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Abstract

Applications of Heegaard Floer Homology to Knot and Link

Concordance

Adam Simon Levine

We consider several applications of Heegaard Floer homology to the study of knot

and link concordance.

Using the techniques of bordered Heegaard Floer homology developed recently

by Lipshitz, Ozsváth, and Thurston, we compute the concordance invariant τ for a

family of satellite knots that generalizes Whitehead doubles. We use this computation

to show that the all-positive Whitehead doubles of certain links obtained by iterated

Bing doubling are not smoothly slice.

We also present an algorithm for computing the knot Floer homology of the in-

verse image of a knot in its m-fold cyclic branched cover. Using this algorithm, as well

as earlier work of Ozsváth and Szabó on the Floer homology of double branched cov-

ers, we determine the smooth concordance orders of numerous knots through eleven

crossings.
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CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

A knot in the 3-sphere is called topologically slice if it bounds a locally flatly embed-

ded disk in the 4-ball, and smoothly slice if the disk can be taken to be smoothly

embedded. Two knots are called (topologically or smoothly) concordant if they are

the ends of an embedded annulus in S3 × I; thus, a knot is slice if and only if it is

concordant to the unknot. More generally, a link is (topologically or smoothly) slice

if it bounds a disjoint union of appropriately embedded disks. The study of con-

cordance — especially regarding the relationship between the notions of topological

and smooth sliceness — is one of the major areas of active research in knot theory,

and it is closely tied to the perplexing differences between topological and smooth

4-manifold theory.

The study of concordance began in the 1950s with the work of Fox and Milnor [10],

who showed that many classical knot invariants, such as the Alexander polynomial

and the signature, can be used to obstruct a knot from being slice. In the 1960s and

1970s, the work of Levine [33, 32], Casson–Gordon [4], and many others revealed many

more sophisticated invariants that obstruct knots from being slice. These authors were

primarily interested in smooth concordance, since the only known constructions of

slice disks were smooth; nevertheless, their tools are essentially descriptions of the

algebraic topology of the knot complement, so they only obstruct a knot from being
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Wh+(K) Wh−(K) BD(K)

Figure 1: The positive and negative Whitehead doubles and the Bing double of the

figure-eight knot.

topologically slice.

Two major revolutions in four-dimensional topology in the 1980s began to illus-

trate the vast differences between topological and smooth concordance. As part of

his major work on topological 4-manifolds and surgery, Freedman [11] showed that

any knot whose Alexander polynomial is 1 is topologically slice, even though it is

difficult to describe the slice disks explicitly. In particular, the untwisted, positive

and negative Whitehead doubles of any knot K, denoted Wh±(K) (Figure 1), are

topologically slice. Moreover, some of the major outstanding conjectures regarding

topological 4-manifolds — notably, whether the surgery techniques Freedman used to

classify simply-connected 4-manifolds can be extended to 4-manifolds with arbitrary

fundamental group — are equivalent to conjectures about the sliceness of particular

families of links in S3.

Around the same time, the advent of Donaldson’s gauge theory made it possible to

show that some of Freedman’s examples of topologically slice knots are not smoothly

slice. Akbulut [unpublished] first proved in 1983 that the positive, untwisted White-

head double of the right-handed trefoil is not smoothly slice. Later, using results of

Kronheimer and Mrowka on Seiberg–Witten theory, Rudolph [60] showed that any

nontrivial knot that is strongly quasipositive cannot be smoothly slice. In partic-

ular, the positive, untwisted Whitehead double of a strongly quasipositive knot is

strongly quasipositive; thus, by induction, any iterated positive Whitehead double of
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a strongly quasipositive knot is topologically but not smoothly slice. Bižaca [2] used

this result to give explicit constructions of exotic smooth structures on R4.

In the 2000s, Ozsváth and Szabó [50, 53] introduced Heegaard Floer homology, a

package of invariants for 3- and 4-dimensional manifolds that are conjecturally equiv-

alent to earlier gauge-theoretic invariants but whose construction is much more topo-

logical in flavor. In its simplest form, given a Heegaard diagram H for a 3-manifold

Y (a certain combinatorial description of the manifold), the theory assigns a chain

complex ĈF(H) whose chain homotopy type is independent of the choice of diagram;

thus, the homology ĤF(Y ) = H∗(ĈF(H)) is an invariant of the 3-manifold. A 4-

dimensional cobordism between two 3-manifolds induces a well-defined map between

their Heegaard Floer homology groups. Ozsváth and Szabó [49] and Rasmussen [56]

also showed that a nulhomologous knot K ⊂ Y induces a filtration on the chain com-

plex of a suitably defined Heegaard diagram, yielding an knot invariant ĤFK(Y, K)

that is the E1 page of a spectral sequence converging to ĤF(Y ). For knots in S3, the

invariant ĤFK(S3, K) categorifies the Alexander polynomial ∆K , and it is powerful

enough to detect the unknot [48] and whether or not K is fibered [12, 44].

Furthermore, the spectral sequence from ĤFK(S3, K) to ĤF(S3) ∼= Z provides an

integer-valued concordance invariant τ(K), which yields a lower bound on genus of

smooth surfaces in the four-ball bounded by K: |τ(K)| ≤ g4(K) [46]. In particular,

any smoothly slice knot must have τ(K) = 0. The τ invariant obstructs many topo-

logically slice knots from being smoothly slice. For example, Hedden [20] computed

the value of τ for all twisted Whitehead doubles in terms of τ of the original knot:

τ(Wh+(K, t)) =





1 t < 2τ(K)

0 t ≥ 2τ(K).

(1.1)

(An analogous formula for negative Whitehead doubles follows from the fact that

τ(K̄) = −τ(K).) In particular, if τ(K) > 0, then τ(Wh+(K, 0)) = 1, so Wh+(K, 0)

(the untwisted Whitehead double of K) is not smoothly slice. Since the τ invariant of

a strongly quasipositive knot is equal to its genus [36], Rudolph’s result follows from
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(a) (b)

J, sJ, s K, tK, t

Figure 2: (a) The knot DJ,s(K, t). (b) A genus-1 Seifert surface for DJ,s(K, t).

Hedden’s.

We consider the following generalization of Whitehead doubling. For knots J, K

and integers s, t, let DJ,s(K, t) denote the knot shown in Figure 2(a); the box marked

K, t (resp. J, s) indicates that the strands are tied along t-framed (resp. s-framed)

parallel copies of the tangle K r {pt} (resp. J r {pt}. (We give a more formal

definition in Chapter 2.) If J is the unknot and s = ±1, then DJ,s(K, t) is the

t-twisted ∓ Whitehead double of K.

A genus-1 Seifert surface for DJ,s(K, t) is shown in Figure 2(b). From the Seifert

form of this surface, we can compute that the Alexander polynomial of DJ,s(K, t) is

∆DJ,s(K,t)(T ) = stT + (1− 2st) + stT−1.

In particular, this equals 1 whenever s = 0 or t = 0. By Freedman’s theorem,

DJ,s(K, 0) is therefore topologically slice. Moreover, if K is smoothly slice, then

DJ,s(K, 0) is smoothly slice for any (J, s). To see this, perform a ribbon move to

eliminate the band that is tied into J ; the resulting two-component link, consisting of

two parallel copies of K with linking number 0, is then the boundary of two parallel

copies of a slice disk for K. There is a famous conjecture (Problem 1.38 on Kirby’s

problem list [26]) that the untwisted Whitehead double of K is smoothly slice if and

only if K is smoothly slice; this conjecture has many potential generalizations in

terms of DJ,s(K, 0) satellites.

As a partial result in this direction, we prove the following theorem:
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Theorem 1.1. Let J and K be knots, and let s, t ∈ Z. Then

τ(DJ,s(K, t)) =





1 s < 2τ(J) and t < 2τ(K)

−1 s > 2τ(J) and t > 2τ(K)

0 otherwise.

In particular, if τ(K) > 0 and s < 2τ(J), or if τ(K) < 0 and s > 2τ(J), then

DJ,s(K, 0) is topologically but not smoothly slice.

Although the definition of the Heegaard Floer invariants is more topological than

that of the earlier gauge-theoretic invariants, it still depends on studying moduli

spaces of holomorphic curves, which is in general a difficult analytic problem. Many

recent advances [41, 42, 62, 1, 43] make it possible to compute any particular Heegaard

Floer invariant algorithmically, but they require large amounts of computing power

and generally cannot be used to prove statements about infinite families of manifolds

or knots, such as Theorem 1.1. The theory of bordered Heegaard Floer homology,

developed recently by Lipshitz, Ozsváth, and Thurston [35, 34], is well-suited to

this problem. Briefly, it associates to a 3-manifold with boundary a module over an

algebra associated to the boundary, so that if Y = Y1 ∪Y2, the chain complex ĈF(Y )

may be computed as the derived tensor product of the invariants associated to Y1 and

Y2. If a knot K is contained in, say, Y1, then we may obtain the filtration on ĈF(Y )

corresponding to K via a filtration on the algebraic invariant of Y1. (We give a longer

description of this theory in Section 3.1.) Satellite knots such as DJ,s(K, t) are easily

described in terms of such gluings, so the bordered package is useful for computing

the Heegaard Floer invariants of such knots.

Theorem 1.1 has a useful application to the study of Whitehead doubles of links

(which was the author’s original motivation for considering it). Specifically, we con-

sider the Whitehead doubles of links obtained by iterated Bing doubling. Given a

knot K, the (untwisted) Bing double of K is the two-component link BD(K) shown

in Figure 1. More generally, given a link L, we may replace a component by its
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Bing double (contained in a tubular neighborhood of that component), and iterate

this procedure. Bing doubling one component of the Hopf link yields the Borromean

rings; accordingly, we define the family of generalized Borromean links as the set of

all links obtained as iterated Bing doubles of the Hopf link. We prove:

Theorem 1.2. Let L be any link obtained by iterated Bing doubling from either:

1. Any knot K with τ(K) > 0, or

2. The Hopf link.

Then the all-positive Whitehead double of L, Wh+(L), is not smoothly slice.

The links considered in Theorem 1.2 play an important role in the work of Freed-

man on topological 4-manifolds. First, notice that any iterated Bing double of a knot

is a boundary link, i.e., its components bound disjoint Seifert surfaces. (See, e.g.,

[8] for a proof.) Freedman proved that the Whitehead doubles (with any choice of

signs of the clasps) of any boundary link are topologically slice. Theorem 1.2 thus

provides a large family of links that are topologically but not smoothly slice. On the

other hand, the generalized Borromean links are not boundary links, and whether

or not their Whitehead doubles (again, with any signs) are topologically slice is a

major open question in 4-manifold theory, equivalent to the surgery conjecture for

4-manifolds with arbitrary fundamental group. Most experts nowadays conjecture

that Whitehead doubles of generalized Borromean links are not topologically slice,

but the problem remains unsolved after nearly twenty-five years.

The requirement that we consider all-positive Whitehead doubles is necessary for

our proof of Theorem 1.2. By taking mirrors, we also see that the all-negative White-

head doubles of iterated Bing doubles of knots with τ(K) < 0 or of generalized Bor-

romean links are not smoothly slice, but our method always fails when both positive

and negative Whitehead doubling are used. Indeed, all of the gauge-theoretic invari-

ants known to date suffer from the same asymmetry; it is still not known whether,
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for instance, the positive untwisted Whitehead double of the left-handed trefoil is

smoothly slice.

Because the proof of Theorem 1.1 is quite technical, we begin by proving its

corollary, Theorem 1.2, in Chapter 2. (That proof first appeared in [30].) We then

provide an introduction to bordered Heegaard Floer homology and prove Theorem

1.1 in Chapter 3.

In another direction, the Heegaard Floer homology of branched covers of knots

can be used to study the smooth knot concordance group. Because the connect sum of

a knot and its reversed-orientation mirror is always smoothly slice, the set of smooth

concordance classes of oriented knots forms an abelian group C1 under the connect

sum operation. The smooth concordance order of a knot is the order of K in C1. The

structure of the torsion in C1 is of considerable interest, especially by comparison to

the higher-dimensional concordance groups Cn (consisting of concordance classes of

knotted n-dimensional spheres in Sn+2 for n odd). J. Levine [33, 32] showed in the

1960s that for n > 1, certain algebraic invariants coming from Seifert forms completely

determine the concordance class of an n-knot. Specifically, his invariants determine

a map

Φn : Cn → Z∞ ⊕ Z∞
2 ⊕ Z∞

4 ,

which is an isomorphism for n > 1. In contrast, for n = 1, this classification theorem

fails. While Φ1 is surjective, Casson and Gordon [4] found knots that are algebraically

slice but not smoothly (or even topologically) slice and hence represent nontrivial

elements of ker Φ1. Moreover, the only known torsion in C1 is 2-torsion coming from

amphichiral knots; no knots of finite concordance order greater than 2 are known. At

the same time, obstructing knots from representing torsion elements of C1 is difficult.

In particular, integer-valued concordance invariants that are additive under connected

sum — such as the classical signature, τ , the Manolescu–Owens δ invariant [40], and

Rasmussen’s s invariant coming from Khovanov homology [55] — necessarily vanish

for any knot that is torsion.
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Around 2000, Livingston and Naik [37, 38] used Casson–Gordon invariants to find

the first known examples of knots that have algebraic concordance order 4 but infinite

smooth concordance order. Shortly thereafter, Jabuka and Naik [24] and Grigsby,

Ruberman, and Strle [16] used the correction terms coming from Heegaard Floer

homology to find other such examples. Both of these arguments rely on obstructing

the intersection forms of 4-manifolds that are bounded by cyclic branched covers of

a knot K; thus, computing the Heegaard Floer homology of these covers acquires

great importance. Grigsby, Ruberman, and Strle also found invariants coming from

the knot Floer homology of the preimage of a knot in its cyclic branched covers,

providing further obstructions to finite concordance order.

Using techniques of Ozsváth and Szabó for computing correction terms, we show

that many of the knots through eleven crossings whose smooth concordance orders

were previously unknown have infinite order [29]. Additionally, we describe an algo-

rithm for computing the knot Floer homology of the preimage of a knot in any cyclic

branched cover [31] and use it to compute the Grigsby–Ruberman–Strle invariants of

some of the remaining knots on the list. This work is presented in Chapter 4.
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Chapter 2

Whitehead doubles of iterated

Bing doubles

In this chapter, we prove Theorem 1.2, making use of Theorem 1.1. An earlier version

of this work appeared in [30].

2.1 Infection and doubling operators

We begin by giving more precise definitions of some of the terms used in the Intro-

duction.

We always work with oriented knots and links. For any knot K ⊂ S3, let Kr

denote K with reversed orientation, let K̄ denote the mirror of K (the image of K

under a reflection of S3), and let −K = K̄r. As K#−K is always smoothly slice, the

concordance classes of K and −K are inverses in C1, which justifies this choice of no-

tation. Note that the invariants coming from Heegaard Floer homology (ĤFK(S3, K),

τ(K), etc.) are sensitive to mirroring but not to reversing the orientation of a knot.

Suppose L is a link in S3, and γ is an oriented curve in S3 rL that is unknotted in

S3. For any knot K ⊂ S3 and t ∈ Z, we may form a new link Iγ,K,t(L), the t-twisted

infection of L by K along γ, by deleting a neighborhood of γ and gluing in a copy of
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the exterior of K by a map that takes a Seifert-framed longitude of K to a meridian

of γ and a meridian of K to a t-framed longitude of γ. Since S3 r γ = S1 ×D2, the

resulting 3-manifold is simply∞ surgery on K, i.e. S3; the new link Iγ,K,t(L) is defined

as the image of L. Alternately, let K̂ ⊂ D2×I be the (1, 1)-tangle obtained by cutting

K at a point, oriented from K̂ ∩D2×{0} to K̂ ∩D2×{1}. If D is an oriented disk in

S3 with boundary γ, meeting L transversely in n points, we may obtain Iγ,K,t(L) by

cutting open L along D and inserting the tangle consisting of n parallel copies of K̂,

following the t framing. In a link diagram, a box labeled K, t in a group of parallel

strands indicates t-twisted infection by K along the boundary of a disk perpendicular

to those strands. To be precise, we adopt the following orientation convention: If the

label K, t is written horizontally and right-side-up, then K̂ is oriented either from

bottom to top or from left to right, depending on whether the strands meeting the

box are positioned vertically or horizontally.1 Using this convention, we may easily

verify that the two oriented knots in Figure 2 are isotopic.

Given unlinked infection curves γ1, γ2, the image of γ2 in Iγ1,K1,t1(L ∪ γ2) is again

an unknot, so we may then infect by another pair K2, t2. We obtain the same result

if we infect along γ2 first and then γ1. In general, given an unlink γ1, . . . , γn, we may

infect simultaneously along all the γi; the result may be denoted Iγ1,K1,t1; ··· ; γn,Kn,tn(L),

and the order of the tuples (γi, Ki, ti) does not matter.

If P is a knot (or link) in the standardly embedded solid torus in S3 and K is

any knot, the t-twisted satellite of K with pattern P , P (K, t), is defined as Iγ,K,t(P ),

where γ is the core of the complementary solid torus. The knot K is called the

companion. More generally, if we have a link L, we may replace a component of L

by its satellite with pattern P , working in a tubular neighborhood disjoint from the

other components.

Let B = B1 ∪ B2 ∪ B3 denote the Borromean rings in S3, oriented as shown

in Figure 3. Then DJ,s(K, t) is the knot obtained from B3 by performing s-twisted

1We allow both types of notation to avoid writing labels vertically.
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B1

B2

B3

Figure 3: The Borromean rings.

infection by J along B1 and t-twisted infection by K along B2:

DJ,s(K, t) = IB1,J,s;B2,K,t(B3).

In particular, DO,±1(K, t) = IB1,O,±1;B2,K,t(B3) is the t-twisted ∓Whitehead double of

K (where O denotes the unknot). Under our orientation conventions, this definition

agrees with the definition of DJ,s(K, t) given in the Introduction. The symmetries of

the Borromean rings imply:

DJ,s(K, t)r = DJr ,s(K, t) = DJ,s(K
r, t) = DK,t(J, s)

DJ,s(K, t) = DJ̄ ,−s(K̄,−t)

We also introduce the convention that when the t argument is omitted, it is taken to

be zero: DJ,s(K) = DJ,s(K, 0).

The Bing double of K may be defined as BD(K) = IB1,K,0(B2 ∪B3); we may also

see this as a satellite operation where the pattern is a two-component link. We may

consider iterated Bing doubles of any link: at each stage in the iteration, we replace

some component by its Bing double. Specifically, given a knot K, a binary tree T

specifies such a link BT (K), as illustrated in Figure 4, with one component for each

leaf of T . For a link L = K1 ∪ · · · ∪Kn and binary trees T1, . . . , Tn, we may similarly

obtain a link BT1,...,Tn
(L) = BT1

(K1) ∪ · · · ∪BTn
(Kn). As stated in the Introduction,

the generalized Borromean links are those obtained as BT1,T2
(H), where H is the Hopf

link.

The all-positive Whitehead double of a link L, Wh+(L), is obtained by replacing

every component of L by its untwisted, positive Whitehead double.
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K, 0

Figure 4: A binary tree T and the corresponding iterated Bing double BT (K).

Using this terminology, a more precise statement of Theorem 1.2 is as follows:

Theorem 2.1.

1. Let K be a knot with τ(K) > 0, and let T be any binary tree. Then the all-

positive Whitehead double of BT (K), Wh+(BT (K)), is not smoothly slice.

2. Let H = K1 ∪ K2 denote the Hopf link, and let T1, T2 be binary trees. Then

Wh+(BT1,T2
(H)) is not smoothly slice.

The basic strategy in the proof of the first part of Theorem 2.1 is to use the covering

link calculus developed by Cha and Kim [5] to obtain from Wh+(BT (K)) a new knot

K ′, such that if Wh+(BT (K)) is smoothly slice, then K ′ is rationally smoothly slice

— i.e., it bounds a smoothly embedded disk in a smooth rational homology 4-ball

with boundary S3. The knot K ′ is a satellite of the form DJ1,s1
◦ · · · ◦ DJn,sn

(K),

where si < 2τ(Ji) for each i. If τ(K) > 0, induction using Theorem 1.1 (which we

prove in Chapter 3) shows that τ(K ′) = 1, so K ′ cannot be rationally smoothly slice,

so Wh+(DT (K)) cannot be smoothly slice.2 A similar argument works for the second

part of the theorem. These proofs are found in the next section.

2Cha and Kim used this technique to study when iterated Bing doubles of a knot are slice, which
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2.2 Covering link calculus

Let R denote any of the rings Z, Q, or Z(p) (for p prime). A link L in an R-homology

3-sphere Y is called topologically (resp. smoothly) R-slice if there exists a topological

(resp. smooth) 4-manifold X such that ∂X = Y , H∗(X; R) = H∗(B
4; R), and L

bounds a locally flat (resp. smoothly embedded), disjoint union of disks in X. A link

that is Z-slice (in either category) is Z(p)-slice for all p, and a link that is Z(p)-slice for

some p is Q-slice. Also, a link in S3 that is slice (in B4) is clearly Z-slice. The key

result of Ozsváth and Szabó [46] is that the τ invariant of any knot that is smoothly

Q-slice is 0.

Cha and Kim [5] define two moves on links in Z(p)-homology spheres, called cov-

ering moves:

1. Given a link L ⊂ Y , consider a sublink L′ ⊂ L.

2. Given a link L ⊂ Y , choose a component K with trivial self-linking. For any

a ∈ N, the pa-fold cyclic branched cover of Y branched over K, denoted Ỹ , is a

Z(p)-homology sphere, and we consider the preimage L′ of L in Ỹ .

We say that L′ ⊂ Y ′ is a p-covering link of L ⊂ Y if L′ can be obtained from Y ′

using these moves. If L is Z(p)-slice, then any p-covering link of L is also Z(p) slice (in

either category). For the second move, the pa-fold cyclic branched cover of X over

a slice disk for K becomes the new 4-manifold bounded by Ỹ ; it is a Z(p)-homology

sphere by a well-known argument [25, page 346]. Henceforth, we restrict to the case

where p = 2 and omit further reference to p.

Note that if L is a link in S3 whose components are unknotted, then the branched

cover branched over one component is again S3. The putative 4-manifold containing

a slice disk, however, may change.

is challenging since the classical sliceness obstructions all vanish [8, 7]. They showed that if any

iterated Bing double of K is topologically slice, then K is algebraically slice; if it is smoothly slice,

then τ(K) = 0. Our techniques are based on their work and a reformulation by Van Cott [63].
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To prove Theorem 2.1, we need the following lemmas:

Lemma 2.2. Let L be a link in S3, and suppose there is an unknotted solid torus

U ⊂ S3 such that L ∩ U consists of two components K1, K2 embedded as follows:

if A1, A2 are the components of the untwisted Bing double of the core C of U , then

K1 = DPk,sk
◦ · · · ◦ DP1,s1

(A1) and K2 = DQl,tl ◦ · · · ◦ DQ1,t1(A2), for some knots

P1, . . . , Pk, Q1, . . . , Ql and integers s1, . . . , sk, t1, . . . , tl. Let L′ be the link obtained

from L by replacing K1 and K2 by the satellite knot

C ′ = DPk,sk
◦ · · · ◦DP1,s1

◦DR,u(C) (2.1)

of C, where

(R, u) =





(Q1#Qr
1, 2t1) l = 1

(DQ1,t1 ◦ · · · ◦DQl−2,tl−2
(DQl−1,tl−1

(Ql#Qr
l , 2tl)), 0) l > 1.

(2.2)

Then L′ is a covering link of L.

Proof. Let T = S3 r U ; then L r (K1 ∪ K2) is contained in T . Note that K1 and

K2 are each unknotted, since DJ,s(O, 0) = O for any J, s. We may untangle K2 as in

Figures 5–6. Specifically, L is shown in Figures 5(a) and (b). To obtain Figure 5(c),

we pull the two strands of the companion curve for K1 through the infection region

marked Q1, t1, and then untangle the companion curve for K2. We then repeat this

procedure to obtain Figure 5(d), and l − 2 more times to obtain Figure 6.

The branched double cover of S3 branched along K2 is again S3; consider the

preimage of K1 ∪ (L ∩ T ), shown in Figure 7. (The knot orientation conventions for

infections are important here, since the knots Qi need not be reversible.) Since T is

contained in a ball disjoint from K1, the sublink L ∩ T lifts to two identical copies,

each contained in a solid torus. The preimage of K2 also consists of two components,

and each is the DPk,sk
◦ · · · ◦DP1,s1

satellite of the companion curve shown. A sublink

consisting of one lift of each component (either the blue or the black part of Figure
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(a) (b) (c)

(d)

K1

K1

K1

K1

K2

K2 K2

K2

T

T

T

T

Q1, t1

Q1, t1

Q1, t1

Q2, t2

[DPk,sk
· · ·DP1,s1

]

[DPk,sk
· · ·DP1,s1

]

[DPk,sk
· · ·DP1,s1

]

[DPk,sk
· · ·DP1,s1

]

[DQl,tl
· · ·

DQ1,t1 ]

[DQl,tl
· · ·

DQ2,t2 ]

[DQl,tl
· · ·

DQ2,t2 ]

[DQl,tl
· · ·DQ3,t3 ]

Figure 5: The link described in Lemma 2.2. All but the two components shown

are contained in the interior of the solid torus T . We denote a satellite knot by

writing the pattern in brackets near the companion curve; thus, for instance, K1 =

DPk,sk
◦ · · · ◦DP1,s1

(A1), where A1 is the curve shown.
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K1

K2

T

Q1, t1

Q2, t2

Ql, tl

Ql−1,

tl−1

[DPk,sk
· · ·DP1,s1

]

2l

2l 2l

2l−1

2l−1

2l−1

2l−1

Figure 6: The link described in Lemma 2.2, after isotopies. A shaded region with a

number represents that many parallel strands.
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replacemen

T

T

Q1,t1

Q1, t1

Q2,t2

Q2, t2

Ql, tl

Ql,tl

Ql−1,

tl−1

Ql−1,

tl−1

[DPk,sk
· · ·DP1,s1

]

[DPk,sk
· · ·DP1,s1

]

2l
2l

2l 2l

2l2l

2l−1

2l−1

2l−1

2l−1

2l−1

2l−1

2l−1

2l−1

Figure 7: The preimage of the link in Figure 6 in the double-branched cover of S3

over K2 (shown without the upstairs branch set).
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(a)

(b)

T

T
Q1, t1

Q2, t2

Ql#Qr
l
, 2tl

Q1#Qr
1
, 2t1

Ql−1,

tl−1

[DPk,sk
· · ·DP1,s1

]

[DPk,sk
· · ·DP1,s1

]

2l−1

2l−1

2l−1

2l−1

2l−1 − 2

Figure 8: The sublink shown in blue in Figure 7 is the DPk,sk
◦ · · · ◦ DP1,s1

satellite

of: (a) when l = 1, DQ1#Qr
1
,2t1(C); (b) when l > 1, DR,0(C), where R is the knot in

Figure 9.

Q1, t1

Q2, t2

Q3, t3

Ql#Qr
l
, 2tl

Ql−1,

tl−1

2l−2

2l−2

2l−2

2l−2

2l−2

2l−2

Figure 9: The knot R in the proof of Lemma 2.2.
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7) is redrawn in Figure 8(a) in the case where l = 1 and in Figure 8(b) in the case

where l > 1. In the former case, the companion curve shown is DQl#Qr
l
,2tl(C), where

C is the core circle of the complement of T . In the latter case, it is DR,0(C), where we

obtain R by connecting the ends of one of the two parallel strands that pass through

the red box in Figure 8(b). (A local computation shows that the linking number of

these two strands is zero, so DR,0 is the correct operator.) The knot R, shown in

Figure 9, is then identified as

DQ1,t1 ◦ · · · ◦DQl−2,tl−2
(DQl−1,tl−1

(Ql#Qr
l , 2tl)).

Lemma 2.3. Let C be a knot, let U be a regular neighborhood of C, and let A1, A2 ⊂ U

be the components of BD(C). Let K1 = DPk,sk
◦ · · · ◦ DP1,s1

(A1) and K2 = DQl,tl ◦

· · ·◦DQ1,t1(A2), for some knots P1, . . . , Pk, Q1, . . . , Ql and integers s1, . . . , sk, t1, . . . , tl.

Let C ′ be the knot defined by (2.1) and (2.2). Then C ′ is a covering link of K1 ∪K2.

Proof. The proof is almost identical to that of Lemma 2.2. The only difference is

that S3 r U is now a knot complement rather than a solid torus containing some

additional link components. The double branched cover over K2 contains consists of

the complement of the two solid tori shown in Figure 7, glued to two copies of S3 rU ,

gluing Seifert-framed longitude to meridian and vice versa. The resulting manifold

is again S3, however. The rest of the proof proceeds mutatis mutandis. (Alternately,

we may simply replace each of the solid tori in Figures 5–9 by a box marked C, 0, and

proceed as before.)

A labeled binary tree is a binary tree with each leaf labeled with a satellite op-

eration. Given a knot K and binary tree T with underlying tree T , let ST (K) be

the link obtained from BT (K) by replacing each component with the satellite spec-

ified by the label of the corresponding leaf. If T has two adjacent leaves labeled

DPk,sk
◦ · · · ◦ DP1,s1

and DQl,tl ◦ · · · ◦ DQ1,t1 , form a new labeled tree T ′ by deleting

these two leaves and labeling the new leaf either DPk,sk
◦ · · · ◦DP1,s1

◦DQ1#Qr
1
,2t1(C)

or DPk,sk
◦ · · · ◦DP1,s1

◦DR,0, according to whether l = 1 or l > 1, respectively, where,
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R = DQ1,t1 ◦ · · · ◦ DQl−2,tl−2
(DQl−1,tl−1

(Ql#Qr
l , 2t1)) in the latter case. We call this

move a collapse. Lemmas 2.2 and 2.3 then say that ST ′(K) is a covering link of

ST (K).

Theorem 1.1 and equations (2.1) and (2.2), along with the additivity of τ under

connect sum, imply:

Proposition 2.4. Suppose T ′ is obtained from T by collapsing leaves labeled DPk,sk
◦

· · · ◦ DP1,s1
and DQl,tl ◦ · · · ◦ DQ1,t1, where si < 2τ(Pi) and ti < 2τ(Qi) for all i.

Then the label of the new leaf of T ′ has the form DRk+1,uk+1
◦ · · · ◦ DR1,u1

, where

ui < 2τ(Ri).

Proof of Theorem 2.1. For the first part of the theorem, note that in the new notation,

Wh+(BT (K)) = ST (K), where every leaf of T is labeled DO,−1. Every label in T

satisfies the hypotheses of Proposition 2.4. Using this proposition, we inductively

collapse every pair of leaves of T until we have a single vertex labeled DPk,sk
◦ · · · ◦

DP1,s1
, for knots P1, . . . , Pk and integers s1, . . . , sk with si < 2τ(Pi). Thus, the knot

DPk,sk
◦· · ·◦DP1,s1

(K) is a covering link of Wh+(BT (K)). By Theorem 1.1, τ(DPk,sk
◦

· · · ◦ DP1,s1
(K)) = 1. Thus, DPk,sk

◦ · · · ◦ DP1,s1
(K) cannot be smoothly slice in a

rational homology 4-ball, so Wh+(BT (K)) cannot be smoothly slice.

For the second part, the same argument as above shows that by using covering

moves, we may replace Wh+(BT1
(K1) ∪ BT2

(K2)) with a two-component link of the

form

DPk,sk
◦ · · · ◦DP1,s1

(K1) ∪DQl,tl ◦ · · · ◦DQ0,t0(K2),

shown in Figure 10(a), where si < 2τ(Pi) and ti < 2τ(Qi) for all i. (We start with

Q0 and t0 for notational reasons.) After the isotopies in Figure 10(a–c), note the

similarity to Figure 5. We may thus proceed just as in the proof of Lemma 2.2, with

suitable modifications to Figures 6–8, to obtain the knot shown in Figure 10(d) as a

covering link of Wh+(BT1
(K1) ∪BT2

(K2)). This knot is

DPk,sk
◦ · · · ◦DP1,s1

(DR,u(Q0, t0)),
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(a) (b) (c)

(d)

K1
K1

K1

K2

K2
K2

Q0, t0

Q0, t0
Q0, t0

Q1, t1

Q2, t2

Ql#Qr
l
, 2tl

Ql−1,

tl−1

[DPk,sk
· · ·DP1,s1

]

[DPk,sk
· · ·DP1,s1

]

[DPk,sk
· · ·DP1,s1

][DPk,sk
· · ·DP1,s1

]

[DQl,tl
· · ·DQ0,t0 ]

2l−1

2l−1

2l−1

2l−1

2l−1 − 2

[DQl,tl
· · ·DQ1,t1 ]

[DQl,tl
· · ·DQ1,t1 ]

Figure 10: The proof of the second part of Theorem 2.1.
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where (R, u) is as in (2.2). This knot has τ = 1 by Theorem 1.1, completing the

proof.

2.3 Strongly quasipositive knots and sliceness

We conclude this section with a brief discussion of strongly quasipositive knots, which

played a role in an earlier version of Theorem 2.1.

A knot or link L is called quasipositive if it is the closure of a braid that is the

product of conjugates of the standard positive braid generators σi (but not their

inverses). It is called strongly quasipositive if it is the closure of a braid that is

the product of words of the form σi . . . σj−1σjσ
−1
j−1 . . . σ−1

i for i < j. A strongly

quasipositive link naturally admits a particular type of Seifert surface determined by

this braid form, and an embedded surface in S3 is called quasipositive if it is isotopic

to such a surface. In other words, a link is strongly quasipositive if and only if it

bounds a quasipositive Seifert surface.

A link L is quasipositive if and only if it is a transverse C-link : the transverse

intersection of S3 ⊂ C2 with a complex curve V . If L is strongly quasipositive, then

the Seifert surface determined by the braid form is isotopic to V ∩B4.

For a knot K and t ∈ Z, let A(K, t) be an annulus in S3 whose core circle is K

and whose two boundary components are t-framed longitudes of the core. Given two

unlinked annuli A and A′, let A ∗A′ denote the surface obtained by plumbing A and

A′ together. (To be precise, we must orient the core circles of A and A′ and specify

the sign of their intersection in A ∗ A′.)

The following is a summary of some of Rudolph’s results [59, 60, 61] on strongly

quasipositive knots:

Theorem 2.5.

1. If K is a strongly quasipositive knot other than the unknot, then K is not

smoothly slice.
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2. A knot K is strongly quasipositive if and only if A(K, 0) is a quasipositive sur-

face.

3. If K and K ′ are strongly quasipositive, then K#K ′ is strongly quasipositive.

4. The annulus A(K, t) is quasipositive if and only if t ≤ TB(K), where TB(K)

denotes the maximal Thurston–Bennequin number of K.

5. If A and A′ are annuli, then the surface A ∗A′ is quasipositive if and only if A

and A′ are both quasipositive.

Rudolph’s original proof of (1) relies on the fact that complex curves are genus-

minimizing, a major theorem proven by Kronheimer and Mrowka [27] using gauge

theory. Since a strongly quasipositive knot K has a Seifert surface that is isomorphic

to a complex curve, we thus see that g4(K) = g(K); in particular, if K is nontrivial,

then g4(K) > 0. Subsequently, Livingston [36] proved that both of these genera

are equal to τ(K) when K is strongly quasipositive. (For more on the relationship

between τ and quasipositivity, see Hedden [19].)

The untwisted ±Whitehead double of K, Wh±(K), is the boundary of A(K, 0) ∗

A(O,∓1), where O denotes the unknot. Thus, Theorem 2.5 implies that if K is

strongly quasipositive and nontrivial, then Wh+(K) is strongly quasipositive and

nontrivial, hence not smoothly slice. More generally, the Seifert surface for DJ,s(K, t)

shown in Figure 2(b) is A(J, s) ∗ A(K, t), so if J and K are strongly quasipositive

and s, t ≤ 0, then DJ,s(K, t) is strongly quasipositive. Moreover, if neither of the

pairs (J, s) and (K, t) equals (O, 0), then DJ,s(K, t) is nontrivial, hence not smoothly

slice. Furthermore, in this case τ(DJ,s(K, t)) = 1 since the τ invariant of a strongly

quasipositive knot is equal to its genus by a result of Livingston [36]. Using this

observation, we may prove a weakened version of Theorem 2.1 in which the knot K is

assumed to be strongly quasipositive without ever making reference to Theorem 1.1.

(See [30] for this argument.)
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Chapter 3

Bordered Heegaard Floer

homology and knot doubling

operators

In this chapter, we shall prove Theorem 1.1, which we restate here:

Theorem 3.1. Let J and K be knots, and let s, t ∈ Z. Then

τ(DJ,s(K, t)) =





1 s < 2τ(J) and t < 2τ(K)

−1 s > 2τ(J) and t > 2τ(K)

0 otherwise.

Notice that it suffices to consider only the cases where s ≤ 2τ(J), since if s >
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2τ(J), the behavior of τ under mirroring implies:

τ(DJ,s(K, t)) = −τ
(
DJ,s(K, t)

)

= −τ(DJ̄ ,−s(K̄,−t))

=




−1 −t < 2τ(K̄)

0 −t ≥ 2τ(K̄)

=




−1 t > −2τ(K)

0 t ≤ −2τ(K)

We shall introduce the assumption that s ≤ 2τ(J) at an appropriate point in the

discussion that follows.

Recall the construction of DJ,s(K, t) given in the previous chapter as the knot ob-

tained from one component of the Borromean rings (B = B1 ∪B2 ∪B3) after twisted

infection on the other two components. Specifically, let XJ and XK denote the exteri-

ors of J and K, respectively, and let Y denote the exterior of B1∪B2, with boundary

components denoted ∂LY and ∂RY . Then B3 is a nulhomologous knot in Y with a

genus-1 Seifert surface. There is an identification of S3 with (Y ∪∂LY XJ)∪∂RY XK , with

suitable gluing maps, taking B3 ⊂ Y to DJ,s(K, t). We shall define bordered structures

Y , X s
J , and X t

K on Y , XJ , and XK , respectively, so as to induce the correct gluing

maps on the boundaries. The theory of bordered Heegaard Floer homology [35, 34] as-

sociates an algebraic object to each of these bordered structures, denoted ĈFD(X s
J ),

ĈFD(X t
K), and ĈFAA(Y , B3, 0). By the gluing theorem of Lipshitz, Ozsváth, and

Thurston, we may compute the filtered chain complex ĈFK(S3, DJ,s(K, t)) as a de-

rived tensor product of these objects:

ĈFK(S3, DJ,s(K, t)) ∼= (ĈFAA(Y , B3, 0) ⊠ ĈFD(X s
J )) ⊠ ĈFD(X t

K). (3.1)

The invariant τ(DJ,s(K, t)) may then be extracted from this filtered chain complex.

In Section 3.1, we recall some of the terminology and background for bordered Hee-

gaard Floer homology, including the complete description of ĈFD(X s
J ) and ĈFD(X t

K).
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Next, in Section 3.2, we compute ĈFAA(Y , B3, 0) using an explicit count of holomor-

phic disks in a bordered Heegaard diagram. In Section 3.3, we then evaluate the two

tensor products in (3.1) to obtain the filtered chain complex ĈFK(S3, DJ,s(K, t)). By

taking the homology of this complex while keeping track of the filtration, we compute

the value of τ(DJ,s(K, t)). While the proof is fairly technical, it illustrates the power

of the new bordered techniques: using a single computation involving holomorphic

disks (which can in principle be performed entirely combinatorially) and some lengthy

but straightforward algebra, we are able to obtain a statement about the Floer ho-

mology an infinite family of knots. With only slightly more bookkeeping, we could

also write down a formula for the knot Floer homology groups ĤFK(DJ,s(K, t)), but

since we are primarily interested in the value of τ and its applications to knot and

link concordance, we do not bother to do that here.1

Finally, in Section 3.4, we present a few other results regarding knots of the form

DJ,s(K, t). Specifically, we prove a partial version of Theorem 1.1 that holds for any

invariant ν that shares some of the formal properties of τ , and we exhibit instances

where DJ,s(K, t) is actually smoothly slice.

3.1 Background on bordered Heegaard Floer ho-

mology

In this section, we give a brief description of the bordered Heegaard Floer invariants,

with the aim of defining the terms used later in the paper and illustrating the proce-

dures for computation. We discuss only bordered manifolds with toroidal boundary

components, which has the advantage of greatly simplifying some of the definitions.

All of this material can be found in the two magna opera of Lipshitz, Ozsváth, and

Thurston [35, 34].

1The reader is also advised to consult the author’s paper [30, Section 4], which presents a simpler

version of the argument in which the knot J is assumed to be the unknot.
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3.1.1 Algebraic objects

We recall the main algebraic constructions used in [35, 34], with the aim of describing

how to work with them computationally. Let (A, d) be a unital differential algebra

over F = F2. (All of the definitions that follow can be stated in terms of differential

graded algebras, but we suppress all grading information for brevity.) Let I ⊂ A

denote the subring of idempotents in A, and assume that {ιi} is an orthogonal basis

for I over F with the property that
∑

i ιi = 1, the identity element of A.

• A (right) A∞ algebra or type A structure over A is an F-vector space M ,

equipped with a right action of I such that M =
⊕

i Mιi as a vector space, and

multiplication maps

mk+1 : M ⊗I A⊗I · · · ⊗I A︸ ︷︷ ︸
k times

→M

satisfying the A∞ relations: for any x ∈M and a1, . . . , an ∈ A,

0 =
n∑

i=0

mn−i+1(mi+1(x, a1, . . . , ai), ai+1, . . . , an)

+

n∑

i=1

mn+1(x, a1, . . . , ai−1, d(ai), ai+1, . . . , an)

+
n−1∑

i=1

mn(x, a1, . . . , ai−1, aiai+1, ai+2, . . . , an).

(3.2)

We also require that m2(x, 1) = x and mk(x, . . . , 1, . . . ) = 0 for k > 2.

The module M is called bounded if mk = 0 for all k sufficiently large. If M

is a bounded type A structure with basis {x1, . . . , xn}, we encode the multi-

plications using a matrix whose entries are formal sums of finite sequences of

elements of A, where having an (a1, . . . , ak) term in the i, jth entry means that

the coefficient of xj in mk+1(xi, a1, . . . , ak) is nonzero. We write 1 rather than

an empty sequence to signify the m1 multiplication. For brevity, we frequently

write a1 · · ·ak rather than (a1, . . . , ak); in this context, concatenation is not

interpreted as multiplication in the algebra A.
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• A (left) type D structure over A is an F-vector space N , equipped with a left

action of I such that N =
⊕

i ιiN , and a map

δ1 : N → A⊗I N

satisfying the relation

(µ⊗ idN) ◦ (idA⊗δ1) ◦ δ1 + (d⊗ idN ) ◦ δ1 = 0, (3.3)

where µ : A⊗A → A denotes the multiplication on A.

If N is a type D structure, the tensor product A ⊗I N is naturally a left

differential module over A, with module structure given by a · (b⊗ x) = ab⊗ x,

and differential ∂(a ⊗ x) = a · δ1(x) + d(a) ⊗ x. Condition (3.3) translates to

∂2 = 0.

Given a type-D module N , define maps

δk : N → A⊗I · · · ⊗I A︸ ︷︷ ︸
k times

⊗IN

by δ0 = idN and δk = (idA⊗k−1 ⊗δ1) ◦ δk−1. We say N is bounded if δk = 0 for

all k sufficiently large.

Given a basis {y1, . . . , yn} for N , we may encode δ1 as an n × n matrix (bij)

with entries in A, such that δ1xi =
∑n

j=1 bij ⊗ xj . To encode δk in matrix form,

we take the kth power of the matrix for δ1, except that instead of evaluating

multiplication in A, we simply concatenate tensor products of elements.

If d = 0, (3.3) is equivalent to the statement that the square of the matrix for

δ1 (where now we do evaluate multiplication in A) is zero.

• If M is a right type A structure, N is a left type D structure, and at least one

of them is bounded, we may form the box tensor product M ⊠ N . As a vector

space, this is M ⊗I N , with differential

∂⊠(x⊗ y) =
∞∑

k=0

(mk+1 ⊗ idN)(x⊗ δk(y)).
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Given matrix representations of the multiplications on M and the δk maps on

N , it is easy to write down the differential on M ⊠ N in terms of the basis

{xi ⊗ yj}.

• Now let (A, dA) and (B, dB) be differential algebras. Lipshitz, Ozsváth, and

Thurston [34] define various types of (A,B)-bimodules. We do not define these

in full detail, but we mention some of the basic notions.

A type DD structure is simply a type D structure over the ring A⊗F B. That

is, the map δ1 outputs terms of the form a⊗ b⊗ x, where a ∈ A and b ∈ B.

A type AA structure consists of a vector space M with multiplications

m1,i,j : M ⊗A⊗i ⊗ B⊗j → M,

satisfying a version of the A∞ relation (3.2). As above, all tensor products are

taken over the rings of idempotents, Iρ ⊂ A and Iσ ⊂ B. Our notation differs

a bit from that of [34] in that we think of both algebras as acting on the right.

A type DA structure is a vector space N with maps

δ1+j
1 : N ⊗ B⊗j → A⊗N

satisfying an appropriate relation that combines (3.2) and (3.3). A type AD

structure is defined similarly, except that the roles of A and B are interchanged.

The box tensor product of two bimodules, or of a module and a bimodule, can

be defined assuming at least one of the factors is bounded (in an appropriate

sense). See [34, Subsection 2.3.2] for details.

• A filtration on a type A structure M is a filtration · · · ⊆ Fp ⊆ Fp+1 ⊆ . . .

of M as a vector space, such that mk+1(Fp ⊗ A
⊗k) ⊆ Fp for any a1, . . . , ak.

Similarly, a filtration on a type D structure N is a filtration of N such that

δ1(Fp) ⊆ A ⊗ Fp. It is easy to extend these definitions to the various types of

bimodules. A filtration on M or N naturally induces a filtration on M ⊠ N .
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3.1.2 The torus algebra

The pointed matched circle for the torus, Z, consists of an oriented circle Z, equipped

with a basepoint z ∈ Z, a tuple a = (a1, a2, a3, a4) of points in Z r {z} (ordered

according to the orientation on Zr{z}), and the equivalence relation a1 ∼ a3, a2 ∼ a4.

The genus-1, one-boundary-component surface F ◦(Z) is obtained by identifying Z

with the boundary of a disk D and attaching 1-handles h1 and h2 that connect a1

to a3 and a2 to a4, respectively. By attaching a 2-handle along ∂F ◦(Z), we obtain

the closed surface F (Z). There is an orientation-reversing involution r : Z → Z

that fixes z, interchanges a1 and a4, and interchanges a2 and a3, which extends to a

diffeomorphism r : F (Z)→ −F (Z) that interchanges h1 and h2.

The algebra A = A(Z, 0) is generated as a vector space over F by two idempotents

ι0, ι1 and six Reeb elements ρ1, ρ2, ρ3, ρ12, ρ23, ρ123. For each sequence of consecutive

integers I = (i1, . . . , ik) ⊂ {1, 2, 3}, we have ι[i1−1]ρI = ρIι[ik] = ρI , where [j] denotes

the residue of j modulo 2. The nonzero multiplications among the Reeb elements

are: ρ1ρ2 = ρ12, ρ2ρ3 = ρ23, ρ1ρ23 = ρ12ρ3 = ρ123. All other products are zero. Let I

denote the subring of idempotents of A; it is generated as a vector space by ι0 and

ι1. The identity element is 1 = ι0 + ι1.

By abuse of notation, we identify ρ1 with the oriented arc of Z from a1 to a2, ρ2

with the arc from a2 to a3, ρ3 with the arc from a3 to a4, and ρ12, ρ23, and ρ123 with

the appropriate concatenations.

3.1.3 Bordered 3-manifolds and their invariants

A bordered 3-manifold with boundary F (Z) consists of the data Y = (Y, ∆, z′, φ),

where Y is an oriented 3-manifold with a single boundary component, ∆ is a disk in

∂Y , z′ ∈ ∂∆, and φ : F (Z) → ∂(Y ) is a diffeomorphism taking D to ∆ and z to

z′. The map φ is specified (up to isotopy fixing ∆ pointwise) by the images of the

core arcs of the two one-handles in F ◦(Z). We may analogously define a bordered

3-manifold with boundary −F (Z). The diffeomorphism r : F (Z)→ −F (Z) provides
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a one-to-one correspondence between these two types of bordered manifolds.

A bordered 3-manifold Y may be presented by a bordered Heegaard diagram

H = (Σ, {αc
1, . . . , α

c
g−1, α

a
1, α

a
2}, {β1, . . . , βg}, z),

where Σ is a surface of genus g with one boundary components, {αc
1, . . . , α

c
g−1} and

{β1, . . . , βg} are tuples of homologically linearly independent, disjoint circles in Σ,

and αa
1 and αa

2 are properly embedded arcs that are disjoint from the α circles and

linearly independent from them in H1(Σ, ∂Σ). If we identify (∂Σ, z, ∂Σ ∩ (αa
1 ∪ αa

2))

with Z — where ∂Σ is given the boundary orientation — we obtain a bordered 3-

manifold with boundary parametrized by F (Z) by attaching handles along the α and

β circles. If instead we identify ∂Σ with −Z, we obtain a bordered 3-manifold with

boundary parametrized by −F (Z).

Let S(H) denote the set of unordered g-tuples of points x = {x1, . . . , xg} such

that each α circle and each β circle contains exactly one point of x and each α arc

contains at most one point of x. Let X(H) denote the F2-vector space spanned by

S(H).

For generators x,y ∈ S(H), let π2(x,y) denote the set of homology classes of

maps u : S → Σ× [0, 1]× [−2, 2], where S is a surface with boundary, taking ∂S to

((α× {1} ∪ β × {2} ∪ (∂Σ r z)× [0, 1])× [−2, 2]) ∪

(x× [0, 1]× {−2}) ∪ (y × [0, 1]× {2})

and mapping to the relative fundamental homology class of (x× [0, 1]× {−2}) ∪

(y × [0, 1]× {2}). Each element B ∈ π2(x,y) is determined by its domain, the pro-

jection of B to H2(Σ, α ∪ β ∪ ∂Σ; Z). The group H2(Σ, α ∪ β ∪ ∂Σ; Z) is freely

generated by the closures of the components of Σ r (α ∪ β), which we call regions.

The domain of any B ∈ π2(x,y) satisfies the following conditions:

• The multiplicity of the region containing the basepoint z is 0.2

2In classical Heegaard Floer homology, the definition of π2(x,y) does not include this requirement.
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• For each point p ∈ α∩β, if we identify an oriented neighborhood of p with R2,

taking p to the origin and the α and β segments containing p to the x- and y-

axes, respectively, and let n1(p), n2(p), n3(p), and n4(p) denote the multiplicities

in D of the regions in the four quadrants, then

n1(p)− n2(p) + n3(p)− n4(p) =





1 p ∈ x r y

−1 p ∈ y r x

0 otherwise.

(3.4)

Thus, finding the elements of π2(x,y) is a simple matter of linear algebra. A homology

class B ∈ π2(x,y) is called positive if the regions in its domain all have non-negative

multiplicity; only positive classes can support holomorphic representatives.

We shall describe only the invariant ĈFD here, since we do not compute ĈFA

explicitly from a Heegaard diagram in this thesis.

We identify the boundary of Σ with −Z. Assume that the α arcs are labeled so

that αa
1 ∩ ∂Σ = {a1, a3} and αa

2 ∩ ∂Σ = {a2, a4}.

Define a function ID : S(H)→ {ι0, ι1} by

ID(x) =





ι0 x ∩ αa
2 6= ∅

ι1 x ∩ αa
1 6= ∅.

(3.5)

Define a left action of I on X(H) by ιi · x = δ(ιi, ID(x))x, where δ is the Kronecker

delta.

For each of the oriented arcs ρI ⊂ Z, let −ρI denote ρI with its opposite ori-

entation. (That is, −ρ1 goes from a2 to a1, etc.) Given x ∈ S(H) and a sequence

~ρ = (−ρI1 , . . . ,−ρIk
), the pair (x, ~ρ) is called strongly boundary monotonic if the ini-

tial point of −ρI1 is on the same α circle as x, and for each i > 1, the initial point of

−ρIi
and the final point of −ρIi−1

are paired in Z.

If B ∈ π2(x,y) is a positive class, then ∂∂B (the intersection of the domain of

B with the boundary of Σ) may be expressed (non-uniquely) as a sum of arcs −ρIi
.
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Specifically, we say that the pair (B, ~ρ) is compatible if (x, ~ρ) is strongly boundary

monotonic and ∂∂B =
∑k

i=1(−ρIi
). If (B, ~ρ) is compatible, the index of (B, ~ρ) is

defined in [35, Definition 5.46] as

ind(B, ~ρ) = e(B) + nx(B) + ny(B) + |~ρ|+ ι(~ρ), (3.6)

where e(B) is the Euler measure of B; nx(B) (resp. ny(B)) is the sum over points

xi ∈ x (resp. yi ∈ y) of the average of the multiplicities of the regions incident to

xi (resp. yi), |~ρ| is the number of entries in ~ρ, and ι(~ρ) is a combinatorially defined

quantity [35, Equation 5.44] that measures the overlapping of the arcs ρIi
. The

index ind(B, ~ρ) is equal to one plus the expected dimension of a certain moduli space

MB(x,y, ~ρ) of J-holomorphic curves in Σ× [0, 1]×R in the homology class B whose

asymptotics near ∂Σ×[0, 1]×R are specified by ~ρ. In particular, if ind(B, ~ρ) = 1, then

this moduli space contains finitely many points. We do not give the full definition

here; see [35, Section 5] for the details.

For each x,y ∈ S(x) and B ∈ π2(x,y), define

aB
x,y =

∑

{~ρ=(−ρI1
,...,−ρIk

) |

(B,~ρ) compatible,
ind(B,~ρ)=1}

#(MB(x,y, ~ρ)) ρI1 . . . ρIk
∈ A,

where the count of points inMB(x,y, ~ρ) is taken modulo 2. We define δ1 : X(H)→

A⊗I X(H) by

δ1(x) =
∑

y∈S(H)

∑

B∈π2(x,y)

aB
x,y ⊗ y. (3.7)

This defines a type D structure, which we denote ĈFD(H). The verification of (3.3)

is a version of the standard ∂2 = 0 argument in Floer theory.

Proposition 3.2.

1. The only sequences of chords that can contribute nonzero terms to δ1 are the

empty sequence, (−ρ1), (−ρ2), (−ρ3), (−ρ1,−ρ2), (−ρ2,−ρ3), (−ρ123), and

(−ρ1,−ρ2,−ρ3). Therefore, only classes whose multiplicities in the boundary

regions of Σ are 0 or 1 can count for δ1.
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2. If B ∈ π2(x,y) is a positive class whose domain has multiplicity 1 in the regions

abutting ρ1 and ρ2 (resp. ρ2 and ρ3) and 0 in the region abutting ρ3 (resp. ρ1),

then B may count for the differential only if x and y contain points of αa
1

(resp. αa
2).

Proof. For the first statement, the only other sequences of chords for which the

product of algebra elements in the definition of aB
x,y is nonzero are (−ρ12), (−ρ23),

(−ρ1,−ρ23), and (−ρ12,−ρ3). The two latter sequences are not strongly boundary

monotonic. If B ∈ π2(x,y) is a positive class compatible with (−ρ12), then x and

y both contain points on αa
1, since otherwise B would have a boundary component

without a β segment. Therefore, ID(y) = ι1. Since the tensor product is taken over

the ring of idempotents,

ρ12 ⊗ y = ρ12 ⊗ ι1y = ρ12ι1 ⊗ y = 0,

so the contribution of B to δ1(x) is zero. A similar argument applies for the sequence

(−ρ23). The second statement follows immediately from the same argument.

The invariant ĈFA is a type A structure associated to a bordered Heegaard dia-

gram whose boundary is identified with Z. We do not give all the details here. The

analogue of Proposition 3.2 does not hold for ĈFA; one must consider domains with

arbitrary multiplicities on the boundary and a much larger family of sequences of

chords. Therefore, it is generally easier to compute ĈFD.

We conclude this section with the gluing theorem:

Theorem 3.3 (Lipshitz-Ozsváth-Thurston [35]). Suppose Y1 and Y2 are bordered 3-

manifolds, and Y = Y1 ∪φ Y2 is the manifold obtained by gluing them together along

their boundaries, where φ : −∂Y1 → ∂Y2 is the map induced by the bordered structures.

Then

ĈF(Y ) ≃ ĈFA(Y1) ⊠ ĈFD(Y2),

provided that at least one of the modules is bounded (so that the box tensor product is

defined).
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3.1.4 Bimodules

In [34], Lipshitz, Ozsváth, and Thurston also define invariants for a bordered manifold

with two boundary components. Essentially, this consists of a manifold Y with two

torus boundary components ∂LY and ∂RY , with parametrizations of the two bound-

ary components just like in the single-component case, and a framed arc connecting

the two boundary components. (See [34, Chapter 5] for the full definition.)

If both boundary components are parametrized by −F (Z), the associated invari-

ant is a type DD structure over two copies of A, denoted ĈFDD(Y); if both are

parametrized by F (Z), the invariant is a type AA structure, denoted ĈFAA(Y); and

similarly there are invariants ĈFAD(Y) and ĈFDA(Y). We denote the two copies of

A by Aρ and Aσ; in the latter, the Reeb elements are written σ1, σ2, etc.

In fact, we shall consider only a direct summand of each bimodule, denoted

ĈFDD(Y , 0), ĈFAA(Y , 0), etc., which is all that is necessary to compute the Floer

complex of a manifold obtained by gluing two separate one-boundary-component

manifolds to the two boundary components of Y . The other summands are only

necessary if one wishes to glue together the two boundary components of Y .

As in the previous discussion, we describe only the construction of ĈFDD. A

bordered manifold with two toroidal boundary components may be presented by an

arced bordered Heegaard diagram

H = (Σ, {αc
1, . . . , α

c
g−2, α

L
1 , αL

2 , αR
1 , αR

2 }, {β1, . . . , βg}, z),

where now ∂Σ has two components ∂LΣ and ∂RΣ, on which the arcs αL
i and αR

i have

their respective boundaries, and z is an arc in the complement of all the α and β

circles and α arcs connecting the two boundary components.

We define S(H) and X(H) just in the single-boundary-component case. Let

S(H, 0) be the subset of S(H) consisting of g-tuples x containing one point in αL
1 ∪αL

2

and one point in αR
1 ∪αR

2 , and let X(H, 0) be the F-vector space generated by S(H, 0).

This is the underlying vector space for the invariants ĈFDD(H, 0), ĈFAA(H, 0), etc.
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To define ĈFDD(H, 0), identify both boundary components of Σ with −Z. Each

generator of ĈFDD(H, 0) has associated idempotents in Aρ and Aσ, as in (3.5). The

differential

δ1 : X(H, 0)→ (Aρ ⊗Aσ)⊗Iρ⊗Iσ
X(H, 0)

is then defined essentially the same way as with ĈFD of a single-boundary-component

diagram. Specifically, for a homology class B ∈ π2(x,y) and sequences of chords

~ρ = (−ρI1 , . . . ,−ρIk
) and ~σ = (−σJ1

, . . . ,−σJl
) on the two boundary components,

the definitions of compatibility and of the index ind(B, ~ρ, ~σ) are as above. Define

aB
x,y =

∑

(~ρ,~σ) |
(B,~ρ,~σ) compatible,

ind(B,~ρ,~σ)=1}

#(MB(x,y, ~ρ, ~σ)) ρI1 . . . ρIk
⊗ σJ1

. . . σJl
∈ Aρ ⊗Aσ.

The map δ1 is then given by (3.7) just as above. An analogue of Proposition 3.2 also

holds in this setting. For further details, see [34, Section 6].

The gluing theorem generalizes naturally to bimodules. For instance, if Y1 has

a single boundary component parametrized by F (Z), Y2 has two boundary compo-

nents parametrized by −F (Z), and φ : − ∂Y1 → ∂LY2 is the map induced by the

parametrizations, then

ĈFD(Y1 ∪φ Y2) ≃ ĈFA(Y1) ⊠Aρ
ĈFDD(Y2, 0).

The remaining generalizations are found in [34, Theorems 11, 12].

Finally, we mention the identity AA bimodule [34, Subsection 10.1]. Consider

the manifold I = F (Z) × I. Parametrize ∂RY = F (Z) × {1} by inclusion and

∂LY = F (Z)×{0} (whose boundary-induced orientation is opposite to the standard

orientation of F (Z)) by the composition F (Z)
r
−→ −F (Z) →֒ F (Z) × {0}; thus,

both boundary components are parametrized by F (Z) as opposed to −F (Z). The

bijection between bordered manifolds with boundary −F (Z) and bordered manifolds

with boundary F (Z) may be given by Y 7→ Y ∪ I. Thus, if H is any bordered

Heegaard diagram with one boundary component, then the type A module ĈFA(H)
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w1

w2
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z2
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1+σ12ρ23 1+σ23ρ12
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σ12ρ2 σ2ρ12
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σ2ρ2

σ3ρ3

σ123ρ2+

σ3σ2σ1ρ2

σ2ρ123

Figure 11: The identity AA bimodule, ĈFAA(I, 0).

(where we identify ∂Σ with Z) is chain homotopy equivalent to ĈFAA(I, 0)⊠ĈFD(H)

(where, in the second factor, we identify ∂Σ with −Z). As mentioned above, it is

easier to compute ĈFD explicitly from a Heegaard diagram than ĈFA; by taking a

tensor product with ĈFAA(I, 0), we can always avoid the latter.

Theorem 3.4 (Lipshitz-Ozsváth-Thurston). The type AA module ĈFAA(I, 0) has

generators w1, w2, x, y, z1, z2, with A∞ multiplications as illustrated in Figure 11.

3.1.5 Knots in bordered manifolds

A doubly-pointed bordered Heegaard diagram consists of a bordered Heegaard diagram

H = (Σ, α, β, z) along with an additional basepoint w ∈ Σr(α∪β). As explained in

[35, Section 10.4], a doubly-pointed diagram determines a knot K ⊂ Y with a single

point of K meeting the basepoint on ∂Y , invariant up to isotopy fixing this point

under Heegaard moves missing w. Lipshitz, Ozsváth, and Thurston define invariants

CFD−(Y, K) and CFA−(Y, K) by working over the algebra A ⊗ F[U ], where the U

powers record the multiplicity of w in each domain that counts for the differential or
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multiplications.

If the knot K is nulhomologous in Y , we prefer the following alternate perspective.

Let F be a Seifert surface for K. Just as in ordinary knot Floer homology [49, 56], each

generator x ∈ S(H) has an associated relative spinc structure sz,w(x) ∈ Spinc(Y, K),

and we may define an Alexander grading on S(H) by

A(x) =
1

2
〈c1(sz,w(x)), [F ]〉 , (3.8)

where c1(sz,w(x)) ∈ H2(Y, K) and [F ] ∈ H2(Y, K). The grading difference between

two generators is given by

A(x)− A(y) = nw(B) (3.9)

where B ∈ π2(x,y) is any domain from x to y. To verify that the right-hand side

of (3.9) is well-defined, note that for any periodic class P ∈ π2(x,x), nw(P ) equals

the intersection number of K with the homology class in H2(Y, ∂Y ) corresponding

to P , which must be zero since K is nulhomologous. Further details are completely

analogous to [49, 56].

The Alexander grading on X(H) determines a filtration on ĈFA(H) or ĈFD(H),

since any domain that counts for the differential or A∞ multiplications has non-

negative multiplicity at w. We denote the filtered chain homotopy type by ĈFA(Y , K)

or ĈFD(Y , K).

When we evaluate a tensor product ĈFA(Y1)⊠ĈFD(Y2), a filtration on one factor

extends naturally to a filtration on the whole complex, and the induced filtration

agrees with the one that the knot induces on ĈF(Y1 ∪ Y2).

A nulhomologous knot in a bordered manifold with two boundary components

may be handled similarly. For invariance, one point of the knot must be constrained

to lie on the arc connecting the two boundary components, and isotopies must be

fixed in a neighborhood of that point.
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3.1.6 The edge reduction algorithm

We now describe the well-known “edge reduction” procedure for chain complexes and

its extension to A∞ modules.

Suppose (C, ∂) is a free chain complex with basis {x1, . . . , xn} over a ring R. For

each i, j, let aij be the coefficient of xj in ∂xi with respect to this basis. If some aij

is invertible in R, define a new basis {y1, . . . , yn} by setting yi = xi, yj = ∂xi, and

for each k 6= i, j, yk = xk − akja
−1
ij xi, where akj is the coefficient of xj in ∂xk. With

respect to the new basis, the coefficient of yj in ∂yk is zero, so the subspace spanned

by yi and yj is a direct summand subcomplex with trivial homology. Thus, C is chain

homotopy equivalent to the subcomplex C ′ spanned by {yk | k 6= i, j}, in which the

coefficient of yl in ∂yk is akl − akja
−1
ij ail.

When R = F2, a convenient way to represent a chain complex (C, ∂) with basis

{xi} is a directed graph ΓC,∂,{xi} with vertices corresponding to basis elements and

an edge from xi to xj whenever aij = 1. To obtain ΓC′,∂,{yk} from ΓC,∂,{xi} as above,

we delete the vertices xi and xj and any edges going into or out of them. For each

k and l with edges xk → xj and xi → xl, we either add an edge from xk to xl (if

there was not one previously) or eliminate the edge from xk to xl (if there was one).

We call this procedure canceling the edge from xi to xj . The vertices of the resulting

graph should be labeled with {yk | k 6= i, j}, but by abuse of notation we frequently

continue to refer to them with {xk | k 6= i, j} instead.

By iterating this procedure until no more edges remain, we compute the homology

of C. If the matrix (aij) is sparse, this tends to be a very efficient algorithm for

computing homology. If C is a graded complex and the basis {x1, . . . , xn} consists of

homogeneous elements, then yk is clearly homogeneous with the same grading as xk,

so we can compute the homology as a graded group.

If C has a filtration · · · ⊆ Fp ⊆ Fp+1 ⊆ · · · , the filtration level of an element of C is

the unique p for which that element is in FprFp−1. To compute the spectral sequence

associated to the filtration, we cancel edges in increasing order of the amount by



CHAPTER 3. KNOT DOUBLING OPERATORS 40

which they decrease filtration level. At each stage, this guarantees that the filtration

level of yk equals that of xk. The complex that remains after we delete all edges

that decrease filtration level by k is the Ek+1 page in the spectral sequence, and

the vertices that remain after all edges are deleted is the E∞ page. In particular,

when C = ĈF(S3, K), the filtered complex associated to a knot K ⊂ S3, the total

homology of C is ĤF(S3; F) ∼= F, so a unique vertex survives after all cancellations

are complete. The filtration level of this vertex is, by definition, the invariant τ(K).

More generally, over an arbitrary ring R, we may represent (C, ∂) by a labeled,

directed graph, where now we label an edge from xi to xj by aij , often omitting the

label when aij = 1. When we cancel an unlabeled edge from xi to xj , we replace a

zigzag

xk

akj
−−→ xj ←− xi

ail−→ xl

with an edge

xk
−aklail−−−−→ xl

if no such edge existed previously, and either relabel or delete such an edge if it did

exist. Of course, when R is not a field, this procedure is not guaranteed to eliminate

all edges or to yield a result that is independent of the choice of the order in which

the edges are deleted, but it is still often a useful way to simplify a chain complex.

The same procedure works for type D structures over the torus algebra A, as can

be seen by looking at the ordinary differential module obtained by taking the tensor

product with A as above.

Edge cancellation for type A structures is slightly more complicated. We work

only with bounded modules for simplicity. Suppose M is a bounded type A structure

over A with a basis {x1, . . . , xn}. As above, we may describe the multiplications using

a matrix of formal sums of finite sequences of elements of A, and we may represent

the nonzero entries using a labeled graph. If there is an unmarked edge from xi to xj

(and no other edge), then we may cancel xi and xj , replacing a zigzag

xk
(a1,...,ap)
−−−−−→ xj ←− xi

(b1,...,bq)
−−−−−→ xl
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by an edge

xk
(a1,...,ap,b1,...,bq)
−−−−−−−−−−→ xl

(or eliminating such an edge if one already exists). The A∞ module M ′ described by

the resulting graph is then A∞ chain homotopic to M . If M is a filtered A∞-module

and the edge being canceled is filtration-preserving (i.e., xi and xj have the same

filtration level), then M ′ is filtered A∞ chain homotopic to M . Similar techniques

may also be used for bimodules.

The author has written a Mathematica package that implements these procedures

for modules over the torus algebra, as well as the box tensor product. This package

is available online at http://www.math.columbia.edu/~topology/programs.html.

3.1.7 ĈFD of knot complements

For any knot K, let XK denote the exterior of K. For t ∈ Z, let X t
K denote the

bordered structure on XK determined by a map φ : −F (Z) → ∂XK sending h1 to

a t-framed longitude (relative to the Seifert framing) and h2 to a meridian of K.

Lipshitz, Ozsváth, and Thurston [35] give a complete computation of ĈFD(X t
K) in

terms of the knot Floer complex of K, which we now describe.

In the computation that follows, we will need to work with two different framed

knot complements, X s
J and X t

K . We first state the results for ĈFD(X s
J ) and then

indicate how to modify the notation for ĈFD(X t
K). Define r = |2τ(J)− s|, and say

that dim ĤFK(S3, J) = 2n + 1.

We may find two distinguished bases for CFK−(S3, J): a “vertically reduced” basis

{ξ̃0, . . . , ξ̃2n}, with “vertical arrows” ξ̃2j−1 → ξ̃2j of length kj ∈ N, and a “horizontally

reduced” basis {η̃0, . . . , η̃2n}, with “horizontal arrows” ξ̃2j−1 → ξ̃2j of length lj ∈ N.

(See [35, Chapter 10] for the definitions.) Denote the change-of-basis matrices by

(xp,q) and (yp,q), so that

ξ̃p =
2n∑

q=0

xp,qη̃q and η̃p =
2n∑

q=0

yp,qξ̃q. (3.10)

http://www.math.columbia.edu/~topology/programs.html
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In all known instances, the two bases may be taken to be equal as sets (up to a

permutation), but it has not been proven that this holds in general.

According to [35, Theorems 10.17, 11.7], the structure of ĈFD(X t
J) is as follows.

The part in idempotent ι0 (i.e., ι0ĈFD(X s
J )) has dimension 2n + 1, with designated

bases {ξ0, . . . , ξ2n} and {η0, . . . , η2n} related by (3.10) without the tildes. The part in

idempotent ι1 (i.e., ι1ĈFD(X s
J )) has dimension r +

∑n
j=1(kj + lj), with basis

{γ1, . . . , γr} ∪

n⋃

j=1

{κj
1, . . . , κ

j
kj
} ∪

n⋃

j=1

{λj
1, . . . , λ

j
lj
}.

For j = 1, . . . , n, corresponding to the vertical arrow η̃2j−1 → η̃2j , there are

differentials

ξ2j
ρ123

−−→ κj
1

ρ23

−−→ · · ·
ρ23

−−→ κj
kj

ρ1

←− ξ2j−1. (3.11)

(In other words, δ1(ξ2j) has a ρ123 ⊗ κj
1 term, and so on.) We refer to the subspace

of ĈFD(X s
J ) spanned by the generators in (3.11) as a vertical stable chain. Similarly,

corresponding to the horizontal arrow η2j−1 → η2j of length lj , there are differentials

η2j−1
ρ3

−→ λj
1

ρ23

−−→ · · ·
ρ23

−−→ λj
lj

ρ2

−→ η2j, (3.12)

and the generators here span a horizontal stable chain. Finally, the generators

ξ0, η0, γ1, . . . , γr span the unstable chain, with differentials depending on s and τ(J):




η0
ρ3

−→ γ1
ρ23

−−→ · · ·
ρ23

−−→ γr
ρ1

←− ξ0 s < 2τ(J)

ξ0
ρ12

−−→ η0 s = 2τ(J)

ξ0
ρ123

−−→ γ1
ρ23

−−→ · · ·
ρ23

−−→ γr
ρ2

−→ η0 s > 2τ(J).

(3.13)

In some instances, as with the unknot and the figure-eight knot, we may have ξ0 = η0.

For ĈFD(X t
K), we modify the preceding two paragraphs by replacing all lower-

case letters with capital letters. Specifically, ι0ĈFD(X t
K) has bases {Ξ0, . . . , Ξ2N}

and {H0, . . . , H2N} related by change-of-basis matrices (XP,Q) and (YP,Q) as in (3.10);

ι1ĈFD(X t
K) has basis

{Γ1, . . . , ΓR} ∪
N⋃

J=1

{KJ
1 , . . . , KJ

KJ
} ∪

N⋃

J=1

{ΛJ
1 , . . . , ΛJ

LJ
};
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and the differentials are just as in (3.11), (3.12), and (3.13), suitably modified.3 In

the discussion below, we shall treat ĈFD(X t
K) as a type D structure over a copy of

Aσ in which the elements are referred to as σ1, σ2, etc., to facilitate taking the double

tensor product.

In Section 3.3, we shall frequently use the following proposition to simplify com-

putations:

Proposition 3.5. In the matrix entries for the higher maps δk for ĈFD(X s
J ), there

are no sequences of elements containing ρ1 ⊗ ρ2, ρ1 ⊗ ρ23, ρ2 ⊗ ρ3, or ρ12 ⊗ ρ3.

Proof. The only instances of ρ1 in ĈFK(X s
J ) are ξ2j−1

ρ1

−→ κj
kj

in the vertical chains

and ξ0
ρ1

−→ γr in the unstable chain when s < 2τ(J), and δ1(κ
j
kj

) = δ1(γr) = 0. Thus,

ρ1⊗ρ2 and ρ1⊗ρ23 may not occur in δk. Similarly, the only instances of ρ2 and ρ12 are

λj
lj

ρ2

−→ η2j in the horizontal chains, γr
ρ2

−→ η0 in the unstable chain when s > 2τ(J),

and ξ0
ρ12

−−→ η0 when s = 2τ(J), and the only instances of ρ3 are η2j−1
ρ3

−→ λj
1 in the

horizontal chains and η0
ρ3

−→ γ1 in the unstable chain when s < 2τ(J). Thus, no

element that is at the head of a ρ2 or ρ12 arrow is also at the tail of a ρ3 arrow.

3.2 Direct computation of ĈFAA(Y, B3)

As above, let B = B1 ∪B2 ∪B3 ⊂ S3 denote the Borromean rings. Let Y denote the

complement of a neighborhood of B1 ∪ B2; then B3 is a nulhomologous knot in Y .

Let ∂LY and ∂RY be the boundary components coming from B1 and B2, respectively.

We define a strongly bordered structure Y on Y (in the sense of [34, Definition 5.1])

so that the map φL : F (Z)→ ∂LY (resp. φR : F (Z)→ ∂RY ) takes h1 to a meridian

of B1 (resp. B2) and h2 to a Seifert-framed longitude of B1 (resp. B2). It follows

that the glued manifold (Y ∪∂LY X
s
J )∪∂RY X

t
K , is S3, and the image of B3 is the knot

3The reader should take care to distinguish capital eta (H) and kappa (K) from the Roman letters

H and K. We find that the mnemonic advantage of using parallel notation for the generators of

ĈFD(X s

J
) and ĈFD(X t

K
) outweighs any confusion that may arise.
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DJ,s(K, t).4 Thus, we must compute the filtered type AA bimodule ĈFAA(Y , B3, 0).

We do this explicitly using a Heegaard diagram.

Proposition 3.6. The arced Heegaard diagram H (with extra basepoint w) shown in

Figure 12 determines the pair (Y , B3).

Proof. As in [34, Construction 5.4], by cutting along the arc z, we obtain a bordered

Heegaard diagram with a single boundary component,Hdr, which we view as rectangle

with two tunnels attached. After attaching 2-handles to Hdr× [0, 1] along β×{1} and

attaching a single 3-handle, we may view the resulting manifold Y (Hdr) as [−1, 1]×

R× [0,∞) ⊂ R3, minus two tunnels in the upper half-plane, plus the point at infinity

(Figure 13). The boundary of Y (Hdr) is the union of two embedded copies of F ◦(Z)

that are determined by the α arcs on each side; they intersect along a circle A. The

extra basepoint w determines a knot C in Y (Hdr) with a single point on the boundary:

the union of an arc connecting w to z in the complement of the α arcs and an arc

connecting z to w in the complement of the β circles, pushed into the interior of

Y (Hdr) except at z. The curves A and C are both shown in Figure 13.

We obtain Figure 14 from Figure 13 by an isotopy that slides the tunnel on the

right underneath the tunnel on the left. The circle A can then be identified with

the y-axis plus the point at infinity. To obtain Y (H), we attach a three-dimensional

two-handle along A, which can be seen as [−ǫ, ǫ] × R × (−∞, 0] plus the point at

infinity. Then Y (H) is the complement of a two-component unlink (B1 ∪ B2) in S3,

and the knot C inside Y (H) is B3. When we identify each component of ∂Σ with Z,

we see that the α arc connecting the points a1 and a3 is a meridian, and the α arc

connecting a2 and a4 is a 0-framed longitude, as in the definition of Y .

If we try to compute ĈFAA(H, 0) directly, we run into difficulties counting the

holomorphic curves, largely because there is a 14-sided region that runs over both

4Because we are gluing the two boundary components of Y to separate single-boundary-

component bordered manifolds, the choice of framed arc connecting ∂LY and ∂RY does not affect

the final computation of the tensor product, so we suppress all reference to it.
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w

z

Figure 12: The arced Heegaard diagram H.
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z

A

C

Figure 13: The manifold Y (Hdr). The α arcs from H (the thin red and green curves)

and the circle A (purple) sit in the xy-plane, while the knot C (turquoise) sits in the

interior of Y (Hdr) except at the point z.
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z

A

C

a1

a1

a2

a2

a3

a3

a4

a4

Figure 14: The result of isotoping Figure 13. Each boundary component is identified

with Z.
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handles and shares edges with itself. Instead, it is easier to perform a sequence of

isotopies on the α arcs to obtain the diagram H′ shown in Figure 15. While H′ is not

a nice diagram in the sense of Sarkar and Wang [62], the analysis needed to count

the relevant holomorphic curves is vastly simpler. Of course, the drawback is that

the number of generators is much larger.

By Theorem 3.4, it suffices to compute ĈFDD(H′, 0), as described previously.

Thus, we identify each component of ∂Σ with −Z. We now describe this computation.

In H′, we label the intersection points of the α and β curves x1, . . . , x52, as indi-

cated by the colored numbers in Figure 15.5 These points are distributed among the

various α and β circles as follows:

β1 β2

αL
1 x2, x4, x6, x10, x11, x15, x22, x29 x37, x41, x42, x46

αL
2 x3, x5 x36

αR
1 x8, x13, x17, x20, x24, x27, x31, x34 x39, x44, x48, x51

αR
2

x1, x7, x9, x12, x14, x16, x18, x19

x21, x25, x26, x28, x32, x33, x35

x38, x40, x43, x45

x47, x49, x50, x52

The underlying vector space for ĈFDD(H′, 0) is generated by the set S(H′, 0), con-

sisting pairs of intersection points with one point on each β circle, one point on either

αL
1 or αL

2 , and one point on either αR
1 or αR

2 . A simple count shows that there are 245

generators.

The bimodule ĈFDD(H′, 0) is a type DD structure over two copies of the torus

algebra A. We denote these copies by Aρ and Aσ, corresponding to the left and right

boundary components of H′. In Aσ, the Reeb elements are denoted σ1, σ2, etc. The

idempotents in Aρ are denoted ιρ0 and ιρ1, and those in Aσ are denoted ισ0 and ισ1 . The

idempotent maps Iρ
D : S(H′, 0) → {ιρ0, ι

ρ
1} and Iσ

D : S(H′, 0) → {ισ0 , ι
σ
1} are defined

just as in (3.5).

5While many authors use different letters to distinguish between intersection points on different

α or β curves, we use a single indexing set here in order to facilitate computer calculations.
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ρ1

ρ2

ρ3

σ1

σ2

σ3

β1

β2

αL
1

αL
2

αR
1

αR
2

w

z

Figure 15: The Heegaard diagram H′, with the boundary labeled consistent with the

conventions for type D structures.
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Denote the regions of Σ′ r (α ∪ β) by R1, . . . , R52, as indicated by the black

numbers in Figure 15.

For generators x and y, we may find all the domains in π2(x,y) by solving the

system of linear equations (3.4). The multiplicity of each of the boundary regions

(R2, R4, R34, R35, R36, and R37) must be 0 or 1; each of the 26 possible choices

for these multiplicities gives a further set of constraints that guarantees a unique

solution. We may then list only those solutions which represent positive classes and

which have index 1 for some compatible ~ρ, subject to the restrictions of Proposition

3.2. Using Mathematica to perform these linear algebra computations, we find some

1,051 domains meeting these requirements.

It would not be feasible to list every single domain and whether or not it supports

holomorphic representatives, but we shall describe a number of typical examples, and

leave further details to the highly motivated reader.

Bigons and quadrilaterals. In the context of closed Heegaard diagrams, Sarkar

and Wang [62] showed that in a Heegaard diagram in which every non-basepointed

region is either a bigon or a quadrilateral, the domains with Maslov index 1 are pre-

cisely the embedded bigons and quadrilaterals that are embedded in the Heegaard

diagram, and these all support support a unique holomorphic representatives. Lip-

shitz, Ozsváth, and Thurston proved an analogous result for bordered diagrams [35,

Proposition 8.4], where now we extend the definition of “quadrilateral” to include a

region with boundary consisting of one segment of a β circle, two segments of α arcs,

and one segment of ∂Σ. The only non-basepointed regions in H′ that are not bigons

or quadrilaterals are R2, R4, R7, and R8, which are hexagons. Therefore, any index-1

domain on our list that does not use one of these four regions automatically supports

a unique holomorphic representative.
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(a)

(b) (c)

x2

x15

x22

x22

x23

x35x45

x46

x46 x48

ρ2

ρ2ρ2

ρ3

ρ3ρ3

σ1
β1

β1

β1

β2

β2

αL
1αL

1

αL
1

αL
2αL

2

αL
2

αR
1

αR
2

αR
2

Figure 16: The domains D1 (a), D2 (b), and D3 (c).
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Domains contributing ρ23. Consider the domains

D1 = R7 + R8 + R19 + · · ·+ R30 + R49 + R50 + R51 + R52

D2 = R7 + R8 + R31 + R36 + R37 + R48

D3 = D2 + R4 + R5 + R10 + R11 + R17 + R18 + R24 + R25 + R29 + R30 + R32

+ R38 + R39 + R47 + R49 + R50,

which respectively represent index-1 classes in π2(x15xi, x22xi), π2(x22x45, x23x46), and

π2(x35x46, x2x48), where xi ∈ β2 ∩ (αR
1 ∪ αR

2 ) and i < 47. (If i ∈ {47, . . . , 52}, the

index of D1 is too high.) To obtain a representative of each domain compatible with

the sequence (−ρ2,−ρ3), as required by Proposition 3.2, we cut along αL
1 all the way

to the boundary, as shown in Figure 16. The source curve for D1 is the disjoint union

of two bigons: one with two boundary punctures mapped to the Reeb chords −ρ2

and −ρ3, and one mapped trivially to {xi} × [0, 1]× R. The source curve for D2 or

D3 is a quadrilateral, with two boundary punctures on one α edge mapping to −ρ2

and −ρ3 and (for D3) a boundary puncture on the other α edge mapping to σ1. It is

easy to see that these classes all support holomorphic representatives. Thus, we have

differentials x15xi
ρ23⊗1
−−−→ x22xi, x22x45

ρ23⊗1
−−−→ x23x46, and x35x46

ρ23⊗σ1

−−−−→ x2x48.

On the other hand, let D4 = R7 + R8 + R36 + R37; this domain represents a class

in π2(x21xj , x23xj), where xj ∈ β2 ∩ (αL
1 ∪ αL

2 ). This domain is illustrated in Figure

17. If xj ∈ αL
2 , then then this class is excluded for idempotent reasons by Proposition

3.2. On the other hand, if xj ∈ αL
1 , then the index of this class is 0. Therefore, D4

cannot count for the differential for any choice of xj .

Decomposable annuli. Let A = R7+R8+R48 +R49+R30+R31; this is the domain

for an index-0 annulus in π2(x3x45, x5x47). Consider the index-1 annuli

D5 = A + R36 ∈ π2(x4x45, x5x47)

D6 = A + R37 ∈ π2(x3x45, x4x47)

D7 = A + R25 + R26 + R27 + R28 + R29 + R50 + R51 + R52 ∈ π2(x3x45, x5x52).
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x21

x22

x23

ρ2

ρ3

β1

αL
2

αR
2

Figure 17: The domain D4.

each of which is the sum of A with a bigon (possibly with a Reeb chord on the

boundary). The mod-2 count of holomorphic representatives of each of these domains

depends nontrivially on the choice of complex structure. We claim that either all

three domains count for the differential or none of them do. To see this, we use

a standard argument in conformal geometry that occurs frequently in computing

Heegaard Floer complexes, which we find convenient to state in more generality than

is strictly needed for this example. (See, e.g., Ozsváth and Szabó’s first paper on

Heegaard Floer homology [50].)

Lemma 3.7. Suppose that a Heegaard diagram contains an annulus A and some or

all of the bigons B1, . . . , B8 shown in Figure 18, where each of the arcs that cuts into

A crosses to the opposite boundary component. Let Ei be the domain A + Bi, which

has Maslov index 1. Then either E1, E3, E6, and E8 count for the differential and

E2, E4, E5, and E7 do not, or vice versa.

Proof. Define the standard annulus A0 to be S1 × [0, 1], with coordinates (s, t), with

the complex structure given by j∂s = ∂t, j∂t = −∂s. Up to rotation in the S1 factor,

there is a unique holomorphic map U : A0 → A taking S1×{0} to the inner boundary
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A

B1 B2

B3 B4

B5 B6

B7 B8

p0

p1

q0

q1

r1 r2

r3 r4

r5 r6

r7 r8

α0α1 β0 β1

Figure 18: Annuli for which the number of holomorphic representatives depends

nontrivially on the choice of complex structure as in Lemma 3.7.
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(A∩ (α0∪β0)) and S1×{1} to the outer boundary (A∩ (α1∪β1)). For i ∈ {0, 1}, let

ai and bi denote the inverse images of αi and βi, respectively. Define Θi = ℓ(ai)/ℓ(bi),

the ratio of the length of the ai to the length of bi. For generic choices of the complex

structure on Σ, we may assume that Θ0 6= Θ1.

We consider E1 = A + B1; the analysis for the other seven cases is extremely

similar. The domain E1 (going from p0p1 to r1q1) has a one-parameter family of

conformal structures, determined by how far we cut into A at r1. We specify the

length of the cut by c ∈ R, where c < 0 corresponds to cutting along α0 and c > 0

corresponds to cutting along β0. For each value of c, there is a conformal map

uc : A0 → E1, unique up to rotation in the S1 factor. As above, let ac
i , b

c
i ⊂ S1 × {i}

be the preimages of αi and βi under uc, and let θc
i = ℓ(ac

i)/ℓ(b
c
i). Whenever θc

0 = θc
1,

there is a holomorphic involution A0 interchanging ac
0 with ac

1 and bc
0 with bc

1. Thus,

the signed count of the zeroes of the function f(c) = θc
0−θc

1 equals the signed number

of points in the moduli space M̂(E1). We may assume that f is transverse to zero.

Consider the limiting behavior of f(c). As we cut along β0, the arcs b0 and a1 grow

in length, approaching all of S1×{0} and S1×{1}, respectively. Thus limc→∞ θc
0 = 0

and limc→−∞ θc
1 = ∞, so limc→∞ f(c) = −∞. In the opposite direction, as we cut

along α0, Gromov compactness implies that the maps uc limit to a broken flowline

consisting of holomorphic representatives for B1 and A, so the limiting values of θc
0

and θc
1 are equal the corresponding values for U : A0 → A. That is, limc→−∞ f(c) =

Θ0 − Θ1. By transversality and the intermediate value theorem, we thus see that

#M̂(E1) is odd if and only if Θ0 < Θ1.

For the remaining domains E2, . . . , E8, we apply the same sort of analysis. As

before, we parametrize the cut by c ∈ R, with c < 0 corresponding to cutting along

the α circle and c > 0 corresponding to cutting along the β circle. The limits are in
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the following table:

limc→−∞ f(c) (cutting along α) limc→∞ f(c) (cutting along β)

E1, E3 Θ0 −Θ1 −∞

E2, E4 ∞ Θ0 −Θ1

E5, E7 Θ0 −Θ1 ∞

E6, E8 −∞ Θ0 −Θ1

Thus, E1, E3, E6, and E8 count for the differential if and only if Θ0 < Θ1, and E2,

E4, E5, and E7 count otherwise.

In our Heegaard diagram H′, we identify α0, β0, α1, and β1 in Figure 18 with αL
2 ,

β1, αR
2 , and β2 in Figure 15, respectively. For the bigons, we may take B2 = R37,

B4 = R36, and B7 = R25 + R26 + R27 + R28 + R29 + R50 + R51 + R52, so that the

domains D5, D6, and D7 have the forms of E4, E2, and E7, respectively. (For D5 and

D6, the source surface should actually be A′
0 = A0 r (p, 0), where p is some point

in S1, and the puncture is sent to the Reeb chord ρ2 or ρ3. The analysis is exactly

the same, however.) By Lemma 3.7, either all three of these domains count for the

differential or none of them do, depending on the value of Θ0 − Θ1. If we arrange

that Θ0 < Θ1, we see that none of these domains count.

Moreover, the other annuli in H′ with Maslov index 0 are obtained by adding

rectangular strips (e.g., R6 +R9 or R24 +R25 +R47 +R50 +R29 +R32) to this one, and

we may easily arrange that the values of Θ0−Θ1 for all of these annuli are arbitrarily

close together. Therefore, the annuli obtained by adding rectangular strips to D5,

D6, and D7 also do not count for the differential.

More annuli. Let D8 = R2+R6+R7+R8+R14+R36+R37+R42, which determines

an annulus in π2(x21x36, x23x37) with a single ρ123 chord on one boundary component

(Figure 19(a)). Let c ∈ R represent the cut parameter at x36, where c < 0 corresponds

to cutting along αL
2 and c > 0 corresponds to cutting along β2. As above, for each
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(a) (b)
x3
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x21

x23

x36

x37

x44
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β1
β1

β2 β2

αL
1
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2

αL
2

αR
1

αR
2

αR
2

ρ1

ρ23

Figure 19: The domains D9 (a) and D9 (b).

value of c there is a unique holomorphic map uc from the source annulus A′
0 taking

(S1 r p) × {0} to αL
1 ∪ αL

2 ∪ β2, the puncture (p, 0) to the Reeb chord ρ123, and

(S1×{1}) to αR
2 ∪β1. With notation as in the proof of Lemma 3.7, we must consider

the limits of f(c) = θc
0− θc

1 as c→ ±∞. As we cut along β2, the arcs bc
0 = (uc)−1(β2)

and ac
1 = (uc)−1(αR

2 ) become arbitrarily long relative to their complements, so

lim
c→∞

f(c) = lim
c→∞

θc
0 − lim

c→∞
θc
1 = 0−∞ = −∞.

As we cut along αL
2 out toward the puncture, the arc ac

0 becomes arbitrarily long

relative to bc
0, while the ratio of the lengths of ac

1 and bc
1 approaches some finite value

Θ, so

lim
c→−∞

f(c) = lim
c→−∞

θc
0 − lim

c→−∞
θc
1 =∞−Θ =∞.

By transversality, we see that f always has an odd number of zeroes, so the class

given by D8 always counts for the differential.

Next, consider the domain

D9 = R7 + R8 + R20 + R24 + R25 + R29 + R30

+ R31 + R32 + R35 + R43 + R47 + R48 + R49 + R50,
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(a) (b)
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x23

x36

x52

β1 β2

αL
2
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C
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z

Figure 20: (a) The genus-1 domain D11. (b) A Heegaard diagram for S1 × S2 con-

taining a domain biholomorphic to D11.

which represents an annulus in π2(x3x44, x5x47) with a single σ2 Reeb chord (Figure

19(b)). Once again, we specify the cut parameter at x47 by c ∈ R and consider

the limiting behavior of a function f(c) defined as in previous examples. In the as

c → ±∞, the domain decomposes into a bigon B± with a single boundary puncture

and an annulus A± with Maslov index 0, so by Gromov compactness, limc→±∞ f(c) =

Θ±
0 −Θ±

1 , where Θ±
0 and Θ±

1 are the conformal angle ratios of A± as in the proof of

Lemma 3.7. As mentioned previously, we may assume that Θ+
0 − Θ+

1 and Θ−
0 − Θ−

1

are arbitrarily close together; in particular, they have the same sign. Thus, D9 does

not count for the differential. A similar argument applies for

D10 = R2 + R6 + R7 + R8 + R9 + R14 + R30 + R31 + R42 + R48 + R49.

Genus-1 classes. Let D11 = R7 +R8 + · · ·+R24 (Figure 20(a)), which determines a

class in π2(x3x52, x23x36) represented by an embedded punctured torus. Determining

whether domains with positive genus support holomorphic representatives is often one

of the biggest difficulties in computing Heegaard Floer homology directly. In this case,

the trick is to notice that the genus-2 Heegaard diagram for S1×S2 shown in Figure

20(b) has a domain (connecting the generators DE and AF ) that is biholomorphic
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to D11. By counting the remaining disks in this diagram, it is easy to see that the

toroidal domain must count in order for the homology to be correct. Therefore, D5

must also support a holomorphic representative. The same analysis applies to any

domain of the form
∑b

i=a Ri, where 4 ≤ a ≤ 7 and 24 ≤ b ≤ 33, provided that a and

b are chosen such that the two α segments of the boundary do not lie on the same α

curve. A similar analysis also works for the domain

D12 = R5 + R6 + R7 + R8 + R9 + R10 + R18 + R30 + R31 + R48 + R49

and others like it.

Next, consider the domains

D13 = R8 + · · ·+ R24 ∈ π2(x4x47, x22x47)

D14 = R7 + · · ·+ R19 + R30 + R31 + R48 + R49 ∈ π2(x3x45, x16x36)

D15 = R8 + R20 + R21 + R22 + R23 + R24 + R37 ∈ π2(x16x36, x22x47).

The domains D13 and D15 obviously do count for the differential: D13 is an annulus

that always has a holomorphic representative (by a standard argument), and D15 is a

rectangle with a single Reeb chord. The domain D14, however, is a punctured torus.

Notice that D6 + D13 and D14 + D15 both determine the same homology class in

π2(x3x45, x22x47), with index 2. More precisely, we there is a one-parameter family

of disks limiting in one direction to the broken flowline D6 ∗ D13 and in the other

direction to D14 ∗D15, which can be seen explicitly by varying the cut parameter at

x47. It follows that D14 counts for the differential if and only if D6 does. By our

assumption above, D14 does not count.

Miscellaneous domains. Let D16 = R7+2R8+R9+R10+· · ·+R24+R31+R37+R48;

this is a domain from x3x45 to x23x46. Because the region R8, which as drawn in Figure

15 goes over one of the handles, is used twice, it is a little bit tricky to see what the

source surface should be; the only possibility is indicated in Figure 21. Topologically,

this is an immersed annulus with one boundary component having two α and two β
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Figure 21: The only possible source surface for the domain D16, which does not satisfy

the correct boundary conditions.

segments (and a single Reeb chord), and the other component consisting of all of β2,

so it does not satisfy the necessary boundary conditions. Thus, D16 cannot count for

the differential.

By inspecting the long list of the index-1 domains in H′, we see that they all

fall into one of the classes just described. We may thus sort the list into those that

support holomorphic representatives and those that do not. Using this list, we may

then record the differential on ĈFDD(H′, 0) as a 245 × 245 matrix with entries in

Aρ ⊗Aσ, although for obvious reasons we do not record this matrix here.

By counting the multiplicity of w in each domain (whether it counts for the dif-

ferential or not), we can determine the relative Alexander gradings of all of the gen-

erators. We find that the generators of ĈFDD(H′, 0) all fall into three consecutive

gradings, which for now we arbitrarily declare to be −1, 0, and 1. In the end, after

we evaluate all tensor products, the symmetry of ĈFK(S3, DJ,s(K, t)) will show that
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this was the correct choice. We do not explicitly list all of the gradings here, however.

We may then use the edge cancellation algorithm explained in Subsection 3.1.6

to simplify ĈFDD(H′, 0), canceling only edges that preserve the filtration level. By

abuse of notation, we denote the resulting module by ĈFDD(Y , B3, 0).

Theorem 3.8. The type DD structure ĈFDD(Y , B3, 0) has a basis {y1, . . . , y19} with

the following properties:

1. The Alexander gradings of the basis elements are:

A(yi) =





−1 i = 1

0 i = 2, . . . , 10

1 i = 11, . . . , 19.

2. The associated idempotents in Aρ and Aσ of the generators are:

ιρ0 ιρ1

ισ0 y4, y5, y7, y11, y13, y17, y19 y8, y10, y14, y16

ισ1 y3, y6, y12, y18 y1, y2, y9, y15

3. The differential is given by

δ1(yi) =

19∑

j=1

aij ⊗ yj,
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where (aij) is the following matrix:0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB�

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 σ2 0 0 0 0 0 0 0 0 0 0 0

ρ1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ρ1σ123 ρ1σ3 σ3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 ρ3σ123 + ρ123σ3 0 0 0 σ3 0 0 ρ3σ123 ρ3 0 0 0 0 0 0 0 0 0

ρ123 0 0 0 0 0 σ2 0 ρ3 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 ρ3 0 0 0 0 0 0 0 0 0 0 0

0 0 ρ2σ1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 ρ2 0 0 0 0 σ2 0 0 0 0 0 0 0 0 0 0 0

σ123 0 0 ρ2 0 0 0 0 σ3 0 0 0 0 0 0 0 0 0 0

0 ρ1σ1 σ1 0 0 0 0 ρ1 ρ1σ1 0 0 0 0 0 0 0 0 0 0

0 ρ1 1 0 0 0 0 0 0 0 σ2 0 0 0 0 0 0 0 0

0 0 σ123 1 0 0 0 0 0 0 0 σ3 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 σ3 0 0 0 ρ3

0 ρ123 0 0 0 1 0 0 0 0 0 0 0 0 0 σ2 0 ρ3 0

0 0 0 0 0 0 1 ρ123 0 0 0 0 0 0 0 0 ρ3 0 0

0 0 0 0 0 0 0 1 0 0 ρ2 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 ρ2 0 0 0 0 σ2 0 0

0 σ123 0 0 0 0 0 0 σ123 1 0 0 ρ2 0 0 0 0 σ3 0

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA
The block decomposition indicates the filtration levels.

Finally, to compute ĈFAA(Y , B3, 0), we use the AA identity bimodule described

in Theorem 3.4:

ĈFAA(Y , B3, 0) ≃ ĈFAA(I, 0) ⊠Aσ
(ĈFAA(I, 0) ⊠Aρ

ĈFDD(Y , B3, 0)).

We evaluate this tensor product using our Mathematica package. The filtration on

ĈFDD(Y , B3, 0) induces a filtration on ĈFAA(Y , B3, 0), and we again use the edge

cancellation procedure to reduce the number of generators.

Theorem 3.9. The filtered AA-module ĈFAA(Y , B3, 0) has a basis

{a1, . . . , a5, b1, . . . , b6, c1, d1, . . . , d4, e1, e2, e3}

with the following properties:
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1. The Alexander gradings of the basis elements are:

A(c1) = −1

A(ai) = A(di) = 0

A(bi) = A(ei) = 1.

2. The associated idempotents in Aρ and Aσ of the generators are:

ιρ0 ιρ1

ισ0 a1, a3, a4, b1, b3, b4, b6 d1, d3, e1, e3

ισ1 a2, a5, b2, b5 c1, d2, d4, e2

3. The A∞ multiplications are presented in the matrices that follow. For x, y ∈

{a, b, c, d, e}, the entry in the ith row and jth column of the matrix Mxy records

the multiplications taking xi to yj, as described in Subsection 3.1.1. The ma-

trices Mab, Mcb, Mcd, Mce, Mdb, and Mde are necessarily zero because of the

Alexander grading.

Maa =

0BBBBBBBB� 0 σ1 σ12 ρ12 σ123ρ12 + σ1ρ3ρ2ρ12

0 0 σ2 0 σ23ρ12 + ρ12

0 0 0 0 σ3ρ12

0 0 0 0 σ1

0 0 0 0 0

1CCCCCCCCA
Mac =

0BBBBBBBBBBB� σ123ρ123 + σ123σ23ρ123 + σ3σ2σ1ρ123 + σ1σ23ρ3ρ2ρ123

+ σ123σ23ρ3ρ2ρ1 + σ3σ2σ1ρ3ρ2ρ1 + σ1σ23ρ3ρ2ρ3ρ2ρ1

σ23ρ123 + ρ3ρ2ρ1 + σ23σ23ρ123 + σ23σ23ρ3ρ2ρ1

σ3σ23ρ123 + σ3ρ3ρ2ρ1 + σ3σ23ρ3ρ2ρ1

σ123ρ3 + σ3σ2σ1ρ3

σ23ρ3

1CCCCCCCCCCCA
Mad =

0BBBBBBBBBBB� ρ1 0
σ12ρ123 + σ123σ2ρ123 + σ12ρ3ρ2ρ1 + σ1σ2ρ3ρ2ρ123

+ σ123σ2ρ3ρ2ρ1 + σ1σ2ρ3ρ2ρ3ρ2ρ1

σ123ρ1 + σ1ρ3ρ2ρ1

0 ρ1 σ2ρ123 + σ23σ2ρ123 + σ2ρ3ρ2ρ1 + σ23σ2ρ3ρ2ρ1 σ23ρ1

0 0 σ3σ2ρ123 + σ3σ2ρ3ρ2ρ1 + ρ1 σ3ρ1

0 0 σ12ρ3 0

0 0 σ2ρ3 0

1CCCCCCCCCCCA
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Mba =

0BBBBBBBBBBB� 1 0 0 σ3σ2ρ123ρ2 + σ3σ2ρ3ρ2ρ1ρ2 σ123ρ3ρ2ρ12 + σ1ρ3ρ2ρ3ρ2ρ12

0 1 0 0 ρ3ρ2ρ12 + σ23ρ3ρ2ρ12

0 0 1 0 σ3ρ3ρ2ρ12

0 0 0 1 + σ3σ2ρ3ρ2 σ123

0 0 0 0 1 + σ23

0 0 0 0 σ3

1CCCCCCCCCCCA
Mbb =

0BBBBBBBBBBB� 0 σ1 σ12 ρ12 0 0

0 0 σ2 0 ρ12 0

0 0 0 0 0 ρ12

0 0 0 0 σ1 σ12

0 0 0 0 0 σ2

0 0 0 0 0 0

1CCCCCCCCCCCA
Mbc =

0BBBBBBBBBBBBBBBBB�
σ3σ2σ123ρ123ρ23 + σ123σ23ρ3ρ2ρ123 + σ123ρ3ρ2ρ3ρ2ρ1 + σ1σ23ρ3ρ2ρ3ρ2ρ123

+ σ3σ2σ3σ2σ1ρ123ρ23 + σ3σ2σ123ρ3ρ2ρ1ρ23 + σ123σ23ρ3ρ2ρ3ρ2ρ1

+ σ1σ23ρ3ρ2ρ3ρ2ρ3ρ2ρ1 + σ3σ2σ3σ2σ1ρ3ρ2ρ1ρ23

σ23ρ3ρ2ρ123 + ρ3ρ2ρ3ρ2ρ1 + σ23σ23ρ3ρ2ρ123 + σ23σ23ρ3ρ2ρ3ρ2ρ1

σ3σ23ρ3ρ2ρ123 + σ3ρ3ρ2ρ3ρ2ρ1 + σ3σ23ρ3ρ2ρ3ρ2ρ1

σ3σ2σ123ρ3ρ23 + σ3σ2σ3σ2σ1ρ3ρ23

0

0

1CCCCCCCCCCCCCCCCCA
Mbd =

0BBBBBBBBBBBBBBBBBBBBBBB�
0 σ123ρ123 + σ123ρ3ρ2ρ1

σ3σ2σ12ρ123ρ23 + σ123σ2ρ3ρ2ρ123

+ σ1σ2ρ3ρ2ρ3ρ2ρ123 + σ3σ2σ12ρ3ρ2ρ1ρ23

+ σ123σ2ρ3ρ2ρ3ρ2ρ1 + σ1σ2ρ3ρ2ρ3ρ2ρ3ρ2ρ1

σ123ρ123 + σ3σ2σ1ρ123

+ σ1ρ3ρ2ρ3ρ2ρ1

+ σ3σ2σ1ρ3ρ2ρ1

0 σ23ρ123 + σ23ρ3ρ2ρ1

σ2ρ3ρ2ρ123 + σ23σ2ρ3ρ2ρ123 + σ2ρ3ρ2ρ3ρ2ρ1

+ σ23σ2ρ3ρ2ρ3ρ2ρ1

σ23ρ123 + ρ3ρ2ρ1

0 σ3ρ123 + σ3ρ3ρ2ρ1

ρ3ρ2ρ1 + σ3σ2ρ3ρ2ρ123

+ σ3σ2ρ3ρ2ρ3ρ2ρ1 + ρ123

σ3ρ123

0 σ123ρ3 σ3σ2σ12ρ3ρ23 σ123ρ3 + σ3σ2σ1ρ3

0 σ23ρ3 0 σ23ρ3

0 σ3ρ3 ρ3 σ3ρ3

1CCCCCCCCCCCCCCCCCCCCCCCA
Mbe =

0BBBBBBBBBBB� ρ1 0 0

0 ρ1 0

0 0 ρ1

0 0 0

0 0 0

0 0 0

1CCCCCCCCCCCA
Mcc = (0)
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Mda =

0BBBBB� 0 0 0 ρ2 0

0 0 0 0 ρ2

0 0 0 0 0

0 0 0 0 ρ2

1CCCCCA
Mdc =

0BBBBB� σ123ρ23 + σ3σ2σ1ρ23 + σ123

σ23ρ23 + σ23

σ3

1 + σ23ρ23

1CCCCCA
Mdd =

0BBBBB� 0 σ1 σ12ρ23 + σ12 0

0 0 σ2ρ23 + σ2 0

0 0 0 0

0 0 σ2ρ23 0

1CCCCCA
Mea =

0BBB� 0 0 0 σ3σ2ρ23ρ2 0

0 0 0 0 0

0 0 0 0 0

1CCCA
Meb =

0BBB� 0 0 0 ρ2 0 0

0 0 0 0 ρ2 0

0 0 0 0 0 ρ2

1CCCA
Mec =

0BBB� σ3σ2σ123ρ23ρ23

0

0

1CCCA
Med =

0BBB� 1 σ123ρ23 σ3σ2σ12ρ23ρ23 σ123ρ23 + σ3σ2σ1ρ23 + σ123

0 1 + σ23ρ23 0 σ23ρ23 + σ23

0 σ3ρ23 1 + ρ23 σ3ρ23 + σ3

1CCCA
Mee =

0BBB� 0 σ1 σ12

0 0 σ2

0 0 0

1CCCA
Because we are ultimately interested in the tensor product of ĈFAA(Y , B3, 0)

with ĈFD(X s
J ) and ĈFD(X t

K), we may disregard any higher multiplication that uses

sequences of algebra elements that cannot occur in these type D structures. Specifi-

cally, by Proposition 3.5, we may disregard any sequence containing ρ2ρ3, ρ1ρ2, ρ1ρ23,

σ2σ3, σ1σ2, or σ1σ23. Accordingly, for the discussion that follows, we may replace

Mac, Mad, Mba, Mbc, and Mbd with the following:



CHAPTER 3. KNOT DOUBLING OPERATORS 66

M ′
ac =

0BBBBBBBB� σ123ρ123 + σ123σ23ρ123 + σ3σ2σ1ρ123 + σ123σ23ρ3ρ2ρ1 + σ3σ2σ1ρ3ρ2ρ1

σ23ρ123 + ρ3ρ2ρ1 + σ23σ23ρ123 + σ23σ23ρ3ρ2ρ1

σ3σ23ρ123 + σ3ρ3ρ2ρ1 + σ3σ23ρ3ρ2ρ1

σ123ρ3 + σ3σ2σ1ρ3

σ23ρ3

1CCCCCCCCA
M ′

ad =

0BBBBBBBB� ρ1 0 σ12ρ123 + σ123σ2ρ123 + σ12ρ3ρ2ρ1 + σ123σ2ρ3ρ2ρ1 σ123ρ1 + σ1ρ3ρ2ρ1

0 ρ1 σ2ρ123 + σ23σ2ρ123 + σ2ρ3ρ2ρ1 + σ23σ2ρ3ρ2ρ1 σ23ρ1

0 0 σ3σ2ρ123 + σ3σ2ρ3ρ2ρ1 + ρ1 σ3ρ1

0 0 σ12ρ3 0

0 0 σ2ρ3 0

1CCCCCCCCA
M ′

ba =

0BBBBBBBBBBB� 1 0 0 σ3σ2ρ123ρ2 σ123ρ3ρ2ρ12

0 1 0 0 ρ3ρ2ρ12 + σ23ρ3ρ2ρ12

0 0 1 0 σ3ρ3ρ2ρ12

0 0 0 1 + σ3σ2ρ3ρ2 σ123

0 0 0 0 1 + σ23

0 0 0 0 σ3

1CCCCCCCCCCCA
M ′

bc =

0BBBBBBBBBBB� σ3σ2σ123ρ123ρ23 + σ123σ23ρ3ρ2ρ123

σ23ρ3ρ2ρ123 + σ23σ23ρ3ρ2ρ123

σ3σ23ρ3ρ2ρ123

σ3σ2σ123ρ3ρ23

0

0

1CCCCCCCCCCCA
M ′

bd =

0BBBBBBBBBBBBBB�
0 σ123ρ123 + σ123ρ3ρ2ρ1 σ3σ2σ12ρ123ρ23 + σ123σ2ρ3ρ2ρ123

σ123ρ123 + σ3σ2σ1ρ123

+ σ3σ2σ1ρ3ρ2ρ1

0 σ23ρ123 + σ23ρ3ρ2ρ1 σ2ρ3ρ2ρ123 + σ23σ2ρ3ρ2ρ123 σ23ρ123 + ρ3ρ2ρ1

0 σ3ρ123 + σ3ρ3ρ2ρ1 ρ3ρ2ρ1 + σ3σ2ρ3ρ2ρ123 + ρ123 σ3ρ123

0 σ123ρ3 σ3σ2σ12ρ3ρ23 σ123ρ3 + σ3σ2σ1ρ3

0 σ23ρ3 0 σ23ρ3

0 σ3ρ3 ρ3 σ3ρ3

1CCCCCCCCCCCCCCA
3.3 Evaluation of the tensor product

Using the computation of ĈFAA(Y , B3, 0) given in the previous section, we may now

compute the double tensor product

(ĈFAA(Y , B3, 0) ⊠Aρ
ĈFD(X s

J )) ⊠Aσ
ĈFD(X t

K).
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In what follows, we evaluate the tensor product over Aρ and simplify the resulting

filtered type A module before evaluating the tensor product over Aσ. Then we use

the edge cancellation algorithm to compute τ(DJ,s(K, t)).

As discussed above, we assume from now on that s ≤ 2τ(J).

3.3.1 Tensor product over Aρ

Let V denote the bordered solid torus obtained by gluing together Y and X s
J , and

let DJ,s denote the image of the knot B3 in the union. By the gluing theorem,

ĈFA(V, DJ,s) ≃ ĈFAA(Y , B3, 0)⊠Aρ
ĈFD(X s

J ). We shall describe this tensor product

as a direct sum of subspaces corresponding to the stable and unstable chains in

ĈFD(X s
J ). This decomposition will not be a direct sum of A∞ modules, but we will

be able to keep track of the few multiplications that do not respect the decomposition,

and ultimately they will not affect the computation of τ(DJ,s(K, t)).

The generators of ι1ĈFD(X s
J ) all lie in the interiors of the chains, so the corre-

sponding generators of the tensor product can be grouped in a natural way, but it

is not obvious a priori how to divide up the generators coming from ι0ĈFD(X s
J ).

Consider the two specified bases for ι0ĈFD(X s
J ): {η0, . . . , η2n} and {ξ0, . . . , ξ2n}. De-

pending on the structure of the unstable chain, the generators ξi have outgoing ar-

rows labeled ρ1, ρ12, or ρ123, while the ηi have outgoing arrows labeled ρ3 and in-

coming arrows labeled ρ2 or ρ12. Accordingly, we should try to pair the generators

of ĈFAA(Y , B3, 0)ι0 with the ξi or ηi depending on which of these two conditions

they satisfy. If we consider only the A∞ maps in ĈFAA(Y , B3, 0) that use a sin-

gle element of Aρ, we notice that each of the generators a1, . . . , a5 and b1, . . . , b6

satisfies exactly one such condition. Specifically, define the following subspaces of
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ĈFAA(Y , B3, 0) ⊠Aρ
ĈFD(X s

J ):

P j
vert = 〈a4, a5, b4, b5, b6〉⊠ 〈ξ2j−1, ξ2j〉

+ 〈c1, d1, d2, d3, d4, e1, e2, e3〉⊠
〈
κj

i | 1 ≤ i ≤ kj

〉

P j
hor = 〈a1, a2, a3, b1, b2, b3〉⊠ 〈η2j−1, η2j〉

+ 〈c1, d1, d2, d3, d4, e1, e2, e3〉⊠
〈
λj

i | 1 ≤ i ≤ lj
〉

Punst = 〈a4, a5, b4, b5, b6〉⊠ 〈ξ0〉

+ 〈a1, a2, a3, b1, b2, b3〉⊠ 〈η0〉

+ 〈c1, d1, d2, d3, d4, e1, e2, e3〉⊠ 〈λi | 1 ≤ i ≤ r〉 .

(3.14)

We thus obtain a direct sum decomposition of ĈFAA(Y , B3, 0) ⊠Aρ
ĈFD(X s

J ) as

a vector space:

ĈFAA(Y , B3, 0) ⊠Aρ
ĈFD(X s

J ) =
n⊕

j=1

P j
vert ⊕

n⊕

j=1

P j
hor ⊕ Punst. (3.15)

By inspecting the matrices Mxy, we see that any A∞ multiplication on the tensor

product that comes from a multiplication in ĈFAA(Y , B3, 0) that uses at most one

element of Aρ preserves this decomposition. These multiplications are illustrated in

Figures 22 through 25. In these and subsequent figures, the dashed arrows represent

repeated sections. For instance, the dashed arrow from e1κ
j
1 to d2κ

j
kj

in Figure 22

means that there are multiplications e1κ
j
i

σ123−−→ d2κ
j
i+1 for each i = 1, . . . , kj − 1. The

Alexander grading is indicated by horizontal position, increasing from left to right.

In addition, there are a few more multiplications that preserve the splitting, com-

ing from multiplications in ĈFAA(Y , B3, 0) that use sequences like ρ3ρ2, ρ3ρ23, or

ρ23ρ23. These multiplications are not shown in Figures 22 through 25. They are as

follows:

• In P j
vert, when kj > 1, there are multiplications

b1ξ2j
σ3σ2σ12−−−−→ d3κ

j
2 b1ξ2j

σ3σ2σ123−−−−−→ c1κ
j
2

e1κ
j
i

σ3σ2σ12−−−−→ d3κ
j
i+2 e1κ

j
i

σ3σ2σ123−−−−−→ c1κ
j
i+2 (i = 1, . . . , kj − 2).

(3.16)
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Figure 22: The subspace P j
vert, corresponding to a vertical stable chain ξ2j

ρ123

−−→ κj
1

ρ23

−−→

· · ·
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−−→ κj
kj

ρ1

←− ξ2j−1.
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Figure 23: The subspace P j
hor, corresponding to a horizontal stable chain η2j−1
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−→
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Figure 24: The subspace Punst when s < 2τ(J), corresponding to the unstable chain

η0
ρ3

−→ γ1
ρ23

−−→ · · ·
ρ23

−−→ γs
ρ1

←− ξ0.
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Figure 25: The subspace Punst when s = 2τ(J), corresponding to the unstable chain

ξ0
ρ12

−−→ η0.
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• In P j
hor, when lj = 1, there is a multiplication b4η2j−1

σ3σ2−−→ a4η2j . When lj > 1,

there are multiplications

b4η2j−1
σ3σ2σ12−−−−→ d3λ

j
2 b4η2j−1

σ3σ2σ123−−−−−→ c1λ
j
2

e1λ
j
lj−1

σ3σ2−−→ a4η2j

e1λ
j
i

σ3σ2σ12−−−−→ d3λ
j
i+2 e1λ

j
i

σ3σ2σ123−−−−−→ c1λ
j
i+2 (i = 1, . . . , lj − 2).

(3.17)

• In Punst in the case when s < 2τ(J)− 1, there are multiplications

b4η0
σ3σ2σ12−−−−→ d3γ2 b4η0

σ3σ2σ123−−−−−→ c1γ2

e1γi
σ3σ2σ12−−−−→ d3γi+2 e1γi

σ3σ2σ123−−−−−→ c1γi+2 (i = 1, . . . , r − 2).
(3.18)

Finally, we must consider the multiplications in the tensor product that do not

respect the splitting in (3.15). These arise from sequences of arrows in ĈFD(X s
J ) that

involve multiple stable or unstable chains, and they depend on the change-of-basis

coefficients relating {η0, . . . , η2n} and {ξ0, . . . , ξ2n}.

For instance, if η2j = ξ2h (where j, h ∈ {1, . . . , n}), then ĈFD(X s
J ) contains a

string of arrows of the form

η2j−1
ρ3

−→ λj
1

ρ23

−−→ · · ·
ρ23

−−→ λj
lj

ρ2

−→ η2j
ρ123

−−→ κh
1

ρ23

−−→ · · ·
ρ23

−−→ κh
kh

.

Any multiplication in ĈFAA(Y , B3, 0) that uses a contiguous subsequence of

ρ3, ρ23, . . . , ρ23︸ ︷︷ ︸
lj−1 times

, ρ2, ρ123, ρ23, . . . , ρ23︸ ︷︷ ︸
kh−1 times

contributes a nonzero multiplication in the tensor product that need not respect the

splitting. Similarly, if η2j = ξ2h−1, then the same is true for contiguous subsequences

of

ρ3, ρ23, . . . , ρ23︸ ︷︷ ︸
lj−1 times

, ρ2, ρ1.

Similar sequences may also occur near the unstable chain, where we take ξ0 instead of

ξ2h−1 or ξ2h. By Proposition 3.5, these are the only such sequences that occur. More
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generally, if the coefficient of ξp in η2j is nonzero, we obtain multiplications that do

not respect the splitting in (3.15). We make this notion more precise below.

By inspecting the matrices Mxy, we see that the only sequences of this form that

actually occur in ĈFAA(Y , B3, 0) are ρ3ρ2ρ123, ρ3ρ2ρ12, and ρ3ρ2ρ1, which occur in the

first three rows of Mac, Mad, Mba, Mbc, and Mbd. Accordingly, the only multiplications

that do not preserve the splitting arise when there is a horizontal edge η2j−1 → η2j of

length 1, and they act on the elements ai ⊠ η2j−1 and bi ⊠ η2j−1 (i = 1, 2, 3).

Notice that there are no multiplications into or out of any of the subspaces

P j
hor. Therefore, each P j

hor is actually a direct summand (as an A∞ submodule)

of ĈFA(V, DJ,s), as is P =
⊕n

j=1 P j
vert ⊕ Punst. This implies that the tensor product

ĈFA(V, DJ,s)⊠ ĈFD(X t
K) (whose total homology, ignoring the filtration, is ĤF(S3) ∼=

F) will also split as a direct sum. We shall eventually see that the direct summand

coming from P contributes F to the total homology, which means that each summand

coming from P j
hor is acyclic and thus does not affect the computation of τ(DJ,s(K, t)).

Therefore, we shall henceforth ignore the submodules P j
hor.

It is preferable to describe all of the multiplications that do not respect the split-

ting in terms of the bases specified in (3.14). Recall that (xp,q) and (yp,q) are the

change-of-basis matrices, so that ξp =
∑2n

q=0 xp,qηq and ηp =
∑2n

q=0 yp,qξq. Let j denote

the set {j ∈ {1, . . . , n} | lj = 1}. For each p ∈ {0, . . . , 2n} and h ∈ {1, . . . , n}, each

j ∈ j for which xp,2j−1 = 1 and y2j,2h−1 = 1 contributes multiplications (which we will

specify shortly) from aiξp and/or biξp (i = 1, 2, 3) into P h
vert via the sequence ρ3ρ2ρ123.

Of course, multiple values of j may satisfy this criterion, but they all contribute the

same multiplications, so we really only care about the count of such j modulo 2. That

is, define up,h =
∑

j∈j xp,2j−1y2j,2h−1; there are multiplications from aiξp and biξp into

P h
vert iff up,h = 1.

Similarly, each j for which xp,2j−1 = 1 and y2j,2h (h = 1, . . . , n) contributes

multiplications via ρ3ρ2ρ1, so define vp,h =
∑

j∈j xp,2j−1y2j,2h. Finally, we set wp =
∑

j∈j xp,2j−1y2h,0; this determines whether there are additional multiplications from
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a1ξp b1ξp

a2ξp b2ξp

a3ξp b3ξp

d1κh
1

e1κh
1

d2κh
1

e2κh
1

d3κh
1 e3κh

1

c1κh
1 d4κh

1

σ1 σ1

σ2 σ2

σ12

σ12

σ1 σ1

σ2 σ2

σ12

σ12

σ123

σ23

σ3

σ123

σ23

σ3

σ123σ23

σ23+

σ23σ23

σ3σ23

σ123σ2

σ23σ2

σ3σ2

Figure 26: Multiplications coming from a sequence ρ3ρ2ρ123 when up,h = 1.

aiξp and biξp into the unstable chain via ρ3ρ2ρ1, ρ3ρ2ρ12, or ρ3ρ2ρ123, according to

whether s < 2τ(J), s = 2τ(J) or s > 2τ(K), respectively (although we are ignoring

the third case).

We now specify these multiplications:

• If up,h = 1, the sequence ρ3ρ2ρ123 provides the multiplications shown in Figure

26.

• If vp,h = 1, the sequence ρ3ρ2ρ1 provides the multiplications shown in Figure

27.

• If s < 2τ(J) and wp = 1, the sequence ρ3ρ2ρ1 provides the multiplications

shown in Figure 27, where we replace κh
kh

by γr.

• Finally, if s = 2τ(K) and wp = 1, the sequence ρ3ρ2ρ12 provides the following
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a1ξp b1ξp

a2ξp b2ξp

a3ξp b3ξp

d1κh
kh

e1κh
kh

d2κh
kh

e2κh
kh

d3κh
kh

e3κh
kh

c1κh
kh

d4κh
kh

σ1 σ1

σ2 σ2σ12 σ12

σ1 σ1

σ2 σ2

σ12

σ12

σ123

σ23

σ3

σ123

σ23

σ3

σ123σ23+

σ3σ2σ1

1+

σ23σ23

σ3+

σ3σ23

σ12+

σ123σ2

σ2+

σ23σ2

σ3σ2

σ1

σ123

σ23

σ3

σ3σ2σ1

Figure 27: Multiplications coming from a sequence ρ3ρ2ρ1 when vp,h = 1. If wp = 1

and s < 2τ(K), we obtain the same multiplications by replacing κh
kh

by γr.
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multiplications:

a1ξp
σ1−→ a5η0

b1ξp
σ123−−→ a5η0

b2ξp
1+σ23−−−→ a5η0

b3ξp
σ3−→ a5η0.

(3.19)

3.3.2 Simplification of ĈFA(V, DJ,s)

Next, we may simplify ĈFA(V, DJ,s) by canceling unmarked edges that preserve the

filtration level. In order to keep track of additional edges that may appear, we must

look carefully at the order of cancellation. As mentioned above, we ignore the direct

summands P j
hor. Define P 0 = Punst and P j = P j

vert.

Assume first that s < 2τ(J).

For each j ∈ {1, . . . , n}, in P j, we may cancel the differentials b1ξ2j−1 → e1κ
j
kj

,

b2ξ2j−1 → e2κ
j
kj

, b2ξ2j−1 → e2κ
j
kj

, and a1ξ2j−1 → d1κ
j
kj

. Since the targets of those

arrows do not lie at the heads of any other arrows, no additional arrows are introduced.

Similarly, in P 0, cancel b1ξ0 → e1γr, b2ξ0 → e2γr, b2ξ0 → e2γr, and a1ξ0 → d1γr.

Next, we cancel the differentials a2ξ2j−1 → d2κ
j
kj

and a2ξ0 → d2γr. Because of the

edge a2ξ2j−1
σ23−−→ d4κ

j
kj

, canceling a2ξ2j−1 → d2κ
j
kj

introduces new multiplications:

e1κ
j
kj−1

σ123σ2−−−→ a3ξ2j−1 e1κ
j
kj−1

σ123σ23−−−−→ d4κ
j
kj

e2κ
j
kj−1

σ23σ2−−−→ a3ξ2j−1 e2κ
j
kj−1

σ23σ23−−−→ d4κ
j
kj

e3κ
j
kj−1

σ3σ2−−→ a3ξ2j−1 e3κ
j
kj−1

σ3σ23−−−→ d4κ
j
kj

.

(3.20)

(If kj = 1, then replace eiκ
j
kj−1 by biξ2j in (3.20).) We shall examine the effects of

these cancellations on the edges that do not respect the splitting momentarily.

Next, because of the edge a3ξ2j−1
σ3−→ d4κ

j
kj

, canceling a3ξ2j−1 → d3κ
j
kj

removes
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the edge e3κ
j
kj−1

σ3−→ d4κ
j
kj

and adds edges

d1κ
j
kj−1

σ12σ3−−−→ d4κ
j
kj

d2κ
j
kj−1

σ2σ3−−→ d4κ
j
kj

d4κ
j
kj−1

σ2σ3−−→ d4κ
j
kj

e1κ
j
kj−2

σ3σ2σ12σ3−−−−−−→ d4κ
j
kj

.

(3.21)

Because we will ultimately tensor with ĈFD(X t
K), in which the sequences σ2σ3 and

σ12σ3 do not appear, we may disregard these four edges. We also eliminate the edge

e3κ
j
kj−1

σ3−→ d4κ
j
kj−1. The same thing occurs in P 0 when we cancel a3ξ0 → d3γr.

Let Qj denote the module resulting from P j after the cancellations just described.

The multiplications on Qj are shown in Figures 28 and 29 and equations (3.16) and

(3.18).

Now we keep track of what these cancellations do to the edges that do not respect

the splitting, as shown in Figures 26 and 27.

If up,j = 1, then there are edges from biξp to d3κ
j
1, as shown in Figure 26. If

kj = 1, then canceling a3ξ2j−1 → d3κ
j
1 will introduce new multiplications coming

from biξp, but all of these multiplications involve σ2σ3 or σ12σ3 and may thus be

disregarded. Also, when p = 2m + 1 or p = 0 these edges are eliminated when we

cancel biξ2m+1 → eiκ
m
km

or biξ0 → eiγr, respectively.

If vp,j = 1, when we cancel a2ξ2j−1 → d2κ
j
kj

, we obtain multiplications

b1ξp
σ123σ2−−−→ a3ξ2j−1 b1ξp

σ123σ23−−−−→ d4κ
j
kj

b2ξp
σ23σ2−−−→ a3ξ2j−1 b2ξp

σ23σ23−−−→ d4κ
j
kj

b3ξp
σ3σ23−−−→ d4κ

j
kj

b3ξp
σ3σ2−−→ a3ξ2j−1

(3.22)

in addition to the ones already appearing in Figure 27. When we then cancel
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a1ξ2j b1ξ2j

a2ξ2j b2ξ2j
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Figure 28: The subspace Qj (j > 0) obtained from P j
vert by canceling edges.
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Figure 29: The subspace Q0 obtained from Punst by canceling edges, when s < 2τ(J).
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a1ξ2m b1ξ2m

a2ξ2m b2ξ2m

a3ξ2m b3ξ2m

c1κh
kh

d4κh
kh

σ1 σ1

σ2 σ2σ12 σ12

σ123σ23+

σ3σ2σ1

1+

σ23σ23

σ3+

σ3σ23

σ1

σ123σ23+

σ3σ2σ1

1+

σ23σ23

σ3+

σ3σ23

Figure 30: Reduced form of Figure 27 when p = 2m, m > 0.

a3ξ2j−1 → d3κ
j
kj

, we obtain new multiplications:

a1ξp
σ12σ3+σ123σ2σ3−−−−−−−−−→ d4κ

j
kj

a2ξp
σ2σ3+σ23σ2σ3−−−−−−−−→ d4κ

j
kj

a3ξp
σ3σ2σ3−−−−→ d4κ

j
kj

b3ξp
σ3−→ d4κ

j
kj

(3.23)

Most of these may be disregarded by Proposition 3.5. If p = 2m for m > 0, the

resulting reduced form of Figure 27 is shown in Figure 30. On the other hand,

if p = 2m + 1, we also cancel the edges aiξ2m+1 → diκ
m
km

and biξ2m+1 → eiκ
m
km

,

introducing the multiplications shown in Figure 31. Similarly, if p = 0, we cancel the

edges aiξ0 → diγr and biξ0 → eiγr, introducing similar multiplications.

We now return to the case where s = 2τ(J). In Punst, the edges a1ξ0 → a4η0,

b1ξ0 → b4η0, b2ξ0 → b5η0, and b3ξ0 → b6η0 cancel, and since their targets do not

have any other incoming edges, no new multiplications are introduced. The only

three remaining generators are a2ξ0, a3ξ0, and a5η0, all in filtration level 0, with the
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Figure 31: Reduced form of Figure 27 in the case where p = 2m + 1 (or p = 0,

replacing κm
km−1 by γr−1 and κm

km
by γr).
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following multiplications:

a2ξ0

a3ξ0

a5η0

σ2

1+σ23

σ3 (3.24)

As above, a2ξ0 and a3ξ0 may have some outgoing edges, and a5η0 may have some

incoming ones. The rest of the argument goes through unchanged.

3.3.3 Tensor product over Aσ

Let Q =
⊕n

j=0 Qj , with multiplications as described in the previous subsection. We

consider the tensor product Q ⊠Aσ
ĈFD(X t

K). Again, the goal is to obtain a de-

composition of the tensor product according to the stable and unstable chains in

ĈFD(X t
K).

It is convenient to give the generators of Qj new names, somewhat similar to the

notation used in [30, Section 4]. For j = 1, . . . , n and i = 1, . . . , kj − 1, define:

Aj = a1ξ2j A′j = b1ξ2j Ej
i = d1κ

j
i E ′j

i = e1κ
j
i

Bj = a2ξ2j B′j = b2ξ2j F j
i = d2κ

j
i F ′j

i = e2κ
j
i

Cj = a3ξ2j C ′j = b3ξ2j Gj
i = d3κ

j
i G′j

i = e3κ
j
i

Dj = c1κ
j
kj

D′j = d4κ
j
kj

Hj
i = c1κ

j
i H ′j

i = d4κ
j
i

When s < 2τ(J), for i = 1, . . . , r − 1, define:

A0 = a4η0 A′0 = b4η0 E0
i = d1γi E ′0

i = e1γi

B0 = a5η0 B′0 = b5η0 F 0
i = d2γi F ′0

i = e2γi

C ′0 = b6η0 G0
i = d3γi G′0

i = e3γi

D0 = c1γr D′0 = d4γr H0
i = c1γi H ′0

i = d4γi

Also, for notational convenience, define k0 = r.

We divide up the generators of the subspaces Qj by Alexander grading and idem-

potent:
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A = −1 A = 0 A = 1

ισ0 Aj , Cj, Ej
i , G

j
i A′j , C ′j, E ′j

i , G′j
i

ισ1 Dj, Hj
i Bj, D′j, F j

i , H ′j
i B′j , F ′j

i

In Figures 28 and 29, notice that of the generators in idempotent ι0, Aj , A′j , Ej
i ,

and E ′j
i have outgoing edges labeled σ1, σ12, and σ123, while Cj , C ′j, Gj

i , and G′j
i

have outgoing edges labeled σ3 and incoming edges labeled σ2 and σ12. Accordingly,

it makes sense to associate the former with the vertical chains and the latter with the

horizontal chains. That is, for each J ∈ {1, . . . , N} and j ∈ {0, . . . , n}, define:

ZJ,j
vert =

〈
Aj , A′j, Ej

i , E
′j
i

〉
⊠ 〈Ξ2J−1, Ξ2J〉

+
〈
Bj, B′j , Dj, D′j, F j

i , F ′j
i , Hj

i , H
′j
i

〉
⊠
〈
KJ

I | 1 ≤ I ≤ KJ

〉

ZJ,j
hor =

〈
Cj , C ′j, Gj

i , G
′j
i

〉
⊠ 〈H2J−1, H2J〉

+
〈
Bj, B′j , Dj, D′j, F j

i , F ′j
i , Hj

i , H
′j
i

〉
⊠
〈
ΛJ

I | 1 ≤ I ≤ LJ

〉

Zj
unst =

〈
Aj , A′j, Ej

i , E
′j
i

〉
⊠ 〈Ξ0〉

+
〈
Cj, C ′j, Gj

i , G
′j
i

〉
⊠ 〈H0〉

+
〈
Bj, B′j , Dj, D′j, F j

i , F ′j
i , Hj

i , H
′j
i

〉
⊠ 〈Γi | 1 ≤ I ≤ R〉 .

(3.25)

Then, as a vector space,

Q ⊠ ĈFD(X t
K) =

⊕

J=1,...,N
j=0,...,n

ZJ,j
vert ⊕

⊕

J=1,...,N
j=0,...,n

ZJ,j
hor ⊕

n⊕

j=0

Zj
unst. (3.26)

For fixed J , we write ZJ,∗
vert =

⊕n
j=0 ZJ,j

vert, and so on.

As before, it is easy to verify that the differentials on the tensor product coming

from m1 and m2 multiplications in Figures 28 and 29 respect the splitting (3.26).

These differentials are illustrated in Figures 32 through 36. Note that we obtain

slightly different differentials depending on whether j = 0 or j > 0. The double-

dotted arrows correspond to the dashed arrows in Figures 22 through 25: for instance,

in Figure 32, the double-dotted arrow from E ′j
1 Ξ2J to H ′j

kj−1K
J
1 really means that there

are differentials E ′j
i Ξ2J → H ′j

i+1K
J
1 for i = 1, . . . , kj − 2.
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Figure 32: The subspace ZJ,j
vert, corresponding to a vertical stable chain Ξ2J

σ123−−→

KJ
1

σ23−−→ · · ·
σ23−−→ KJ

KJ

σ1←− Ξ2J−1.
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Figure 33: The subspace ZJ,j
hor, corresponding to a horizontal stable chain H2J−1

σ3−→

ΛJ
1

σ23−−→ · · ·
σ23−−→ ΛJ

LJ

σ2−→ H2J .
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Figure 34: The subspace Zj
unst when t < 2τ(K), corresponding to the unstable chain

H0
σ3−→ Γ1

σ23−−→ · · ·
σ23−−→ ΓR

σ1←− Ξ0.
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Figure 35: The subspace Zj
unst when t > 2τ(K), corresponding to the unstable chain

Ξ0
σ123−−→ Γ1

σ23−−→ · · ·
σ23−−→ ΓR

σ2−→ H0.
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Figure 36: The subspace Zj
unst when t = 2τ(K), corresponding to the unstable chain

Ξ0
σ12−−→ H0.

Next, we must consider the differentials coming from the remaining multiplications

on Q. First, we look at differentials that respect the splitting. If kj > 1, the relevant

multiplications on Qj are:

Aj σ123σ2−−−→ Gj
1 Bj σ23σ2−−−→ Gj

1 Cj σ3σ2−−→ Gj
1 if j > 0

A′j σ123σ23−−−−→ D′j B′j σ23σ23−−−→ D′j C ′j σ3σ23−−−→ D′j if kj = 1

E ′j
kj−1

σ123σ23−−−−→ D′j F ′j
kj−1

σ23σ23−−−→ D′j G′j
kj−1

σ3σ23−−−→ D′j if kj > 1.

Therefore:

• In ZJ,j
vert, if KJ > 1, there are differentials E ′j

kj−1
Ξ2J → D′jKJ

2 and F ′j
kj−1

KJ
I →

D′jKJ
I+2.

• In ZJ,j
hor, if KJ > 1, there are differentials G′j

kj−1
H2J−1 → D′jΛJ

2 and F ′j
kj−1

ΛJ
I →

D′jΛJ
I+2. Additionally, when j > 0, there are differentials CjH2J−1 → Gj

1H2J if

KJ = 1, and BjΛJ
KJ−1 → Gj

1H2J if KJ > 1.

• In Zj
unst, if t < 2τ(K)−1, there are differentials G′j

kj−1
H0 → D′jΓ2 and F ′j

kj−1
ΓI →



CHAPTER 3. KNOT DOUBLING OPERATORS 90

D′jΓI+2. If t = 2τ(K) + 1, there are differentials AjΞ0 → Gj
1H0 for j > 0. If

t > 2τ(K) + 1, there are differentials E ′j
kj−1

Ξ0 → D′jΓ2 and F ′j
kj−1

ΓI → D′jΓI+2

for all j, and BjΓR−1 → Gj
1H0 for j > 0.

Next, we may have some differentials that preserve the decomposition

⊕

J

ZJ,∗
vert ⊕

⊕

J

ZJ,∗
hor ⊕ Z∗

unst

but which come from the multiplications on Q that do not preserve the splitting

Q =
⊕n

j=0 Qj , shown in Figures 26, 30, and 31. The resulting differentials are shown

in Table 1. In each line that involves expressions like KJ
I , ΛJ

I , and ΓI , we assume

that KJ , LJ , or R is sufficiently large for the indices to make sense and that I ranges

over appropriate bounds. The symbol ∗ denotes both primed and unprimed symbols;

thus, for instance, the notation A∗jΞ2J → D∗hKJ
2 means that there are differentials

AjΞ2J → DhKJ
2 and A′jΞ2J → D′hKJ

2 . Additionally, note that if kh = 1, then we

replace Hh
1 by Dh where it appears; if kj = 1, we replace E ′j

kj−1, F ′j
kj−1, and G′j

kj−1 by

A′j , B′j , and C ′j , respectively.

Notice that almost all of the differentials in Table 1 drop the filtration level by a

nonzero amount. The two exceptions are AjΞ2J−1 → D′hKJ
KJ

and AjΞ0 → D′hΓR in

the second column.

Finally, we must look at differentials that do not respect the splitting at all. Notice

that the sequence σ3σ2σ1 occurs several times in Figures 28 and 29, and the sequences

σ3σ2σ12 and σ3σ2σ123 occur in Equations (3.16) and (3.18), and these are the only

such sequences that appear. More precisely, in Qj with kj > 1, we have the following
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u2j,h = 1, j, h > 0 v2j,h = 1, j > 0 v2j−1,h = 1 or wh = 1

ZJ
vert

A′jΞ2J → Hh
1 KJ

2

B′jKJ
I → Hh

1 KJ
I+1

B′jKJ
I → Hh

1 KJ
I+2

A∗jΞ2J → D∗hKJ
2

B∗jKJ
I → D∗hKJ

I

B∗jKJ
I → D∗hKJ

I+2

AjΞ2J−1 → D′hKJ
KJ

E′j
kj−1Ξ2J → DhKJ

1

E′j
kj−1Ξ2J → DhKJ

3

F ′j
kj−1K

J
I → DhKJ

I+1

F ′j
kj−1K

J
I → DhKJ

I+3

ZJ
hor

If LJ = 1 :

C ′jH2J−1 → Gh
1H2J−1

If LJ > 1 :

C ′jH2J−1 → Hh
1 ΛJ

2

B′jΛJ
I → Hh

1 ΛJ
I+1

B′jΛJ
I → Hh

1 ΛJ
I+2

B′jΛJ
KJ−1 → Gh

1H2J−1

C∗jH2J−1 → D∗JΛJ
1

C∗jH2J−1 → D∗JΛJ
2

B∗jΛJ
I → D∗hΛJ

I

B∗jΛJ
I → D∗hΛJ

I+2

G′j
kj−1H2J−1 → DhΛJ

1

G′j
kj−1H2J−1 → DhΛJ

3

F ′j
kj−1Λ

J
I → DhΛJ

I+1

F ′j
kj−1Λ

J
I → DhΛJ

I+3

Zunst,

t < 2τ(K)

C ′jH0 → Hh
1 Γ2

B′jΓI → Hh
1 ΓI+1

B′jΓI → Hh
1 ΓI+2

C∗jH0 → D∗JΓ1

C∗jH0 → D∗JΓ2

B∗jΓI → D∗hΓI

B∗jΓI → D∗hΓI+2

AjΞ0 → D′hΓR

G′j
kj−1H0 → DhΓ1

G′j
kj−1H0 → DhΓ3

F ′j
kj−1ΓI → DhΓI+1

F ′j
kj−1ΓI → DhΓI+3

Zunst,

t > 2τ(K)

If R = 1 :

A′jΞ0 → Gh
1H0

If R > 1 :

A′jΞ0 → Hh
1 Γ2

B′jΓI → Hh
1 ΓI+1

B′jΓI → Hh
1 ΓI+2

B′jΓR−1 → Gh
1H0

A∗jΞ0 → D∗hΓ2

B∗jΓI → D∗hΓI

B∗jΓI → D∗hΓI+2

E′j
kj−1Ξ0 → DhΓ1

E′j
kj−1Ξ0 → DhΓ3

F ′j
kj−1ΓI → DhΓI+1

F ′j
kj−1ΓI → DhΓI+3

Table 1: Differentials arising from the multiplications in Figures 26, 30, and 31.
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multiplications:

Aj σ3σ2σ1−−−−→ Hj
1 A′j σ3σ2σ1−−−−→ H ′j

1

Ej
i

σ3σ2σ1−−−−→ Hj
i+1 E ′j

i
σ3σ2σ1−−−−→ H ′j

i+1 (i = 1, . . . , kj − 2)

Ej
kj−1

σ3σ2σ1−−−−→ Dj E ′j
kj−1

σ3σ2σ1−−−−→ D′j

A′j σ3σ2σ12−−−−→ Gj
2 A′j σ3σ2σ123−−−−−→ Hj

2

E ′j
i

σ3σ2σ12−−−−→ Gj
i+2 E ′j

i
σ3σ2σ123−−−−−→ Hj

i+2 (i = 1, . . . , kj − 3)

E ′j
kj−2

σ3σ2σ123−−−−−→ Dj

(3.27)

If kj = 1, then we simply have Aj σ3σ2σ1−−−−→ Dj and A′j σ3σ2σ1−−−−→ D′j . Finally, from Figure

30, if v2j,h = 1, then there are multiplications Aj σ3σ2σ1−−−−→ Dh and A′j σ3σ2σ1−−−−→ D′h.

Notice that all of these multiplications come out of Aj, A′j , Ej
i , or E ′j

i , all of which

are paired with {Ξ0, . . . , Ξ2N} rather than {H0, . . . , H2N} in (3.25). It follows that

each group ZJ,∗
hor is actually a direct summand as a chain complex. We shall see that

the generator of the total homology comes from
⊕

J ZJ,∗
vert ⊕ Z∗

unst, so we may ignore

each of these summands. Furthermore, if we define UP,M , VP,M , and WP analogously

to up,h, vp,m, and wp above, then we obtain differentials from AjΞP , A′jΞP , Ej
i ΞP ,

and/or E ′j
i ΞP to elements of ZM

vert and Zunst whenever UP,M , VP,M , or WP is nonzero.

Specifically:

• If VP,M = 1, then there are differentials

AjΞP → Hj
1K

M
KM

A′jΞP → H ′j
1 KM

KM

Ej
i ΞP → Hj

i+1K
M
KM

E ′j
i ΞP → H ′j

i+1K
M
KM

(i = 1, . . . , kj − 2)

Ej
kj−1ΞP → DjKM

KM
E ′j

kj−1ΞP → D′jKM
KM

(3.28)

if kj > 1, and AjΞP → DjKM
KM

and A′jΞP → D′jKM
KM

if kj = 1. Also, if

v2j,h = 1, then there are differentials AjΞP → DhKM
KM

and A′jΞP → D′hKM
KM

.

Similarly, if WP = 1 and t < 2τ(K), then we obtain similar differentials going

into Zunst, replacing KM
KM

by ΓR.
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• If UP,M = 1, then there are differentials

A′jΞP → Hj
2K

M
1

E ′j
i ΞP → Hj

i+2K
M
1 (i = 1, . . . , kj − 3)

E ′j
kj−2ΞP → DjKM

1 .

(3.29)

Similarly, if WP = 1 and t > 2τ(K), then we obtain similar differentials going

into Zunst, replacing KM
1 by Γ1.

• Finally, if WP = 1 and t = 2τ(K), there are differentials

A′jΞP → Gj
2H0

E ′j
i ΞP → Gj

i+2H0 (i = 1, . . . , kj − 3)
(3.30)

3.3.4 Computation of τ(DJ,s(K, t))

We now describe the edge cancellations that occur in each of the pieces. Recall

that we must cancel edges in increasing order of the amount by which they drop

filtration level. We shall see that a single generator survives. The filtration level of

this generator, by definition, is τ(DJ,s(K, t)).

We start by canceling the filtration-preserving edges in ZJ,j
vert. Note that there are

are no other edges into B′jKJ
KJ

or F ′j
i KJ

KJ
, so eliminating the edges coming from these

does not introduce any new edges. If V2J−1, M = 1, or if W2J−1 = 1 and t < 2τ(K),

then canceling the edges AjΞ2J−1 → BjKJ
KJ

and Ej
i → F j

kKJ
KJ

introduces some new

edges, which all reduce filtration level by 2. Note also that the filtration-preserving

edges AjΞ2j−1 → D′hKJ
KJ

(j > 0) in Table 1 are eliminated, since BjKJ
Kj

has no other

incoming edges when j > 0.

In Zj
unst, when t < 2τ(K), we perform the same cancellations as in ZJ,j

vert, mutatis

mutandis. When t > 2τ(K), there are 2kj filtration-preserving edges to cancel when

j > 0 (namely, B∗jΓR → C∗jH0 and F ∗j
i ΓR → G∗j

i H0 for i = 1, . . . , kj − 1), but

only 2k0 − 1 such edges in Z0
unst, since the generator C0H0 does not exist. Thus,

the generator B0ΓR survives after these cancellations. Also, note that canceling
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BjΓR → CjH0 and F j
i ΓR → Gj

iH0 may introduce some new differentials using the

arrows in Table 1, but they all filtration level by 2.

When t = 2τ(K), the only generator in Z0
unst that survives is A0Ξ0. Notice,

however, that by (3.28), there is a differential A0Ξ0 → H0
1KM

KM
for any M with

V0,M = 1. All the generators of Zj
unst for j > 0 are canceled.

We have now canceled all edges that preserve the filtration level, so we now begin

canceling differentials that drop filtration level by 1. Specifically, in ZJ,j
vert, cancel every

horizontal edge X ′ → X, starting at the top of Figure 32 and working down. We use

the following key observations:

• If X is in filtration level 0 and X ′ is in level 1, then X has no other incoming

edges, since by induction we have already eliminated everything above X and

X ′, and Table 1 and Equations (3.28) and (3.29) contain no differentials that

go into AjΞ2J , Ej
i Ξ2J , BjKJ

I , or F j
i KJ

I from elsewhere.

• If X is in filtration level −1 and X ′ is in level 0, then X ′ has no other outgoing

edges, since Table 1 and Equations (3.28) and (3.29) contain no differentials

that go out of H ′j
i KJ

I or D′jKJ
I .

Thus, we can completely cancel ZJ,j
vert.

If t = 2τ(K), we have now eliminated all generators except A0Ξ0, which is in

filtration level 0, so τ(DJs
(K, t)) = 0 when s < 2τ(J) and t = 2τ(K).

If t > 2τ(K), we proceed with Zj
unst just as with ZJ,j

vert. When j > 0, all generators

in cancel; when j = 0, the one surviving generator is B0ΓR, which is in filtration level

0. Thus, τ(DJs
(K, t)) = 0 when s < 2τ(J) and t > 2τ(K).

If t < 2τ(K), when j > 0, we start by canceling C ′jH0 → CjH0 and proceeding

downward in Figure 34, as before, eliminating all generators. When j = 0, we start

by canceling G′j
1 H0 → Gj

1H0 and proceed downward, and we thus see that the only

surviving generator is C ′jH0, which is in filtration level 1. Thus, τ(DJs
(K, t)) = 1

when s < 2τ(J) and t < 2τ(K).
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Finally, we must return to the case where s = 2τ(J). Recall that Q0 in this

case consists of three generators, all in filtration level 0, as in (3.24). For j > 0, the

definitions of ZJ,j
vert, ZJ,j

hor, and Zj
unst go through the same way, and we see again that all

of the resulting generators eventually cancel. It follows that the surviving generator

must be in filtration level 0, so τ(DJ,s(K, t)) = 0 whenever s = 2τ(K).

3.4 Other results regarding DJ,s(K, t)

Prior to Hedden’s complete computation of ĤFK and τ of all twisted Whitehead

doubles [20], Livingston and Naik [39] used the formal properties of τ to understand

the asymptotic behavior of τ for large values of the twisting parameter:

Theorem 3.10. Suppose ν is any homomorphism from the smooth knot concordance

group to Z with the properties that |ν(K)| ≤ g4(K) and ν(Tp,q) = (p − 1)(q − 1)/2,

where p, q > 0 and Tp,q denotes the (p, q) torus knot. Then for any knot K, there

exists tν(K) ∈ Z such that

ν(Wh+(K, t)) =





1 t ≤ tν(K)

0 t > tν(K)

and TB(K) ≤ tν(K) < −TB(−K) (where TB(K) denotes the maximal Thurston-

Bennequin number of K).

Two invariants satisfying the hypotheses of Theorem 3.10 are τ(K) and −s(K)/2,

a renormalization of Rasmussen’s concordance invariant s(K) [55]. Around the same

time, Hedden and Ording [21] proved that these two invariants are not equal by show-

ing that τ(Wh+(T2,3, 2)) = 0 while s(Wh+(T2,3, 2)) = −2, disproving a conjecture of

Rasmussen. Later, Hedden [20] showed that tτ (K) = 2τ(K) − 1 for any knot K.

Finding a general formula for the s invariant of Whitehead doubles remains an open

question.
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We may extend the techniques of Livingston and Naik to study knots of the form

DJ,s(K, t) as well.

Proposition 3.11. Let ν be an invariant satisfying the hypotheses of Theorem 3.10,

and fix knots J and K.

1. If s ≤ TB(J) and t ≤ TB(K), then ν(DJ,s(K, t)) = 1. If s ≥ −TB(−J) and

t ≥ −TB(−K), then ν(DJ,s(K, t)) = −1.

2. For fixed s (resp. t), the function t 7→ ν(DJ,s(K, t)) (resp. s 7→ ν(DJ,s(K, t))) is

non-increasing and has as its image either {−1, 0}, {0}, or {0, 1}.

Proof. The proof is very similar to that of [39, Theorem 2].

When s ≤ TB(J) and t ≤ TB(K), the annuli A(J, s) and A(K, t) are quasi-

positive, so DJ,s(K, t) is a strongly quasipositive knot with genus 1, and hence

ν(DJ,s(K, t)) = 1 as in [36]. Mirroring gives the second half of (1).

The non-increasing statement in (2) follows from the fact that DJ,s(K, t) is ob-

tained from DJ,s−1(K, t) or DJ,s(K, t−1) by changing a positive crossing to a negative

crossing, which can only preserve or decrease ν [36]. Also, since DJ,s(K, t) is related to

DJ,s′(K, t) or DJ,s(K, t′) (for any s′ or t′) by a band modification, each of the two func-

tions can assume at most two values, either −1 and 0 or 0 and −1. Finally, we rule out

the possibility that either of the functions in (1) is constant and nonzero. Suppose,

without loss of generality, that ν(DJ,s(K, t)) = 1 for a fixed s and all t. In particular,

ν(DJ,s(K,−TB(−K))) = 1. On the other hand, ν(DJ,−TB(−J)(K,−TB(−K))) = −1,

which contradicts the fact that the image of the function s 7→ ν(DJ,s(K,−TB(−K)))

contains at most two consecutive integers.

On the other hand, the behavior of ν(DJ,s(K, t) for small s and t (specifically, when

TB(J) < s < −TB(−J) or TB(K) < t < −TB(−K)) may be more complicated

than the simple behavior of τ given by Theorem 1.1.

In another direction, we may also look for instances when DJ,s(K, t) is actu-

ally smoothly slice. The following proposition generalizes Casson’s argument [25,
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J, s J, sK, t K, t

γp γp

Figure 37: The Seifert surface F with the curve γp, in the cases where p < 0 (left)

and p > 0 (right).

page 227] that the p(p + 1)-twisted positive Whitehead double of the (p, p + 1) torus

knot is smoothly slice. For an oriented knot K and relatively prime integers p, q, let

Cp,q(K) denote the (p, q)-cable of K. (Note that Cp,q(K)r = C−p,−q(K) = Cp,q(K
r)

and Cp,q(K) = Cp,−q(K̄).)

Proposition 3.12. Let K be any knot, and let p, t ∈ Z. If J is any knot that is

smoothly concordant to −Cp,pt±1(K), then DJ,−p(pt±1)(K, t) is smoothly slice.

Proof. Let F be the Seifert surface for DJ,s(K, t) shown in Figure 37, and let γp be a

curve that winds once around the band tied into J and p times around the band tied

into K, as indicated. The knot type of γp is Cp,pt+1(K), and the surface framing on γp

is s + p + p2t. Thus, if J is smoothly concordant to −Cp,pt+1(K) and s = −p(pt + 1),

we may surger F along γp in D4 along a smooth slice disk for J#Cp,pt+1(K), resulting

in a smooth slice disk for DJ,s(K, t).

If we reverse the crossing between the two bands of F , we obtain the result with

the opposite signs.

Proposition 3.12 is quite interesting in light of very recent work of Hom [23], who

found a general formula for the τ invariant of all cable knots in terms of p, q, τ(K),

and an invariant ǫ(K) ∈ {−1, 0, 1} that depends solely on the knot Floer complex of

K. She proved:

Theorem 3.13. Let K be a knot, and let p > 0. Then:
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• If ǫ(K) = 1, then τ(Cp,q(K)) = pτ(K) + 1
2
(p− 1)(q − 1) for all q.

• If ǫ(K) = −1, then τ(Cp,q(K)) = pτ(K) + 1
2
(p− 1)(q + 1) for all q.

• If ǫ(K) = 0, then τ(K) = 0, and

τ(Cp,q(K)) =





1
2
(p− 1)(q + 1) q < 0

1
2
(p− 1)(q − 1) q > 0.

We may use Theorem 3.13 to compute the value of τ for the cable knots appearing

in Proposition 3.12, where we take t = 2τ(K).

Corollary 3.14. For any knot K, if either ǫ(K) ≥ 0 and p > 0, or ǫ(K) ≤ 0 and

p < 0, there exists a knot J such that DJ,2τ(J)−p(K, 2τ(K)) is smoothly slice, while

τ(DJ,2τ(J)−p(K, 2τ(K)− p
|p|

)) 6= 0.

Proof. Suppose that ǫ(K) = 1 and p > 0. Set J = −Cp,2pτ(K)+1(K), so that:

2τ(J)− p = −2τ(Cp,2pτ(K)+1(K))− p

= −2pτ(K)− (p− 1)(2pτ(K))− p

= −2p2τ(K)− p

= −p(2pτ(K) + 1).

By Proposition 3.12, DJ,2τ(J)−p(K, 2τ(K)) is smoothly slice. On the other hand,

τ(DJ,2τ(J)−p(K, 2τ(K) − 1) = 1 by Theorem 1.1. The case where ǫ(K) = −1 and

p < 0 follows by mirroring, since ǫ(K̄) = −ǫ(K). Finally, if ǫ(K) = 0, we set

J = −Cp,1(K) if p > 0 and J = −C−p,−1 if p < 0.

Theorem 1.1 says that the set {(s, t) ∈ Z2 | DJ,s(K, t) = 0} always has the

same shape for any J and K, up to translation: the union of the second and fourth

quadrants of the Z2 lattice, including both axes. Corollary 3.14 implies that any point

on the boundary of this region may be realized by a smoothly slice knot DJ,s(K, t)

for suitable choices of J and K.
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Finally, recall that the main idea of the proof of Theorem 1.1 is that only the

form of the unstable chains in ĈFD(X s
J ) and ĈFD(X t

K) matters for the computa-

tion of of τ(DJ,s(K, t)). Petkova [54] and Hom [23] have observed similar behavior

in using bordered Heegaard Floer homology to compute τ(Cp,q(K)). The invariant

ǫ(K) defined by Hom describes the structure of the part of ĈFD(X t
K) “near” the

unstable chain. Specifically, when we take vertically and horizontally reduced bases

{ξ̃0, . . . , ξ̃2n} and {η̃0, . . . , η̃2n} for CFK−(K), we may arrange that ξ̃0 = η̃i for some i.

The cases ǫ(K) = 1, ǫ(K) = −1, and ǫ(K) = 0 correspond, respectively, to whether

i is even and positive, odd and positive, or zero. Within each case, Hom showed

that only the form of the unstable chain matters for computing τ(Cp,q(K)). Hom,

Petkova, Hedden, and the author are presently investigating how to extend this idea

to study the behavior of τ for arbitrary satellite knots.
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Chapter 4

Heegaard Floer homology of cyclic

branched covers

In this chapter, we present some of our work regarding the Heegaard Floer homology

of cyclic branched covers, particularly with a view towards computing concordance

obstructions.

Given a knot K ⊂ S3 and m ∈ N, let pm : Σm(K)→ S3 denote the m-fold cyclic

branched cover of S3 with downstairs branch set K, and let K̃m = p−1
m (K). The

Heegaard Floer homology of Σm(K) and the knot Floer homology of K̃m have been

the subject of extensive research, especially in the case where m = 2.

The main fact that distinguishes double branched covers is the skein exact triangle.

Suppose K0 and K1 are obtained as the two resolutions of a crossing in a diagram of

K, as in Figure 38. (Necessarily, one of these is a two-component link.) The manifolds

K K0 K1

Figure 38: The 0- and 1- resolutions of a crossing.
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Σ2(K0) and Σ2(K1) are then obtained as 0- and 1-surgery, respectively, on a certain

framed knot γ ⊂ Σ2(K). Therefore, there is an exact sequence

· · · → ĤF(Σ2(K))→ ĤF(Σ2(K0))→ ĤF(Σ2(K1))→ ĤF(Σ2(K))→ . . . . (4.1)

Using this sequence, Ozsváth and Szabó [52] showed that the double branched cover

of a quasi-alternating knot or link is always an L-space.1 Moreover, by iterating

the exact sequence at all of the crossings of a diagram for K, they showed that

there is a spectral sequence converging to ĤF(Σ2(K)) whose E2 page is the reduced

Khovanov homology of the mirror of K. Generalizations and applications of this

spectral sequence have been one of the most active subjects of research in Floer

homology in recent years; see, e.g., [17, 18, 3, 22, 57].

To describe the concordance obstructions arising from branched covers, we briefly

recall some facts about a more powerful variant of Heegaard Floer homology, known

as HF+. We use F = F2 coefficients for simplicity. For an oriented 3-manifold Y , the

invariant HF+(Y ) is an F[U ]-module that splits as a direct sum

HF+(Y ) =
⊕

s∈Spinc(Y )

HF+(Y, s).

Henceforth we assume Y is a rational homology sphere. Then HF+(Y ) has an abso-

lute Q-grading, restricting to a relative Z-grading on each summand HF+(Y, s), such

that multiplication by U has degree −2. For each spinc structure s, the summand

HF+(Y, s) is isomorphic to a copy of F[U, U−1]/UF[U ] plus a finitely generated group.

The correction term d(Y, s) ∈ Q is defined as the grading of the lowest-degree gen-

erator element of F[U, U−1]/UF[U ]. The correction terms satisfy the following three

properties:

1The set of quasi-alternating links, Q, is characterized by the following properties: (1) the unknot

is in Q; (2) if K, K0, and K1 are related as in Figure 38 and satisfy det(K) = det(K0)+det(K1), and

K0 and K1 are in Q, then K is in Q. A rational homology sphere Y is an L-space if ĤF(Y, s) = Z

for each s ∈ Spinc(Y ).
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1. For any Y, s, d(−Y, s) = −d(Y, s).

2. If s1 ∈ Spinc(Y1) and s2 ∈ Spinc(Y2), then d(Y1#Y2, s1#s2) = d(Y1, s1) +

d(Y2, s2).

3. If s̄ is the conjugate spinc structure of s, then d(Y, s̄) = d(Y, s).

Finally, there is an exact sequence

· · · → ĤF∗(Y, s)
ι
−→ HF+

∗ (Y, s)
U
−→ HF+

∗−2(Y, s)→ ĤF∗−1(Y, s)→ . . . .

It follows that Y is an L-space if and only if HF+(Y, s) ∼= F[U, U−1]/UF[U ] for all

s ∈ Spinc(Y ), and if so, the grading of the generator of ĤF(Y, s) is d(Y, s).

The (hat) knot Floer homology of a nulhomologous knot K ⊂ Y splits as a direct

sum

ĤFK(Y, K) =
⊕

s∈Spinc(Y )

ĤFK(Y, K, s).

The group has a Q-graded Maslov grading (restricting to a relative Z-grading in each

summand) and a Z-valued Alexander grading. Just as with knots in S3, there is a

spectral sequence from ĤFK(Y, K, s) to ĤF(Y, s), coming from the Alexander grading

filtration. The invariant τ(Y, K, s) is defined as the lowest filtration level whose image

in ĤF(Y, s) contains an element that maps under ι to the lowest-degree generator of

F[U, U−1]/UF[U ] ⊂ HF+(Y, s). Much like with knots in S3, these τ invariants provide

genus bounds on smoothly embedded surfaces in manifolds bounded by Y , and they

satisfy mirroring and additivity properties just like those of the correction terms.

For any knot K ⊂ S3 and any prime power m = pe, the branched cover Σm(K)

is a rational homology sphere with no p-torsion in H1(Σm(K); Z). If ∆ ⊂ D4 is a

smooth slice disk for K, then the m-fold branched cover of D4 branched over ∆,

Σm(∆), is a smooth rational homology 4-ball whose boundary is Σm(K). A simple

argument using the long exact sequence for cohomology shows that the order of

H2(Σm(K)) is a perfect square, say k2, and that the image of the restriction map

H2(Σm(∆)) → H2(Σm(K)) has order k. If we identify H2(Σm(K)) with the set of
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spinc structures on Σm(K), this implies that the spinc structures that extend over

Σm(∆) form a subset of square root order. The basic properties of the d and τ

invariants imply:

Theorem 4.1. If K ⊂ S3 is smoothly slice and m is a prime power, then there exists

an H2(Σm(K); Z)-affine subspace S ⊂ Spinc(Σm(K)), with |S|2 = |Spinc(Σm(K))|,

such that for each s ∈ S, d(Σm(K), s) = 0 and τ(Σm(K), K̃m, s) = 0.

The statement about d was proven by Jabuka and Naik [24]. The statement about

τ was proven by Grigsby, Ruberman, and Strle [16], adapting Ozsváth and Szabó’s

original argument concerning τ for knots in S3 [46]. This theorem is formally similar

to the work of Casson and Gordon [4], whose sliceness obstructions also rely on square-

root-order subgroups of H2(Σm(K); Z) obtained in the same manner. However, the

Casson–Gordon invariants obstruct topological sliceness, while the Heegaard Floer

ones obstruct only smooth sliceness.

While Theorem 4.1 applies to cyclic branched covers of any prime power multi-

plicity, it has primarily been used in the m = 2 case because the d invariants of double

branched covers of low-crossing knots can often be computed using the skein exact

triangle for HF+, as will be described below.

4.1 Obstructing finite concordance order via d in-

variants

In this section, we restrict to the case where m = 2.

Jabuka and Naik [24] used the part of Theorem 4.1 concerning d invariants to

obtain lower bounds on the concordance orders of certain small knots K. Specifically,

they showed that some knots that represent torsion in the algebraic concordance

group (the image of the map Ψ1 described in the Introduction) have order > 4 in

C1. By computing all the d invariants of Σ2(K), they found the d invariants of
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Σ2(#
4K) = #4Σ2(K) using additivity and explicitly checked Theorem 4.1 for every

square-root order subgroup of H2(Σ2(#
4K; Z)) to show that K has concordance order

greater than 4. Of course, the same techniques could be used to obstruct a knot from

having any particular finite order, but the number of subgroups to consider grows

rapidly.

Grigsby, Ruberman, and Strle [16] then showed how to show that a knot has

infinite concordance order. Specifically, they defined numerical invariants Dq(K)

and Tq(K) (q ∈ N), coming from the d and τ invariants of Σ2(K). Essentially, the

Dq(K) control the behavior of d(#nΣ2(K), s) on all square-root-order subgroups of

Spinc(#nΣ2(K)), and the Tq do the same for τ(#nΣ2(K), #nK̃2, s). They proved:

Theorem 4.2. Let K be a knot in S3. Let p be prime, and suppose that pm is the

largest power of p that divides det(K). If K has finite concordance order, then for

each integer 0 ≤ e ≤
⌊

m+1
2

⌋
, we have Dpe(K) = Tpe(K) = 0.

Using this theorem and an algorithm specific to two-bridge knots, Grigsby, Ruber-

man, and Strle showed that all two-bridge knots through 12 crossings whose smooth

concordance orders were previously unknown have infinite order.

Let s0 ∈ Spinc(Σ2(K)) denote the unique spin structure on Σ2(K), which is unique

because H2(Σ2(K); Z2) = 0. If K bounds a slice disk ∆, then s0 always extends over

Σ2(∆), so the set S ⊂ Spinc(Σ2(K)) provided by Theorem 4.1 must contain s0. The

Manolescu–Owens concordance invariant δ(K) ∈ Z is defined as 2d(Σ2(K), s0) [40].

If H2(Σ2(K); Z) is cyclic, it contains a unique subgroup Gq of order q for each

q dividing det K. In this case, the Grigsby–Ruberman–Strle invariants Dq(K) and

Tq(K) are defined as

Dq(K) =
∑

s∈s0+Gq

d(Σ2(K), s)

Tq(K) =
∑

s∈s0+Gq

τ(Σ2(K), K̃2, s),

and they are both 0 for any q not dividing det K. For the general case, see [16,

Definition 4.1].
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930 933 944 1058 1060 1091 10102 10119

10135 10158 10164 11a4 11a5 11a8 11a11 11a24

11a26 11a30 11a38 11a44 11a47 11a52 11a56 11a67

11a72 11a76 11a80 11a88 11a98 11a104 11a109 11a112

11a126 11a135 11a160 11a167 11a168 11a170 11a187 11a189

11a233 11a249 11a257 11a265 11a270 11a272 11a287 11a288

11a289 11a300 11a303 11a315 11a350 11n34 11n45 11n48

11n53 11n55 11n85 11n100 11n110 11n114 11n130 11n145

11n157 11n165

Table 2: Knots through eleven crossings with previously unknown concordance order.

As of May 2008, the smooth concordance orders of sixty-six knots through eleven

crossings, listed in Table 2, were unknown according to Cha and Livingston’s database

KnotInfo [6]. By computing the Dq invariants of all of these knots, we proved:

Theorem 4.3. Each of the forty-five knots listed in Table 3 has at least one nonzero

Dq invariant and therefore has infinite concordance order. For the remaining knots

listed in Table 2, all of the Dq invariants vanish.

We conclude this section by explaining the computations used in proving Theorem

4.3. We use techniques of Ozsváth and Szabó [47, 52, 51], which were also used by

Jabuka and Naik [24].

Given a projection of K, let G be its Goeritz matrix (defined in [52, section 3]).

Let |G| denote the rank of G. The double cover YK bounds a 4-manifold XG whose

intersection form on H2, Q = QXG
, is given by G (with respect to a basis of spheres).

Let Char(G) ⊂ H2(XG; Z) denote the set of characteristic vectors for Q, i.e., vectors

α ∈ H2(XG; Z) such that 〈α, v〉 ≡ Q(v, v) (mod 2) for every v ∈ H2(XG; Z). The

restriction map i∗ : H2(XG) → H2(YK) partitions Char(G) into equivalence classes
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Knot K det(K) Nonzero Dq

930 53 D53 = 4

933 61 D61 = 4

944 17 D17 = 4

1058 65 D13 = 4

1060 85 D17 = 4

10102 73 D73 = −12

10119 101 D101 = −16

10135 135 D37 = 4

11a4 97 D97 = −24

11a8 117 D13 = −4

11a11 113 D113 = 12

11a24 157 D157 = 12

11a26 157 D157 = 12

11a30 149 D149 = 12

11a52 137 D137 = 16

11a56 109 D109 = −8

11a67 125 D25 = −4

11a76 145 D29 = −4

11a80 137 D137 = −12

11a88 101 D101 = −8

11a126 145 D5 = 4,D29 = 4

11a160 145 D29 = −4

11a167 113 D113 = 12

Knot K det(K) Nonzero Dq

11a170 185 D37 = −4

11a189 149 D149 = −12

11a233 173 D101 = 16

11a249 117 D13 = −4

11a257 97 D97 = −8

11a265 109 D109 = 24

11a270 137 D137 = 12

11a272 149 D149 = 12

11a287 181 D181 = −12

11a288 205 D5 = 4,D41 = 4

11a289 145 D29 = 4

11a300 153 D17 = −4

11a303 149 D149 = 36

11a315 157 D157 = 12

11a350 185 D5 = 4,D37 = 4

11n48 29 D29 = −8

11n53 37 D37 = −8

11n55 61 D61 = 12

11n110 41 D41 = −12

11n114 53 D53 = −4

11n130 53 D53 = 12

11n165 85 D17 = −4

Table 3: Knots in Table 2 with non-vanishing Dq invariants.
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Char(G, s) corresponding to the spinc structures on YK . Given certain hypotheses

on G, including that G is negative-definite, Ozsváth and Szabó [47, Corollary 1.5]

proved that the correction terms for HF+(YK) are given by the formula

d(YK , s) = max
α∈Char(G,s)

α2 + |G|

4
. (4.2)

The vectors in each equivalence class that realize this maximum may be determined

algorithmically. Moreover, since H2(YK ; Z) ∼= coker(G), we may easily identify the

affine structure on Spinc(YK) (specifically, which spinc structures are in the distin-

guished subgroup Gq) using the Smith normal form for G.

As shown in [52], the formula (4.2) holds whenever G is computed from an al-

ternating projection. More generally, if K admits a projection that is alternating

except in a region that consists of left-handed twists, Ozsváth and Szabó [51] show

how to use Kirby calculus on XG to obtain a matrix G̃ for Q that satisfies the cor-

rect hypotheses. (See also Jabuka–Naik [24] for a concise explanation.) All of the

non-alternating knots in Table 2 satisfy this hypothesis, so we may compute the Dq

invariants as described above.

4.2 Computing ĤFK(Σm(K), K̃m)

In this section, we describe an algorithm for computing the knot Floer homology

group ĤFK(Σm(K), K̃m) for any knot K ⊂ S3. This material appeared in [31].

Any knot K ⊂ S3 can be represented by means of a grid diagram, consisting of an

n×n grid in which the centers of certain squares are marked X or O, such that each

row and each column contains exactly one X and one O. To recover a knot projection,

draw an arc from the X to the O in each column and from the O to the X in each

row, making the vertical strand pass over the horizontal strand at each crossing. If

we identify opposite edges of the square, we obtain a multi-pointed Heegaard diagram

H = (T 2, α, β,w, z) for (S3, K), where the α circles are the horizontal grid lines, the

β circles are the vertical grid lines, and the w (resp. z) basepoints are placed in the
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regions marked O (resp. X). Manolescu, Ozsváth, and Sarkar [41] showed that the

knot Floer complex for such Heegaard diagrams is completely combinatorial, with the

differential counting embedded rectangles. Subsequently, Manolescu, Ozsváth, Szabó,

and Thurston [42] used grid diagrams to give a completely combinatorial definition

and proof of invariance for knot (and link) Floer homology.

Let m ≥ 2, and let T̃ be the surface obtained by gluing together m copies of T

(denoted T0, . . . , Tm−1) along branch cuts connecting the X and the O in each column.

Specifically, in each column, if the X is above the O, then glue the left side of the

branch cut in Tk to the right side of the same cut in Tk+1 (indices modulo m); if the

O is above the X, then glue the left side of the branch cut in Tk to the right side of

the same cut in Tk−1. The obvious projection π : T̃ → T is an m-fold cyclic branched

cover, branched around the marked points. Each α or β circle in T intersects the

branch cuts a total of zero times algebraically and therefore has m distinct lifts to

T̃ , and each lift of each α circle intersects exactly one lift of each β circle. (We will

describe these intersections more explicitly in Subsection 4.2.2.)

Denote by R the set of embedded rectangles in T whose lower and upper edges

are arcs of α circles, whose left and right edges are arcs of β circles, and which do

not contain any marked points in their interior. Each rectangle in R has m distinct

lifts to T̃ (possibly passing through the branch cuts as in Figure 39); denote the set

of such lifts by R̃.

Let S be the set of unordered mn-tuples x of intersection points between the lifts

of α and β circles in T such that each lift contains exactly one point of x. (We will

give a more explicit characterization of the elements of S later.) Let C be the F2-

vector space generated by S. Define a differential d0 on C by making the coefficient

of y in d0(x) nonzero if and only if the following conditions hold:

• All but two of the points in x are also in y.

• There is a rectangle R ∈ R̃ whose lower-left and upper-right corners are in x,

whose upper-left and lower-right corners are in y, and which does not contain
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Figure 39: A lifted grid diagram H̃ = (T̃ , α̃, β̃, w̃, z̃) for (Σ2(K), K̃m), where K is

the right-handed trefoil. The solid and dashed lines represent different lifts of the α

(horizontal/red) and β (vertical/blue) circles. The points marked a, b, and c belong

to generators a, b, and c, respectively. The dark shaded region is a rectangle from a

to b; the light shaded region is an octagon from a to c.

any point of x in its interior.

In Section 4.2.2, we shall define two gradings (Alexander and Maslov) on C, as

well as a decomposition of C as a direct sum of complexes corresponding to spinc

structures on Σm(K). We shall prove the following theorem:

Theorem 4.4. The complex (C, d0) just described is equal to the knot Floer com-

plex of a multi-pointed Heegaard diagram for (Σm(K), K̃m). Therefore, H∗(C, d0) ∼=

ĤFK(Σm(K), K̃m) ⊗ V ⊗n−1, where V ∼= F2 ⊕ F2 with generators in bigradings (0, 0)

and (−1,−1).2

We wrote a computer program (in C++ and Mathematica) that implements the

computation of (C, d0) in the case where m = 2. Using this program, we were able

to compute ĤFK(Σ2(K), K̃2) for over fifty three-bridge knots. (Grigsby [14] found a

2Recall that if we have a genus-g Heegaard diagram for a pair (Y, K) with g + k − 1 α circles,

g + k − 1 β circles, and basepoints w1, . . . , wk and z1, . . . , zk, the homology of the Floer complex in

which we count only disks that miss all the basepoints is isomorphic to ĤFK(Y, K)⊗ V ⊗k−1.
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much more efficient algorithm for two-bridge knots.) The Poincaré polynomials for

all of these groups are listed in [31]; we do not list them here.

Grigsby [15] proved that when K is a two-bridge knot, the groups ĤFK(S3, K) and

ĤFK(Σ2(K), K̃2, s0) are isomorphic as bigraded groups up to an overall shift in the

Maslov grading. We have found examples of three-bridge knots (e.g. the knots 11n49,

11n102, and 11n116) for which this isomorphism fails. However, our computations

do support the following conjecture. Define the δ grading on ĤFK as the difference

between the Alexander and Maslov gradings. We say that ĤFK(S3, K) is thin if it is

supported in a single δ grading.

Conjecture 4.5. If ĤFK(S3, K) is thin, then ĤFK(Σ2(K), K̃2, s0) is thin and iso-

morphic to ĤFK(S3, K). In general, for each Alexander grading i, the rank of

ĤFK(Σ2(K), K̃2, s0, i) is greater than or equal to the rank of ĤFK(S3, K, i).

A weaker conjecture would be that ĤFK(Σ2(K), K̃2, s0) ∼= ĤFK(S3, K) is thin

whenever K is quasi-alternating (or perhaps merely alternating).

The behavior of the Maslov gradings, however, seems complicated. For example,

for the knot 10145, the ranks of ĤFK(S3, K) and ĤFK(Σ2(K), K̃, s0) are the same

in each Alexander grading, but ĤFK(S3, K) is supported in two δ-gradings while

ĤFK(Σ2(K), K̃2, s0) is supported in three.

For the other spinc structures on Σ2(K), it is not true that ĤFK(Σ2(K), K̃2, s)

must be thin for all s ∈ Spinc(Σ2(K)) whenever ĤFK(S3, K) is thin; counterexamples

include the knots 10134 and 11n117, which are both quasi-alternating.

We may also obtain some further information towards computing the invariants

τ(Σ2(K), K̃2, s). Let EX denote the set of embedded, convex, octagonal domains in

H̃ that contain exactly one of the regions marked X and none of the regions marked

O. (See Figure 39 for an example.) As drawn, such an octagon has two lower-left

corners, two lower-right corners, two upper-left corners, and two upper-right corners.

Define a map d1 on C by making the coefficient of y in d1(x) is if and only if the

following conditions hold:
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• All but four of the points in x are also in y.

• There is an octagon E ∈ EX whose lower-left and upper-right corners are in x,

whose upper-left and lower-right corners are in y, and which does not contain

any point of x in its interior.

Theorem 4.6. The map d1 induces a differential on H∗(C, d0), and the homol-

ogy of (H∗(C, d0), d1∗) is isomorphic to the E2 page of the spectral sequence from

ĤFK(Σ2(K), K̃2)⊗ V ⊗n−1 to ĤF(Σ2(K))⊗ V ⊗n−1.

Determining the higher differentials in the spectral sequence combinatorially is

a much more difficult problem. Moreover, even if this were possible, it would not

guarantee that we could compute the invariants τ(Σ2(K), K̃2, s), since a priori we

need to know not only ĤF(Σ2(K), s) but the map ι : ĤF(Σ2(K), s)→ HF+(Σ2(K), s).

However, in many sufficiently simple cases, knowing the maps d0 and d1 is sufficient

to determine τ(Σ2(K), K̃2, s) — if, for instance, ĤF(Σ2(K), s) has rank 1 in Maslov

grading d(Σ2(K), s) and ĤFK(Σ2(K), K̃2, s) is supported in a single δ grading. Using

Theorems 4.4 and 4.6, we were able to compute the Tq invariants for several of the

non-alternating knots whose Dq invariants fail to obstruct them from having finite

concordance order: 944, 10158, 10164, 11n100, and 11n145. However, the Tq invariants

of these knots all vanish, so we do not obtain any new concordance information. The

remaining knots in Table 2 are beyond the range of the computing resources presently

available.

In the following sections, we first give some general facts about Heegaard diagrams

for branched covers, and then use them to prove Theorems 4.4 and 4.6. We then show

how this approach may be used to compute the invariants τ(Σ2(K), K̃2, s) and Tq(K)

for the examples just mentioned.
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4.2.1 Heegaard diagrams for cyclic branched covers of knots

Given a knot K ⊂ S3 and an integer m ≥ 2, the cyclic branched cover Σm(K) can

be constructed explicitly from m copies of S3− int F , where F is a Seifert surface for

K, by connecting the negative side of a bicollar of F in the kth copy to the positive

side in the (k + 1)th (indices modulo m). The inverse image of K in Σm(K) is a knot

K̃m, which is nulhomologous because it bounds a Seifert surface (any of the lifts of

the original Seifert surface F ). For details, see Rolfsen’s book [58, chapters 6, 10].

The group of covering transformations of Σm(K) → S3 is cyclic of order m,

generated by a map τm : Σm(K) → Σm(K) that takes the kth copy of S3 − int F

to the (k + 1)th (indices modulo m). If γ is a 1-cycle in S3, then by using transfer

homomorphisms, we see that for any lift γ̃ (which is not necessarily a cycle), the

equation
m−1∑

k=0

τk
m∗(γ̃) = 0 (4.3)

holds in H1(Σm(K); Z). In particular, when m = 2, we have τ2∗(γ̃) = −γ̃.

When m is a power of a prime p, the group H1(Σm(K); Z) is finite and contains

no p-torsion [13, page 16]. This implies the action of the deck transformation group

on H1(Σm(K); Z) has no nonzero fixed points: if τm∗(α) = α, then

0 = α + τm∗(α) + · · ·+ τm−1
m∗ (α) = mα

by (4.3), so α = 0.

Let

H = (S, {α1, . . . , αg+n−1}, {β1, . . . , βg+n−1}, {w1, . . . , wn}, {z1, . . . , zn})

be a multi-pointed Heegaard diagram for K ⊂ S3 with genus g.3 If f : S3 → R is a

self-indexing Morse function compatible withH, then f̃ = f◦π : Σm(K)→ R is a self-

indexing Morse function for the pair (Σm(K), K̃m) whose critical points are simply the

3We denote the Heegaard surface by S rather than the usual Σ to avoid confusion with the

notation Σm(K).
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inverse images of the critical points of f . This function induces a Heegaard splitting

of Σm(K) that projects onto the Heegaard splitting of S3 given by H. A simple Euler

characteristic argument shows that the genus of the new Heegaard surface S̃ = π−1(S)

is h = mg + (m − 1)(n − 1). Each α or β circle in S bounds a disk in S3 − K and

hence has m distinct preimages in Σm(K). Thus, we obtain a Heegaard diagram

H̃ = (S̃, α̃, β̃, w̃, z̃), where S̃ is a surface of genus h and α̃, β̃, w̃, and z̃ are the

inverse images of the corresponding objects under the covering map.

The generators of the complex ĈFK(H̃) may be described as follows:

Lemma 4.7. Any generator x of ĈFK(H̃) can be decomposed (non-uniquely) as x =

x̃1 ∪ · · · ∪ x̃m, where x1, . . . ,xm are generators of ĈFK(H), and x̃i is a lift of xi to

H̃.

Proof. Given a generator x of ĈFK(H̃), let Gx be a graph with vertices

{a1, . . . , ag+n−1, b1, . . . , bg+n−1}

and edges {ex | x ∈ x}, where ex connects ai to bj if x is an intersection point

between lifts of αi and βj . This is clearly a bipartite graph in which each vertex has

incidence number m. By König’s Theorem [9, Proposition 5.3.1], the edges of Gx can

be partitioned (non-uniquely) into m perfect pairings, each of which corresponds to

a lift of a generator of ĈFK(H).

For each generator x0 of ĈFK(H), let L(x0) denote the generator of ĈFK(H̃)

consisting of all m lifts of each point of x0. Using the action of the deck transformation

τm on H, we may write L(x0) = x̃0 ∪ τm(x̃0) ∪ · · · ∪ τm−1
m (x̃0), where x̃0 is any lift of

x0 to D̃.

Lemma 4.8. All generators of ĈFK(H̃) of the form x = L(x0) are in the same

spinc structure, denoted s0, which is fixed under the action of the deck transformation

group. If m is a prime power, this property uniquely characterizes s0. If m is a power

of 2, s0 is the unique spin structure on Σm(K).
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Proof. (Adapted from Grigsby [15].) Let x0 and y0 be generators of ĈFK(H); we shall

show that L(x0) and L(y0) are in the same spinc structure. Let γx0,y0
be a 1-cycle in

S consisting of arcs from x0 to y0 along the α circles and from y0 to x0 along the β

circles. Let γ̃x0,y0
be a lift of γx0,y0

to S̃. Then the difference sw̃(L(x0))− sw̃(L(y0))

is Poincaré dual to the homology class in H1(Σm(K); Z) of the 1-cycle

γL(x0),L(y0) = γ̃x0,y0
+ τm∗(γ̃x0,y0

) + · · ·+ τm−1
m∗ (γ̃x0,y0

),

which equals 0 by (4.3). Thus, sw̃(L(x0)) = sw̃(L(y0)).

If f : S3 → R is a self-indexing Morse function for (S3, K) compatible with H,

its pullback f̃ : Σm(K) → R is τm-invariant. Using a Riemannian metric on Σm(K)

that is the pullback of a metric on S3, the gradient ~∇f̃ is τm-invariant and projects

onto ~∇f , and the flowlines for f̃ are precisely the lifts of flowlines for f . If N is the

union of neighborhoods of flowlines through the points of x0 and w, where x0 is a

generator of ĈFK(H), then Ñ = π−1(N) is the union of neighborhoods of flowlines

through the points of L(x0) and w̃. By suitably modifying ~∇f̃ on Ñ , we may obtain

a τm-invariant vector field that determines sw̃(L(x0)) = s0.

If m is a prime power and s′0 is another spinc structure fixed under the action of

τm, then the difference between s0 and s′0 is a class in H1(Σm(K); Z) that is fixed by

τm and hence equals zero. Finally, if m is a power of 2, the unique spin structure

must be τm-invariant, hence equal to s.

Proposition 4.9. If x = x̃1∪· · ·∪x̃m as in Lemma 4.7, then the Alexander grading of

x (computed with respect to a lift of a Seifert surface for K) is equal to the average of

the Alexander gradings of x1, . . . ,xm.4 In particular, for any generator x0 of ĈFK(H),

we have A(x0) = A(L(x0)).

4Note that we have specified a Seifert surface in order to define the Alexander grading. When

m is a prime power, however, Σm(K) is a rational homology sphere, so the Alexander grading does

not depend at all on the choice of Seifert surface.
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Proof. We first consider the relative Alexander gradings. Let F ⊂ S3 be a Seifert sur-

face for K, and let F̃ be a lift of F to Σm(K). The translates F̃ , τm(F̃ ), . . . , τm−1
m (F̃ )

are all Seifert surfaces for K̃m. Given two generators x and y, the difference A(x)−

A(y) equals the intersection number of the 1-cycle γx,y with any Seifert surface for

K̃m, where γx,y is a 1-cycle in H̃ relating x and y as above. (If x and y are in the

same spinc structure, this intersection number equals nz(D)−nw(D), where D is any

domain from x to y, and nz(D) (resp. nw(D)) is the sum of the multiplicities of D

at the z (resp. w) basepoints.) Therefore,

m(A(x)− A(y)) = γx,y · F̃ + γx,y · τm(F̃ ) + · · ·+ γx,y · τ
m−1
m (F̃ ).

The projection π∗(γx,y) is a 1-cycle in S that goes from points of π(x) to points of

π(y) along α circles and from points of π(y) to points of π(x̄) along β circles. Every

intersection point of γx,y with one of the lifts of F projects to an intersection point

of π∗(γx,y) with F , so

γx,y · F̃ + γx,y · τm(F̃ ) + · · ·+ γx,y · τ
m−1
m (F̃ ) = π∗(γx,y) · F.

The restriction of π∗(γx,y) to any α or β circle consists of m (possibly constant or

overlapping) arcs. By perhaps adding multiples of the α or β circles, we can arrange

that each of these arcs connects a point of x1 with a point of y1, a point of x2 with

a point of y2, and so on. In other words,

π∗(γx,y) ≡ γx1,y1
+ · · ·+ γxm,ym

modulo the α and β circles in H, whose intersection numbers with F are zero. We

have:

A(x)− A(y) =
1

m
(γx1,y1

+ . . . , +γxm,ym
) · F

=
1

m
(A(x1)− A(y1) + · · ·+ A(xm)− A(ym))

Thus, the Alexander grading of a generator of ĈFK(H̃) is given up to an additive

constant by the average Alexander grading of its parts.
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To pin down the additive constant, first note that the branched covering map

π : Σm(K) → S3 extends to an unbranched covering map from the zero-surgery on

K̃m to the zero-surgery on K, π0 : Y0 → S3
0(K), where Y0 = Σm(K)0(K̃m). Since

this is a local diffeomorphism, it is possible to pull back spinc structures. Let x0 be

a generator of ĈFK(H) in Alexander grading 0, and let x = L(x0). (The symmetry

ĤFK(S3, K, i) ∼= ĤFK(S3, K,−i) and the fact that rank ĤFK(S3, K) ≡ 1 (mod 2)

[49] imply that such ĤFK(S3, K, 0) has odd rank, so such a generator x0 always

exists.) As in the discussion following Lemma 4.8, we may find a nonvanishing vector

field that determines sw̃(x0) = s0 and is τm-invariant. The unique nonvanishing

extension (up to isotopy) of this vector field to Y0 can also be made τm-invariant, so

it is the pullback of an extension to S3
0(K) of a vector field determining sw(x0). It

follows that sw̃,z̃(x) = π∗
0(sw,z(x0)). Now, if ˆ̃F ⊂ Y0(K̃m) is obtained by capping off

F̃ in the zero-surgery, then π0∗[
ˆ̃F ] = [F̂ ] in H2(S

0
3 ; Z). We therefore have:

A(x) =
1

2

〈
c1(sw̃,z̃(x)), [ ˆ̃F ]

〉

=
1

2

〈
c1(π

∗
0(sw,z(x0))), [

ˆ̃F ]
〉

=
1

2

〈
c1(sw,z(x0)), π0∗[

ˆ̃F ]
〉

=
1

2

〈
c1(sw,z(x0)), [F̂ ]

〉

= 0 = A(x0)

Thus, the additive constant must equal 0.

Remark 4.10. When K is a two-bridge knot and m = 2, Grigsby [15] shows that

for a specific diagram H, the map L is surjective and preserves the relative Maslov

grading. Therefore, for any two-bridge knot K, ĤFK(Σ2(K), K̃m, s0) ∼= ĤFK(S3, K),

up to a possible shift in the absolute Maslov grading. It may be possible to extend

this result to a wider class of knots, such as alternating knots. However, in general L

is neither surjective nor Maslov-grading-preserving.

Finally, we consider the regions in H̃. First, note that the preimage of any region R

in H consists of either m distinct regions, each of which is projected diffeomorphically
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onto R, or a single region. When H is nice, each region of H that does not contain

a basepoint is a simply connected polygon, so the former possibility holds. Thus, we

obtain:

Proposition 4.11. Let H be a nice Heegaard diagram for (S3, K), and let H̃ be its

m-fold cyclic branched cover. Then H̃ is nice.

4.2.2 Grid diagrams and cyclic branched covers

Proof of Theorem 4.4. As described in the introduction to this section, any oriented

knot K ⊂ S3 can be represented by means of a grid diagram. By drawing the grid

diagram on a standardly embedded torus in S3, we may think of the grid diagram as

a genus 1, multi-pointed Heegaard diagram H = (T 2, α, β,w, z) for the pair (S3, K),

where the α circles are the horizontal lines of the grid, the β circles are the vertical

lines, the w basepoints are in the regions marked O, and the z basepoints are in the

regions marked X.

A Seifert surface for K may be seen as follows. We may isotope K to lie entirely

within Hα by letting the arcs of K ∩ Hβ fall onto the boundary torus. In fact, it

lies within a ball contained in Hα since the knot projection in the grid diagram never

passes through the left edge of the grid. Take a Seifert surface F contained in this

ball, and then isotope F and K so that K returns to its original position. F then

intersects the Heegaard surface T 2 in n arcs, one connecting the two basepoints in

each column of the grid diagram, and it intersects Hβ in strips that lie above these

arcs. The orientations of K and S3 imply that the positive side of a bicollar for F lies

on the right of one of these strips when the X is above the O and on the left when

the O is above the X.

If we construct Σm(K) by gluing together m copies of S3−int F as in Section 4.2.1,

the Heegaard surfaces in each copy are connected exactly to each other as described

in Section 1 to form a surface T̃ . Hence, H̃ = (T̃ , α̃, β̃, w̃, z̃) is a Heegaard diagram

for (Σm(K), K̃m) for which the results of Section 3 apply. In particular, it is a nice
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Heegaard diagram since H is nice.

It remains to show that the domains that count for the differential in ĈFK(H̃) are

precisely the lifts of those that count for the differential in ĈFK(H), as was asserted

in Section 1. Since H̃ is a nice diagram with no bigons, any domain that counts

for the differential is an embedded rectangle R. The projection of R to H, π(R), is

an immersed rectangle in H̃ whose edges are contained in at most two α circles and

two β circles. By lifting π(R) to the universal cover of T 2, we see that π(R) cannot

intersect any α or β circle more than once, or else it would contain an entire column

or row of the grid diagram and hence a basepoint. Therefore, π(R) is an embedded

rectangle that misses the basepoints, so it counts for the differential of ĈFK(H).

We shall now give a more explicit description of the generators of ĈFK(D̃) and

their gradings in order to facilitate computation.

In the grid diagram H, we label the α circles α0, . . . , αn−1 from bottom to top

and the β circles β0, . . . , βn−1 from left to right. Each α circle intersects each β circle

exactly once: βi∩αj = {xij}. Generators of ĈFK(H) then correspond to permutations

of the index set {0, . . . , n− 1} via the correspondence σ 7→ (x0,σ(0), . . . , xn−1,σ(n−1)).

For each grid point x, let w(x) denote the winding number of the knot projection

around x. Let p1, . . . , p8n (repetitions allowed) denote the vertices of the 2n squares

containing basepoints, and set

a =
1− n

2
+

1

8

8n∑

i=1

w(pi).

According to Manolescu, Ozsváth, and Sarkar [41], the Alexander grading of a gen-

erator x of ĈFK(H) is given by the formula

A(x) = a−
∑

x∈x

w(x). (4.4)

There is also a formula for the Maslov grading of a generator, but it is not relevant

for our purposes.
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The generators of ĈFK(H̃) can be described easily as follows. For any i =

0, . . . , n−1 and j = 0, . . . , n−1, each lift of βi meets exactly one lift of αj . Specifically,

let β̃k
j denote the lift of βj on the kth copy of H (for k = 0, . . . , m− 1). Let α̃k

j denote

the lift of αj that intersects the leftmost edge of the kth grid diagram (β̃k
0 ). Let x̃k

i,j

denote the lift of xi,j on the kth diagram. Define a map g : Z/n×Z/n×Z/m→ Z/m

by g(i, j, k) = k − w(xi,j) mod m. The lift of αj that meets a particular β̃k
i is given

by the following lemma:

Lemma 4.12. The point x̃k
i,j is the intersection between β̃k

i and α̃
g(i,j,k)
j .

Proof. We induct on i. For i = 0, we have w(x0,j) = 0, and by construction α̃k
j meets

β̃k
0 . For the induction step, let S be the segment of αj from xi,j to xi+1,j . Note that

w(xi+1,j) is equal to w(xi,j)+1 if S passes below the X and above the O in its column,

w(xi,j)− 1 if it passes above X and below O, and w(xi,j) otherwise. Similarly, if x̃k
i,j

lies on α̃l
j, then by the previous discussion, x̃k

i+1,j lies on α̃l−1
j in the first case, on

α̃l+1
j in the second, and on α̃l

j in the third (upper indices modulo m). This proves the

induction step.

We may then identify the generators of ĈFK(H̃) with the set of m-to-one maps

φ : {0, . . . , n− 1} × {0, . . . , m− 1} → {0, . . . , n− 1}

such that for each j = 0, . . . , n−1, the function g(·, j, ·) assumes all m possible values

on φ−1(j). In other words, if we shade the m lifts of each α circle with different colors

as in Figure 39 and arrange the copies of H horizontally, a generator is a selection of

mn grid points so each column contains one point and each row contains m points,

one of each color. It is not difficult to enumerate such maps algorithmically.

To split up the generators of ĈFK(H̃) according to spinc structures, we simply

need to express ǫ(x,y) = [γx,y] ∈ H1(Σm; Z) in terms of a Z-module presentation for

H1(Σm(K); Z). We obtain such a presentation from the Heegaard decomposition of

Σm(K): the generators ak
j (0 ≤ j ≤ n − 1, 0 ≤ k ≤ m − 1) corresponding to the
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1-handles dual to the α circles and relations corresponding to the 2-handles spanned

by the β circles. By Lemma 4.12, the relations are

0 = [β̃k
i ] =

n∑

j=1

a
g(i,j,k)
j (0 ≤ i ≤ n− 1, 0 ≤ k ≤ m− 1).

To express ǫ(x,y) in terms of this basis, one simply counts the number of times that

a representative γx,y crosses the α circles.

To compute the Alexander grading of a generator x, we decompose it as x =

x̃1 ∪ · · · ∪ x̃m using Lemma 4.7 and then use Proposition 4.9 and Equation (4.4) to

write:

A(x) =
1

m
(A(x1) + · · ·+ A(xm))

=
1

m

m∑

k=1

(
a−

∑

x∈xk

w(x)

)

= a−
1

m

m∑

k=1

∑

x∈x̃k

w(π(x))

= a−
1

m

∑

x∈x

w(π(x))

Computing the relative Maslov grading between two generators in the same spinc

structure requires finding a domain D connecting them, which is simply a matter

of linear algebra, and then using the formula M(x) − M(y) = µ(D) − 2nw(D).

The relative Maslov grading between generators in different spinc structures can be

computed similarly using the formula of Lee and Lipshitz [28]. Specifically, since

Σm(K) is a rational homology sphere, there exists some q such that qγx,y plus a

linear combination of α and β circles is the boundary of a domain D; the formula

then says that M(x)−M(y) = 1
q
(µ(D)− 2nw(D)). We do not know of a formula for

the absolute Q-grading, although it can sometimes be computed post facto in simple

examples, as will be discussed below.
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4.2.3 Higher differentials

Let K ⊂ S3 be a knot presented by an n × n grid diagram H = (T 2, α, β,w, z),

and let H̃ = (T̃ , α̃, β̃, w̃, z̃) be the nice Heegaard diagram for (Σ2(K), K̃2) described

in the previous section. The homology of the complex ĈF(T̃ , α̃, β̃,w) — where

the differential counts disks that may go over the z basepoints — is isomorphic to

ĤF(Σ2(K))⊗V ⊗n−1. The Alexander grading makes this a filtered complex. The asso-

ciated graded complex of this filtration is ĈFK(T̃ , α̃, β̃,w, z), which we showed can be

computed combinatorially as in Theorem 4.4. The E1 page in the spectral sequence

is the homology of the associated graded complex, ĤFK(Σ2(K), K̃2) ⊗ V ⊗n−1. The

goal of this section is to show that the E2 page may also be computed combinatorially

as in Theorem 4.6. Also, note that each page in this spectral sequence is isomorphic

to the tensor product of V ⊗n−1 with the corresponding page of the spectral sequence

from ĤFK(Σ2(K), K̃2) to ĤF(Σ2(K)).

We write the differential ∂ on ĈF(H̃) as ∂0 + ∂1 + . . . , where ∂i(x) is the sum

of the terms in ∂(x) that are in Alexander grading A(x) − i. That is, di counts

holomorphic disks φ with nw(φ) = 0 and nz(φ) = i. Since ∂2 = 0, we have ∂2
0 = 0

and ∂0∂1 + ∂1∂0 = 0, which implies that ∂1 induces a differential ∂1∗ on H∗(ĈF, ∂0),

and the homology of this differential is the E2 page of the spectral sequence. Thus,

our goal is to identify all of the domains that count for ∂1.

We now recall the work of Ozsváth, Stipsicz, and Szabó [45]. Although their

discussion is in the context of 3-fold simple (non-cyclic) branched covers, the same

argument works for double branched covers as well.

The diagram H has genus n + 1, 2n α circles, 2n β circles, n w basepoints, and

n z basepoints. We may add n α curves and n β curves to H̃ and set w̃′ = w̃ ∪ z̃

to obtain a diagram H̃′ = (T̃ , α̃′, β̃′, w̃′), with genus n + 1, 3n α and 3n β circles,

and 2n basepoints (Figure 40). Specifically, for i = 0, . . . , n− 1, let αi+1/2 ⊂ T

(resp. βi+1/2 ⊂ T ) be a curve in the ith row (resp. column) of the grid diagram

that separates the O and X in that row (resp. column). Each such circle meets the
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Figure 40: The extended Heegaard diagram H′ defined by Ozsváth, Stipsicz, and

Szabó [45]. All of the regions marked O or X contain w basepoints.

branch cuts an odd number of times, so it is doubly covered by a single circle α̃i+1/2

(resp. β̃i+1/2). These preimages are the new curves in α̃′ and β̃′. Notice that α̃i+1/2

and β̃j+1/2 meet exactly twice for each i, j. The diagram H̃′ presents Σ2(K) without

reference to the knot K̃2. A key property of both H̃ and H̃′ is that every basepointed

region is an octagon and every non-basepointed region is a rectangle.

Since H̃′ is nice, the non-negative homology classes φ with nw̃′(φ) = 0 and µ(φ) = 1

are precisely the embedded rectangles in H̃′ [62]. Regarding the classes that hit

exactly one basepoint, Ozsváth, Stipsicz, and Szabó proved:

Theorem 4.13. Let φ ∈ π2(x,y) be a non-negative homology class in H′ with µ(φ) =

1 and nz̃′(φ) = 1. Then the domain of φ is either:

1. an embedded octagon with local multiplicity 1
4

at each corner, or

2. an embedded annulus with four marked points x1, y2, x2, y2 with local multiplic-

ity 1
4

on one boundary component and one marked point x3 = y3 with local

multiplicity 1
2

on the other boundary component.

In the first case, φ always admits a holomorphic representative. In the second case,

whether or not φ admits a holomorphic representative is independent of the choice of

complex structure on T̃ .
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As the proof of this theorem is quite technical, we do not reproduce it here.

Proof of Theorem 4.6. Suppose x and y are generators of ĈFK(H̃) and φ ∈ π2(x,y)

is a non-negative homology class with µ(φ) = 1, nw̃(φ) = 0, and nz̃(φ) = 1. We claim

that the domain of φ must be an embedded octagon.

For i = 0, . . . , n− 1, let pi be the intersection point of αi+1/2 and βj+1/2 that lies

in the same region of H as the O in the ith row. Let p̃i be one of the two lifts of pi

to H̃′. Then x′ = x ∪ {p̃i | i = 0, . . . , n − 1} and y′ = y ∪ {p̃i | i = 0, . . . , n − 1}

are generators of ĈF(H̃′). The domain of φ, viewed as a domain in H̃′, represents a

homology class φ′ ∈ π2(x
′,y′). The local multiplicity of φ′ at each point p̃i is zero,

so µ(φ′) = µ(φ) = 1 and nw′(φ′) = 1. Thus, the domain of φ is either an embedded

octagon or an embedded annulus by Theorem 4.13.

In the second case, one boundary component of the domain of φ is either a com-

plete α circle or a complete β circle in H̃. However, each α and β circle abuts a

region marked O on both sides, so the domain of φ must contain a point of w̃. This

contradicts the assumption that nw̃(φ) = 0.

Thus, the only domains which count for ∂1 are the embedded octagons, so ∂1

agrees with the map d1 appearing in the theorem.

4.2.4 Computations of τ(Σ2(K), K̃2, s)

Finally, we explain the computations of τ(Σ2(K), K̃2, s) for the knots 944, 10158, 10164,

11n100, and 11n145. These are the five knots in Table 2 whose Dq invariants all vanish

but for which we are able to compute ĤFK(Σ2(K), K̃2) using our implementation of

Theorem 4.4. (Four of these knots have arc index 10; 11n100 has arc index 11, but

the chain complex turns to be small enough for our computer program to process it.)

For any knot K, there are inequalities

det(K) =
∣∣H2(Σ2(K); Z)

∣∣ ≤ rank ĤF(Σ2(K)) ≤ rank K̃h(−K), (4.5)

where K̃h(−K) denotes the reduced Khovanov homology of the mirror of K with
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F2 coefficients. (The last inequality follows from the spectral sequence found by

Ozsváth and Szabó [52].) In particular, if det(K) = rank K̃h(−K), then for each s ∈

Spinc(Σ2(K)), we have ĤF(Σ2(K), s) ∼= F in grading d(Σ2(K), s). This equality holds

for 944 (with determinant 17) and 10158, 10164, and 11n100 (each with determinant 45).

The knot 11n145 has determinant 9 but reduced Khovanov homology of rank 25.

For K = 10158, we find that with a suitable identification of Spinc(K) with

H2(Σ2(K); Z) ∼= Z45, the d invariants and ĤFK groups are as listed in Table 4.

(These d invariants are also computed in [24].) The discussion of Maslov gradings in

Subsection 4.2.2 only provides relative Q-gradings, but we may pin down the absolute

gradings using the spinc structures in which ĤFK(Σ2(K), K̃2, s) has rank 1. Notice

that in every spinc structure, ĤFK(Σ2(K), K̃2, s) is thin, so τ(Σ2(K), K̃2, s) equals

the Alexander grading of the unique nonzero group in Maslov grading d(Σ2(K), s).

According to Theorem 4.2, the relevant Grigsby–Ruberman–Strle invariants are D3,

D5, T3, and T5, all of which are zero. The computations for 944, 10164, and 11n100

proceed very similarly.

The computation for 11n145 is more complicated; see Table 5. Because the to-

tal rank of K̃h(K̄) is greater than det K, we do not know whether Σ2(K) is an

L-space, and we cannot tell which elements ĤF(Σ2(K), s0) map to the bottom of

the infinite tower in HF+(Σ2(K), s0), as in the definition of τ(Σ2(K), K̃2, s0). Since

ĤFK(Σ2(K), K̃2, s0) has elements with Maslov grading 0 in Alexander gradings 0 and

2, τ(Σ2(K), K̃2, s0) could equal 0 or 2. However, we may use Theorem 4.6 to com-

pute the E2 page of the spectral sequence from ĤFK(Σ2(K), K̃2, s0) to ĤF(Σ2(K), s0).

While we cannot determine the entire page with available computer resources, we do

find that the E2 page does not contain any nonzero elements in positive Alexander

grading. As a result, we see that τ(Σ2(K), K̃2, s0) = 0.
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s d(Σ2(K), s)
∑

i,j rank ĤFKj(Σ2(K), K̃, s, i) tiqj τ(Σ2(K), K̃, s)

0 0
q−3t−3 + 4q−2t−2 + 10q−1t−1

+ 15 + 10qt + 4q2t2 + q3t3
0

±1 8/45 q8/45(q−1t−1 + 3 + qt) 0

±2 32/45 q−13/45(q−2t−2 + 3q−1t−1 + 3 + 3qt + q2t2) 1

±3 −2/5 q−2/5 0

±4 38/45 q38/45 0

±5 4/9 q4/9(q−1t−1 + 3 + qt) 0

±6 2/5 q2/5 0

±7 32/45 q−13/45(q−2t−2 + 3q−1t−1 + 3 + 3qt + q2t2) 1

±8 −28/45 q17/45(q−2t−2 + 3q−1t−1 + 3 + 3qt + q2t2) −1

±9 2/5 q2/5(2q−1t−1 + 5 + 2qt) 0

±10 −2/9 q−2/9(2q−1t−1 + 5 + 2qt) 0

±11 −22/45 q−22/45 0

±12 −2/5 q−2/5 0

±13 2/45 q2/45 0

±14 38/45 q38/45 0

±15 0 q−1t−1 + 3 + qt 0

±16 −22/45 q−22/45 0

±17 −28/45 q17/45(q−2t−2 + 3q−1t−1 + 3 + 3qt + q2t2) −1

±18 −2/5 q−2/5 0

±19 8/45 q8/45(q−1t−1 + 3 + qt) 0

±20 −8/9 q1/9(q−1t−1 + 1 + qt) −1

±21 2/5 q2/5 0

±22 2/45 q2/45 0

Table 4: Values of d(Σ2(K), s), ĤFK(Σ2(K), K̃, s), and τ(Σ2(K), K̃, s) for the knot

K = 10158.
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s d(Σ2(K), s)
∑

i,j dimZ/2 ĤFKj(Σ2(K), K̃, s, i; Z/2)tiqj τ(Σ2(K), K̃, s)

0 0
q−5t−3 + (2q−4 + q−2)t−2 + (q−3 + 4q−1)t−1

+ 7q + (q−1 + 4q)t + (2 + q2)t2 + qt3
0

±1 −8/9 q−8/9(q−2t−2 + 3q−1t−1 + 5 + 3qt + q2t2) 0

±2 4/9 q4/9 0

±3 0 1 0

±4 −2/9 q−2/9(q−2t−2 + 3q−1t−1 + 5 + 3qt + q2t2) 0

Table 5: Values of d(Σ2(K), s), ĤFK(Σ2(K), K̃, s), and τ(Σ2(K), K̃, s) for the knot

K = 11n145.
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Chapter 5

Poetic conclusion

Our goal is one whose application’s nice

For smooth four-manifold topology:

To tell if certain knots and links are slice

With bordered Heegaard Floer homology.

We seek concordance data that detect

Some links obtained by Whitehead doublings,

As well as knots we get when we infect

Along two of the three Borromean rings.

Some lengthy work with bordered Floer then proves

How τ for satellites like these is found.

We see, by this result and cov’ring moves,

That smooth slice disks our links can never bound.

The theorem’s proved, the dissertation’s done,

But all the work ahead has just begun.
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