubles [20], Livingston and Naik [39] used the formal properties of 7 to understand

the asymptotic behavior of 7 for large values of the twisting parameter:

Theorem 3.10. Suppose v is any homomorphism from the smooth knot concordance
group to Z with the properties that |v(K)| < g4(K) and v(T,,) = (p — 1)(¢ — 1)/2,
where p,q > 0 and T,, denotes the (p,q) torus knot. Then for any knot K, there
exists t,(K) € Z such that

1 t<t,(K)
v(Wh (K, ) =

0 t>t,(K)
and TB(K) < t,(K) < —=TB(—K) (where TB(K) denotes the maximal Thurston-

Bennequin number of K ).

Two invariants satisfying the hypotheses of Theorem are 7(K) and —s(K)/2,
a renormalization of Rasmussen’s concordance invariant s(K') [55]. Around the same
time, Hedden and Ording [21] proved that these two invariants are not equal by show-
ing that 7(Wh,(T53,2)) = 0 while s(Why(Ty3,2)) = —2, disproving a conjecture of
Rasmussen. Later, Hedden [20] showed that ¢,(K) = 27(K) — 1 for any knot K.
Finding a general formula for the s invariant of Whitehead doubles remains an open

question.
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We may extend the techniques of Livingston and Naik to study knots of the form
D, (K, t) as well.

Proposition 3.11. Let v be an invariant satisfying the hypotheses of Theorem [F10,
and fix knots J and K.

1. If s <TB(J) andt < TB(K), then v(D;s(K,t)) =1. Ifs > —=TB(—J) and
t > -TB(—-K), then v(D;4(K,t)) = —1.

2. For fized s (resp. t), the function t — v(D;s(K,t)) (resp. s — v(D;s(K,t))) is

non-increasing and has as its image either {—1,0}, {0}, or {0, 1}.

Proof. The proof is very similar to that of [39, Theorem 2].

When s < TB(J) and t < TB(K), the annuli A(J,s) and A(K,t) are quasi-
positive, so Dy (K,t) is a strongly quasipositive knot with genus 1, and hence
v(Dys(K,t)) =1 as in [B6]. Mirroring gives the second half of (1).

The non-increasing statement in (2) follows from the fact that D (K, ¢t) is ob-
tained from D;,_1(K,t) or D;4(K,t—1) by changing a positive crossing to a negative
crossing, which can only preserve or decrease v [36]. Also, since D 4(K,t) is related to
D;yg(K,t)or Dy (K,t) (for any s’ or t') by a band modification, each of the two func-
tions can assume at most two values, either —1 and 0 or 0 and —1. Finally, we rule out
the possibility that either of the functions in (1) is constant and nonzero. Suppose,
without loss of generality, that v(D;(K,t)) =1 for a fixed s and all ¢. In particular,
v(Djs(K,=TB(—K))) = 1. On the other hand, v(D;_rp—s (K, -TB(-K))) = —1,
which contradicts the fact that the image of the function s +— v(D (K, =T B(—K)))

contains at most two consecutive integers. 0

On the other hand, the behavior of v(D (K, t) for small s and ¢ (specifically, when
TB(J) <s < —=TB(—=J) or TB(K) <t < =TB(—K)) may be more complicated
than the simple behavior of 7 given by Theorem [[T1

In another direction, we may also look for instances when D (K, t) is actu-

ally smoothly slice. The following proposition generalizes Casson’s argument [25,
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Figure 37: The Seifert surface ' with the curve ~,, in the cases where p < 0 (left)
and p > 0 (right).

page 227] that the p(p + 1)-twisted positive Whitehead double of the (p,p + 1) torus
knot is smoothly slice. For an oriented knot K and relatively prime integers p, q, let

Cp.q(K) denote the (p,q)-cable of K. (Note that C, ,(K)" = C_, _,(K) = C,4(K")

and Cp(K) = Cp—y(K).)

Proposition 3.12. Let K be any knot, and let p,t € Z. If J is any knot that is

smoothly concordant to —Cppii1(K), then D j_poua1) (K, t) is smoothly slice.

Proof. Let F be the Seifert surface for D (/K t) shown in Figure B, and let 7, be a
curve that winds once around the band tied into J and p times around the band tied
into /&, as indicated. The knot type of 7, is C}, pi41(K), and the surface framing on ~,
is s +p+ p*t. Thus, if J is smoothly concordant to —C), ,41(K) and s = —p(pt + 1),
we may surger F' along 7, in D* along a smooth slice disk for J#C), ,;11(K), resulting
in a smooth slice disk for D;4(K,1).

If we reverse the crossing between the two bands of F', we obtain the result with

the opposite signs. O

Proposition is quite interesting in light of very recent work of Hom [23], who
found a general formula for the 7 invariant of all cable knots in terms of p, ¢, 7(K),
and an invariant €(K) € {—1,0, 1} that depends solely on the knot Floer complex of
K. She proved:

Theorem 3.13. Let K be a knot, and let p > 0. Then:
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o Ife(K) =1, then 7(Cpq(K)) = pr(K) + 5(p — 1)(q — 1) for all q.
o Ife(K) =—1, then 7(Cpy(K)) = pr(K) + 3(p — 1)(g + 1) for all q.
o [fe(K)=0, then 7(K) =0, and

sp—=1)(g+1) ¢<0

(p—1)(q—-1) ¢>0.

T(Cpy(K)) =

N[

We may use Theorem to compute the value of 7 for the cable knots appearing
in Proposition B2, where we take ¢ = 27(K).

Corollary 3.14. For any knot K, if either ¢(K) > 0 and p > 0, or ¢(K) < 0 and
p < 0, there exists a knot J such that D joryy—p(K,27(K)) is smoothly slice, while

T(Dyary-p(K, 21(K) = £)) # 0.
Proof. Suppose that €(K) =1 and p > 0. Set J = —C} 2pr(k)+1(/), so that:

27(J) = p = =27(Cp2pr()+1(K)) — p
= —2p7(K) — (p— 1)(2p7(K)) —p
= —2p°7(K) —p
= —p(2p7(K) +1).

By Proposition BT D jar5)—p(K,27(K)) is smoothly slice. On the other hand,
T(Djor()—p(K,27(K) — 1) = 1 by Theorem [Tl The case where ¢(K) = —1 and

p < 0 follows by mirroring, since ¢(K) = —e(K). Finally, if ¢(K) = 0, we set
J=—-Co1(K)ifp>0and J=-C_, _;ifp <O0. O

Theorem [l says that the set {(s,t) € Z? | D;4(K,t) = 0} always has the
same shape for any J and K, up to translation: the union of the second and fourth
quadrants of the Z? lattice, including both axes. Corollary BI4implies that any point
on the boundary of this region may be realized by a smoothly slice knot D (K1)

for suitable choices of J and K.
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Finally, recall that the main idea of the proof of Theorem [l is that only the
form of the unstable chains in C/PT)(X %) and @(Xf() matters for the computa-
tion of of 7(D;4(K,t)). Petkova [b4] and Hom [23] have observed similar behavior
in using bordered Heegaard Floer homology to compute 7(C, ,(K)). The invariant
€(K) defined by Hom describes the structure of the part of (TFT)(X}}) “near” the
unstable chain. Specifically, when we take vertically and horizontally reduced bases
{50, e ,fgn} and {7, . .., 7o, } for CFK™(K), we may arrange that &0 = 7j; for some 1.
The cases ¢(K) = 1, ¢(K) = —1, and ¢(K) = 0 correspond, respectively, to whether
1 is even and positive, odd and positive, or zero. Within each case, Hom showed
that only the form of the unstable chain matters for computing 7(C, ,(K)). Hom,
Petkova, Hedden, and the author are presently investigating how to extend this idea

to study the behavior of 7 for arbitrary satellite knots.
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Chapter 4

Heegaard Floer homology of cyclic

branched covers

In this chapter, we present some of our work regarding the Heegaard Floer homology
of cyclic branched covers, particularly with a view towards computing concordance
obstructions.

Given a knot K C 8% and m € N, let p,,: 3,,(K) — S denote the m-fold cyclic
branched cover of S® with downstairs branch set K, and let K,, = p;'(K). The
Heegaard Floer homology of ¥,,(K) and the knot Floer homology of K,, have been
the subject of extensive research, especially in the case where m = 2.

The main fact that distinguishes double branched covers is the skein exact triangle.
Suppose K, and K, are obtained as the two resolutions of a crossing in a diagram of

K, asin FigureBY (Necessarily, one of these is a two-component link.) The manifolds

ARATA

Figure 38: The 0- and 1- resolutions of a crossing.
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Yo (Ko) and ¥9(Ky) are then obtained as 0- and 1-surgery, respectively, on a certain

framed knot v C 35(K). Therefore, there is an exact sequence
- HF(25(K)) — HF(S5(Kp)) — HF(S(K;)) — HF(So(K)) — ... (4.1)

Using this sequence, Ozsvath and Szab6 [62] showed that the double branched cover
of a quasi-alternating knot or link is always an L-spacell Moreover, by iterating
the exact sequence at all of the crossings of a diagram for K, they showed that
there is a spectral sequence converging to ﬁ?(EﬂK )) whose E, page is the reduced
Khovanov homology of the mirror of K. Generalizations and applications of this
spectral sequence have been one of the most active subjects of research in Floer
homology in recent years; see, e.g., [I7, [I, B, 22, B7].

To describe the concordance obstructions arising from branched covers, we briefly
recall some facts about a more powerful variant of Heegaard Floer homology, known
as HF'*. We use F = [, coefficients for simplicity. For an oriented 3-manifold Y, the

invariant HF"(Y) is an F[U]-module that splits as a direct sum

HFN(Y)= @ HF"(Y,s).
5€Spin®(Y)
Henceforth we assume Y is a rational homology sphere. Then HF*(Y) has an abso-
lute Q-grading, restricting to a relative Z-grading on each summand HF* (Y, s), such
that multiplication by U has degree —2. For each spin® structure s, the summand
HF* (Y, s) is isomorphic to a copy of F[U, U] /UF[U] plus a finitely generated group.
The correction term d(Y,s) € Q is defined as the grading of the lowest-degree gen-
erator element of F[U, U~']/UF[U]. The correction terms satisfy the following three

properties:

IThe set of quasi-alternating links, Q, is characterized by the following properties: (1) the unknot
isin Q; (2) if K, Ky, and K are related as in Figure BRland satisfy det(K) = det(Ky)+det(K7), and
Ko and K; are in Q, then K is in Q. A rational homology sphere Y is an L-space if ﬁf‘(Y, s) =17
for each s € Spin“(Y").
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1. For any Y,s, d(—Y,s) = —d(Y, s).

2. If 5, € Spin®(Y;) and s, € Spin®(Y3), then d(Y1#Ys, s1#s2) = d(Y1,81) +
d(}/g,ﬁg).

3. If § is the conjugate spin® structure of s, then d(Y,s) = d(Y, s).
Finally, there is an exact sequence
- — HF.(Y,5) & HFF(Y,5) 5 HF (Y, 8) — HF,_1(Y,8) — ...

It follows that Y is an L-space if and only if HF(Y,s) = F[U, U~ /UF[U] for all
s € Spin“(Y), and if so, the grading of the generator of }/IF(Y, s)is d(Y,s).
The (hat) knot Floer homology of a nulhomologous knot K C Y splits as a direct

suin

HFK(Y,K)= €D HFK(Y,K,s).

s€Spin®(Y)

The group has a Q-graded Maslov grading (restricting to a relative Z-grading in each
summand) and a Z-valued Alexander grading. Just as with knots in S3, there is a
spectral sequence from }TFT((Y, K,s) to }/IF(Y, s), coming from the Alexander grading
filtration. The invariant 7(Y, K, s) is defined as the lowest filtration level whose image
in ﬁF(Y, s) contains an element that maps under ¢ to the lowest-degree generator of
F[U, U /UF[U] € HF*(Y,s). Much like with knots in S?, these 7 invariants provide
genus bounds on smoothly embedded surfaces in manifolds bounded by Y, and they
satisfy mirroring and additivity properties just like those of the correction terms.

For any knot K C S® and any prime power m = p°, the branched cover %,,(K)
is a rational homology sphere with no p-torsion in H,(%,,(K);Z). If A C D*is a
smooth slice disk for K, then the m-fold branched cover of D* branched over A,
Y (A), is a smooth rational homology 4-ball whose boundary is ,,(K). A simple
argument using the long exact sequence for cohomology shows that the order of
H?(%,,(K)) is a perfect square, say k? and that the image of the restriction map
H?(%,,(A)) — H*(%,,(K)) has order k. If we identify H?*(%,,(K)) with the set of
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spin® structures on %,,(K), this implies that the spin® structures that extend over
Y (A) form a subset of square root order. The basic properties of the d and 7

invariants imply:

Theorem 4.1. If K C S? is smoothly slice and m is a prime power, then there exists
an H2(S,(K); Z)-affine subspace S C Spin®(X,,(K)), with |S|> = [Spin®(Z,(K))|,
such that for each s € S, d(Xp(K),8) = 0 and 7(3(K), K, s) = 0.

The statement about d was proven by Jabuka and Naik [24]. The statement about
7 was proven by Grigsby, Ruberman, and Strle [T6], adapting Ozsvath and Szabd’s
original argument concerning 7 for knots in S® [46]. This theorem is formally similar
to the work of Casson and Gordon [, whose sliceness obstructions also rely on square-
root-order subgroups of H?(3,,(K);Z) obtained in the same manner. However, the
Casson—Gordon invariants obstruct topological sliceness, while the Heegaard Floer
ones obstruct only smooth sliceness.

While Theorem ETl applies to cyclic branched covers of any prime power multi-
plicity, it has primarily been used in the m = 2 case because the d invariants of double
branched covers of low-crossing knots can often be computed using the skein exact

triangle for HF ", as will be described below.

4.1 Obstructing finite concordance order via d in-
variants

In this section, we restrict to the case where m = 2.

Jabuka and Naik [24] used the part of Theorem EIIl concerning d invariants to
obtain lower bounds on the concordance orders of certain small knots K. Specifically,
they showed that some knots that represent torsion in the algebraic concordance
group (the image of the map ¥, described in the Introduction) have order > 4 in

Ci. By computing all the d invariants of ¥5(K), they found the d invariants of
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Yo(#1K) = #43,(K) using additivity and explicitly checked Theorem ETl for every
square-root order subgroup of H?(Xy(#*K;Z)) to show that K has concordance order
greater than 4. Of course, the same techniques could be used to obstruct a knot from
having any particular finite order, but the number of subgroups to consider grows
rapidly.

Grigsby, Ruberman, and Strle [I6] then showed how to show that a knot has
infinite concordance order. Specifically, they defined numerical invariants D,(K)
and 7,(K) (¢ € N), coming from the d and 7 invariants of ¥o(K). Essentially, the
D,(K) control the behavior of d(#"¥2(K),s) on all square-root-order subgroups of
Spin®(#"%y(K)), and the 7, do the same for 7(#"%5(K), #" Ky, s). They proved:

Theorem 4.2. Let K be a knot in S3. Let p be prime, and suppose that p™ is the
largest power of p that divides det(K). If K has finite concordance order, then for
each integer 0 < e < | 21| we have Dye(K) = T, (K) = 0.

Using this theorem and an algorithm specific to two-bridge knots, Grigsby, Ruber-
man, and Strle showed that all two-bridge knots through 12 crossings whose smooth
concordance orders were previously unknown have infinite order.

Let 59 € Spin“(X2(K)) denote the unique spin structure on Y5 (K'), which is unique
because H?(35(K);Zy) = 0. If K bounds a slice disk A, then sy always extends over
¥5(A), so the set S C Spin(X2(K)) provided by Theorem BTl must contain sg. The
Manolescu-Owens concordance invariant §(K') € Z is defined as 2d(2,(K), s0) [E0].

If H*(X9(K);Z) is cyclic, it contains a unique subgroup G, of order g for each
q dividing det K. In this case, the Grigsby—Ruberman-Strle invariants D,(K) and
7,(K) are defined as

s€50+Gyg
%(K) = Z T(ZQ(K)>K2>5)>
s€50+Gyg

and they are both 0 for any ¢ not dividing det K. For the general case, see [I6,
Definition 4.1].



CHAPTER 4. CYCLIC BRANCHED COVERS 105

930 933 944 10ss 1060 1091 10102 10119
10555 1058 10y6s  1lay  1las  1lag  1lay  1lag
1lase  1lasy 1lass 1lagy 1layr  1lasy  1lasg  1lagr
1la7s  1layg 1lagy 1lags 1lags  1lajgs 1lajge 1laqis
1laygs 1laiss 1lajgo 1laer 1laes 1lagzg 1laigy 1lagsg
1lagss  1lagsg 1lagsy 1lages 1lagrg 1lagrs  1lagsy 1lasss
1lasgg 1lasgy 1lasps 1lasis 1lassg 1lnsy  1lngs 1lngg
1lnss  1lnss 1lngs 1lniygy 1lnge 1lnge 1lnggg 1lnags

1 ]_’)’1,157 11n165

Table 2: Knots through eleven crossings with previously unknown concordance order.

As of May 2008, the smooth concordance orders of sixty-six knots through eleven
crossings, listed in Table @, were unknown according to Cha and Livingston’s database

KnotInfo [6]. By computing the D, invariants of all of these knots, we proved:

Theorem 4.3. Each of the forty-five knots listed in Table[d has at least one nonzero
D, invariant and therefore has infinite concordance order. For the remaining knots

listed in Table[d, all of the D, invariants vanish.

We conclude this section by explaining the computations used in proving Theorem
I3 We use techniques of Ozsvath and Szabé A7, B2, BI), which were also used by
Jabuka and Naik [24].

Given a projection of K, let G be its Goeritz matrix (defined in [52), section 3]).
Let |G| denote the rank of G. The double cover Yy bounds a 4-manifold X whose
intersection form on Hy, @ = Qx,, is given by G (with respect to a basis of spheres).
Let Char(G) C H?(X¢;Z) denote the set of characteristic vectors for @, i.e., vectors
a € H*(Xg;Z) such that (a,v) = Q(v,v) (mod 2) for every v € Hy(Xg;Z). The

restriction map i*: H?(Xg) — H?*(Yx) partitions Char(G) into equivalence classes
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Knot K | det(K) | Nonzero D, Knot K | det(K) Nonzero D,
930 93 D53 =4 11ai70 185 Dy = —4
933 61 Dgy =4 11a;g9 149 Diyg = —12
944 17 D17 =4 11asss 173 Dio1 = 16
1055 65 D3 =4 11agy 117 D1z =—4
1060 85 Dy =4 11ags7 97 Dy; = —8
10102 73 Dqg = —12 11ages 109 Digy = 24
10119 101 Dio1 = —16 11asrg 137 Dis7 =12
10135 135 Ds; =4 11agze 149 Digo = 12
11ay 97 Dg; = —24 11aggsr 181 Digy = —12
1las 117 Dy = —4 ags | 205 | Ds=4,Dy =4
1ay, 113 Dy = 12 lagse | 145 Dy = 4
11agy 157 D57 =12 11asgo 153 Dy =—4
11ag 157 D57 =12 11asos 149 Digg = 36
ag, | 149 Dygo = 12 1lags | 157 Dysr = 12
11lase 137 D37 = 16 11asso 185 Ds =4,Dg7; =
11ase 109 Digg = —8 11nyg 29 Doy = —8
Mag; | 125 Dy = —4 11155 37 Dy = —8
as | 145 Dyy = —4 1115 61 Dgy = 12
11ago 137 D37 = —12 11n419 41 Dy = —12
11ags 101 Dipy = —8 11n;14 23 D53 = —4
MNags | 145 | Ds=4,Dyy=4| | 11nys 53 Doy = 12
11aq60 145 Doy = —4 11n465 85 Dy =—4
11ai67 113 Dyy3 =12

Table 3: Knots in Table Bl with non-vanishing D, invariants.
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Char(G, s) corresponding to the spin® structures on Yx. Given certain hypotheses
on G, including that G is negative-definite, Ozsvath and Szabé 7, Corollary 1.5]

proved that the correction terms for HF (Y ) are given by the formula

2
d(Yi,s) = max o +16]
aeChar(G,s) 4

(4.2)
The vectors in each equivalence class that realize this maximum may be determined
algorithmically. Moreover, since H*(Yy;Z) = coker(G), we may easily identify the
affine structure on Spin“(Yx) (specifically, which spin® structures are in the distin-
guished subgroup G,) using the Smith normal form for G.

As shown in [52], the formula () holds whenever G is computed from an al-
ternating projection. More generally, if K admits a projection that is alternating
except in a region that consists of left-handed twists, Ozsvath and Szab6 [B1l] show
how to use Kirby calculus on X¢ to obtain a matrix G for @ that satisfies the cor-
rect hypotheses. (See also Jabuka-Naik [24] for a concise explanation.) All of the
non-alternating knots in Table Bl satisfy this hypothesis, so we may compute the D,

invariants as described above.

4.2 Computing H/F\K(Zm(K), K)

In this section, we describe an algorithm for computing the knot Floer homology
group }TFT((Z,”(K), K,,) for any knot K C S*. This material appeared in [31].

Any knot K C S? can be represented by means of a grid diagram, consisting of an
n x n grid in which the centers of certain squares are marked X or O, such that each
row and each column contains exactly one X and one O. To recover a knot projection,
draw an arc from the X to the O in each column and from the O to the X in each
row, making the vertical strand pass over the horizontal strand at each crossing. If
we identify opposite edges of the square, we obtain a multi-pointed Heegaard diagram
H=(T? «,B,w,z) for (S?, K), where the « circles are the horizontal grid lines, the

3 circles are the vertical grid lines, and the w (resp. z) basepoints are placed in the
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regions marked O (resp. X). Manolescu, Ozsvath, and Sarkar [41] showed that the
knot Floer complex for such Heegaard diagrams is completely combinatorial, with the
differential counting embedded rectangles. Subsequently, Manolescu, Ozsvath, Szabd,
and Thurston [E2] used grid diagrams to give a completely combinatorial definition
and proof of invariance for knot (and link) Floer homology.

Let m > 2, and let T be the surface obtained by gluing together m copies of T
(denoted Ty, . .., T,,—1) along branch cuts connecting the X and the O in each column.
Specifically, in each column, if the X is above the O, then glue the left side of the
branch cut in 7}, to the right side of the same cut in Ty, (indices modulo m); if the
O is above the X, then glue the left side of the branch cut in T} to the right side of
the same cut in T},_;. The obvious projection 7: T — T is an m-fold cyclic branched
cover, branched around the marked points. Each « or 3 circle in T intersects the
branch cuts a total of zero times algebraically and therefore has m distinct lifts to
T, and each lift of each « circle intersects exactly one lift of each 3 circle. (We will
describe these intersections more explicitly in Subsection EEZ2 )

Denote by fR the set of embedded rectangles in 1" whose lower and upper edges
are arcs of a circles, whose left and right edges are arcs of  circles, and which do
not contain any marked points in their interior. Each rectangle in $R has m distinct
lifts to T (possibly passing through the branch cuts as in Figure Bd); denote the set
of such lifts by fR.

Let & be the set of unordered mn-tuples x of intersection points between the lifts
of @ and [ circles in T such that each lift contains exactly one point of x. (We will
give a more explicit characterization of the elements of & later.) Let C' be the Fo-
vector space generated by &. Define a differential dy on C' by making the coefficient

of y in dy(x) nonzero if and only if the following conditions hold:

e All but two of the points in x are also in y.

e There is a rectangle R € R whose lower-left and upper-right corners are in x,

whose upper-left and lower-right corners are in y, and which does not contain
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Figure 39: A lifted grid diagram H = (7, d,B,\TV,Z) for (X3(K), K,,), where K is
the right-handed trefoil. The solid and dashed lines represent different lifts of the «
(horizontal/red) and [ (vertical/blue) circles. The points marked a, b, and ¢ belong
to generators a, b, and c, respectively. The dark shaded region is a rectangle from a

to b; the light shaded region is an octagon from a to c.

any point of x in its interior.

In Section EZ2 we shall define two gradings (Alexander and Maslov) on C, as
well as a decomposition of C' as a direct sum of complexes corresponding to spin®

structures on X,,(K). We shall prove the following theorem:

Theorem 4.4. The complex (C,dy) just described is equal to the knot Floer com-
plex of a multi-pointed Heegaard diagram for (2,(K), K,). Therefore, H,(C,dy) =
}TFT{(Z,”(K), Kp) @ VE™1 where V = Fy @ Fy with generators in bigradings (0,0)
and (—1,—1).

We wrote a computer program (in C++ and Mathematica) that implements the
computation of (C,dy) in the case where m = 2. Using this program, we were able

to compute ITFT{(EQ(K ), K3) for over fifty three-bridge knots. (Grigsby [14] found a

2Recall that if we have a genus-g Heegaard diagram for a pair (Y, K) with g + k — 1 « circles,
g+ k — 1 3 circles, and basepoints wy, ..., wg and 21, ..., 2, the homology of the Floer complex in

which we count only disks that miss all the basepoint