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ABSTRACT

Functional Itô calculus and Applications

David-Antoine FOURNIE

This thesis studies extensions of the Itô calculus to a functional setting, using analytical and

probabilistic methods, and applications to the pricing and hedging of derivative securities.

The first chapter develops a non-anticipative pathwise calculus for functionals of two

cadlag paths, with a predictable dependence in the second one. This calculus is a functional

generalization of Follmer’s analytical approach to Itô calculus. An Itô-type change of vari-

able formula is obtained for non-anticipative functionals on the space of right-continuous

paths with left limits, using purely analytical methods. The main tool is the Dupire deriva-

tive, a Gateaux derivative for non-anticipative functionals on the space of right-continuous

paths with left limits. Our framework implies as a special case a pathwise functional Itô

calculus for cadlag semimartingales and Dirichlet processes. It is shown how this analytical

Itô formula implies a probabilistic Itô formula for general cadlag semimartingales.

In the second chapter, a functional extension of the Itô formula is derived using stochas-

tic analysis tools and used to obtain a constructive martingale representation theorem for a

class of continuous martingales verifying a regularity property. By contrast with the Clark-

Haussmann-Ocone formula, this representation involves non-anticipative quantities which

can be computed pathwise. These results are used to construct a weak derivative acting

on square-integrable martingales, which is shown to be the inverse of the Itô integral, and

derive an integration by parts formula for Itô stochastic integrals. We show that this weak

derivative may be viewed as a non-anticipative “lifting” of the Malliavin derivative. Regular

functionals of an Itô martingale which have the local martingale property are characterized

as solutions of a functional differential equation, for which a uniqueness result is given.



It is also shown how a simple verification theorem based on a functional version of the

Hamilton-Jacobi-Bellman equation can be stated for a class of path-dependent stochastic

control problems.

In the third chapter, a generalization of the martingale representation theorem is given

for functionals satisfying the regularity assumptions for the functional Itô formula only in

a local sense, and a sufficient condition taking the form of a functional differential equation

is given for such locally regular functional to have the local martingale property. Examples

are given to illustrate that the notion of local regularity is necessary to handle processes

arising as the prices of financial derivatives in computational finance.

In the final chapter, functional Itô calculus for locally regular functionals is applied to

the sensitivity analysis of path-dependent derivative securities, following an idea of Dupire.

A general valuation functional differential equation is given, and many examples show that

all usual options in local volatility model are actually priced by this equation. A definition

is given for the usual sensitivities of a derivative, and a rigorous expression of the concept

of Γ − Θ tradeoff is given. This expression is used together with a perturbation result for

stochastic differential equations to give an expression for the Vega bucket exposure of a

path-dependent derivative, as well as its of Black-Scholes Delta and Delta at a given skew

stickiness ratio. An efficient numerical algorithm is proposed to compute these sensitivities

in a local volatility model.
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3.2 Functional Itô calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

i



3.2.1 Space of paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.2 Obstructions to regularity . . . . . . . . . . . . . . . . . . . . . . . . 44
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4.2.2 A local version of functional Itô formula . . . . . . . . . . . . . . . . 74

4.3 Locally regular functionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3.1 Spaces of locally regular functionals . . . . . . . . . . . . . . . . . . 75

4.3.2 A local uniqueness result on vertical derivatives . . . . . . . . . . . . 77

4.3.3 Derivatives of a locally regular functional . . . . . . . . . . . . . . . 81

4.3.4 Continuity and measurability properties . . . . . . . . . . . . . . . . 83

4.4 Martingale representation theorem . . . . . . . . . . . . . . . . . . . . . . . 83

4.5 Functional equation for conditional expectations . . . . . . . . . . . . . . . 85

ii



5 Sensitivity analysis of path-dependent derivatives 87

5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.1.1 A short introduction to no-arbitrage pricing of derivatives securities 88

5.1.2 A short introduction to derivatives pricing and hedging: a sell-side

trader’s point of view . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2 Functional valuation equation and greeks for exotic derivative . . . . . . . . 92

5.2.1 Valuation equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.2.2 Delta, gamma and theta . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.2.3 Θ− Γ tradeoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.3 Examples of the valuation equation . . . . . . . . . . . . . . . . . . . . . . . 99

5.3.1 Vanilla options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.3.2 Continuously monitored barrier options . . . . . . . . . . . . . . . . 101

5.3.3 Continuously monitored Asian options . . . . . . . . . . . . . . . . . 101

5.3.4 Continuously monitored variance swap . . . . . . . . . . . . . . . . . 102

5.3.5 Path-dependent options with discrete monitoring . . . . . . . . . . . 103

5.3.6 Options on basket in a model with an unobservable factor . . . . . . 105

5.4 Sensitivities to market variables . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.4.1 Directional derivatives with respect to the volatility functional . . . 108

5.4.2 Sensitivities to market variables . . . . . . . . . . . . . . . . . . . . . 110

5.4.3 Multiple Deltas of a derivative . . . . . . . . . . . . . . . . . . . . . 111

5.4.4 Efficient numerical algorithm for the simultaneous computation of

Vega buckets and Deltas . . . . . . . . . . . . . . . . . . . . . . . . . 114

A Proof of theorems in chapter 2 122

A.1 Some results on cadlag functions . . . . . . . . . . . . . . . . . . . . . . . . 122

A.2 Proof of theorem 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

A.3 Measure-theoretic lemmas used in the proof of theorem 2.4 and 2.5 . . . . . 125

B Stochastic Differential Equations with functional coefficients 128

B.1 Stochastic differential equations with path dependent coefficients . . . . . . 128

B.1.1 Strong solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

iii



B.1.2 Continuity in the initial value . . . . . . . . . . . . . . . . . . . . . . 134

B.1.3 Perturbation of coefficients . . . . . . . . . . . . . . . . . . . . . . . 136

iv



Acknowledgments

I thank first and foremost my parents for their continuous support to pursue my dreams. 9

years of studies would never have been possible without their moral, practical and financial

support.

I thank a lot Amal Moussa for her great friendship which supported me throughout all my

years of studies in Toulouse, Paris and New York.

I wish to thank deeply my advisor Professor Rama Cont for his constant support and

guidance during my PhD studies at Columbia University, and for his deep involvement in

our joint work which is compiled in this dissertation.

I am very grateful to Professor Ioannis Karatzas for my recruitment at Columbia University

and his support during my PhD studies. Most of my knowledge and interest in Probability

and Stochastic Analysis comes from his books and his lectures.

I thank Bruno Dupire whose original ideas and thoughts opened the way to my research

work.

I thank Professor Nicole El Karoui from the Ecole Polytechnique who encouraged me to go

for a PhD at Columbia University, and my Mathematics and Physics Professors in ”Classes
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Chapter 1

Synopsis

Itô’s stochastic calculus [36, 37, 18, 49, 45, 54] has proven to be a powerful and useful tool

in analyzing phenomena involving random, irregular evolution in time.

Two characteristics distinguish the Itô calculus from other approaches to integration,

which may also apply to stochastic processes. First is the possibility of dealing with pro-

cesses, such as Brownian motion, which have non-smooth trajectories with infinite variation.

Second is the non-anticipative nature of the quantities involved: viewed as a functional on

the space of paths indexed by time, a non-anticipative quantity may only depend on the

underlying path up to the current time. This notion, first formalized by Doob [21] in the

1950s via the concept of a filtered probability space, is the mathematical counterpart to

the idea of causality.

Two pillars of stochastic calculus are the theory of stochastic integration, which

allows to define integrals
∫ T

0 Y dX for of a large class of non-anticipative integrands Y with

respect to a semimartingale X = (X(t), t ∈ [0, T ]), and the Itô formula [36, 37, 49] which

allows to represent smooth functions Y (t) = f(t,X(t)) of a semimartingale in terms of such

stochastic integrals. A central concept in both cases is the notion of quadratic variation [X]

of a semimartingale, which differentiates Itô calculus from the calculus of smooth functions.

Whereas the class of integrands Y covers a wide range of non-anticipative path-dependent

functionals of X, the Itô formula is limited to functions of the current value of X.

Given that in many applications such as statistics of processes, physics or mathematical

finance, one is naturally led to consider functionals of a semimartingale X and its quadratic
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variation process [X] such as:∫ t

0
g(t,Xt)d[X](t), G(t,Xt, [X]t), or E[G(T,X(T ), [X](T ))|Ft] (1.1)

(where X(t) denotes the value at time t and Xt = (X(u), u ∈ [0, t]) the path up to time

t) there has been a sustained interest in extending the framework of stochastic calculus to

such path-dependent functionals.

In this context, the Malliavin calculus [7, 9, 50, 48, 51, 56, 59] has proven to be a

powerful tool for investigating various properties of Brownian functionals, in particular the

smoothness of their densities.

Yet the construction of Malliavin derivative, which is a weak derivative for functionals

on Wiener space, does not refer to the underlying filtration Ft. Hence, it naturally leads

to representations of functionals in terms of anticipative processes [9, 34, 51], whereas in

applications it is more natural to consider non-anticipative, or causal, versions of such

representations.

In a recent insightful work, B. Dupire [23] has proposed a method to extend the Itô

formula to a functional setting in a non-anticipative manner. Building on this insight, we

develop hereafter a non-anticipative calculus for a class of functionals -including the above

examples- which may be represented as

Y (t) = Ft({X(u), 0 ≤ u ≤ t}, {A(u), 0 ≤ u ≤ t}) = Ft(Xt, At) (1.2)

where A is the local quadratic variation defined by [X](t) =
∫ t

0 A(u)du and the functional

Ft : D([0, t],Rd)×D([0, t], S+
d )→ R

represents the dependence of Y on the underlying path and its quadratic variation. For

such functionals, we define an appropriate notion of regularity (Section 2.2.2) and a non-

anticipative notion of pathwise derivative (Section 2.3). Introducing At as additional vari-

able allows us to control the dependence of Y with respect to the “quadratic variation” [X]

by requiring smoothness properties of Ft with respect to the variable At in the supremum

norm, without resorting to p-variation norms as in rough path theory [46]. This allows to

consider a wider range of functionals, as in (1.1).
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Using these pathwise derivatives, we derive in chapter 2 a purely analytical Itô formula

for functionals of two variable (x, v) which are cadlag paths, and the functional has a pre-

dictable dependence in the second variable. This formula (Theorems 2.4, 2.5) is preceded

by other useful analytical results on the class of functionals that we consider. Our method

follows the spirit of H. Föllmer’s [29] pathwise approach to Itô calculus, where the term

taking the place of the stochastic integral in stochastic calculus is defining as a diagonal

limit of discretized integrals with integrand evaluated on discretized paths. It is then show

in section 2.6 that this analytical formula allows to define a pathwise notion of stochastic

integral for functionals of a cadlag Dirichlet processes, for which a functional Itô formula is

derived, and in section 2.7 it is shown that it implies an Itô formula for functionals of cad-

lag semimartingales. In the case of continuous semimartingales, we provide an alternative

derivation (2.4) under different regularity assumptions.

In chapter 3, a direct probabilistic derivation of the functional Itô formula is provided

for continuous semimartingales. We then use this functional Itô formula to derive a con-

structive version of the martingale representation theorem (Section 3.3), which can be seen

as a non-anticipative form of the Clark-Haussmann-Ocone formula [9, 33, 34, 51]. The

martingale representation formula allows to obtain an integration by parts formula for Itô

stochastic integrals (Theorem 3.4), which enables in turn to define a weak functional deriva-

tive, for a class of stochastic integrals (Section 3.4). We argue that this weak derivative

may be viewed as a non-anticipative “lifting” of the Malliavin derivative (Theorem 3.6).

We then show that regular functionals of an Itô martingale which have the local martingale

property are characterized as solutions of a functional analogue of Kolmogorov’s backward

equation (Section 3.5), for which a uniqueness result is given (Theorem 3.8). Finally, in sec-

tion 3.6, we present as a potential direction for further research a setting of path-dependent

stochastic control problem, with dependence of the coefficients of the diffusion as well as

the objective and cost functions on the whole path of the controlled process, and eventually

on the path of its quadratic variation. We are able to prove two versions of a verification

theorem based on a functional version of the Hamilton-Jacobi-Bellman equation, theorems

3.9 and 3.10, depending on whether or not there is explicit dependence on the quadratic
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variation of the controlled process.

In chapter 4, we present a local version, using optional times, of some results from chap-

ter 3, especially the martingale representation theorem 4.6, in the sense that they apply

to functionals defined on continuous paths which can be extended only locally to regular

functions of cadlag paths. A sufficient condition, taking the form of a functional differential

equation, is given on such functionals for defining local martingales (Theorem 4.7). This

extension is motivated by examples of functionals which define martingales and do satisfy a

functional differential equation, but fail to satisfy the regularity assumptions of chapter 3.

The choice of the examples come from processes traditionally encountered in Mathematical

Finance, and hence show that chapter 4 is necessary in order to use the functional setting

for the sensitivity analysis of path-dependent derivatives (Chapter 5).

In the final chapter, building on Dupire’s original insight [23], we show how the setting

of functional Itô calculus is a natural formalism for the hedging of path-dependent deriva-

tives, emphasizing the notion of sensitivity of the option price to the underlyings and to

market variables. A valuation functional differential equation (Theorem 5.1) is derived, and

shows that the theoretical replication portfolio of the derivative is the portfolio hedging

the directional sensitivity. This theorem also extends the classical relationship between the

sensitivites of vanilla options to general path-dependent payoffs, and hence gives a pre-

cise meaning to the concept of Theta - Gamma tradeoff which is familiar to derivatives

traders (Theorem 5.2). We then show that the valuation functional equation applies to

most payoffs encountered in the markets; in particular the different classical PDEs satis-

fied by the prices of Vanilla, Barrier, Asian, Variance Swap options are actually shown to

be particular cases of this universal functional equation, which can therefore be seen as a

unified description for derivatives pricing. We then build on the functional setting to give

expressions for the sensitivities of the derivative to observable market variables, such as

the Vega bucket exposure (Section 5.4.2), which are the main tool for a volatility trader

to understand his exposure. We also provide with expressions for the Black-Scholes Delta

and Delta at a given skew stickiness ratio (Section 5.4.3), which are used by practition-
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ers to hedge their portfolio. We then proceed to suggest an efficient numerical algorithm

for the computation of these sensitivities. This final chapter may be seen as an attempt

to formalize concepts used in derivatives trading from the point of view of a sell-side traders.

Appendix A contains numerous technical lemmas used in the proofs in chapter 2, more

precisely results on the approximation of cadlag functions by piecewise-constant functions

and measure-theoretic results. Appendix B is a self-contained digression on strong solutions

for stochastic differential equations with functional coefficients, which is the setting we need

for the section on stochastic control (Section 3.6). In particular, it defines a concept of

strong solution starting from a given initial value, in the case where the coefficient have

an explicit dependence on the path of the quadratic variation (Definition B.2). Continuity

properties of the solution in the initial value is also investigated (Section B.1.2), as well as

perturbation of the coefficient (Section B.1.3). This last perturbation result has application

in the computation of Vega bucket exposure and Deltas in sections 5.4.2 and 5.4.3.
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Chapter 2

Pathwise calculus

for non-anticipative functionals

2.1 Motivation

In his seminal paper Calcul d’Ito sans probabilités [29], Hans Föllmer proposed a non-

probabilistic version of the Ito formula [36]: Föllmer showed that if a real-valued cadlag

(right continuous with left limits) function x has finite quadratic variation along a sequence

πn = (tnk)k=0..n of subdivisions of [0, T ] with step size decreasing to zero, in the sense that

the sequence of discrete measures

n−1∑
k=0

|x(tnk+1)− x(tnk)|2δtnk

converges vaguely to a Radon measure with Lebesgue decomposition ξ+
∑

t∈[0,T ] |∆x(t)|2δt

then for f ∈ C1(R) one can define the pathwise integral∫ T

0
f(x(t))dπx = lim

n→∞

n−1∑
i=0

f(x(tni )).(x(tni+1)− x(tni )) (2.1)

as a limit of Riemann sums along the subdivision π = (πn)n≥1. In particular if X =

(Xt)t∈[0,T ] is a semimartingale [18, 49, 54], which is the classical setting for stochastic calcu-

lus, the paths of X have almost surely finite quadratic variation along such subsequences:

when applied to the paths of X, Föllmer’s integral (2.1) then coincides, with probability
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one, with the Ito stochastic integral
∫ T

0 f(X)dX with respect to the semimartingale X.

This construction may in fact be carried out for a more general class of processes, including

the class of Dirichlet processes [12, 29, 30, 47].

Of course, the Ito stochastic integral with respect to a semimartingale X may be defined

for a much larger class of integrands: in particular, for a cadlag process Y defined as a non-

anticipative functional Y (t) = Ft(X(u), 0 ≤ u ≤ t) of X, the stochastic integral
∫ T

0 Y dX

may be defined as a limit of non-anticipative Riemann sums [54].

Using a notion of directional derivative for functionals proposed by Dupire [23], we ex-

tend Föllmer’s pathwise change of variable formula to non-anticipative functionals on the

space D([0, T ],Rd) of cadlag paths (Theorem 2.4). The requirement on the functionals is to

possess certain directional derivatives which may be computed pathwise. Our construction

allows to define a pathwise integral
∫
Ft(x)dx, defined as a limit of Riemann sums, for a

class of functionals F of a cadlag path x with finite quadratic variation. Our results lead

to functional extensions of the Ito formula for semimartingales (Section 2.7) and Dirichlet

processes (Section 2.6). In particular, we show the stability of the the class of semimartin-

gales under functional transformations verifying a regularity condition. These results yield

a non-probabilistic proof for functional Ito formulas obtained in [23] using probabilistic

methods and extend them to the case of discontinuous semimartingales.

Notation

For a path x ∈ D([0, T ],Rd), denote by x(t) the value of x at t and by xt = (x(u), 0 ≤ u ≤ t)

the restriction of x to [0, t]. Thus xt ∈ D([0, t],Rd). For a stochastic process X we shall

similarly denote X(t) its value at t and Xt = (X(u), 0 ≤ u ≤ t) its path on [0, t].

2.2 Non-anticipative functionals on spaces of paths

Let T > 0, and U ⊂ Rd be an open subset of Rd and S ⊂ Rm be a Borel subset of Rm. We

call ”U -valued cadlag function” a right-continuous function f : [0, T ] 7→ U with left limits

such that for each t ∈]0, T ], f(t−) ∈ U . Denote by Ut = D([0, t], U) (resp. St = D([0, t], S)

the space of U -valued cadlag functions (resp. S), and C0([0, t], U) the set of continuous

functions with values in U .
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When dealing with functionals of a path x(t) indexed by time, an important class is

formed by those which are non-anticipative, in the sense that they only depend on the past

values of x. A family Y : [0, T ] × UT 7→ R of functionals is said to be non-anticipative if,

for all (t, x) ∈ [0, T ]×UT , Y (t, x) = Y (t, xt) where xt = x|[0,t] denotes the restriction of the

path x to [0, t]. A non-anticipative functional may thus be represented as Y (t, x) = Ft(xt)

where (Ft)t∈[0,T ] is a family of maps Ft : Ut 7→ R. This motivates the following definition:

Definition 2.1 (Non-anticipative functionals on path space). A non-anticipative functional

on UT is a family F = (Ft)t∈[0,T ] of maps

Ft : Ut → R

Y is said to be predictable1 if, for all (t, x) ∈ [0, T ]× UT , Y (t, x) = Y (t, xt−) where xt−

denotes the function defined on [0, t] by

xt−(u) = x(u) u ∈ [0, t[ xt−(t) = x(t−)

Typical examples of predictable functionals are integral functionals, e.g.

Y (t, x) =

∫ t

0
Gs(xs)ds

where G is a non-anticipative, locally integrable, functional.

If Y is predictable then Y is non-anticipative, but predictability is a stronger property.

Note that xt− is cadlag and should not be confused with the caglad path u 7→ x(u−).

We consider throughout this work non-anticipative functionals

F = (Ft)t∈[0,T ] Ft : Ut × St → R

where F has a predictable dependence with respect to the second argument:

∀t ≤ T, ∀(x, v) ∈ Ut × St, Ft(xt, vt) = Ft(xt, vt−) (2.2)

F can be viewed as a functional on the vector bundle Υ =
⋃
t∈[0,T ] Ut × St. We will also

consider non-anticipative functionals F = (Ft)t∈[0,T [ indexed by [0, T [.

1This notion coincides with the usual definition of predictable process when the path space UT is endowed

with the filtration of the canonical process, see Dellacherie & Meyer [18, Vol. I].
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2.2.1 Horizontal and vertical perturbation of a path

Consider a path x ∈ D([0, T ]), U) and denote by xt ∈ Ut its restriction to [0, t] for t < T .

For h ≥ 0, the horizontal extension xt,h ∈ D([0, t+ h],Rd) of xt to [0, t+ h] is defined as

xt,h(u) = x(u) u ∈ [0, t] ; xt,h(u) = x(t) u ∈]t, t+ h] (2.3)

For h ∈ Rd small enough, we define the vertical perturbation xht of xt as the cadlag path

obtained by shifting the endpoint by h:

xht (u) = xt(u) u ∈ [0, t[ xht (t) = x(t) + h (2.4)

or in other words xht (u) = xt(u) + h1t=u. By convention, xut,h = (xut )t,h, ie the vertical

perturbation precedes the horizontal extension.

We now define a distance between two paths, not necessarily defined on the same time

interval. For T ≥ t′ = t+ h ≥ t ≥ 0, (x, v) ∈ Ut × S+
t and (x′, v′) ∈ D([0, t+ h],Rd)× St+h

define

d∞( (x, v), (x′, v′) ) = sup
u∈[0,t+h]

|xt,h(u)− x′(u)|+ sup
u∈[0,t+h]

|vt,h(u)− v′(u)|+ h (2.5)

If the paths (x, v), (x′, v′) are defined on the same time interval, then d∞((x, v), (x′, v′)) is

simply the distance in supremum norm.

2.2.2 Classes of non-anticipative functionals

Using the distance d∞ defined above, we now introduce various notions of continuity for

non-anticipative functionals.

Definition 2.2 (Continuity at fixed times). A non-anticipative functional F = (Ft)t∈[0,T ]

is said to be continuous at fixed times if for any t ≤ T , Ft : Ut × St 7→ R is continuous for

the supremum norm.

Definition 2.3 (Left-continuous functionals). Define F∞l as the set of functionals F =

(Ft, t ∈ [0, T ]) which satisfy:

∀t ∈ [0, T ], ∀ε > 0,∀(x, v) ∈ Ut × St, ∃η > 0,∀h ∈ [0, t],

∀(x′, v′) ∈ Ut−h × St−h, d∞((x, v), (x′, v′)) < η ⇒ |Ft(x, v)− Ft−h(x′, v′)| < ε (2.6)
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Definition 2.4 (Right-continuous functionals). Define F∞r as the set of functionals F =

(Ft, t ∈ [0, T [) which satisfy:

∀t ∈ [0, T ], ∀ε > 0,∀(x, v) ∈ Ut × St, ∃η > 0,∀h ∈ [0, T − t],

∀(x′, v′) ∈ Ut+h × St+h, d∞((x, v), (x′, v′)) < η ⇒ |Ft(x, v)− Ft+h(x′, v′)| < ε (2.7)

We denote F∞ = F∞r ∩ F∞l the set of continuous non-anticipative functionals.

We call a functional ”boundedness preserving” if it is bounded on each bounded set of

paths:

Definition 2.5 ( Boundedness-preserving functionals). Define B as the set of non-anticipative

functionals F such that for every compact subset K of U , every R > 0, there exists a con-

stant CK,R such that:

∀t ≤ T, ∀(x, v) ∈ D([0, t],K)× St, sup
s∈[0,t]

|v(s)| < R⇒ |Ft(x, v)| < CK,R (2.8)

In particular if F ∈ B, it is ”locally” bounded in the neighborhood of any given path

i.e.

∀(x, v) ∈ UT × ST , ∃C > 0, η > 0, ∀t ∈ [0, T ], ∀(x′, v′) ∈ Ut × St,

d∞((xt, vt), (x
′, v′)) < η ⇒ ∀t ∈ [0, T ], |Ft(x′, v′)| ≤ C (2.9)

The following lemma shows that a continuous functional also satisfies the local bound-

edness property (2.9).

Lemma 2.1. If F ∈ F∞, then it satisfies the property of local boundedness 2.9.

Proof. Let F ∈ F∞ and (x, v) ∈ UT × ST . For each t < T , there exists η(t) such that, for

all t′ < T , (x′, v′) ∈ Ut′ × St′ :

d∞((xt, vt), (x
′, v′)) < η(t)⇒ |Ft(xt, vt)− Ft′(x′, v′)| < 1

d∞((xt−,vt−), (x′, v′)) < η(t)⇒ |Ft(xt−, vt−)− Ft′(x′, v′)| < 1 (2.10)
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Since (x, v) has cadlag trajectories, for each t < T , there exists ε(t) such that:

∀t′ > t, |t′ − t| < ε(t)⇒ d∞((xt′ , vt′), (xt, vt)) <
η(t)

2

∀t′ < t, |t′ − t| < ε(t)⇒ d∞((xt′ , vt′), (xt−, vt−)) <
η(t)

2
(2.11)

Therefore one can extract a finite covering of compact set [0, T ] by such intervals

[0, T ] ⊂
N⋃
j=1

(xtj − ε(tj), xtj + ε(tj)) (2.12)

Let t < T and (x′, v′) ∈ Ut × St. Assume that:

d∞((xt, vt), (x
′, v′)) < min

1≤j≤N

η(tj)

2
(2.13)

t ∈ (xtj − ε(tj), xtj + ε(tj)) for some j ≤ N . If t < tj , then:

d∞((xtj−, vtj−), (x′, v′)) < d∞((xt, vt), (x
′, v′)) + d∞((xt, vt), (xtj−, vtj−)) (2.14)

where both terms in the sum are less than
η(tj)

2 , so that:

|Ft(x′, v′)| < |Ftj (xtj−, vtj−)|+ 1 (2.15)

If t ≥ tj , then:

d∞((xtj , vtj ), (x
′, v′)) < d∞((xt, vt), (x

′, v′)) + d∞((xt, vt), (xtj , vtj )) (2.16)

where both terms in the sum are less than
η(tj)

2 , so that:

|Ft(x′, v′)| < |Ftj (xtj , vtj )|+ 1 (2.17)

so that in any case:

|Ft(x′, v′)| < max
1≤j≤N

max(|Ftj (xtj−, vtj−)|, |Ftj (xtj , vtj )|) + 1 (2.18)

The following result describes the behavior of paths generated by the functionals in the

above classes:
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Proposition 2.1 (Pathwise regularity).

1. If F ∈ F∞l then for any (x, v) ∈ UT ×ST , the path t 7→ Ft(xt−, vt−) is left-continuous.

2. If F ∈ F∞r then for any (x, v) ∈ UT × ST , the path t 7→ Ft(xt, vt) is right-continuous.

3. If F ∈ F∞ then for any (x, v) ∈ UT × ST , the path t 7→ Ft(xt, vt) is cadlag and

continuous at all points where x and v are continuous.

4. If F ∈ F∞ further verifies (2.2) then for any (x, v) ∈ UT ×ST , the path t 7→ Ft(xt, vt)

is cadlag and continuous at all points where x is continuous.

5. If F ∈ B, then for any (x, v) ∈ UT × ST , the path t 7→ Ft(xt, vt) is bounded.

Proof. 1. Let F ∈ F∞l and t ∈ [0, T ). For h > 0 sufficiently small,

d∞((xt−h, vt−h), (xt−, vt−)) = sup
u∈(t−h,t)

|x(u)− x(t−)|+ sup
u∈(t−h,t)

|v(u)− v(t−)|+ h

(2.19)

Since x and v are cadlag, this quantity converges to 0 as h→ 0+, so

Ft−h(xt−h, vt−h)− Ft(xt−, vt−)
h→0+→ 0

so t 7→ Ft(xt−, vt−) is left-continuous.

2. Let F ∈ F∞r and t ∈ [0, T ). For h > 0 sufficiently small,

d∞((xt+h, vt+h), (xt, vt)) = sup
u∈[t,t+h)

|x(u)− x(t)|+ sup
u∈[t,t+h)

|v(u)− v(t)|+ h (2.20)

Since x and v are cadlag, this quantity converges to 0 as h→ 0+, so

Ft+h(xt+h, vt+h)− Ft(xt, vt)
h→0+→ 0

so t 7→ Ft(xt, vt) is right-continuous.

3. Assume now that F is in F∞ and let t ∈]0, T ]. Denote (∆x(t),∆v(t)) the jump of

(x, v) at time t. Then

d∞((xt−h, vt−h), x
−∆x(t)
t , v

−∆v(t)
t )) = sup

u∈[t−h,t)
|x(u)− x(t)|+ sup

u∈[t−h,t)
|v(u)− v(t)|+ h
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and this quantity goes to 0 because x and v have left limits. Hence the path has

left limit Ft(x
−∆x(t)
t , v

−∆v(t)
t ) at t. A similar reasoning proves that it has right-limit

Ft(xt, vt).

4. If F ∈ F∞ verifies (2.2), for t ∈]0, T ] the path t 7→ Ft(xt, vt) has left-limit

Ft(x
−∆x(t)
t , v

−∆v(t)
t ) at t, but (2.2) implied that this left-limit equals Ft(x

−∆x(t)
t , vt).

2.2.3 Measurability properties

Consider, on the path space UT × ST , endowed with the supremum norm and its Borel

σ-algebra, the filtration (Ft) generated by the canonical process

(X,V ) : UT × ST × [0, T ] → U × S

(x, v), t 7→ (X,V )((x, v), t) = (x(t), v(t)) (2.21)

Ft is the smallest sigma-algebra on UT ×ST such that all coordinate maps (X(., s), V (., s)),

s ∈ [0, t] are Ft-measurable.

The optional sigma-algebra O on UT×ST×[0, T ] is the sigma-algebra on UT×ST×[0, T ]

generated by all mappings f : UT × ST × [0, T ] → R the set into which, for every ω ∈

UT × ST , are right continuous in t, have limits from the left and are adapted to (Ft)t∈[0,T ].

The predictable sigma-algebra P is the sigma-algebra on UT × ST × [0, T ] generated by all

mappings f : UT × ST × [0, T ] → R the set into which, for every ω ∈ UT × ST , are left-

continuous in t and are adapted to (Ft)t∈[0,T ]. A positive map τ : UT ×ST → [0,∞[ is called

an optional time if {ω ∈ UT × ST , τ(ω) < t} ∈ Ft for every t ∈ [0, T ].

The following result, proved in Appendix A.2, clarifies the measurability properties of

processes defined by functionals in F∞l ,F∞r :

Theorem 2.1. If F is continuous at fixed time, then the process Y defined by Y ((x, v), t) =

Ft(xt, vt) is Ft-adapted. If F ∈ F∞l or F ∈ F∞r , then:

1. the process Y defined by Y ((x, v), t) = Ft(xt, vt) is optional i.e. O-measurable.

2. the process Z defined by Z((x, v), t) = Ft(xt−, vt−) is predictable i.e. P-measurable.
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2.3 Pathwise derivatives of non-anticipative functionals

2.3.1 Horizontal derivative

We now define a pathwise derivative for a non-anticipative functional F = (Ft)t∈[0,T ], which

may be seen as a “Lagrangian” derivative along the path x.

Definition 2.6 (Horizontal derivative). The horizontal derivative at (x, v) ∈ Ut × St of a

non-anticipative functional F = (Ft)t∈[0,T [ is defined as

DtF (x, v) = lim
h→0+

Ft+h(xt,h, vt,h)− Ft(x, v)

h
(2.22)

if the corresponding limit exists. If (2.22) is defined for all (x, v) ∈ Υ the map

DtF : Ut × St → Rd

(x, v) 7→ DtF (x, v) (2.23)

defines a non-anticipative functional DF = (DtF )t∈[0,T [, the horizontal derivative of F .

We will occasionally use the following “local Lipschitz property” that is weaker than

horizontal differentiability:

Definition 2.7. A non-anticipative functional F is said to have the horizontal local Lips-

chitz property if and only if:

∀(x, v) ∈ UT × ST ,∃C > 0, η > 0, ∀t1 < t2 ≤ T, ∀(x′, v′) ∈ Ut1 × St1 ,

d∞((xt1 , vt1), (x′, v′)) < η ⇒ |Ft2(x′t1,t2−t1 , v
′
t1,t2−t1)− Ft1((x′t1 , v

′
t1))| < C(t2 − t1) (2.24)

2.3.2 Vertical derivative

Dupire [23] introduced a pathwise spatial derivative for non-anticipative functionals, which

we now introduce. Denote (ei, i = 1..d) the canonical basis in Rd.

Definition 2.8. A non-anticipative functional F = (Ft)t∈[0,T ] is said to be vertically differ-

entiable at (x, v) ∈ D([0, t]),Rd)×D([0, t], S+
d ) if

Rd 7→ R

e → Ft(x
e
t , vt)
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is differentiable at 0. Its gradient at 0

∇xFt (x, v) = (∂iFt(x, v), i = 1..d) where ∂iFt(x, v) = lim
h→0

Ft(x
hei
t , v)− Ft(x, v)

h
(2.25)

is called the vertical derivative of Ft at (x, v). If (2.25) is defined for all (x, v) ∈ Υ, the

vertical derivative

∇xF : Ut × St → Rd

(x, v) 7→ ∇xFt(x, v) (2.26)

define a non-anticipative functional ∇xF = (∇xFt)t∈[0,T ] with values in Rd.

Remark 2.1. If a vertically differentiable functional is predictable with respect to the second

variable (Ft(xt, vt) = Ft(xt, vt−)), so is its vertical derivative.

Remark 2.2. ∂iFt(x, v) is simply the directional derivative of Ft in direction (1{t}ei, 0). Note

that this involves examining cadlag perturbations of the path x, even if x is continuous.

Remark 2.3. If Ft(x, v) = f(t, x(t)) with f ∈ C1,1([0, T [×Rd) then we retrieve the usual

partial derivatives:

DtF (x, v) = ∂tf(t, x(t)) ∇xFt(xt, vt) = ∇xf(t, x(t)).

Remark 2.4. Note that the assumption (2.2) that F is predictable with respect to the

second variable entails that for any t ∈ [0, T ], Ft(xt, v
e
t ) = Ft(xt, vt) so an analogous notion

of derivative with respect to v would be identically zero under assumption (2.2).

If F admits a horizontal (resp. vertical) derivative DF (resp. ∇xF ) we may iterate the

operations described above and define higher order horizontal and vertical derivatives.

Definition 2.9. Define Cj,k as the set of functionals F which are

• continuous at fixed times,

• admit j horizontal derivatives and k vertical derivatives at all (x, v) ∈ Ut×St, t ∈ [0, T [

• DmF,m ≤ j,∇nxF, n ≤ k are continuous at fixed times.
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2.3.3 Uniqueness results for vertical derivatives

The analytical Itô formula for continuous paths (theorem 2.4), and its probabilistic coun-

terpart (theorem 3.1), refer explicitly to the vertical derivatives of the functional F , which

requires the functional to be defined on cadlag path although its argument x is continuous.

Since a functional defined on continuous paths could be extended to Υ in multiple ways,

the vertical derivative and therefore Itô’s formula seem to depend on the chosen extension.

The following two theorems 2.2 and 2.3 show that this is indeed not the case, as the value

of the vertical derivatives on continuous paths do not depend on the chosen extension.

Theorem 2.2. If F 1, F 2 ∈ C1,1, with F i,∇xF i ∈ F∞l and DF i satisfying the local bound-

edness assumption 2.9 for i = 1, 2, coincide on continuous paths:

∀t ∈]0, T ] ∀(x, v) ∈ UcT × ST , F 1
t (xt, vt) = F 2

t (x, v)

then ∀t ∈]0, T ], ∀(x, v) ∈ UcT × ST ,∇xF 1
t (xt, vt−) = ∇xF 2

t (xt, vt−)

Proof. Let F = F 1 − F 2 ∈ C1,1 and (x, v) ∈ UcT × ST . Then Ft(x, v) = 0 for all 0 < t ≤ T .

It is then obvious that DtF (x, v) is also 0 on continuous paths because the extension (xt,h)

of xt is itself a continuous path. Assume now that there exists some (x, v) ∈ UcT × ST such

that for some 1 ≤ i ≤ d and t0 ∈]0, T ], ∂iFt0(xt0 , vt0−) > 0. Let α = 1
2∂iFt0(xt0 , vt0−). By

the left-continuity of ∂iF and DtF at (xt0 , vt0), we may choose l < T − t sufficiently small

such that, for any t′ ∈ [0, t0], for any (x′, v′) ∈ Ut′ × St′ ,

d∞((xt0 , vt0), (x′, v′)) < l⇒ ∂iFt′(x
′, v′) > α and |DtF (x′, v′)| < 1 (2.27)

Choose t < t0 such that d∞((xt, vt), (xt0 , vt0−)) < l
2 and define the following extension of

xt to [0, t+ h], where h < l
4 ∧ (t0 − t):

z(u) = x(u), u ≤ t

zj(u) = xj(t) + 1i=j(u− t), t ≤ u ≤ t+ h, 1 ≤ j ≤ d (2.28)

Define the following sequence of piecewise constant approximations of z:

zn(u) = z(u), u ≤ t

znj (u) = xj(t) + 1i=j
h

n

n∑
k=1

1 kh
n
≤u−t, t ≤ u ≤ t+ h, 1 ≤ j ≤ d (2.29)
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Since d∞((z, vt,h), (zn, vt,h)) = h
n → 0,

|Ft+h(z, vt,h)− Ft+h(zn, vt,h)| n→+∞→ 0

We can now decompose Ft+h(zn, vt,h)− Ft(x, v) as

Ft+h(zn, vt,h)− Ft(x, v) =

n∑
k=1

Ft+ kh
n

(zn
t+ kh

n

, vt, kh
n

)− Ft+ kh
n

(zn
t+ kh

n
−, vt, khn

)

+
n∑
k=1

Ft+ kh
n

(zn
t+ kh

n
−, vt, khn

)− F
t+

(k−1)h
n

(zn
t+

(k−1)h
n

, v
t,

(k−1)h
n

) (2.30)

where the first sum corresponds to jumps of zn at times t + kh
n and the second sum to its

extension by a constant on [t+ (k−1)h
n , t+ kh

n [.

Ft+ kh
n

(zn
t+ kh

n

, vt, kh
n

)− Ft+ kh
n

(zn
t+ kh

n
−, vt, khn

) = φ(
h

n
)− φ(0) (2.31)

where φ is defined as

φ(u) = Ft+ kh
n

((zn)uei
t+ kh

n
−, vt, khn

)

Since F is vertically differentiable, φ is differentiable and

φ′(u) = ∂iFt+ kh
n

((zn)uei
t+ kh

n
−, vt, khn

)

Since

d∞((xt, vt), ((z
n)uei
t+ kh

n
−, vt, khn

)) ≤ h,

φ′(u) > α hence:

n∑
k=1

Ft+ kh
n

(zn
t+ kh

n

, vt, kh
n

)− Ft+ kh
n

(zn
t+ kh

n
−, vt, khn

) > αh.

On the other hand

Ft+ kh
n

(zn
t+ kh

n
−, vt, khn

)− F
t+

(k−1)h
n

(zn
t+

(k−1)h
n

, v
t,

(k−1)h
n

) = ψ(
h

n
)− ψ(0)

where

ψ(u) = F
t+

(k−1)h+u
n

(zn
t+

(k−1)h+u
n

, v
t,

(k−1)h+u
n

)

so that ψ is right-differentiable on ]0, hn [ with right-derivative:

ψ′r(u) = D
t+

(k−1)h+u
n

F (zn
t+

(k−1)h+u
n

, v
t,

(k−1)h+u
n

)



CHAPTER 2. PATHWISE CALCULUS
FOR NON-ANTICIPATIVE FUNCTIONALS 18

Since F ∈ F∞l , ψ is also left-continous continuous by theorem 4 so

n∑
k=1

Ft+ kh
n

(zn
t+ kh

n
−, vt, khn

)− F
t+

(k−1)h
n

(zn
t+

(k−1)h
n

, v
t,

(k−1)h
n

) =

∫ h

0
Dt+uF (znt+u, vt,u)du

Noting that:

d∞((znt+u, vt,u), (zt+u, vt,u)) ≤ h

n

we obtain that:

Dt+uF (znt+u, vt,u) →
n→+∞

Dt+uF (zt+u, vt,u) = 0

since the path of zt+u is continuous. Moreover

|DtFt+u(znt+u, vt,u)| ≤ 1 since d∞((znt+u, vt,u), (xt, vt) ≤ h, so by dominated convergence the

integral goes to 0 as n→∞. Writing:

Ft+h(z, vt,h)− Ft(x, v) = [Ft+h(z, vt,h)− Ft+h(zn, vt,h)] + [Ft+h(zn, vt,h)− Ft(x, v)]

and taking the limit on n→∞ leads to Ft+h(z, vt,h)− Ft(x, v) ≥ αh, a contradiction.

The above result implies in particular that, if ∇xF i ∈ C1,1([0, T ]), and F 1(x, v) =

F 2(x, v) for any continuous path x, then ∇2
xF

1 and ∇2
xF

2 must also coincide on continuous

paths.

We now show that the same result can be obtained under the weaker assumption that

F i ∈ C1,2, using a probabilistic argument. Interestingly, while the previous result on the

uniqueness of the first vertical derivative is based on the fundamental theorem of calculus,

the proof of the following theorem is based on its stochastic equivalent, the Itô formula

[36, 37].

Theorem 2.3. If F 1, F 2 ∈ C1,2 with F i,∇xF i,∇2
xF

i ∈ F∞l and DF i satisfying the local

boundedness assumption 2.9 for i = 1, 2, coincide on continuous paths::

∀(x, v) ∈ UcT × ST , ∀t ∈]0, T ], F 1
t (xt, vt) = F 2

t (x, v) (2.32)

then their second vertical derivatives also coincide on continuous paths:

∀(x, v) ∈ UcT × ST , ∀t ∈]0, T ], ∇2
xF

1
t (xt, vt−) = ∇2

xF
2
t (xt, vt−)
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Proof. Let F = F 1−F 2. Assume now that there exists some (x, v) ∈ UcT ×ST such that for

some 1 ≤ i ≤ d and t0 ∈]0, T ], and some direction h ∈ Rd, ‖h‖ = 1, th∇2
xFt0(xt0 , vt0−).h > 0,

and denote α = 1
2
th∇2

xFt0(xt0 , vt0−).h. We will show that this leads to a contradiction. We

already know that ∇xFt(xt, vt) = 0 by theorem 2.2. Let η > 0 be small enough so that:

∀t′ ≤ t0,∀(x′, v′) ∈ Ut′ × St′ ,

d∞((xt, vt), (x
′, v′)) < η ⇒ |Ft′(x′, v′)| < |Ft0(xt0 , vt0−)|+ 1, |∇xFt′(x′, v′)| < 1,

|Dt′F (x′, v′)| < 1, th∇2
xFt′(x

′, v′).h > α (2.33)

Choose t < t0 such that d∞((xt, vt), (xt0 , vt0−)) < η
2 and denote ε = η

2 ∧ (t0 − t). Let W be

a one dimensional Brownian motion on some probability space (Ω̃,B,P), (Bs) its natural

filtration, and let

τ = inf{s > 0, |W (s)| = ε

2
} (2.34)

Define, for t′ ∈ [0, T ],

U(t′) = x(t′)1t′≤t + (x(t) +W ((t′ − t) ∧ τ)h)1t′>t (2.35)

and note that for all s < ε
2 ,

d∞((Ut+s, vt,s), (xt, vt)) < ε (2.36)

Define the following piecewise constant approximations of the stopped process W τ :

Wn(s) =
n−1∑
i=0

W (i
ε

2n
∧ τ)1s∈[i ε

2n
,(i+1) ε

2n
[ +W (

ε

2
∧ τ)1s= ε

2
, 0 ≤ s ≤ ε

2n
(2.37)

Denoting

Z(s) = Ft+s(Ut+s, vt,s), s ∈ [0, T − t] (2.38)

Un(t′) = x(t′)1t′≤t + (x(t) +Wn((t′ − t) ∧ τ)h)1t′>t Zn(s) = Ft+s(U
n
t+s, vt,s) (2.39)

we have the following decomposition:

Z(
ε

2
)− Z(0) = Z(

ε

2
)− Zn(

ε

2
) +

n∑
i=1

Zn(i
ε

2n
)− Zn(i

ε

2n
−)

+

n−1∑
i=0

Zn((i+ 1)
ε

2n
−)− Zn(i

ε

2n
) (2.40)
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The first term in the right-hand side of (2.40) goes to 0 almost surely since

d∞((Ut+ ε
2
, vt, ε

2
), (Unt+ ε

2
, vt, ε

2
))
n→∞→ 0. (2.41)

The second term in (2.40) may be expressed as

Zn(i
ε

2n
)− Zn(i

ε

2n
−) = φi(W (i

ε

2n
)−W ((i− 1)

ε

2n
))− φi(0) (2.42)

where:

φi(u, ω) = Ft+i ε
2n

(Un,uht+i ε
2n
−(ω), vt,i ε

2n
)

Note that φi(u, ω) is measurable with respect to B(i−1)ε/2n whereas its argument in (2.42)

is independent with respect to B(i−1)ε/2n. Let Ω1 = {ω ∈ Ω̃, t 7→ W (t, ω) continuous}.

Then P(Ω1) = 1 and for any ω ∈ Ω1, φi(., ω) is C2 with:

φ′i(u, ω) = ∇xFt+i ε
2n

(Un,uht+i ε
2n
−(ω), vt,i ε

2n
)h

φ′′i (u, ω) = th∇2
xFt+i ε2n (Un,uht+i ε

2n
−(ω), vt,i ε

2n
).h (2.43)

So, using the above arguments we can apply the Itô formula to (2.42). We therefore obtain,

summing on i and denoting i(s) the index such that s ∈ [(i− 1) ε
2n , i

ε
2n):

n∑
i=1

Zn(i
ε

2n
)− Zn(i

ε

2n
−) =

∫ ε
2

0
∇xFt+i(s) ε

2n
(Un,uht+i(s) ε

2n
−, vt,i(s) ε

2n
)hdW (s)

+

∫ ε
2

0

th.∇2
xFt+i(s) ε

2n
(Un,uht+i(s) ε

2n
−, vt,i(s) ε

2n
).hds (2.44)

Since the first derivative is bounded by (2.33), the stochastic integral is a martingale, so

taking expectation leads to:

E[

n∑
i=1

Zn(i
ε

2n
)− Zn(i

ε

2n
−)] > α

ε

2
(2.45)

Now

Zn((i+ 1)
ε

2n
−)− Zn(i

ε

2n
) = ψ(

ε

2n
)− ψ(0) (2.46)

where

ψ(u) = Ft+(i−1) ε
2n

+u(Unt+(i−1) ε
2n
,u, vt,(i−1) ε

2n
+u) (2.47)
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is right-differentiable with right derivative:

ψ′(u) = DtFt+(i−1) ε
2n

+u(Un(i−1) ε
2n
,u, vt,(i−1) ε

2n
+u) (2.48)

Since F ∈ F∞l ([0, T ]), ψ is left-continuous by theorem 4 and the fundamental theorem of

calculus yields:

n−1∑
i=0

Zn((i+ 1)
ε

2n
−)− Zn(i

ε

2n
) =

∫ ε
2

0
Dt+sF (Unt+(i(s)−1) ε

2n
+u, vt,s)ds (2.49)

The integrand converges to DtFt+s(Ut+(i(s)−1) ε
2n

+u, vt,s) = 0 since DtF is zero whenever

the first argument is a continuous path. Since this term is also bounded, by dominated

convergence the integral converges almost surely to 0.

It is obvious that Z( ε2) = 0 since F (x, v) = 0 whenever x is a continuous path. On the

other hand, since all derivatives of F appearing in (2.40) are bounded, the dominated

convergence theorem allows to take expectations of both sides in (2.40) with respect to the

Wiener measure and obtain α ε2 = 0, a contradiction.

Remark 2.5. If a functional is predictable in the second variable, so are its vertical derivatives

hence we can state in the setting of theorems 2.2, 2.3 that ∇xF 1
t (xt, vt) = ∇xF 2

t (xt, vt),

∇2
xF

1
t (xt, vt) = ∇2

xF
2
t (xt, vt).

Remark 2.6. Both results extend (replacing ∀t ∈]0, T ] by ∀t ∈ [0, T [) if the vertical deriva-

tives (but not the functional itself) are in F∞r instead of F∞l , following the same proof but

extending directly the path of (x, v) from t0 rather than stepping back in time first.

2.4 Change of variable formula for functionals of a continu-

ous path

We now state our first main result, a functional change of variable formula which extends

the Itô formula without probability due to Föllmer [29] to functionals. We denote here S+
d

the set of positive symmetric d× d matrices.

Definition 2.10. Let πn = (tn0 , . . . , t
n
k(n)), where 0 = tn0 ≤ tn1 ≤ . . . ≤ tnk(n) = T , be a

sequence of subdivisions of [0, T ] with step decreasing to 0 as n → ∞. f ∈ C0([0, T ],R) is



CHAPTER 2. PATHWISE CALCULUS
FOR NON-ANTICIPATIVE FUNCTIONALS 22

said to have finite quadratic variation along (πn) if the sequence of discrete measures:

ξn =

k(n)−1∑
i=0

(f(tni+1)− f(tni ))2δtni (2.50)

where δt is the Dirac measure at t, converge vaguely to a Radon measure ξ on [0, T ] whose

atomic part is null. The increasing function [f ] defined by

[f ](t) = ξ([0, t])

is then called the quadratic variation of f along the sequence (πn).

x ∈ C0([0, T ], U) is said to have finite quadratic variation along the sequence (πn) if the

functions xi, 1 ≤ i ≤ d and xi + xj , 1 ≤ i < j ≤ d do. The quadratic variation of x along

(πn) is the S+
d -valued function x defined by:

[x]ii = [xi], [x]ij =
1

2
([xi + xj ]− [xi]− [xj ]), i 6= j (2.51)

Theorem 2.4 (Change of variable formula for functionals of continuous paths). Let (x, v) ∈

C0([0, T ], U)× ST such that x has finite quadratic variation along (πn) and verifies

supt∈[0,T ]−πn |v(t)− v(t−)| → 0. Denote:

xn(t) =

k(n)−1∑
i=0

x(ti+1)1[ti,ti+1[(t) + x(T )1{T}(t)

vn(t) =

k(n)−1∑
i=0

v(ti)1[ti,ti+1[(t) + v(T )1{T}(t), hni = tni+1 − tni (2.52)

Then for any non-anticipative functional F ∈ C1,2 such that:

1. F,∇xF,∇2
xF ∈ F∞l

2. ∇2
xF,DF satisfy the local boundedness property (2.9)

the following limit

lim
n→∞

k(n)−1∑
i=0

∇xFtni (xntni −, v
n
tni −)(x(tni+1)− x(tni )) (2.53)

exists. Denoting this limit by
∫ T

0 ∇xF (xu, vu)dπx we have

FT (xT , vT )− F0(x0, v0) =

∫ T

0
DtFt(xu, vu)du (2.54)

+

∫ T

0

1

2
tr
(
t∇2

xFt(xu, vu)d[x](u)
)

+

∫ T

0
∇xF (xu, vu)dπx (2.55)



CHAPTER 2. PATHWISE CALCULUS
FOR NON-ANTICIPATIVE FUNCTIONALS 23

Remark 2.7 (Föllmer integral). The limit (2.53), which we call the Föllmer integral, was

defined in [29] for integrands of the form f(X(t)) where f ∈ C1(Rd). It depends a priori

on the sequence π of subdivisions, hence the notation
∫ T

0 ∇xF (xu, vu)dπx. We will see

in Section 2.7 that when x is the sample path of a semimartingale, the limit is in fact

almost-surely independent of the choice of π.

Remark 2.8. The regularity conditions on F are given independently of (x, v) and of the

sequence of subdivisions (πn).

Proof. Denote δxni = x(tni+1)− x(tni ). Since x is continuous hence uniformly continuous on

[0, T ], and using Lemma A.1 for v, the quantity

ηn = sup{|v(u)− v(tni )|+ |x(u)− x(tni )|+ |tni+1 − tni |, 0 ≤ i ≤ k(n)− 1, u ∈ [tni , t
n
i+1)}(2.56)

converges to 0 as n→∞. Since ∇2
xF,DF satisfy the local boundedness property (2.9), for

n sufficiently large there exists C > 0 such that

∀t < T,∀(x′, v′) ∈ Ut × St, d∞((xt, vt), (x
′, v′)) < ηn ⇒ |DtFt(x′, v′)| ≤ C, |∇2

xFt(x
′, v′)| ≤ C

Denoting K = {x(u), s ≤ u ≤ t} which is a compact subset of U , and U c = R − U its

complement, one can also assume n sufficiently large so that d(K,U c) > ηn.

For i ≤ k(n)− 1, consider the decomposition:

Ftni+1
(xntni+1−, v

n
tni+1−)− Ftni (xntni −, v

n
tni −) = Ftni+1

(xntni+1−, v
n
tni ,h

n
i
)− Ftni (xntni , v

n
tni

)

+ Ftni (xntni , v
n
tni −)− Ftni (xntni −, v

n
tni −) (2.57)

where we have used property (2.2) to have Ftni (xntni
, vntni

) = Ftni (xntni
, vntni −

). The first term

can be written ψ(hni )− ψ(0) where:

ψ(u) = Ftni +u(xntni ,u, v
n
tni ,u

) (2.58)

Since F ∈ C1,2([0, T ]), ψ is right-differentiable, and moreover by lemma 4, ψ is left-

continuous, so:

Ftni+1
(xntni ,hni , v

n
tni ,h

n
i
)− Ftni (xntni , v

n
tni

) =

∫ tni+1−tni

0
Dtni +uF (xntni ,u, v

n
tni ,u

)du (2.59)
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The second term can be written φ(δxni )− φ(0), where:

φ(u) = Ftni (xn,utni −
, vntni −) (2.60)

Since F ∈ C1,2([0, T ]), φ is well-defined and C2 on the convex set B(x(tni ), ηn) ⊂ U , with:

φ′(u) = ∇xFtni (xn,utni −
, vntni −)

φ′′(u) = ∇2
xFtni (xn,utni −

, vntni −) (2.61)

So a second order Taylor expansion of φ at u = 0 yields:

Ftni (xntni , v
n
tni −)− Ftni (xntni −, v

n
tni −) = ∇xFtni (xntni −, v

n
tni −)δxni

+
1

2
tr
(
∇2
xFtni (xntni −, v

n
tni −) tδxni δx

n
i

)
+ rni (2.62)

where rni is bounded by

K|δxni |2 sup
x∈B(x(tni ),ηn)

|∇2
xFtni (x

n,x−x(tni )
tni −

, vntni −)−∇2
xFtni (xntni −, v

n
tni −)| (2.63)

Denote in(t) the index such that t ∈ [tnin(t), t
n
in(t)+1). We now sum all the terms above from

i = 0 to k(n)− 1:.

• The left-hand side of (2.57) yields FT (xnT−, v
n
T−) − F0(x0, v0), which converges to

FT (xT−, vT−)−F0(x0, v0) by left-continuity of F , and this quantity equals FT (xT , vT )−

F0(x0, v0) since x is continuous and F is predictable in the second variable.

• The first line in the right-hand side can be written:∫ T

0
DuF (xntn

in(u)
,u−tn

in(u)
, vntn

in(u)
,u−tn

in(u)
)du (2.64)

where the integrand converges to DuF (xu, vu−) and is bounded by C. Hence the

dominated convergence theorem applies and (2.64) converges to:∫ T

0
DuF (xu, vu−)du =

∫ T

0
DuF (xu, vu) (2.65)

since vu = vu−, du-almost everywhere.
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• The second line can be written:

k(n)−1∑
i=0

∇xFtni (xntni −, v
n
tni −)(xtni+1

− xtni ) +

k(n)−1∑
i=0

1

2
tr[∇2

xFtni (xntni −, v
n
tni −)]tδxni δx

n
i ] (2.66)

+

k(n)−1∑
i=0

rni (2.67)

[∇2
xFtni (xntni −

, vntni −
)]1t∈]tni ,t

n
i+1] is bounded by C, and converges to ∇2

xFt(xt, vt−) by left-

continuity of ∇2
xF , and the paths of both are left-continuous by lemma 4. Since x

and the subdivision (πn) are as in definition 2.10, lemma A.5 in appendix A.3 applies

and gives as limit:∫ T

0

1

2
tr[t∇2

xFt(xu, vu−)]d[x](u)] =

∫ T

0

1

2
tr[t∇2

xFt(xu, vu)]d[x](u)] (2.68)

since ∇2
xF is predictable in the second variable i.e. verifies (2.2). Using the same

lemma, since |rni | is bounded by εni |δxni |2 where εni converges to 0 and is bounded by

2C,
∑in(t)−1

i=in(s)+1 r
n
i converges to 0.

Since all other terms converge, the limit:

lim
n

k(n)−1∑
i=0

∇xFtni (xntni −, v
n
tni −)(x(tni+1)− x(tni )) (2.69)

exists, and the result is established.

2.5 Change of variable formula for functionals of a cadlag

path

We will now extend the previous result to functionals of cadlag paths. The following defi-

nition is taken from Föllmer [29]:

Definition 2.11. Let πn = (tn0 , . . . , t
n
k(n)), where 0 = tn0 ≤ tn1 ≤ . . . ≤ tnk(n) = T be a

sequence of subdivisions of [0, T ] with step decreasing to 0 as n → ∞. f ∈ D([0, T ],R) is

said to have finite quadratic variation along (πn) if the sequence of discrete measures:

ξn =

k(n)−1∑
i=0

(f(tni+1)− f(tni ))2δtni (2.70)
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where δt is the Dirac measure at t, converge vaguely to a Radon measure ξ on [0, T ] such

that

[f ](t) = ξ([0, t]) = [f ]c(t) +
∑

0<s≤t
(∆f(s))2 (2.71)

where [f ]c is the continuous part of [f ]. [f ] is called quadratic variation of f along the

sequence (πn). x ∈ UT is said to have finite quadratic variation along the sequence (πn) if

the functions xi, 1 ≤ i ≤ d and xi+xj , 1 ≤ i < j ≤ d do. The quadratic variation of x along

(πn) is the S+
d -valued function x defined by:

[x]ii = [xi], [x]ij =
1

2
([xi + xj ]− [xi]− [xj ]), i 6= j (2.72)

Theorem 2.5 (Change of variable formula for functionals of discontinuous paths). Let

(x, v) ∈ UT × ST where x has finite quadratic variation along (πn) and

sup
t∈[0,T ]−πn

|x(t)− x(t−)|+ |v(t)− v(t−)| → 0 (2.73)

Denote

xn(t) =

k(n)−1∑
i=0

x(ti+1−)1[ti,ti+1)(t) + x(T )1{T}(t)

vn(t) =

k(n)−1∑
i=0

v(ti)1[ti,ti+1)(t) + v(T )1{T}(t), hni = tni+1 − tni (2.74)

Then for any non-anticipative functional F ∈ C1,2 such that:

1. F is predictable in the second variable in the sense of (2.2)

2. ∇2
xF and DF have the local boundedness property (2.9)

3. F,∇xF,∇2
xF ∈ F∞l

4. ∇xF has the horizontal local Lipschitz property (2.24)

the Föllmer integral, defined as the limit

∫
]0,T ]
∇xFt(xt−, vt−)dπx := lim

n→∞

k(n)−1∑
i=0

∇xFtni (x
n,∆x(tni )
tni −

, vntni −)(x(tni+1)− x(tni )) (2.75)
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exists and

FT (xT , vT )− F0(x0, v0) =

∫
]0,T ]
DtFt(xu−, vu−)du

+

∫
]0,T ]

1

2
tr
(
t∇2

xFt(xu−, vu−)d[x]c(u)
)

+

∫
]0,T ]
∇xFt(xt−, vt−)dπx

+
∑

u∈]0,T ]

[Fu(xu, vu)− Fu(xu−, vu−)−∇xFu(xu−, vu−).∆x(u)] (2.76)

Remark 2.9. Condition (2.73) simply means that the subdivision asymptotically contains

all discontinuity points of (x, v). Since a cadlag function has at most a countable set

of discontinuities, this can always be achieved by adding e.g. the discontinuity points

{t ∈ [0, T ],max(|∆x(t)|, |∆v(t)|) ≥ 1/n} to πn.

Proof. Denote δxni = x(tni+1)− x(tni ). Lemma A.1 implies that

ηn = sup{|v(u)− v(tni )|+ |x(u)− x(tni )|+ |tni+1 − tni |, 0 ≤ i ≤ k(n)− 1, u ∈ [tni , t
n
i+1)} n→∞→ 0

so for n sufficiently large there exists C > 0 such that, for any t < T , for any (x′, v′) ∈

Ut × St, d∞((xt, vt), (x
′, v′)) < ηn ⇒ |DtFt(x′, v′)| ≤ C, |∇2

xFt(x
′, v′)| ≤ C , using the local

boundedness property (2.9).

For ε > 0, we separate the jump times of x in two sets: a finite set C1(ε) and a set

C2(ε) such that
∑

s∈C2(ε) |∆xs|2 < ε2. We also separate the indices 0 ≤ i ≤ k(n)− 1 in two

sets: a set In1 (ε) such that (ti, ti+1] contains at least a time in C1(ε), and its complementary

In2 (ε). Denoting K = {x(u), s ≤ u ≤ t} which is a compact subset of U , and U c = R − U ,

one may choose ε sufficiently small and n sufficiently large so that d(K,U c) > ε+ ηn.

Denote in(t) the index such that t ∈ [tni , t
n
i+1). Property (2.73) implies that for n sufficiently

large, C1(ε) ⊂ {tni+1, i = 1..k(n)} so

∑
0≤i≤k(n)−1,i∈In1 (ε)

Ftni+1
(x
n,∆x(tni+1)

tni+1−
, vntni+1−)− Ftni (x

n,∆x(tin)
tni −

, vntni −) (2.77)

−→n→∞
∑

u∈]0,T ]∪C1(ε)

Fu(xu, vu)− Fu(xu−, vu−) (2.78)

as n→∞, by left-continuity of F .
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Let us now consider, for i ∈ In2 (ε), i ≤ k(n)− 1, the decomposition:

Ftni+1
(x
n,∆x(tni+1)

tni+1−
, vntni+1−)− Ftni (x

n,∆x(tni )
tni −

, vntni −) =

Ftni+1
(x
n,∆x(tni+1)

tni+1−
, vntni+1−)− Ftni+1

(xntni+1−, v
n
tni+1−)

+Ftni+1
(xntni+1−, v

n
tni ,h

n
i
)− Ftni (xntni , v

n
tni

)

+Ftni (xntni , v
n
tni −)− Ftni (x

n,∆x(tni )
tni −

, vntni −) (2.79)

where we have used the property (2.2) to obtain Ftni (xntni
, vntni

) = Ftni (xntni
, vntni −

). The third

line in (2.79) can be written ψ(hni )− ψ(0) where:

ψ(u) = Ftni +u(xntni ,u, v
n
tni ,u

) (2.80)

Since F ∈ C1,2([0, T ]), ψ is right-differentiable, and moreover by lemma 4, ψ is continuous,

so:

Ftni+1
(xntni ,hni , v

n
tni ,h

n
i
)− Ftni (xntni , v

n
tni

) =

∫ tni+1−tni

0
Dtni +uF (xntni ,u, v

n
tni ,u

)du (2.81)

The fourth line in (2.79) can be written φ(x(tni+1−)− x(tni ))− φ(0), where:

φ(u) = Ftni (x
n,∆x(tni )+u
tni −

, vntni −) (2.82)

Since F ∈ C1,2([0, T ]), φ is well-defined and C2 on the convex set B(x(tni ), ηn + ε) ⊂ U ,

with:

φ′(u) = ∇xFtni (x
n,∆x(tni )+u
tni −

, vntni −)φ′′(u) = ∇2
xFtni (x

n,∆x(tni )+u
tni −

, vntni −) (2.83)

So a second order Taylor expansion of φ at u = 0 yields:

Ftni (xntni , v
n
tni −)− Ftni (x

n,∆x(tni )
tni −

, vntni −) = ∇xFtni (x
n,∆x(tni )
tni −

, vntni −)(x(tni+1−)− x(tni ))

+
1

2
tr[∇2

xFtni (x
n,∆x(tni )
tni −

, vntni −)]t(x(tni+1−)− x(tni ))(x(tni+1−)− x(tni ))] + rni (2.84)

where rni,1 is bounded by

K|(x(tni+1−)− x(tni ))|2 sup
x∈B(x(tni ),ηn+ε)

|∇2
xFtni (x

n,x−x(tni )
tni −

, vntni −)−∇2
xFtni (xntni −, v

n
tni −)| (2.85)

Similarly, the second line in (2.79) can be written φ(∆x(tni+1))− φ(0) where

φ(u) = Ftni+1
(xn,utni+1−

, vntni+1−
)
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. So, a second order Taylor expansion of φ at u = 0 yields:

Ftni+1
(x
n,∆x(tni+1)

tni+1−
, vntni+1−)− Ftni+1

(xntni+1−, v
n
tni+1−)

= ∇xFtni+1
(xntni+1−, v

n
tni+1−)∆x(tni+1)

+
1

2
tr[∇2

xFtni+1
(xntni+1−, v

n
tni+1−)]t∆x(tni+1)∆x(tni+1) + rni,2 (2.86)

Using the horizontal local Lipschitz property (2.24) for ∇xF , for n sufficiently large:

|∇xFtni+1
(xntni+1−, v

n
tni+1−)−∇xFtni (x

n,∆x(tni )
tni −

, vntni −)| < C[(tni+1 − tni ) + |x(tni+1−)− x(tni )|]

On other hand, since ∇2
xF is bounded by C on all paths considered:

| tr
(
∇2
xFtni (x

n,∆x(tni )
tni −

, vntni −)t(x(tni+1−)− x(tni ))(x(tni+1−)− x(tni ))
)

+tr
(
∇2
xFtni+1

(x
n,∆x(tni )
tni −,hni

, vntni ,hni )]t∆x(tni+1)∆x(tni+1)
)

−tr
(
∇2
xFtni (x

n,∆x(tni )
tni −

, vntni −)]tδxni δx
n
i

)
| < 2C|∆x(tni+1)|2 (2.87)

Hence, we have shown that:

Ftni+1
(x
n,∆x(tni+1)

tni+1−
, vntni+1−)− Ftni+1

(xntni+1−, v
n
tni+1−) + Ftni (xntni , v

n
tni −)− Ftni (x

n,∆x(tni )
tni −

, vntni −) =

∇xFtni (x
n,∆x(tni )
tni −

, vntni −)δxni +
1

2
tr[∇2

xFtni (x
n,∆x(tni )
tni −

, vntni −)]tδxni δx
n
i ] + rni + qni

where rni is bounded by:

4K|δxni |2 sup
x∈B(x(tni ),ηn+ε)

|∇2
xFtni (x

n,x−x(tni −)
tni −

, vntni −)−∇2
xFtni (x

n,∆x(tni )
tni −

, vntni −)| (2.88)

and qni is bounded by:

C ′(hni |∆x(tni )|+ |∆x(tni )|2) (2.89)

Denote in(t) the index such that t ∈ [tnin(t), t
n
in(t)+1[. Summing all the terms above for

i ∈ C2(ε) ∩ {0, 1, ..k(n)− 1}:

• The left-hand side of (2.79) yields

FT (xnT , v
n
T )− F0(x0, v0)−

∑
0≤i≤k(n)−1,i∈In1 (ε)

Ftni+1
(xntni+1

, vntni+1
)− Ftni (xntni , v

n
tni

) (2.90)

which converges to

FT (xT , vT )− F0(x0, v0)−
∑

u∈]0,T ]∪C1(ε)

Fu(xu, vu)− Fu(xu−, vu−) (2.91)
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• The sum of the second and fourth lines of (2.79) can be written:∑
0≤i≤k(n)−1,i∈In2 (ε)

∇xFtni (x
n,∆x(tni )
tni −

, vntni −)δxni

+
∑

0≤i≤k(n)−1,i∈In2 (ε)

1

2
tr
(
∇2
xFtni (x

n,∆x(tni )
tni −

, vntni −)tδxni δx
n
i

)
+

∑
0≤i≤k(n)−1,i∈In2 (ε)

rni + qni (2.92)

Consider the measures µnij = ξnij−
∑

0<s≤T,s∈C2(ε)(∆fij(s))
2δs, where fii = xi, 1 ≤ j ≤

d and fij = xi + xj , 1 ≤ i < j ≤ d and ξnij is defined in Definition 2.11. The second

line of (2.92) can be decomposed as:

An +
1

2

∑
0<u≤T,u∈C2(ε)

tr
(
∇2
xFtni (x

n,∆x(tni )
tni −

, vntni −)t∆x(u)∆x(u)
)

(2.93)

where

An = tr

∫
]0,T ]

µn(dt)
∑

0≤i≤k(n)−1,i∈In2 (ε)

∇2
xFtnin(t)

(x
n,∆x(tn

in(t)
)

tn
in(t)
− , vntn

in(t)
−) 1t∈(tni ,t

n
i+1]

where µn denotes the matrix-valued measure with components µnij defined above. µnij

converges vaguely to the atomless measure [fij ]
c. Since∑

0≤i≤k(n)−1,i∈In2 (ε)

∇2
xFtnin(t)

(x
n,∆x(tn

in(t)
)

tn
in(t)
− , vntn

in(t)
−) 1t∈(tni ,t

n
i+1]

is bounded by C and converges to ∇2
xFt(xt−, vt−)1t/∈C1(ε) by left-continuity of ∇2

xF ,

applying Lemma A.5 to An and yields that An converges to:∫
]0,T ]

1

2
tr
(
t∇2

xFt(xu−, vu−)d[x]c(u)
)

(2.94)

The second term in (2.93) has the lim sup of its absolute value bounded by Cε2. Using

the same argument, since |rni | is bounded by sni |δxni |2 for some sni which converges to

0 and is bounded by some constant,
∑k(n)−1

i=0 |rni | has its lim sup bounded by 2Cε2;

similarly, the lim sup of
∑k(n)−1

i=0 |qni | is bounded by C ′(Tε+ ε2).

The term in the first line of (2.92) can be written:

k(n)−1∑
i=0

∇xFtni (x
n,∆x(tni )
tni −

, vntni −)(x(tni+1)− x(tni ))

−
∑

0≤i≤k(n)−1,i∈In1 (ε)

∇xFtni (x
n,∆x(tni )
tni −

, vntni −)(xtni+1
− xtni ) (2.95)
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where the second term converges to
∑

0<u≤T,u∈C1(ε)∇xFu(xu−, vu−)∆x(u).

• The third line of (2.79) yields:∫ T

0
DtFu(xntn

in(u)
,u−tn

in(u)
, vntn

in(u)
,u−tn

in(u)
)1in(u)∈In2 (ε)du (2.96)

where the integrand converges to DtFu(xu−, vu−)1u/∈C1(ε) and is bounded by C, hence

by dominated convergence this term converges to:∫ T

0
DtFt(xu−, vu−)du (2.97)

Summing up, we have established that the difference between the lim sup and the

lim inf of:

k(n)−1∑
i=0

∇xFtni (x
n,∆x(tni )
tni −

, vntni −)(x(tni+1)− x(tni )) (2.98)

is bounded by C ′′(ε2 + Tε). Since this is true for any ε, this term has a limit.

Let us now write the equality we obtained for a fixed ε:

FT (xT , vtT )− F0(x0, v0) =

∫
]0,T ]
DtFt(xu−, vu−)du

+

∫
]0,T ]

1

2
tr[t∇2

xFt(xu−, vu−)d[x]c(u)]

+ lim
n

k(n)−1∑
i=0

∇xFtni (x
n,∆x(tni )
tni −

, vntni −)(x(tni+1)− x(tni ))

+
∑

u∈]0,T ]∪C1(ε)

[Fu(xu, vu)− Fu(xu−, vu−)−∇xFu(xu−, vu−)∆x(u)] + α(ε)

where α(ε) ≤ C ′′(ε2 + Tε). The only point left to show is that:∑
u∈]0,T ]∪C1(ε)

[Fu(xu, vu)− Fu(xu−, vu−)−∇xFu(xu−, vu−)∆x(u)] (2.99)

converges to:∑
u∈]0,T ]

[Fu(xu, vu)− Fu(xu−, vu−)−∇xFu(xu−, vu−)∆x(u)] (2.100)

which is to say that the sum above is absolutely convergent.

We can first choose d(K,U c) > η > 0 such that:

∀u ∈ [0, T ], ∀(x′, v′) ∈ Uu × Su, d∞((xt, vt), (x
′, v′)) ≤ η ⇒ |∇2

xFu(x(u), v(u))| < C
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The jumps of x of magnitude greater than η are in finite number. Then, if u is a jump

time of x of magnitude less than η, then x(u−) + h∆x(u) ∈ U for h ∈ [0, 1], so that

we can write:

Fu(xu, vu)− Fu(xu−, vu−)−∇xFu(xu−, vu−)∆x(u) =∫ 1

0
(1− v)[t∇2

xFu(x
h∆x(u)
u− , vu−)t∆x(u)∆x(u)] ≤ 1

2
C|∆x(u)|2

Hence, the theorem is established.

Remark 2.10. If the vertical derivatives are right-continuous instead of left-continuous, and

without requiring (2.24) for ∇xF we can still define:

xn(t) =

k(n)−1∑
i=0

x(ti)1[ti,ti+1)(t) + x(T )1{T}(t)

vn(t) =

k(n)−1∑
i=0

v(ti)1[ti,ti+1)(t) + v(T )1{T}(t) hni = tni+1 − tni (2.101)

Following the same argument as in the proof with the decomposition:

Ftni+1
(xntni+1

, vtni+1
)− Ftni (xntni , vt

n
i
) = Ftni+1

(xntni+1
, vtni+1

)− Ftni+1
(xntni+1

, vtni ,hni )

+ Ftni+1
(xntni+1

, vtni ,hni )− Ftni+1
(xntni ,hni , vt

n
i ,h

n
i
)

+ Ftni+1
(xntni ,hni , vt

n
i ,h

n
i
)− Ftni (xntni , vt

n
i
) (2.102)

we obtain an analogue of formula (2.76) where the Föllmer integral (2.75) is replaced by

lim
n

k(n)−1∑
i=0

∇xFtni+1
(xntni ,hi

, vntni ,hni )(x(tni+1)− x(tni )) (2.103)

2.6 Functionals of Dirichlet processes

A Dirichlet process [30, 12], or finite energy process, on a filtered probability space

(Ω,B, (Bt),P) is an adapted cadlag process that can be represented as the sum of a semi-

martingale and an adapted continuous process with zero quadratic variation along dyadic

subdivisions.
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For continuous Dirichlet processes, a pathwise Itô calculus was introduced by H. Föllmer

in [29, 30, 47]. Coquet, Mémin and Slominski [12] extended these results to discontinuous

Dirichlet processes [57]. Using Theorem 2.5 we can extend these results to functionals of

Dirichlet processes; this yields in particular a pathwise construction of stochastic integrals

for functionals of a Dirichlet process.

Let Y (t) = X(t) + B(t) be a U -valued Dirichlet process defined as the sum of a semi-

martingale X on some filtered probability space (Ω,B,Bt,P) and B an adapted continuous

process B with zero quadratic variation along the dyadic subdivision. We denote by [X] the

quadratic variation process associated to X, [X]c the continuous part of [X], and µ(dt dz)

the integer-valued random measure describing the jumps of X (see [39] for definitions).

Let A be an adapted process with S-valued cadlag paths. Note that A need not be a

semimartingale.

We call Πn = {0 = tn0 < tn1 < . . . < tnk(n) = T} a random subdivision if the tni are

stopping times with respect to (Bt)t∈[0,T ].

Proposition 2.2 (Change of variable formula for Dirichlet processes). Let Πn = {0 = tn0 <

tn1 < . . . < tnk(n) = T} be any sequence of random subdivisions of [0, T ] such that

(i) X has finite quadratic variation along Πn and B has zero quadratic variation along Πn

almost-surely,

(ii) sup
t∈[0,T ]−Πn

|Y (t)− Y (t−)|+ |A(t)−A(t−)| n→∞→ 0 P− a.s.

Then there exists Ω1 ⊂ Ω with P(Ω1) = 1 such that for any non-anticipative functional

F ∈ C1,2 satisfying

1. F is predictable in the second variable in the sense of (2.2)

2. ∇2
xF and DF satisfy the local boundedness property (2.9)

3. F,∇xF,∇2
xF ∈ F∞l

4. ∇xF has the horizontal local Lipschitz property (2.24),
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the following equality holds on Ω1 for all t ≤ T :

Ft(Yt, At)− F0(Y0, A0) =

∫
]0,t]
DuF (Yu−, Au−)du+

∫
]0,t]

1

2
tr[t∇2

xFu(Yu−, Au−)d[X]c(u)]

+

∫
]0,t]

∫
Rd

[Fu(Y z
u−, Au−)− Fu(Yu−, Au−)− z∇xFu(Yu−, Au−)]µ(du, dz)

+

∫
]0,t]
∇xFu(Yu−, Au−).dY (u) (2.104)

where the last term is the Föllmer integral (2.75) along the subdivision Πn, defined for

ω ∈ Ω1 by: ∫
]0,t]
∇xFu(Yu−, Au−).dY (u) :=

lim
n

k(n)−1∑
i=0

∇xFtni (Y
n,∆Y (tni )
tni −

, Antni −)(Y (tni+1)− Y (tni ))1]0,t](t
n
i ) (2.105)

where (Y n, An) are the piecewise constant approximations along Πn, defined as in (2.74).

Moreover, the Föllmer integral with respect to any other random subdivision verifying

(i)–(ii), is almost-surely equal to (2.105).

Remark 2.11. Note that the convergence of (2.105) holds over a set Ω1 which may be chosen

independently of the choice of F ∈ C1,2.

Proof. Let (Πn) be a sequence of random subdivisions verifying (i)–(ii). Then there exists

a set Ω1 with P(Ω1) = 1 such that for ω ∈ Ω1 (X,A) is a cadlag function and (i)-(ii) hold

pathwise. Applying Theorem 2.5 to (Y (., ω), A(., ω)) along the subdivision Πn(ω) shows

that (2.104) holds on Ω1.

To show independence of the limit in (2.105) from the chosen subdivision, we note that

if Π2
n another sequence of random subdivisions satisfies (i)–(ii), there exists Ω2 ⊂ Ω with

P(Ω2) = 1 such that one can apply Theorem 2.5 pathwise for ω ∈ Ω2. So we have∫
]0,t]
∇xFu(Yu−, Au−).dΠ2

Y (u) =

∫
]0,t]
∇xFu(Yu−, Au−).dΠY (u)

on Ω1 ∩ Ω2. Since P(Ω1 ∩ Ω2) = 1 we obtain the result.
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2.7 Functionals of semimartingales

Proposition 2.2 applies when X is a semimartingale. We will now show that in this case,

under an additional assumption, the pathwise Föllmer integral (2.75) coincides almost-surely

with the stochastic integral
∫
Y dX. Theorem 2.5 then yields an Itô formula for functionals

of a semimartingale X.

2.7.1 Cadlag semimartingales

Let X be a cadlag semimartingale and A an adapted cadlag process on (Ω,B,Bt,P). We

use the notations [X] , [X]c, µ(dt dz) defined in Section 2.6.

Proposition 2.3 (Functional Itô formula for a semimartingale). Let F ∈ C1,2 be a non-

anticipative functional satisfying

1. F is predictable in the second variable, i.e. verifies (2.2),

2. ∇xF, ∇2
xF, DF ∈ B,

3. F,∇xF,∇2
xF ∈ F∞l ,

4. ∇xF has the horizontal local Lipschitz property 2.24.

Then:

Ft(Xt, At)− F0(X0, A0) =

∫
]0,t]
DuF (Xu−, Au−)du+∫

]0,t]

1

2
tr[t∇2

xFu(Xu−, Au−)d[X]c(u)] +

∫
]0,t]
∇xFu(Xu−, Au−).dX(u)

+

∫
]0,t]

∫
Rd

[Fu(Xz
u−, Au−)− Fu(Xu−, Au−)− z.∇xFu(Xu−, Au−)]µ(du, dz),P-a.s.(2.106)

where the stochastic integral is the Itô integral with respect to a semimartingale.

In particular, Y (t) = Ft(Xt, At) is a semimartingale.

Remark 2.12. These results yield a non-probabilistic proof for functional Ito formulas ob-

tained for continuous semimartingales [23] using probabilistic methods and extend them to

the case of discontinous semimartingales.
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Proof. Assume first that the process X does not exit a compact set K ⊂ U , and that A is

bounded by some constant R > 0. We define the following sequence of stopping times:

τn0 = 0

τnk = inf{u > τnk−1|2nu ∈ N or |A(u)−A(u−)| ∨ |X(u)−X(u−)| > 1

n
} ∧ T (2.107)

Then the coordinate processes Xi and their sums Xi +Xj satisfy the property:∑
τi<s

(Z(τi)− Z(τi−1))2 P→
n→∞

[Z](s) (2.108)

in probability. There exists a subsequence of subdivisions such that the convergence happens

almost surely for all s rational, and hence it happens almost surely for all s because both

sides of (2.108) are right-continuous. Let Ω1 be the set on which this convergence happens,

and on which the paths of X and A are U -valued cadlag functions. For ω ∈ Ω1, Theorem

2.5 applies and yields

Ft(Xt, At)− F0(X0, A0) =

∫
]0,t]
DuF (Xu−, Au−)du

+

∫
]0,t]

1

2
tr[t∇2

xFu(Xu−, Au−)d[X]c(u)] (2.109)

+

∫
]0,t]

∫
Rd

[Fu(Xz
u−, Au−)− Fu(Xu−, Au−)− z.∇xFu(Xu−, Au−)]µ(du, dz)

+ lim
n→∞

k(n)−1∑
i=0

∇xFτni (X
n,∆X(τni )
τni −

, Anτni −)(X(τni+1)−X(τni ))

It remains to show that the last term, which may also be written as

lim
n→∞

∫
]0,t]

k(n)−1∑
i=0

1]τni ,τ
n
i+1](t) ∇xFτni (X

n,∆X(τni )
τni −

, Anτni −).dX(t) (2.110)

coincides with the (Ito) stochastic integral of ∇xF (Xu−, Au−) with respect to the semi-

martingale X.

First, we note that since X,A are bounded and ∇xF ∈ B, ∇xF (Xu−, Au−) is a bounded

predictable process (by Theorem 2.1) hence its stochastic integral
∫ .

0∇xF (Xu−, Au−).dX(u)

is well-defined. Since the integrand in (2.110) converges almost surely to ∇xFt(Xt−, At−),

and is bounded independently of n by a deterministic constant C, the dominated conver-

gence theorem for stochastic integrals [54, Ch.IV Theorem32] ensures that (2.110) con-

verges in probability to
∫

]0,t]∇xFu(Xu−, Au−).dX(u). Since it converges almost-surely by



CHAPTER 2. PATHWISE CALCULUS
FOR NON-ANTICIPATIVE FUNCTIONALS 37

proposition 2.2, by almost-sure uniqueness of the limit in probability, the limit has to be∫
]0,t]∇xFu(Xu−, Au−).dX(u).

Now we consider the general case where X and A may be unbounded. Let U c = Rd−U

and denote τn = inf{s < t|d(X(s), U c) ≤ 1
n or |X(s)| ≥ n or |A(s)| ≥ n} ∧ t, which are

stopping times. Applying the previous result to the stopped processes (Xτn−, Aτn−) =

(X(t ∧ τn−), A(t ∧ τn−)) leads to:

Ft(X
τn−
t , Aτn−t ) =

∫
]0,τn)

[DuF (Xu, Au)du+
1

2
tr[t∇2

xFu(Xu, Au)d[X]c(u)]

+

∫
]0,τn)

∇xFu(Xu, Au).dX(u)

+

∫
]0,τn)

∫
Rd

[Fu(Xx
u−, Au−)− Fu(Xu−, Au−)− z.∇xFu(Xu−, Au−)]µ(du dz)

+

∫
(τn,t)

DuF (Xτn
u , A

τn
u )du (2.111)

Since almost surely t ∧ τn = t for n sufficiently large, taking the limit n→∞ yields:

Ft(Xt−, At−) =

∫
]0,t)

[DuF (Xu, Au)du+
1

2
tr
(
t∇2

xFu(Xu, Au)d[X]c(u)
)

+

∫
]0,t)
∇xFu(Xu, Au).dX(u)

+

∫
]0,t)

∫
Rd

[Fu(Xx
u−, Au−)− Fu(Xu−, Au−)− z.∇xFu(Xu−, Au−)]µ(du dz)

Adding the jump Ft(Xt, At)−Ft(Xt−, At−) to both the left-hand side and the third line of

the right-hand side, and adding ∇xFt(Xt−, At−)∆X(t) to the second line and subtracting

it from the third, leads to the desired result.

2.7.2 Continuous semimartingales

In the case of a continuous semimartingale X and a continuous adapted process A, an Itô

formula may also be obtained for functionals whose vertical derivative is right-continuous

rather than left-continuous.

Proposition 2.4 (Functional Itô formula for a continuous semimartingale). Let X be a con-

tinuous semimartingale with quadratic variation process [X], and A a continuous adapted

process, on some filtered probability space (Ω,B,Bt,P). Then for any non-anticipative func-

tional F ∈ C1,2 satisfying
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1. F has a predictable dependence with respect to the second variable, i.e. verifies (2.2),

2. ∇xF, ∇2
xF, DF ∈ B,

3. F ∈ F∞l

4. ∇xF,∇2
xF ∈ F∞r

we have

Ft(Xt, At)− F0(X0, A0) =

∫ t

0
DuF (Xu, Au)du

+

∫ t

0

1

2
tr[t∇2

xFu(Xu, Au)d[X](u)] +

∫ t

0
∇xFu(Xu, Au).dX(u), P-a.s.

where last term is the Itô stochastic integral with respect to the X.

Proof. Assume first that X does not exit a compact set K ⊂ U and that A is bounded by

some constant R > 0. Let 0 = tn0 ≤ tn1 . . . ≤ tnk(n) = t be a deterministic subdivision of [0, t].

Define the approximates (Xn, An) of (X,A) as in remark 2.10, and notice that, with the

same notations:

k(n)−1∑
i=0

∇xFtni+1
(Xn

tni ,h
n
i
, Antni ,hni )(X(tni+1)−X(tni )) =∫

]0,t]
∇xFtni+1

(Xn
tni ,h

n
i
, Antni ,hni )1]tni ,t

n
i+1](t)dX(t) (2.112)

which is a well-defined stochastic integral since the integrand is predictable (left-continuous

and adapted by theorem 2.1), since the times tni are deterministic; this would not be the

case if we had to include jumps of X and/or A in the subdivision as in the case of the proof

of proposition 2.3. By right-continuity of ∇xF , the integrand converges to ∇xFt(Xt, At). It

is moreover bounded independently of n and ω since ∇xF is assumed to be boundedness-

preserving. The dominated convergence theorem for the stochastic integrals [54, Ch.IV

Theorem32] ensures that it converges in probability to
∫

]0,t]∇xFu(Xu−, Au−).dX(u). Using

remark 2.10 concludes the proof.

Consider now the general case. Let Kn be an increasing sequence of compact sets with⋃
n≥0Kn = U and denote

τn = inf{s < t|Xs /∈ Kn or |As| > n} ∧ t
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which are optional times. Applying the previous result to the stopped process (Xt∧τn , At∧τn)

leads to:

Ft(Xt∧τn , At∧τn)− F0(X0, A0) =

∫ t∧τn

0
DuFu(Xu, Au)du

+
1

2

∫ t∧τn

0
tr
(
t∇2

xFu(Xu, Au)d[X](u)
)

+

∫ t∧τn

0
∇xFu(Xu, Au).dX

+

∫ t

t∧τn
DuF (Xu∧τn , Au∧τn)du

The terms in the first line converge almost surely to the integral up to time t since t∧τn = t

almost surely for n sufficiently large. For the same reason the last term converges almost

surely to 0.
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Chapter 3

Functional Itô calculus and

applications

3.1 Functionals representation of non-anticipative processes

From this section to the end of this work, the set S is taken to be the set S+
d of positive

symmetric d× d matrices.

Let X : [0, T ] × Ω 7→ U be a continuous, U−valued cadlag semimartingale defined on a

filtered probability space (Ω,B,Bt,P). The paths of X then lie in UcT , which we will view

as a subspace of the space UT of cadlag functions with values in U .

Denote by Ft he natural filtration of X and by [X] = ([Xi, Xj ], i, j = 1..d) the quadratic

(co-)variation process, taking values in the set S+
d of positive d × d matrices. We assume

that

[X](t) =

∫ t

0
A(s)ds (3.1)

for some cadlag process A with values in S+
d . The paths of A lie in St = D([0, t], S+

d ), the

space of cadlag functions with values in S+
d .

A process

Y : [0, T ]× Ω 7→ Rd which is adapted to Ft may be represented almost surely as

Y (t) = Ft({X(u), 0 ≤ u ≤ t}, {A(u), 0 ≤ u ≤ t}) = Ft(Xt, At) (3.2)
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where F = (Ft)t∈[0,T ] is a family of functionals on Υ representing the dependence of Y (t)

on the underlying path of X and its quadratic variation.

Introducing the process A as additional variable may seem redundant at this stage:

indeed A(t) is itself Ft− measurable i.e. a functional of Xt. However, it is not a continuous

functional with respect to the supremum norm or other usual topologies on Ut. Introducing

At as a second argument in the functional allows us to control the regularity of Y with

respect to [X]t =
∫ t

0 A(u)du without resorting to p-variation norms, simply by requiring

continuity of Ft in the supremum norm and predictability in the second variable (see Section

2.2.2).

Remark 3.1. All results presented in this chapter apply to functionals depending only on

their first argument, ie functionals on
⋃
t∈[0,T ] Ut, without requiring the assumption that

[X](t) can be represented as [X](t) =
∫ t

0 A(s)ds (except for section 3.2.4). If dealing with

such a functional, we will omit the second variable and write simply Ft(xt), rather than

Ft(xt, vt). All results presented in this chapter also extend to the case of right-continuous

rather than left-continuous vertical derivatives in the case where either A is continuous of

F does not depend on the second argument (with sometimes a minor modification of the

statement, which will be given as a remark).

3.2 Functional Itô calculus

3.2.1 Space of paths

We shall introduce the following space of paths which is the one required for the probabilistic

applications of functional Itô calculus. In chapter 2, all space of functionals introduced are

defined up to the time-horizon T . We will here denote, with a slight abuse of notation, for

t0 < T , F∞l ([0, t0]),B([0, t0]),Ca,b([0, t0]) as the sets of non-anticipative functionals indexed

by [0, T ] or [0, T [, but whose restriction to
⋃

0≤t≤t0 Ut×St belong respectively to F∞l ,B,Ca,b.

Definition 3.1. Define Cj,kb ([0, T [) as the set of non-anticipative functionals F such that:

1. For all t0 < T,F ∈ Cj,k([0, t0])

2. For all t0 < T, 0 ≤ i ≤ k,∇ixF ∈ F∞l ([0, t0])
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3. For all t0 < T, 1 ≤ i ≤ j, 1 ≤ l ≤ k,DiF ,∇lxF ∈ B([0, t0])

4. F is predictable in the second variable.

Note that the examples discussed in the synopsis (1.1) with explicit dependence in the

quadratic variation are continuous in the quadratic variation for the total variation norm:

|[X]|TV =

∫ T

0
|A(s)|ds (3.3)

so they define in particular functionals which are predictable in the second variable.

Example 3.1 (Smooth functions). Let us start by noting that, in the case where F reduces

to a smooth function of X(t),

Ft(xt, vt) = f(t, x(t)) (3.4)

where f ∈ Cj,k([0, T ] × Rd), the pathwise derivatives reduces to the usual ones: F ∈ Cj,kb
with:

DitF (xt, vt) = ∂itf(t, x(t)) ∇mx Ft(xt, vt) = ∂mx f(t, x(t)) (3.5)

In fact F ∈ Cj,k simply requires f to be j times right-differentiable in time, that the right-

derivatives in time are continuous in space for each fixed time, and that the functional and

its derivatives in space are jointly left-continuous in time and continuous in space.

Example 3.2 (Integrals with respect to quadratic variation). A process

Y (t) =

∫ t

0
g(X(u))d[X](u)

where g ∈ C0(Rd) may be represented by the functional

Ft(xt, vt) =

∫ t

0
g(x(u))v(u)du (3.6)

It is readily observed that F ∈ C1,∞
b , with:

DtF (xt, vt) = g(x(t))v(t) ∇jxFt(xt, vt) = 0 (3.7)
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Example 3.3. The martingale Y (t) = X(t)2 − [X](t) is represented by the functional

Ft(xt, vt) = x(t)2 −
∫ t

0
v(u)du (3.8)

Then F ∈ C1,∞
b with:

DtF (x, v) = −v(t) ∇xFt(xt, vt) = 2x(t)

∇2
xFt(xt, vt) = 2 ∇jxFt(xt, vt) = 0, j ≥ 3 (3.9)

Example 3.4 (Stochastic exponential). The stochastic exponential Y = exp(X− [X]/2) may

be represented by the functional

Ft(xt, vt) = ex(t)− 1
2

∫ t
0 v(u)du (3.10)

Elementary computations show that F ∈ C1,∞
b with:

DtF (x, v) = −1

2
v(t)Ft(x, v) ∇jxFt(xt, vt) = Ft(xt, vt) (3.11)

Note that, although At may be expressed as a functional of Xt, this functional is not

continuous and without introducing the second variable v ∈ St, it is not possible to represent

Examples 3.2, 3.3 and 3.4 as a left-continuous functional of x alone.

Example 3.5 (Cylindrical functionals). Let 0 = t0 < t1 < . . . < tn = T be a subdivision of

[0, T ], ε > 0 and fi : 1 ≤ i ≤ n a family of continuous functions such that:

fi : U i+1 × [ti, ti+1 + ε[7→ R

such that:

• For all 1 ≤ i ≤ n and all (x0, . . . , xi−1) ∈ U i), the map

(x, t) 7→ fi(x0, . . . , xi−1, x, t)

defined on U × [ti, ti+1] is C1,2

• For all 2 ≤ i ≤ n, fi(., ti) = fi−1(., ti)
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Then the functional

Ft(xt) =
n∑
i=1

1]ti−1,ti]fi(x(t0), . . . , x(ti−1), x(t), t)

is C1,2
b .

Finally, we conclude by an example showing the non-uniqueness of the functional rep-

resentation:

Example 3.6 (Non-uniqueness of functional representation). Take d = 1. The quadratic

variation process [X] may be represented by the following functionals:

F 0(xt, vt) =

∫ t

0
v(u)du

F 1(xt, vt) =

lim sup
n

∑
i≤t2n

|x(
i+ 1

2n
)− x(

i

2n
)|2
1lim supn

∑
i≤t2n (x( i+1

2n
)−x( i

2n
))2<∞

(3.12)

F 2(xt, vt) =lim sup
n

∑
i≤t2n

|x(
i+ 1

2n
)− x(

i

2n
)|2 −

∑
0≤s<t

|∆x(s)|2
1lim supn

∑
i≤t2n |x( i+1

2n
)−x( i

2n
)|2<∞

If X is a continuous semimartingale, then almost surely:

F 0
t (Xt, At) = F 1

t (Xt, At) = F 2
t (Xt, At) = [X](t)

Yet F 0 ∈ C1,2
b ([0, T [) but F 1, F 2 are not even continuous at fixed time: F i /∈ F∞l for i = 1, 2.

3.2.2 Obstructions to regularity

It is instructive to observe what prevents a functional from being regular in the sense of

Definition 3.1. The examples below illustrate the fundamental obstructions to regularity:

Example 3.7 (Delayed functionals). Ft(xt, vt) = x(t − ε) defines a C0,∞
b functional. All

vertical derivatives are 0. However, it fails to be horizontally differentiable.

Example 3.8 (Jump of x at the current time). Ft(xt, vt) = ∆x(t) defines a functional which

is infinitely differentiable and has regular pathwise derivatives:

DtF (xt, vt) = 0 ∇xFt(xt, vt) = 1 (3.13)
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However, the functional itself fails to be F∞l .

Example 3.9 (Jump of x at a fixed time). Ft(xt, vt) = 1t>t0∆x(t0) defines a functional in F∞l
which admits horizontal and vertical derivatives at any order at each point (x, v). However,

∇xFt(xt, vt) = 1t=t0 fails to be left continuous so F is not C0,1
b in the sense of Definition 2.8

Example 3.10 (Maximum). Ft(xt, vt) = sups≤t x(s) is F∞l but fails to be vertically differen-

tiable on the set

{(xt, vt) ∈ D([0, t],Rd)× St, x(t) = sup
s≤t

x(s)}.

3.2.3 Functional Itô formula

We will here restate the functional Itô formula in the context of continuous semimartingales.

This is of course a direct consequence of Theorem 2.4, but we will propose here a direct

probabilistic derivation which make use of the standard Itô formula and the dominated

convergence theorems for Lebesgue - Stieltjes and Stochastic integrals. Using these tools,

we do not have to worry about the measure-theoretic technicalities treated in appendix A.3

that were necessary to derive the functional analytical Itô formula (theorem 2.4).

Theorem 3.1 (Functional Itô formula for continuous semimartingales). Let F ∈ C1,2
b ([0, T [).

Then for any t ∈ [0, T [:

Ft(Xt, At)− F0(X0, A0) =

∫ t

0
DuF (Xu, Au)du+

∫ t

0
∇xFu(Xu, Au).dX(u)

+

∫ t

0

1

2
tr[t∇2

xFu(Xu, Au) d[X](u)] a.s. (3.14)

We note that:

• The dependence of F on the second variable A does not enter the formula (3.14).

Indeed, under our regularity assumptions, variations in A lead to “higher order” terms

which do not contribute. This is due to F being predictable in the second variable.

• As expected from Theorems 2.2 and 2.3 in the case where X is continuous Y =

F (X,A) depends on F and its derivatives only via their values on continuous paths.

More precisely, Y can be reconstructed from the second-order jet of F on
⋃
t∈[0,T [ Uct ×

St.
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Proof. Let us first assume that X does not exit a compact set K and that ‖A‖∞ ≤ R for

some R > 0. Let us introduce a sequence of random subdivision of [0, t], indexed by n,

as follows: starting with the deterministic subdivision tni = it
2n , i = 0..2n we add the time

of jumps of A of size greater or equal to 1
n . We define the following sequence of stopping

times:

τn0 = 0 τnk = inf{s > τnk−1|2ns ∈ N or |A(s)−A(s−)| > 1

n
} ∧ t (3.15)

The following arguments apply pathwise. Lemma A.2 ensures that ηn = sup{|A(u) −

A(τni )|+ |X(u)−X(τni )|+ t
2n , i ≤ 2n, u ∈ [τni , τ

n
i+1)} →n→∞ 0.

Denote nX =
∑∞

i=0X(τni+1)1[τni ,τ
n
i+1) +X(t)1{t} which is a non-adapted cadlag piecewise

constant approximation of Xt, and nA =
∑∞

i=0A(τni )1[τni ,τ
n
i+1[+A(t)1{t} which is an adapted

cadlag piecewise constant approximation of At.

Start with the decomposition:

Fτni+1
(nXτni+1−,nAτni+1−)− Fτni (nXτni −,nAτni −) =

Fτni+1
(nXτni+1−,nAτni ,hni )− Fτni (nXτni

,nAτni )

+Fτni (nXτni
,nAτni −)− Fτni (nXτni −,nAτni −) (3.16)

where we have used the fact that F is predictable in the second variable to have

Fτni (nXτni
,nAτni ) = Fτni (nXτni

,nAτni −). The first term in can be written ψ(hni ) − ψ(0)

where:

ψ(u) = Fτni +u(nXτni ,u
,nAτni ,u) (3.17)

Since F ∈ C1,2([0, T [), ψ is right-differentiable, and moreover by lemma 4, ψ is left-

continuous, so:

Fτni+1
(nXτni ,h

n
i
,nAτni ,hni )− Fτni (nXτni

,nAτni ) =

∫ τni+1−τni

0
Dτni +uF (nXτni ,u

,nAτni ,u)du (3.18)

The second term in (3.16) can be written φ(X(τni+1) − X(τni )) − φ(0) where φ(u) =

Fτni (nX
u
τni −

,nAτni ). Since F ∈ C1,2([0, T ]), φ is a C2 functional parameterized by a Fτi-

measurable random variable, and φ′(u) = ∇xFτni (nX
u
τni −

,nAτni ,hi),
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φ′′(u) = ∇2
xFτni (nX

u
τni −

,nAτni ,hi). Applying the Itô formula to φ between times 0 and τi+1−τi

and the (Fτi+s)s≥0) continuous semimartingale (X(τi + s))s≥0, yields:

φ(X(τni+1)−X(τni ) )− φ(0) =

∫ τni+1

τni

∇xFτni (nX
X(s)−X(τni )
τni −

,nAτni )dX(s)

+
1

2

∫ τni+1

τni

tr[t∇2
xFτni (nX

X(s)−X(τni )
τni −

,nAτni )d[X](s) (3.19)

Summing over i = 0 to ∞ and denoting i(s) the index such that s ∈ [τni(s), τ
n
i(s)+1), we

have shown:

Ft(nXt,nAt)− F0(X0, A0) =

∫ t

0
DsF (nXτn

i(s)
,s−τn

i(s)
,nAτn

i(s)
,s−τn

i(s)
)ds

+

∫ t

0
∇xFτn

i(s)+1
(nX

X(s)−X(τn
i(s)

)

τn
i(s)
− ,nAτn

i(s)
,hi(s))dX(s)

+[
1

2

∫ t

0
tr

(
∇2
xFτni(s)(nX

X(s)−X(τn
i(s)

)

τn
i(s)
− ,nAτn

i(s)
).d[X](s))

)
(3.20)

Ft(nXt,nAt) converges to Ft(Xt, At) almost surely. All the approximations of (X,A) appear-

ing in the various integrals have a d∞-distance from (Xs, As) less than ηn hence all the inte-

grands appearing in the above integrals converge respectively to DsF (Xs, As),∇xFs(Xs, As),

∇2
xFs(Xs, As) as n→∞ by fixed time continuity for DF and d∞ left-continuity for the ver-

tical derivatives. Since the derivatives are in B the integrands in the various above integrals

are bounded by a constant dependent only on F ,K and R and t hence does not depend on

s nor on ω. The dominated convergence and the dominated convergence theorem for the

stochastic integrals [54, Ch.IV Theorem 32] then ensure that the Lebesgue-Stieltjes integrals

converge almost surely, and the stochastic integral in probability, to the terms appearing in

(3.14) as n→∞.

Consider now the general case where X and A may be unbounded. Let U c = Rd − U

and denote τn = inf{s < t|d(X(s), U c) ≤ 1
n or |X(s)| ≥ n or |A(s)| ≥ n} ∧ t, which is a

stopping time. Applying the previous result to the stopped process (Xt∧τn , At∧τn) leads to:

Ft(Xt∧τn , At∧τn)− F0(Z0, A0) =

∫ t∧τn

0
DuFu(Xu, Au)du

+
1

2

∫ t∧τn

0
tr
(
t∇2

xFu(Xu, Au)d[X](u)
)

+

∫ t∧τn

0
∇xFu(Xu, Au).dX +

∫ t

t∧τn
DuF (Xu∧τn , Au∧τn)du (3.21)
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The terms in the first line converges almost surely to the integral up to time t since t∧τn = t

almost surely for n sufficiently large. For the same reason the last term converges almost

surely to 0.

Example 3.11. If Ft(xt, vt) = f(t, x(t)) where f ∈ C1,2([0, T ] × Rd), (3.14) reduces to the

standard Itô formula.

Example 3.12. For integral functionals of the form

Ft(xt, vt) =

∫ t

0
g(x(u))v(u)du (3.22)

where g ∈ C0(Rd), the Itô formula reduces to the trivial relation

Ft(Xt, At) =

∫ t

0
g(X(u))A(u)du (3.23)

since the vertical derivatives are zero in this case.

Example 3.13. For a scalar semimartingale X, applying the formula to Ft(xt, vt) = x(t)2 −∫ t
0 v(u)du yields the well-known Itô product formula:

X(t)2 − [X](t) =

∫ t

0
2X.dX (3.24)

Example 3.14. For the stochastic exponential functional (Ex. 3.4)

Ft(xt, vt) = ex(t)− 1
2

∫ t
0 v(u)du (3.25)

the formula (3.14) yields the well-known integral representation

exp(X(t)− 1

2
[X](t) ) =

∫ t

0
eX(u)− 1

2
[X](u)dX(u) (3.26)

3.2.4 Intrinsic nature of the vertical derivative

Whereas the functional representation (3.2) of a (Ft−adapted) process Y is not unique, The-

orem 3.1 implies that the process ∇xFt(Xt, At) has an intrinsic character i.e. independent

of the chosen representation:

Corollary 3.1. Let F 1, F 2 be two functionals in C1,2
b ([0, T [), such that:

∀t < T, F 1
t (Xt, At) = F 2

t (Xt, At) P− a.s. (3.27)
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Then, outside an evanescent set:

∀t ∈]0, T [, t[∇xF 1
t (Xt, At)−∇xF 2

t (Xt, At)]A(t−)[∇xF 1
t (Xt, At)−∇xF 2

t (Xt, At)] = 0

Proof. Let X(t) = B(t) + M(t) where B is a continuous process with finite variation and

M is a continuous local martingale. Theorem 3.1 implies that the local martingale part of

the null process 0 = F 1(Xt, At)− F 2(Xt, At) can be written:

0 =

∫ t

0

[
∇xF 1

u (Xu, Au)−∇xF 2
u (Xu, Au)

]
dM(u) (3.28)

Considering its quadratic variation, we have almost surely:

0 =

∫ t

0

t[∇xF 1
u (Xu, Au)−∇xF 2

u (Xu, Au)]A(u−)[∇xF 1
u (Xu, Au)−∇xF 2

u (Xu, Au)]du(3.29)

Let Ω1 ⊂ Ω a set of probability 1, in which the above integral is 0 and in which the path

of X is continuous and the path of A is right-continuous. For ω ∈ Ω1, the integrand in

(3.29) is left-continuous by proposition 4 (∇xF 1(Xt, At) = ∇xF 1(Xt−, At−) because X is

continuous and F is predictable in the second variable), this yields that, for all t < T and

ω ∈ Ω1,

t[∇xF 1
u (Xu, Au)−∇xF 2

u (Xu, Au)]A(u−)[∇xF 1
u (Xu, Au)−∇xF 2

u (Xu, Au) = 0

In the case where for all 0 < t < T , A(t−) is almost surely positive definite, Corollary

3.1 allows to define intrinsically the pathwise derivative of a process Y which admits a

functional representation Y (t) = Ft(Xt, At).

Definition 3.2 (Vertical derivative of a process). Define C1,2
b (X) the set of Ft-adapted

processes Y which admit a functional representation in C1,2
b ([0, T [) ∩ F∞l ([0, T ]):

C1,2
b (X) = {Y, ∃F ∈ C1,2

b ([0, T [) ∩ F∞l ([0, T ]), Y (t) = Ft(Xt, At) P− a.s.} (3.30)

If A(t−) is almost-surely non-singular then for any Y ∈ C1,2
b (X), the predictable process:

∇XY (t) = ∇xFt(Xt, At)

is uniquely defined up to an evanescent set, independently of the choice of F ∈ C1,2
b ([0, T [)∩

F∞l ([0, T ]) in the representation (3.2). We will call ∇XY the vertical derivative of Y with

respect to X.
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In particular this construction applies to the case where X is a standard Brownian

motion, where A = Id, so we obtain the existence of a vertical derivative process for C1,2
b

Brownian functionals:

Definition 3.3 (Vertical derivative of non-anticipative Brownian functionals). Let W be

a standard d-dimensional Brownian motion. For any Y ∈ C1,2
b (W ) with representation

Y (t) = Ft(Wt), the predictable process

∇WY (t) = ∇xFt(Wt)

is uniquely defined up to an evanescent set, independently of the choice of F ∈ C1,2
b .

3.3 Martingale representation formula

The functional Itô formula (Theorem 3.1) then leads to an explicit martingale representa-

tion formula for Ft-martingales in C1,2
b (X). This result may be seen as a non-anticipative

counterpart of the Clark-Haussmann-Ocone formula [9, 51, 34] and generalizes explicit mar-

tingale representation formulas previously obtained in a Markovian context by Elliott and

Kohlmann [27] and Jacod et al. [38].

3.3.1 Martingale representation theorem

Assume in this section that X is a local martingale. Consider an FT measurable random

variable H with E[|H|] < ∞ and consider the martingale Y (t) = E[H|Ft]. If Y admits a

representation Y (t) = Ft(Xt, At) where F ∈ C1,2
b ([0, T [)×F∞l ([0, T ]), we obtain the following

explicit martingale representation theorem:

Theorem 3.2. If Y (t) = Ft(Xt, At) for some functional F ∈ C1,2
b ([0, T [)×F∞l ([0, T ]), then:

Y (T ) = E[Y (T )] +

∫ T

0
∇xFt(Xt, At)dX(t) (3.31)

Note that regularity assumptions are given not on H = Y (T ) but on the functionals

Y (t) = E[H|Ft], t < T , which is typically more regular than H itself.
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Proof. Theorem 3.1 implies that for t ∈ [0, T [:

Y (t) =

∫ t

0
DuF (Xu, Au)du+

1

2

∫ t

0
tr[t∇2

xFu(Xu, Au)d[X](u)]

+

∫ t

0
∇xFu(Xu, Au)dX(u) (3.32)

Given the regularity assumptions on F , the first term in this sum is a finite variation process

while the second is a local martingale. However, Y is a martingale and the decomposition

of a semimartingale as sum of finite variation process and local martingale is unique. Hence

the first term is 0 and: Y (t) =
∫ t

0 Fu(Xu, Au)dXu. Since F ∈ F∞l ([0, T ]) Y (t) has limit

FT (XT , AT ) as t→ T , and on the other hand since
∫ t

0 |∂iFu(Xu, Au)|2d[Xi](u) = [Yi(t)]→

[Yi(T )] <∞, the stochastic integral also converges.

Example 3.15.

If the stochastic exponential eX(t)− 1
2

[X](t) is a martingale, applying Theorem 3.2 to the

functional Ft(xt, vt) = ex(t)−
∫ t
0 v(u)du yields the familiar formula:

eX(t)− 1
2

[X](t) = 1 +

∫ t

0
eX(s)− 1

2
[X](s)dX(s) (3.33)

If X(t)2 is integrable, applying Theorem 3.2 to the functional Ft(x(t), v(t)) = x(t)2 −∫ t
0 v(u)du, we obtain the well-known Itô product formula

X(t)2 − [X](t) =

∫ t

0
2X(s)dX(s) (3.34)

3.3.2 Relation with the Malliavin derivative

The reader familiar with Malliavin calculus is by now probably intrigued by the relation

between the pathwise calculus introduced above and the stochastic calculus of variations as

introduced by Malliavin [48] and developed by Bismut [6, 7], Stroock [59], Shigekawa [56],

Watanabe [64] and others.

To investigate this relation, consider the case where X(t) = W (t) is the Brownian motion

and P the Wiener measure. Denote by Ω0 the canonical Wiener space (C0([0, T ],Rd), ‖.‖∞,P)

endowed with its Borel σ-algebra, the filtration of the canonical process.

Consider an FT -measurable functional H = H(X(t), t ∈ [0, T ]) = H(XT ) with E[|H|] <

∞ and define the martingale Y (t) = E[H|Ft]. If H is differentiable in the Malliavin sense
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[48, 50, 59] i.e. H ∈ D1,1 with Malliavin derivative DtH, then the Clark-Haussmann-Ocone

formula [40, 51, 50] gives a stochastic integral representation of the martingale Y in terms

of the Malliavin derivative of H:

H = E[H] +

∫ T

0

pE[DtH|Ft]dWt (3.35)

where pE[DtH|Ft] denotes the predictable projection of the Malliavin derivative. Similar

representations have been obtained under a variety of conditions [6, 16, 27, 1].

However, as shown by Pardoux and Peng [52, Prop. 2.2] in the Markovian case, one does

not really need the full specification of the (anticipative) process (DtH)t∈[0,T ] in order to

recover the (predictable) martingale representation of H. Indeed, when X is a (Markovian)

diffusion process, Pardoux & Peng [52, Prop. 2.2] show that in fact the integrand is given

by the “diagonal” Malliavin derivative DtYt, which is non-anticipative.

Theorem 3.2 shows that this result holds beyond the Markovian case and yields an

explicit non-anticipative representation for the martingale Y as a pathwise derivative of the

martingale Y , provided that Y ∈ C1,2
b (X).

The uniqueness of the integrand in the martingale representation (3.31) leads, with a

slight abuse of notations, to:

E[DtH|Ft] = ∇W (E[H|Ft]) , dt× dP− a.s. (3.36)

Theorem 3.3. Denote by

• P the set of Ft-adapted processes on [0, T ].

• Lp([0, T ]×Ω) the set of (anticipative) processes φ on [0, T ] with E
∫ T

0 ‖φ(t)‖pdt <∞.

• D the Malliavin derivative operator, which associates to a random variable H ∈

D1,1(0, T ) the (anticipative) process (DtH)t∈[0,T ] ∈ L1([0, T ]× Ω).

• H the set of Malliavin-differentiable functionals H ∈ D1,1(0, T ) whose predictable

projection Ht = pE[H|Ft] admits a C1,2
b (W ) version:

H = {H ∈ D1,1, ∃Y ∈ C1,2
b (W ), E[H|Ft] = Y (t) dt× dP− a.e}
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Then the following diagram is commutative, in the sense of dt × dP almost everywhere

equality:

H D→ L1([0, T ]× Ω)

↓(pE[.|Ft])t∈[0,T ] ↓(pE[.|Ft])t∈[0,T ]

C1,2
b (W )

∇W→ P

Proof. The Clark-Haussmann-Ocone formula extended to D1,1 in [40] gives

H = E[H] +

∫ T

0

pE[DtH|Ft]dWt (3.37)

where pE[DtH|Ft] denotes the predictable projection of the Malliavin derivative. On other

hand theorem 3.2 gives:

H = E[H] +

∫ T

0
∇WE[H|Ft]dW (t) (3.38)

Hence: pE[DtH|Ft] = ∇WE[H|Ft], dt× dP almost everywhere.

From a computational viewpoint, unlike the Clark-Haussmann-Ocone representation

which requires to simulate the anticipative process DtH and compute conditional expecta-

tions, ∇XY only involves non-anticipative quantities which can be computed in a pathwise

manner. This implies the usefulness of (3.31) for the numerical computation of martingale

representations (see remark 3.5).

3.4 Weak derivatives and integration by parts for stochastic

integrals

Assume now that X is a continuous, square-integrable real-valued martingale.

Several authors [35, 65, 14] gave a meaning to the notion of stochastic derivative of the

stochastic integral
∫ t

0 φsdX(s) along the path of X, in the Brownian and general continuous

semimartingale case, and, with some regularity assumptions on the path of the integrand

φ, showed that the stochastic derivative of
∫ t

0 φsdX(s) along the path of X is indeed φt.

The notion of stochastic derivative they defined is a strong derivative, in the sense of limit

in probability.
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In the setting of theorem 3.2, where Y (t) = Ft(Xt, At) =
∫ t

0 ∇xFs(Xs, As)dX(s), the

stochastic integral
∫ t

0 ∇xFs(Xs, As)dX(s) admits as pathwise vertical derivative ∇XY (t) =

∇xFt(Xt, At). Both notions of derivatives are strong derivatives, but a vertical derivative

is a derivative with respect to an instantaneous perturbation of the path of X, while the

stochastic derivative is a derivative going forward in time along the path of X; however

they coincide since in both cases the derivative of the stochastic integral is the integrand.

In this section, we will show that ∇X may be extended to a weak derivative which acts as

the inverse of the Itô stochastic integrals, that is, an operator which satisfies

∇X
(∫

φ.dX

)
= φ, dt× dP− a.s. (3.39)

for square-integrable stochastic integrals of the form:

Y (t) =

∫ t

0
φsdX(s) where E

[∫ t

0
φ2
sd[X](s)

]
<∞ (3.40)

Remark 3.2. The construction in this section does not require the assumption of absolute

continuity for [X], since the functionals used to prove lemma 3.1 do not depend on A. This

construction also easily extends to multidimensional case with heavier notations.

Let L2(X) be the Hilbert space of progressively-measurable processes φ such that:

||φ||2L2(X) = E

[∫ t

0
φ2
sd[X](s)

]
<∞ (3.41)

and I2(X) be the space of square-integrable stochastic integrals with respect to X:

I2(X) = {
∫ .

0
φ(t)dX(t), φ ∈ L2(X)} (3.42)

endowed with the norm

||Y ||22 = E[Y (T )2] (3.43)

The Itô integral φ 7→
∫ .

0 φsdX(s) is then a bijective isometry from L2(X) to I2(X) [54].

Definition 3.4 (Space of test processes). The space of test processes D(X) is defined as

D(X) = C1,2
b (X) ∩ I2(X) (3.44)

Martingale representation theorem 3.2 allows to define intrinsically the vertical deriva-

tive of a process in D(X) as an element of L2(X).
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Definition 3.5. Let Y ∈ D(X), define the process ∇XY ∈ L2(X) as the equivalence class

of ∇xFt(Xt, At), which does not depend on the choice of the representation functional F .

Theorem 3.4 (Integration by parts on D(X)). Let Y,Z ∈ D(X). Then:

E [Y (T )Z(T )] = E

[∫ T

0
∇XY (t)∇XZ(t)d[X](t)

]
(3.45)

Proof. Let Y, Z ∈ D(X) ⊂ C1,2
b (X). Then Y, Z are martingales with Y (0) = Z(0) = 0 and

E[|Y (T )|2] <∞, E[|Z(T )|2] <∞. Applying Theorem 3.2 to Y and Z, we obtain

E [Y (T )Z(T )] = E

[∫ T

0
∇XY dX

∫ T

0
∇XZdX

]
Applying the Itô isometry formula yields the result.

Using this result, we can extend the operator ∇X in a weak sense to a suitable space of

the space of (square-integrable) stochastic integrals, where ∇XY is characterized by (3.45)

being satisfied against all test processes.

The following definition introduces the Hilbert space W1,2(X) of martingales on which

∇X acts as a weak derivative, characterized by integration-by-part formula (3.45). This

definition may be also viewed as a non-anticipative counterpart of Wiener-Sobolev spaces

in the Malliavin calculus [48, 56].

Definition 3.6 (Martingale Sobolev space). The Martingale Sobolev space W1,2(X) is

defined as the closure in I2(X) of D(X).

The Martingale Sobolev space W1,2(X) is in fact none other than I2(X), the set of

square-integrable stochastic integrals:

Lemma 3.1. {∇XY, Y ∈ D(X)} is dense in L2(X) and

W1,2(X) = I2(X).

Proof. We first observe that the set C of “cylindrical” integrands of the form

φn,f,(t1,..,tn)(t) = f(X(t1), ..., X(tn))1t>tn
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where n ≥ 1, 0 ≤ t1 < .. < tn ≤ T and f ∈ C∞(Rn → R), bounded, is a total set in L2(X)

i.e. the linear span of C is dense in L2(X).

For such an integrand φn,f,(t1,..,tn), the stochastic integral with respect to X is given by

the martingale

Y (t) = IX(φn,f,(t1,..,tn))(t) = Ft(Xt, At)

where the non-anticipative functional F is defined on Υ as:

Ft(xt) = f(x(t1), ..., x(tn))(x(t)− x(tn))1t>tn ∈ F∞l

so that:

∇xFt(xt) = f(xt1−, ..., xtn−)1t>tn ∈ F∞l ∩ B

∇2
xFt(xt) = 0,DtF (xt, vt) = 0

which prove that F ∈ C1,2
b ([0, T [). Hence, Y ∈ C1,2

b (X). Since f is bounded, Y is obviously

square integrable so Y ∈ D(X). Hence IX(C) ⊂ D(X).

Since IX is a bijective isometry from L2(X) to I2(X), the density of C in L2(X) entails

the density of IX(C) in I2(X), so W 1,2(X) = I2(X).

Remark 3.3. To obtain the result for right-continuous derivatives rather than left-continuous,

the functional F in the above proof has to be defined as:

Ft(xt) = f(x(t1−), ..., x(tn−))(x(t)− x(tn−))1t≥tn

Theorem 3.5 (Weak derivative onW1,2(X)). The vertical derivative ∇X : D(X) 7→ L2(X)

is closable on W1,2(X). Its closure defines a bijective isometry

∇X : W1,2(X) 7→ L2(X)∫ T

0
φ.dX 7→ φ (3.46)

characterized by the following integration by parts formula: for Y ∈ W1,2(X), ∇XY is the

unique element of L2(X) such that

∀Z ∈ D(X), E[Y (T )Z(T )] = E

[∫ T

0
∇XY (t)∇XZ(t)d[X](t)

]
. (3.47)
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In particular, ∇X is the adjoint of the Itô stochastic integral

IX : L2(X) 7→ W1,2(X)

φ 7→
∫ .

0
φ.dX (3.48)

in the following sense:

∀φ ∈ L2(X), ∀Y ∈ W1,2(X), < Y, IX(φ) >W1,2(X)=< ∇XY, φ >L2(X) (3.49)

i.e. E

[
Y (T )

∫ T

0
φ.dX

]
= E

[∫ T

0
∇XY φ.d[X]

]
(3.50)

Proof. Any Y ∈ W1,2(X) may be written as Y (t) =
∫ t

0 φ(s)dX(s) for some φ ∈ L2(X),

which is uniquely defined d[X] × dP a.e. The Itô isometry formula then guarantees that

(3.47) holds for φ. One still needs to prove that (3.47) uniquely characterizes φ. If some

process ψ also satisfies (3.47), then, denoting Y ′ = IX(ψ) its stochastic integral with respect

to X, (3.47) then implies that U = Y ′ − Y verifies

∀Z ∈ D(X), < U,Z >W1,2(X)= E[U(T )Z(T )] = 0

which implies U = 0 in W1,2(X) since by definition D(X) is dense in W1,2(X). Hence,

∇X : D(X) 7→ L2(X) is closable on W1,2(X)

This construction shows that ∇X : W1,2(X) 7→ L2(X) is a bijective isometry which

coincides with the adjoint of the Itô integral on W1,2(X).

Thus, Itô’s stochastic integral IX with respect to X, viewed as the map

IX : L2(X) 7→ W1,2(X)

admits an inverse onW1,2(X) which is a weak form of the vertical derivative ∇X introduced

in Definition 2.8.

Remark 3.4. In other words, we have established that for any φ ∈ L2(X) the relation

∇X
∫ T

0
φ(t)dX(t) = φ(t) (3.51)

holds in a weak sense.
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Remark 3.5. This result has implications for the numerical computation of the stochastic

integral representation of a martingale. Assume that one can simulate simple paths of the

martingale X and for each sample path the terminal value YT of some Y ∈ I2(X). One

can directly evaluate Y (0) by running a Monte-Carlo. This result implies that he can also

evaluate its martingale representation ∇XY (0): the terminal value YT can be approximated

by the terminal value of a sequence of test processes (FnT (XT , AT ))n≥0 in L2, and the process

∇xFnt (Xt, At) converges in L2(X) to∇XY (t). Since∇xFn is the vertical derivative of a C1,2
b

functional it can be estimated by finite differences. Hence combining the approximation of

YT by terminal value of test processes and finite differences allows numerical computation

of a martingale representation.

In particular these results hold when X = W is a Brownian motion. We can now restate

a square-integrable version of theorem 3.3, which holds on D1,2, and where the operator

∇W is defined in the weak sense of theorem 3.5.

Theorem 3.6 (Lifting theorem). Consider Ω0 = UcT endowed with its Borel σ-algebra, the

filtration of the canonical process and the Wiener measure P. Then the following diagram

is commutative is the sense of dt× dP equality:

I2(W )
∇W→ L2(W )

↑(E[.|Ft])t∈[0,T ] ↑(E[.|Ft])t∈[0,T ]

D1,2 D→ Lp([0, T ]× Ω)

Remark 3.6. With a slight abuse of notation, the above result can be also written as

∀H ∈ D1,2, ∇W (E[H|Ft]) = E[DtH|Ft] (3.52)

In other words, the conditional expectation operator intertwines ∇W with the Malliavin

derivative.

Thus, the conditional expectation operator (more precisely: the predictable projection

on Ft) can be viewed as a morphism which “lifts” relations obtained in the framework of

Malliavin calculus into relations between non-anticipative quantities, where the Malliavin

derivative and the Skorokhod integral are replaced by the weak derivative operator ∇W

and the Itô stochastic integral. Obviously, making this last statement precise is a whole

research program, beyond the scope of this work.



CHAPTER 3. FUNCTIONAL ITÔ CALCULUS AND APPLICATIONS 59

3.5 Functional equations for martingales

Consider now a semimartingale X satisfying a stochastic differential equation with func-

tional coefficients:

dX(t) = bt(Xt, At)dt+ σt(Xt, At)dW (t) (3.53)

where b, σ are non-anticipative functionals on Υ with values in Rd-valued (resp. Rd×n),

whose coordinates are in F∞l . The topological support in (UcT × ST , ‖.‖∞) of the law of

(X,A) is defined as the subset supp(X,A) of all paths (x, v) ∈ UcT × ST for which every

neighborhood has positive measure:

supp(X,A) = (3.54)

{(x, v) ∈ UcT × ST | for any Borel neighborhood V of (x, v),P((X,A) ∈ V ) > 0}

Functionals of X which have the (local) martingale property play an important role

in control theory and harmonic analysis. The following result characterizes a functional

F ∈ C1,2
b ([0, T [)× F∞l ([0, T ]) which define a local martingale as the solution to a functional

version of the Kolmogorov backward equation:

Theorem 3.7 (Functional equation for C1,2 martingales). If F ∈ C1,2
b ([0, T [)× F∞l ([0, T ]),

then Y (t) = Ft(Xt, At), t ≤ T is a local martingale if and only if F satisfies the functional

differential equation for all t ∈]0, T [:

DtF (xt, vt) + bt(xt, vt)∇xFt(xt, vt) +
1

2
tr[∇2

xF (xt, vt)σt
tσt(xt, vt)] = 0, (3.55)

on the topological support of (X,A) in (UcT × ST , ‖.‖∞).

Proof. If F ∈ C1,2
b ([0, T [) ∩ F∞l ([0, T ]), then applying Theorem 3.1 to Y (t) = Ft(Xt, At),

(3.55) implies that the finite variation term in (3.14) is almost-surely zero:

Y (t) =
∫ t

0 ∇xFt(Xt, At)dX(t), and also Y is continuous up to time T by left-continuity of

F . Hence Y is a local martingale.

Conversely, assume that Y is a local martingale. Note that Y is left-continuous by

Theorem 4. Suppose the functional relation (3.55) is not satisfied at some (x, v) belongs to

the supp(X,A) ⊂ UcT × ST . Then there exists t0 < T , η > 0 and ε > 0 such that

|DtF (x′t, v
′
t) + bt(x

′
t, v
′
t)∇xFt(x′t, v′t) +

1

2
tr[∇2

xF (x′t, v
′
t)σt

tσt(x
′
t, v
′
t)]| > ε (3.56)
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for t ≤ t0 and d∞((xt0 , vt0), (x′t, v
′
t)) < η , by left-continuity of the expression. It is in

particular true for all t ∈ [t0− η
2 , t0] and all (x′, v′) belonging to the following neighborhood

of (x, v) in UcT × ST :

{(x′, v′) ∈ UcT × ST |d∞((x, v), (x′, v′)) <
η

2
} (3.57)

Since (XT , AT ) belongs to this neighborhood with non-zero probability, it proves that:

DtF (Xt, At) + bt(Xt, At)∇xFt(xt, vt) +
1

2
tr[∇2

xF (Xt, At)σt
tσt(Xt, At)]| >

ε

2
(3.58)

with non-zero dt × dP measure. Applying theorem 3.1 to the process Y (t) = Ft(Xt, At)

then leads to a contradiction, because as a continuous local martingale its finite variation

part should be null.

Remark 3.7. If the vertical derivatives (but not the functional itself) and the coefficients b

and σ are right-continuous rather than left-continuous, the theorem is the same with the

functional differential equation being satisfied for all t ∈ [0, T [ rather than ]0, T [; the proof

is the same but going forward rather than backward in time from t0.

The martingale property of F (X,A) implies no restriction on the behavior of F outside

supp(X,A) so one cannot hope for uniqueness of F on Υ in general. However, the following

result gives a condition for uniqueness of a solution of (3.55) on supp(X,A):

Theorem 3.8 (Uniqueness of solutions). Let h be a continuous functional on (C0([0, T ])×

ST , ‖.‖∞). Any solution F ∈ C1,2
b ([0, T [) × F∞l ([0, T ]) of the functional equation (3.55),

verifying

FT (x, v) = h(x, v) (3.59)

E[ sup
t∈[0,T ]

|Ft(Xt, At)|] <∞ (3.60)

is uniquely defined on the topological support supp(X,A) of (X,A) in (UcT × ST , ‖.‖): if

F 1, F 2 ∈ C1,2
b ([0, T ]) verify (3.55)-(3.59)-(3.60) then

∀(x, v) ∈ supp(X,A), ∀t ∈ [0, T ] F 1
t (xt, vt) = F 2

t (xt, vt). (3.61)
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Proof. Let F 1 and F 2 be two such solutions. Theorem 3.7 shows that they are local martin-

gales. The integrability condition (3.60) guarantees that they are true martingales, so that

we have the equality: F 1
t (Xt, At) = F 2

t (Xt, At) = E[h(XT , AT )|Ft] almost surely. Hence

reasoning along the lines of the proof of theorem 3.7 shows that F 1
t (xt, vt) = F 2

t (xt, vt) if

(x, v) ∈ supp(X,A).

Example 3.16. Consider a scalar diffusion

dX(t) = b(t,X(t))dt+ σ(t,X(t))dW (t) X(0) = x0 (3.62)

whose law Px0 is defined as the solution of the martingale problem [61] for the operator

Ltf =
1

2
σ2(t, x)∂2

xf(t, x) + b(t, x)∂xf(t, x)

where b and σ are continuous and bounded functions, with σ bounded away from zero. We

are interested in computing the martingale

Y (t) = E[

∫ T

0
g(t,X(t))d[X](t)|Ft] (3.63)

for a continuous bounded function g. The topological support of the process (X,A) under

Px0 is then given by the Stroock-Varadhan support theorem [60, Theorem 3.1.] which yields:

{(x, (σ2(t, x(t)))t∈[0,T ]) |x ∈ C0([0, T ],Rd), x(0) = x0}, (3.64)

From theorem 3.7 a necessary condition for Y to have a a functional representation Y =

F (X,A) with F ∈ C1,2
b ([0, T [) ∩ F∞l ([0, T ]) is that F verifies

DtF (xt, (σ
2(u, x(u)))u≤t) + b(t, x(t))∇xFt(xt, (σ2(u, x(u)))u∈[0,t]) (3.65)

+
1

2
σ2(t, x(t))∇2

xFt(xt, (σ
2(u, x(u)))u∈[0,t]) = 0

together with the terminal condition:

FT (xT , (σ
2(u, x(u))u∈[0,T ]) =

∫ T

0
g(t, x(t))σ2(t, x(t))dt (3.66)

for all x ∈ C0(Rd), x(0) = x0. Moreover, from theorem 3.8, we know that there any solution

satisfying the integrability condition:

E[ sup
t∈[0,T ]

|Ft(Xt, At)|] <∞ (3.67)



CHAPTER 3. FUNCTIONAL ITÔ CALCULUS AND APPLICATIONS 62

is unique on supp(X,A). If such a solution exists, then the martingale Ft(Xt, At) is a version

of Y .

To find such a solution, we look for a functional of the form:

Ft(xt, vt) =

∫ t

0
g(u, x(u))v(u)du+ f(t, x(t))

where f is a smooth C1,2 function. Elementary computation show that F ∈ C1,2([0, T [) ×

F∞l ([0, T ]); so F is solution of the functional equation (3.65) if and only if f satisfies the

Partial Differential Equation with source term:

1

2
σ2(t, x)∂2

xf(t, x) + b(t, x)∂xf(t, x) + ∂tf(t, x) = −g(t, x)σ2(t, x) (3.68)

with terminal condition f(T, x) = 0

The existence of a solution f with at most exponential growth is then guaranteed by stan-

dard results on parabolic PDEs [44]. In particular, theorem 3.8 guarantees that there is at

most one solution such that:

E[ sup
t∈[0,T ]

|f(t,X(t))|] <∞ (3.69)

Hence the martingale Y in (3.63) is given by

Y (t) =

∫ t

0
g(u,X(u))d[X](u) + f(t,X(t))

where f is the unique solution of the PDE (3.68).

3.6 Functional verification theorem for a non-markovian

stochastic control problem

3.6.1 Control problem

In this section, we will take the open set U = Rd.

We consider here a simple non-markovian case of stochastic control problem. A good

survey paper on stochastic control in the usual Markovian setting is [53], while standard

textbook references are [28], [43]. The more general framework of controlled semimartingales

has been studied by probabilistic methods in [24]. We will specify here a non-markovian
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framework for stochastic control based on strong solutions of stochastic differential equations

whose coefficients are functionals of the whole trajectory up to date, and show how the

functional Itô formula 3.14 links the optimal control problem to a functional version of the

Hamilton-Jacobi-Bellman equation. We refer the reader to appendix B for an introduction

to stochastic differential equations with functional coefficients that we will consider in this

section. Let (Ω,B,P) be a probability space, N the set of null sets, W an n-dimensional

Brownian motion on that probability space and (Bt)t≥0 the natural left-continuous filtration

of the Brownian W , augmented by the null sets.

Definition 3.7. Let A be a subset of Rm, for a filtration G we define

AG = {α = (α(s))0≤s≤T ,G-progressively measurable and A-valued, E[

∫ T

0
|α(t)|2dt] <∞}

. AG is called the set of A-valued admissible controls for the filtration G.

Let bt and σt be functionals on C0([0, t], U) × C0([0, t], S+
d ) × A,respectively Rd and

Md,n-valued. Conditions will be imposed later on b and σ. Fixing an initial value (x0, 0),

we suppose that for each α ∈ AB, the stochastic differential equation:

dX(t) = bt(Xt, [X]t, α(t))dt+ σt(Xt, [X]t, α(t))dt (3.70)

has a unique strong solution in the sense of definition B.2 denoted Xα. We are also given

a real-valued functional g defined on C0([0, T ],Rd)×C0([0, T ], S+
d ), and a real-valued func-

tional L defined on
⋃

0≤t<T C
0([0, t],Rd)× C0([0, t], S+

d )× A, which are respectively called

the terminal value and the penalty function of the control problem. The control problem is

finding:

inf
α∈AB

E

[
g(Xα

T , [X
α]T ) +

∫ T

0
Lt(X

α
t , [X

α]t, α(t))dt

]
(3.71)

as well as an optimal control α∗ attaining this infimum. This control setting models a

situation where an operator can specify at each time t a control α(t) on the process X in

order to minimize an objective function g of this process, and that imposing this control

has the infinitesimal cost Lt(X
α
t , [X]αt , α(t))dt to the operator.

We will present two twin versions of a functional verification theorem, theorems 3.9 and
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3.10. The first one will be given in the case where the coefficients of the stochastic differ-

ential equations, as well as the objective and cost function do not depend on the quadratic

variation. The second one will allow for such dependence, in the case where the control acts

only on the drift term of the diffusion (3.70).

3.6.2 Optimal control and functional Hamilton-Jacobi-Bellman equation,

first version

We suppose now that b,σ are as in theorem B.1. For any α ∈ AB and x ∈ C0([0, t0],Rd),

denote Xx,α the strong solution of

dX(t0 + t) = bt0+t(Xt0+t, α(t))dt+ σt0+t(Xt0+t, α(t))dW (t) (3.72)

with initial value x, in the sense of definition B.1. Let x0 ∈ R, viewed as element of

C0({0},Rd), we consider the control problem:

inf
α∈AB

E

[
g(Xx0,α

T ) +

∫ T

0
Lt(X

x0,α
t , α(t))dt

]
(3.73)

where we make the following assumptions on :

1. g is continuous for the sup norm in UcT

2. −K ≤ g(x) ≤ K(1 + sups∈[0,T ] |x(s)|2) for some constant K

3. −K ′ ≤ Lt(x, u) ≤ K ′(1 + sups∈[0,T ] |x(s)|2 for some constant K ′

The cost functional of the control problem (3.73) is a functional on
⋃
t≤T C0([0, t],Rd)×

AB as:

Jt(x, α) = E[g(Xx,α
T ) +

∫ T

t
Ls(X

x,α
s , α(s− t))ds] (3.74)

It is obvious from assumptions 1. to 3. that Jt(x, α) is finite for any admissible control α,

thanks to (B.32).

We define the value functional of the problem on
⋃
t≤T C0([0, t],Rd) as:

Vt(x) = inf
α∈AB

Jt(x, α) (3.75)
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It is obvious from assumptions 1. to 4. and the L2 bound (B.32) that Vt(x) is finite and

satisfies for some constant K ′′:

−K ′′ ≤ Vt(x) ≤ K ′′(1 + sup
s∈[0,t]

|x(s)|2) (3.76)

It is readily observed that the value process

Uα(t) = Vt(X
x0,α
t ) +

∫ t

0
Ls(X

x0,α
s , α(s))ds

has the submartingale property. The martingale approach to stochastic optimal control

then characterizes an optimal control α∗ by the property that the value process Uα∗(t) =

Vt(X
x0,α∗
t ) +

∫ t
0 Ls(X

x0,α∗
s , α∗(s))ds has the (local) martingale property [55, 17, 15, 24, 58].

We can therefore use the functional Itô formula (3.14) to give a sufficient condition for a

functional W to be equal to the value functional V and for a control α∗ to be optimal. This

necessary condition takes the form of a functional Hamilton-Jacobi-Bellman equation.

The Hamiltonian of the control problem is a functional on
⋃
t≤T C0([0, T ],Rd) × Rd × Sd,

defined as:

Ht(x, ρ,M) = inf
u∈A

1

2
tr[M tσt(x, u)σt(x, u)] + ρbt(x, u) + Lt(x, u) (3.77)

The following theorem is a functional version of the Hamilton-Jacobi-Bellman equation.

It links the solution of the optimal control problem to a functional differential equation.

Theorem 3.9 (Verification Theorem, first version). Let W be a functional in C1,2
b ([0, T [)×

F∞l ([0, T ]), depending on the first argument only. Assume that W solves the functional

Hamilton-Jacobi-Bellman equation on C0([0, T ],Rd), ie for any x ∈ C0([0, T ],Rd):

DtWt(xt) +Ht(xt,∇xWt(xt),∇2
xWt(xt)) = 0 (3.78)

as well as the terminal condition:

WT (x) = g(x) (3.79)

and the quadratic growth boundedness:

Wt(xt) ≤ C sup
s≤t
|x(s)|2 (3.80)
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Then, for every x ∈ C0([0, t],Rd) and every admissible control α:

Wt(x) ≤ Jt(x, α) (3.81)

If furthermore for x ∈ C0([0, t],Rd) there exists an admissible control α∗ such that:

Ht+s(X
x,α∗

t+s ,∇xW (Xx,α∗

t+s ),∇2
xW (Xx,α∗

t+s )) =

1

2
tr[∇2

xW (Xx,α∗

t+s )tσt+s(X
x,α∗

t+s , α
∗(s))σt+s(X

x,α∗

t+s , α
∗(s))]

+∇xW (Xx,α∗

t+s )bt+s(X
x,α∗

t+s , α
∗(s)) + Lt+s(X

x,α∗

t+s , α
∗(s)) (3.82)

for 0 ≤ s < T , ds× dP almost surely, then:

Wt(x) = Vt(x) (3.83)

Proof. Let α be an admissible control, t < T and x ∈ C0([0, t],Rd), applying functional Itô

formula to the functional F defined on
⋃
s≤T−tD([0, s],Rd) by:

Fs(y) = Wt+s((x(u)1u<t + [x(t) + y(u− t)]1u≥t)u≤t+s) (3.84)

yields:

Wt+s(X
x,α
t+s −Wt(x) =

∫ s

0
∇xWt+u(Xx,α

t+u)dW (u)

+

∫ s

0
Dt+uW (Xx,α

t+u) +∇xWt+u(Xx,α
t+u)bt+u(Xx,α

t+u, α(t+ u))du

+
1

2
tr[t∇2

xFu(Xx,α
u )tσuσu(Xx,α

u )]du (3.85)

Since W solves the Hamilton-Jacobi-Bellman equation, it implies that:

Wt+s(X
x,α
T )−Wt(x) ≥

∫ s

0
∇xWt+u(Xx,α

t+u)dW (u)

−
∫ s

0
Lt+u(Xx,α

u , α(u))du (3.86)

In other words, Wt+s(X
x,α
T )−Wt(x)+

∫ s
0 Lt+u(Xu, α(u))du is a local submartingale. Growth

bound (3.80) and L2-boundedness of the solution of stochastic differential equation (B.32)

guarantee that it is actually a true submartingale, hence, taking s→ T−t, the left-continuity

of W yields:

E

[
g(Xx,α

T ) +

∫ T−t

0
Lt+u(Xx,α

u , α(u))du

]
≥Wt(x) (3.87)
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This being true for any admissible control α proves that Wt(x) ≤ Jt(x).Taking α = α∗

transforms inequalities to equalities, submartingale to martingale, hence establishes the

second part of the theorem.

3.6.3 Optimal control and functional Hamilton-Jacobi-Bellman equation,

second version

We suppose now that b,σ are as in corollary B.1, with σ not depending on the control,

and that furthermore the path of t 7→ σt(xt,
∫ t

0 v(s)ds) are right-continuous for all (x, v) ∈

C0([0, t0],Rd) × St. For any α ∈ AB and (x, v) ∈ C0([0, t0],Rd) × St, denote Xx,v,α the

strong solution of

dX(t0 + t) = bt0+t(Xt0+t, [X]t0+t, α(t))dt+ σt0+t(Xt0+t, [X]t0+t)dW (t) (3.88)

with initial value

(
x,
(∫ t

0 v(s)ds
)
t≤t0

)
, in the sense of definition B.2. Let (x0, 0) ∈ R,

viewed as element of C0(0,Rd)× S0, we consider the control problem:

inf
α∈AB

E

[
g(Xx0,0,α

T , [X(x0,0,α]T ) +

∫ T

0
Lt(X

x0,0,α
t , [Xx0,0,α]t, α(t))dt

]
(3.89)

where we make the following assumptions on :

1. g is continuous for the sup norm in UcT × ST

2. −K ≤ g(x, y) ≤ K(1 + sups∈[0,T ] |x(s)|2 + sups∈[0,T ] |y(s)|2) for some constant K

3. −K ≤ Lt(x, y, u) ≤ K(1 + sups∈[0,T ] |x(s)|2 + sups∈[0,T ] |y(s)|2) for some constant K ′

The cost functional of the control problem (3.89) is a functional on
⋃
t≤T C0([0, t],Rd)×

St ×AB as:

Jt(x, y, α) = E

[
g(Xx,y,α

T , [Xx,y,α]T ) +

∫ T

t
Ls(X

x,y,α
s , [Xx,y,α]s, α(s))ds

]
(3.90)

It is obvious from assumptions 1. to 3. that Jt(x, v, α) is finite for any admissible control

α, thanks to the L2 bound (B.32).

We define the value functional of the problem on
⋃
t≤T Uct × St as:

Vt(x, v) = inf
α∈AB

Jt(x, v, α) (3.91)



CHAPTER 3. FUNCTIONAL ITÔ CALCULUS AND APPLICATIONS 68

It is obvious from assumptions 1. to 4. and the L2 bound (B.32) that Vt(x, v) is finite and

satisfies for some constant K”:

−K ′′ ≤ Vt(x, v) ≤ K ′′(1 + sup
s∈[0,t]

|x(s)|2 +

∫ t

0
|v(s)|2) (3.92)

It is readily observed that the value process

Uα(t) = Vt(X
x0,α
t , [Xx0,α]t) +

∫ t

0
Ls(X

x0,α
s , [Xx0,α]s, α(s))ds

has the submartingale property. The martingale approach to stochastic optimal control

then characterizes an optimal control α∗ by the property that the value process Uα∗(t) =

Vt(X
x0,α∗
t , [Xx0,α∗]t) +

∫ t
0 Ls(X

x0,α∗
s , [Xx0,α∗]s, α∗(s))ds has the (local) martingale property

[55, 17, 15, 24, 58]. We can therefore use the functional It0̂ formula (3.14) to give a sufficient

condition for a functional W to be equal to the value functional V and for a control α∗ to be

optimal. This necessary condition takes the form of a functional Hamilton-Jacobi-Bellman

equation.

The Hamiltonian of the control problem is a functional on
⋃
t≤T Uct ×St×Rd×Sd, defined

as:

Ht(x, v, ρ,M) = inf
u∈A

1

2
tr[M tσt(x, v)σt(x, v)] + ρbt(x, v, u) + Lt(x, v, u) (3.93)

The following theorem is a functional version of the Hamilton-Jacobi-Bellman equation.

It links the solution of the optimal control problem to a functional differential equation.

Theorem 3.10 (Verification Theorem, second version). Let W be a functional in

C1,2
b ([0, T [) × F∞l ([0, T ]). Assume that W solves the functional Hamilton-Jacobi-Bellman

equation on C0([0, T ],Rd), ie for any (x, v) ∈ C0([0, T ],Rd)×D([0, T ], S+
d ):

DtWt(xt, vt) +Ht

(
xt,

(∫ s

0
v(u)du

)
s≤t

,∇xWt(xt, vt),∇2
xWt(xt, vt)

)
= 0 (3.94)

as well as the terminal condition:

WT (x, v) = g

(
x,

(∫ t

0
v(s)ds

)
t≤T

)
(3.95)

Then, for every x ∈ C0([0, t],Rd) and every admissible control α:

Wt(x, v) ≤ Jt(x, v, α) (3.96)
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If furthermore for x ∈ C0([0, t],Rd) there exists an admissible control α∗ such that, for

0 ≤ s < T , ds× dP almost surely:

Ht+s(X
x,v,α∗

t+s , [Xx,v,α∗

t+s ],∇xW (Xx,v,α∗

t+s , (σu)u≤t+s),∇2
xW (Xx,v,α∗

t+s , (σu)u≤t+s)) =

1

2
tr[∇2

xW (Xx,v,α∗

t+s , (σu)u≤t+s)
tσt+sσt+s]

+∇xW (Xx,v,α∗

t+s , (σu)u≤t+s)bt+s(X
x,v,α∗

t+s , [Xx,v,α∗

t+s ], α∗(s)) + Lt+s(X
x,v,α∗

t+s , [Xx,v,α∗

t+s ], α∗(s))

where σu := σu(Xx,v,α∗
u , [Xx,v,α∗

u ])). Then:

Wt(x, v) = Vt(x, v) (3.97)

The proof of this theorem goes exactly as the proof of theorem 3.9. The subtle point

is that if σ were dependent on the control, it would be impossible to apply the functional

Itô formula to Ws(X
x,v,α
s , [Xx,v,α]s) because d[Xx,v,α]s

ds would not necessarily admit a right-

continuous representative for any admissible control α.
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Chapter 4

Localization

4.1 Motivation

The regularity assumption needed for functionals in theorems 3.1, 3.2 and 3.7 is strong in

the sense that it excludes many interesting examples of functionals representing conditional

expectations and satisfying the functional differential equation in theorem 3.7, but yet

failing to satisfy its regularity assumptions. The tfollowing two examples show the main

issues that we will be addressing by defining a notion of local regularity and proving that

some of our main theorems from chapter 3 still hold with this weaker notion.

Example 4.1 (Non-continuous functional). One-dimensional standard Brownian motion W ,

b > 0, Mt = sup0≤s≤tW (s) and the process:

Y (t) = E[1MT≥b|Ft] (4.1)

This process admits the functional representation Y (t) = Ft(W (t)) with Ft defined as:

Ft(xt) = 1sup0≤s≤t x(s)≥b + 1sup0≤s≤t x(s)<b

[
2− 2Φ

(
b− x(t)√
T − t

)]
(4.2)

where Φ is the cumulative distribution function of the standard Normal random variable.

This functional is not even continuous at fixed times because a path xt where x(t) < b but

sup0≤s≤t x(s) = b can be approximated in the sup norm by paths where sup0≤s≤t x(s) < b.

Also, the path t 7→ Ft(xt) is not always continuous at T (take a suitable path that hit b for

the first time at time T ). However, one can easily check that ∇xF , ∇2
xF and DF exist and

satisfy the functional differential equation in theorem 3.7 on the set C0([0, T ],Rd)× ST .
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Example 4.2 (Exploding derivatives). Take a geometric Brownian motion S(t) = eσW (t)−σ
2

2
t,

and times 0 ≤ s1 < s2 < T

Y (t) = E

[(
S(s2)

S(s1)
−K

)+

|Ft

]
(4.3)

BS(x,K, σ, r, δ) the Black-Scholes price of a call with underlying price x, strike K, implied

volatility σ, interest rate r and time to maturity δ, the process Y admits the functional

representation Y (t) = Ft(St), where:

Ft(xt) = 1t<s1BS(1,K, σ, 0, s2 − s1) + 1s1≤t<s2BS(
x(t)

x(s1−)
,K, σ, 0, s2 − t)

+1t>s2

(
x(s2−)

x(s1)
−K

)+

(4.4)

∇2
xF and DF fail to be boundedness-preserving since they explode as t → s2− on paths

where x(s2) = Kx(s1), since the Black-Scholes Γ and Θ explode as the underlying price

equals the strike and time-to-maturity goes to 0 (see for example [25]). However, the

functional does satisfy the functional differential equation in theorem 3.7 on the set {x ∈

C0([0, T ],R), x(s2) 6= Kx(s1)}.

In this chapter, we will consider functionals defined on Υc :=
⋃
t≤T UcT × ST , which can

be extended to cadlag paths only in a local sense that will be made precise (definition 4.10),

allowing us to define their vertical derivatives (definition 4.12). As pointed out by the two

examples above, the notion of local regularity is necessary in order for the prices of most

usual exotic derivatives to satisfy a valuation functional differential equation (see chapter

5).

4.2 A local version of the functional Itô formula

4.2.1 Spaces of continuous and differentiable functionals on optional in-

tervals

We will introduce in this section spaces of non-anticipative functionals defined on the bundle

of cadlag paths Υ.
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Definition 4.1. Let t < T , define the following equivalence relation on UT × ST :

(x, v)Rt(x′, v′) if and only if ∀s ≤ t, (x(s), v(s)) = (x′(s), v′(s)) (4.5)

Denote (xt, vt) the equivalence class of (x, v) for Rt which depends only on the restriction

(xt, vt).

In the following definitions, optional times are defined on the canonical space UcT × ST ,

filtered by the natural filtration of the canonical process (X,V )((x, v), t) = (x(t), v(t)).

Let τ1 ≤ τ2 be two optional times. We introduce the following definitions:

Definition 4.2. Let Ψ be an application from Υ to the set of open subsets of U . Ψ is said

to be containing the paths on [τ1, τ2[ if and only if:

∀(x, v) ∈ UcT × ST , ∀t ∈ [τ1(x, v), τ2(x, v)[, x(t) ∈ Ψ(xτ1(x,v), vτ1(x,v)) (4.6)

Definition 4.3. Let V be a subset of U and t1 < t2 ≤ T . Define ΞV (t1, t2) ⊂ UT × ST as

the set of paths which are in V between time t1 and t2, that is:

ΞV (t1, t2) = {(x, v) ∈ UT × ST |∀t ∈ [t1, t2[, x(t) ∈ V } (4.7)

We will define notions of continuity on the optional interval [τ1, τ2[, which only considers

paths coinciding up to time τ1. Note that contrary to the equivalent spaces in section

2.2.2, the spaces introduced below must be defined as subspaces of the space of adapted

functionals. The reason is that, as the notion of continuity developed here does not control

the dependence of the functional in the paths of its arguments up to time τ1, it is insufficient

to imply measurability.

Definition 4.4 (Adapted functionals). A non-anticipative functional is said to be adapted

if and only if the process (x, v, t) 7→ Ft(xt, vt) is adapted to the natural filtration of the

canonical process (x, v, t) 7→ (x(t), v(t)) on the space UT ×ST endowed with the supremum

norm and its Borel σ-algebra.

Definition 4.5 (Continuous at fixed times on optional intervals). An adapted functional

F defined on Υ− is said to be continuous at fixed times on the interval [τ1, τ2[ if and only
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if there exists an application Ψ containing the paths on [τ1, τ2[ such that:

∀(x, v) ∈ UcT × ST∀t ∈ [τ1(x, v), τ2(x, v)[,

∀(x′, v′) ∈ ΞΨ(xτ1(x,v),vτ1(x,v)))
(τ1(x, v), τ2(x, v)) ∩ (xτ1(x,v), vτ1(x,v)),∀ε > 0,∃η > 0,

∀(x′′, v′′) ∈ ΞΨ(xτ1(x,v),vτ1(x,v)))
(τ1(x, v), τ2(x, v)) ∩ (xτ1(x,v), vτ1(x,v)),

d∞((x′t, v
′
t), (x

′′
t , v
′′
t ) < η ⇒ |Ft(x′t, v′y)− Ft′(x′′t′ , v′′t′)| < ε (4.8)

Definition 4.6 (Space of continuous functionals on optional intervals). Define

F∞([τ1, τ2[) as the set of adapted functionals F = (Ft, t ∈ [0, T [), for which there exists an

application Ψ containing the paths on [τ1, τ2[ such that:

∀(x, v) ∈ UcT × ST∀t ∈ [τ1(x, v), τ2(x, v)[,

∀(x′, v′) ∈ ΞΨ(xτ1(x,v),vτ1(x,v)))
(τ1(x, v), τ2(x, v)) ∩ (xτ1(x,v), vτ1(x,v)),∀ε > 0,∃η > 0,

∀t′ ∈ [τ1(x, v), τ2(x, v)[,∀(x′′, v′′) ∈ ΞΨ(xτ1(x,v),vτ1(x,v)))
(τ1(x, v), τ2(x, v)) ∩ (xτ1(x,v), vτ1(x,v)),

d∞((x′t, v
′
t), (x

′′
t′ , v
′′
t′) < η ⇒ |Ft(x′t, v′y)− Ft′(x′′t′ , v′′t′)| < ε

Definition 4.7 (Space of boundedness-preserving functionals on optional interval). Define

B([τ1, τ2[) as the set of adapted functional F , such that there exists an increasing sequence

of stopping times σn ≥ τ1, limn σn = τ2, a sequence of applications Ψn containing the paths

on [τ1, σn[, such that for every compact subset K ⊂ U,R > 0, n ≥ 0 there exists a constant

CK,R,n > 0 such that:

∀(x, v) ∈ C0([0, T ],K)× ST s.t. sup
s∈[0,T ]

|v(s)| ≤ R

∀(x′, v′) ∈ ΞΨn(xτ1(x,v),vτ1(x,v)))
(τ1(x, v), τ2(x, v)) ∩ (xτ1(x,v), vτ1(x,v))

∀t ∈ [τ1(x, v), σn(x, v)[, sup
s∈[0,σn(x,v)]

|v′(s)| ≤ R⇒ |Ft(x′t, v′t)| ≤ CK,R,n (4.9)

Definition 4.8 (Spaces of differentiable functions on an optional interval). Define

Cj,kb ([τ1, τ2[) as the set of functionals F ∈ F∞([τ1, τ2[), predictable in the second variable, for

which there exists an application Ψ containing the paths, such that for all (x, v) ∈ UcT ×ST ,

the function F is differentiable j times horizontally and k times vertically at each points

(x′t, v
′
t) for t ∈ [τ1(x, v), τ2(x, v)[ and (x′, v′) ∈ ΞΨ(xτ1(x,v),vτ1(x,v))

(τ1(x, v), τ2(x, v)) in the

sense of definitions 2.6, 2.8, such that the horizontal derivatives define functionals continuous

at fixed times on [τ1, τ2[ and the vertical derivatives define elements of F∞([τ1, τ2[).
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Remark 4.1. If a functional F belongs to Cj,kb ([τ1, τ2[), the same application Ψ can be chosen

in the definitions of Cj,kb ([τ1, τ2[),F∞([τ1, τ2[) for the functional F and its derivatives, the

same sequence (σn) can be chosen in the definition of B([τ1, τ2[) for all derivatives, the same

sequence Ψn in the definition of B([τ1, τ2[) can be chosen for all derivatives, and it can be

chosen such that Ψn ⊂ Ψ.

The role of the application Ψ in those definitions is to reduce the regularity requirement

of the functionals to an open set in which continuous paths evolve on the interval [τ1, τ2[,

which can be dependent on the history of the path up to time τ1. The role of the sequences

σn and Ψn are to allow the derivatives of the functional to explode as time τ2 is approached.

4.2.2 A local version of functional Itô formula

Theorem 4.1. Let τ1 ≤ σ ≤ τ2 be three optional times, such that σ < τ2 on the event

τ1 < τ2. If F ∈ C1,2
b ([τ1, τ2[), then:

Fσ(Xσ, Aσ)− Fτ1(Xτ1 , Aτ1) =

∫ σ

τ1

DuF (Xu, Au)du+

∫ σ

τ1

∇xFu(Xu, Au).dX(u)

+

∫ σ

τ1

1

2
tr[t∇2

xFu(Xu, Au) d[X](u)] a.s. (4.10)

where, with a slight abuse of notation, σ = σ(XT , AT ) and τ1 = τ1(XT , AT ).

Proof. Let σn be as in definition, define a random subdivision of [τ1, σ ∧ σn] as follows:

τn0 = τ1 τnk = inf{u > τnk−1|2nu ∈ N or |∆A(u)| ≥ 1

n
} ∧ σ ∧ σn (4.11)

and the following approximations of the path of X and A:

nX = 1[0,τ1[X +

∞∑
i=0

X(τni+1)1[τni ,τ
n
i+1) +X(σ ∧ σn)1{σ∧σn}

nA = 1[0,τ1[A+

∞∑
i=0

A(τni )1[τni ,τ
n
i+1) +A(σ ∧ σn)1{σ∧σn} (4.12)

which coincides with (X,A) up to time τ1 , then are pathwise constant between times τ1

and σ ∧ σn.

With this setup, following the proof of theorem 3.1 establishes the formula between

times τ1 and σn ∧ σ. The point is that all approximations of the paths of X and A in the
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proof take values that are actually taken by X and A themselves, and coincide with X and

A up to time τ1, so all of them belong to ΞΨn(xτ1 ,vτ1 )(τ1, τ2) ∩ (xτ1 , vτ1). The observation

that P{∃n, σn ≥ σ} = 1 then concludes the proof.

4.3 Locally regular functionals

4.3.1 Spaces of locally regular functionals

Definition 4.9 (Non-anticipative functional of continuous paths). A non-anticipative func-

tional on continuous paths is a real-valued functional defined on the vector bundle:

Υc =
⋃

t∈[0,T ]

C0([0, t], U)×D([0, t], S+
d ) (4.13)

We will introduce spaces of functionals defined on Υc, which can locally be extended to

functionals on Υ in a sense that will be made precise in definition 4.10, which will allow to

define their vertical derivatives (definition 4.12).

Definition 4.10 (Space of locally regular functionals). Define the space of locally regular

functionals, denoted Rloc, as the space of functionals F defined on Υc such that there

exists an increasing sequence (τi)i≥0 of optional times , satisfying τ0 = 0, limi τi = T , and a

sequence (F i)i≥0 of functionals, such that F i ∈ C1,2
b ([τi, τi+1[), and:

∀(x, v) ∈ C0([0, T ],Rd)× ST ,∀t ∈ [0, T ],∀i ≥ 0

Ft(xt, vt)1t∈[τi(x,v),τi+1(x,v)[ = F it (xt, vt)1t∈[τi(x,v),τi+1(x,v)[ (4.14)

Definition 4.11 (Space of functionals having continuous path on a set). Let D be a Borel

subset of the canonical space. A functional F on Υc is said to have continuous path on the

set D if and only if, for all (x, v) ∈ D, the path t 7→ Ft(xt, vt) is continuous on [0, T ].

Example 4.3. A functional F ∈ C1,2
b ([0, T [) ∩ F∞([0, T ]), whose vertical derivatives are in

F∞([0, T [), is of course in Rloc, taking the following constant sequences:

τi(x, v) = T, i ≥ 1; ti = T, F i = F, i ≥ 0, σn = T − 1

n
(4.15)

It has continuous path on D = UcT × ST .
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Example 4.4. The functional F defined as in example 4.1 belongs to Rloc, defining the

following sequences:

τ1(x, v) = inf{t ≥ 0|x(t) = b} ∧ T, τi(x, v) = T, i ≥ 2

F 0
t (xt, vt) = 2− 2Φ

(
b− x(t)√
T − t

)
, F 1

t (xt, vt) = 1, i ≥ 1 (4.16)

The functional F 0 is in C1,2
b ([τ0, τ1[) taking Ψ(xt, vt) =] −∞, b[, Ψn(xt, vt) =] −∞, b[ and

σn(x, v) = τ1(x, v) ∧
(
T − 1

n

)
. F has continuous path on the set D = {(x, v) ∈ UcT ×

ST |x(T ) 6= b}. Note that P(WT ∈ D) = 1.

Example 4.5. The functional F defined as in example 4.2 belongs to Rloc, defining the

following sequences:

τ1(x, v) = s1, τ2(x, v) = s2, τi(x, v) = T, i ≥ 3

F 0
t (xt, vt) = BS(1,K, σ, 0, s2 − s1)

F 1
t (x, v) = 1t≥s1BS(

x(t)

x(s1−)
,K, σ, 0, s2 − t)

F 2
t (xt, vt) = 1t≥s2

(
x(s2−)

x(s1)
−K

)+

, i ≥ 1 (4.17)

The functional F 1 is in C1,2
b ([τ1, τ2[) with the trivial choice Ψ = U and with σn = s2 − 1

n .

It has continuous path on the set UcT × ST .

The following example shows a case where the application Ψ is non-constant, ie a case in

which the open set where the paths on which the functionals F i are required to be regular,

has to be chosen dependent on history.

Example 4.6. Consider a one-dimensional standard Brownian motion W , b > 0 take 0 <

t1 < T , and define for t ≥ t1: Mt = supt1≤s≤t[W (s)−W (t1)] and the process:

Y (t) = E[1MT≥b|Ft] (4.18)

This process admits the functional representation Y (t) = Ft(W (t)) with Ft defined as:

Ft(xt) = 1t<t1

[
2− 2Φ

(
b√

T − t1

)]
+

1t≥t1

(
1supt1≤s≤t x(s)−x(t1)≥b + 1supt1≤s≤t x(s)−x(t1)<b

[
2− 2Φ

(
b+ x(t1)− x(t)√

T − t

)])
(4.19)
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It belongs to Rloc, defining the following sequences:

τ1(x, v) = t1, τ2(x, v) = inf{t ≥ t1|x(t)− x(t1) = b} ∧ T, τi(x, v) = T, i ≥ 3

F 0
t (xt, vt) = 2− 2Φ

(
b√

T − t1

)
, F 1

t (xt, vt) = 2− 2Φ

(
b+ x(t1)− x(t)√

T − t

)
,

F it (xt, vt) = 1, i ≥ 2 (4.20)

The functional F 0 is in C1,2
b ([0, τ1[) taking Ψ = Ψn = R and σn(x, v) = t1 − 1

n .

The functional F 1 is in C1,2
b ([τ1, τ2[) taking Ψ(xt1 , vt1) =] − ∞, b + x(t1)[, Ψn(xt1 , vt1) =

]−∞, b+ x(t1)− 1
n [ and σn(x, v) = inf{t ≥ 0|x(t)− x(t1) ≥ b− 1

n}. F has continuous path

on the set D = {(x, v) ∈ UcT × ST |x(T )− x(t1) 6= b}. Note that P(WT ∈ D) = 1.

4.3.2 A local uniqueness result on vertical derivatives

The following theorem are local versions of theorems 2.2 and 2.3. We will only give the

proof for theorem 4.3 which needs to be modified in the local case. The adaptation of

theorem 2.2 to obtain its local version 4.2 is pretty straightforward and hence will not be

given. These theorems will allow us to define the vertical derivatives of functionals defined

on Υc and satisfying a local regularity assumption (see definition 4.12).

Theorem 4.2. Let τ1 ≤ τ2 ≤ T be optional times defined on the canonical space UcT × ST ,

endowed with the filtration of the canonical process (X,V )((x, v), t) = (x(t), v(t)). Assume

F 1, F 2 ∈ C1,1
b ([τ1, τ2[). If F 1 and F 2 coincide on continuous paths on [τ1, τ2[:

∀t < T, ∀(x, v) ∈ UcT × ST ,

F 1
t (xt, vt)1[τ1(x,v),τ2(x,v)[(t) = F 2

t (x, v)1[τ1(x,v),τ2(x,v)[(t)

then ∀t < T, ∀(x, v) ∈ UcT × ST ,

∇xF 1
t (xt, vt)1[τ1(x,v),τ2(x,v)[(t) = ∇xF 2

t (xt, vt)1[τ1(x,v),τ2(x,v)[(t)

Theorem 4.3. Let τ1 ≤ τ2 ≤ T be two optional times defined on the canonical space

UcT ×ST , endowed with the filtration of the canonical process (X,V )((x, v), t) = (x(t), v(t)).

Assume F 1, F 2 ∈ C1,2
b ([τ1, τ2[). If F 1 and F 2 coincide on continuous paths on [τ1, τ2[:

∀t < T, ∀(x, v) ∈ UcT × ST ,

F 1
t (xt, vt)1[τ1(x,v),τ2(x,v)[(t) = F 2

t (x, v)1[τ1(x,v),τ2(x,v)[(t) (4.21)
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Then:

∀t < T, ∀(x, v) ∈ UcT × ST ,

∇2
xF

1
t (xt, vt)1[τ1(x,v),τ2(x,v)[(t) = ∇2

xF
2
t (xt, vt)1[τ1(x,v),τ2(x,v)[(t)

Proof. Let F = F 1−F 2. Assume that there exists some (x, v) ∈ C0([0, T ],Rd)×ST such that

for some t ∈ [τ1(x, v), τ2(x, v)), and some direction h ∈ Rd, ‖h‖ = 1, th∇2
xFt(xt, vt).h > 0,

and denote α = 1
2
th∇2

xFt(xt, vt).h. We will show that this leads to a contradiction. We

already know that ∇xFt(xt, vt) = 0 by theorem 2.2. Let ε > 0 be small enough so that:

∀t′ > t,∀(x′, v′) ∈ Ut′ × St′ , d∞((xt, vt), (x
′, v′)) < ε

⇒ |Ft′(x′, v′)| < |Ft(xt, vt)|+ 1, |∇xFt′(x′, v′)| < 1,

|DtF (x′, v′)| < C, th∇2
xFt′(x

′, v′).h > α (4.22)

where C > 0 is some positive constant. Let W be a one dimensional Brownian motion on

some probability space (Ω,B,P), (Bs) its natural filtration, and let

τ = inf{s > 0||W (s)| = ε

2
} (4.23)

Define the process:

Z(s) = Ft+s(Ut+s, vt,s),∈ [0, T − t] (4.24)

where, for t′ ∈ [0, T ],

U(t′) = x(t′)1t′≤t + (x(t) +W ((t′ − t) ∧ τ)h)1t′>t (4.25)

and note that for all s < ε
2 ,

d∞((Ut+s, vt,s), (xt, vt)) < ε (4.26)

Note that since t ∈ [τ1(x, v), τ2(x, v)[ the path (U, vt,T−t) coincides with (x, v) on [0, t].

Therefore t ∈ [τ1(U, vt,T−t), τ2(U, vt,T−t)[ almost surely since τ1 and τ2 are optional times for

the canonical filtration. Since τ2 is an optional time, τ2(x, v) > t implies that τ2(x′, v′) > t

for any path (x′, v′) which coincides with (x, v) on [0, t]. In particular P(τ2(U, vt,T−t) > t) =

1. Let the sequence σn be as in definition 4.7 for the derivatives of the functional F , since
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σn → τ2, there exists n0 such that P(σn0 > t) > 0. Define the following optional time on

(Ω,B, (Bs),P):

σ = (σn0(U, vt,T−t)− t) ∧
ε

2
∧ τ (4.27)

so that we have:

P(σ > 0) > 0. (4.28)

Define the following random subdivision of [0, σ]:

υn0 = 0; υni = inf
s>υni−12ns∈N

∧σ (4.29)

Define the following sequence of non-adapted piecewise constant approximations of the

process W :

Wn(s) =
n∞∑
i=0

W (υi+1)1s∈[υi,υi+1[ +W (σ)1s≥σ, 0 ≤ s (4.30)

Denote:

Un(t′) = x(t′)1t′≤t + (x(t) +Wn((t′ − t))h)1t′>t Zn(s) = Ft+s(U
n
t+s, vt,s) (4.31)

Note first that as n→∞, Zn(σ−)−Zn(0) converges to Z(σ)−Z(0) because F ∈ F∞([τ1, τ2[),

and that therefore by bounded convergence E[Zn(σ−)−Zn(0)] converges to E[Z(σ)−Z(0)].

We then have the following decomposition:

Zn(υni −)− Zn(υni−1−) = Ft+υni (Unt+υni −, vt,υ
n
i
)− Ft+υni−1

(Unt+υni−1
, vt,υni−1

)

+ Ft+υni−1
(Unt+υni−1

, vt,υni−1
)− Ft+υni−1

(Unt+υni−1−, vt,υ
n
i−1

)(4.32)

The first line in the right-hand side of (4.32) can be written: ψ(υni −υni−1)−ψ(0) where:

ψ(h) = Ft+υni−1+h(Unt+υni−1,h
, vt,υni−1+h) (4.33)

ψ is continuous and right-differentiable with right derivative:

ψ′(h) = Dt+υni−1+h(Unt+υni−1,h
, vt,υni−1+h) (4.34)

so:

ψ(υni − υni−1)− ψ(0) =

∫ υni

υni−1

Dt+u(Unt+υni−1,u−υni−1
, vt,u)du (4.35)
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Summing all of the above from i = 1 to ∞ (the sum is finite) and taking the limit by

dominated convergence theorem, (almost surely Un converges to U for the supremum norm

and DF is continuous at fixed times on [τ1, τ2[), and the integrand is bounded since t+σ ≤

σn0 , one gets as almost-sure limit as n→∞:∫ σ

0
Dt+uF (Ut+u, vt,u)du = 0 (4.36)

because DF is 0 on continuous first-argument. By bounded convergence theorem, one finally

obtains:

E[

∞∑
i=0

Ft+υni (Unt+υni −, vt,υ
n
i
)− Ft+υni−1

(Unt+υni−1
, vt,υni−1

)]→ 0 (4.37)

as n→∞.

The second line can be written:

φ(W (υi)−W (υi−1))− φ(0) (4.38)

where:

φ(u) = Ft+υni−1
(Un,ut+υni−1−

, vt,υni−1
) (4.39)

so that φ is a function parameterized by an Fυni−1
measurable vector that is almost surely

C2. Applying Itô’s formula to φ yields:

φ(W (υi)−W (υi−1))− φ(0) =

∫ υi

υi−1

∇xFt+υi−1(U
n,W (u)−W (υi−1)
t+υni−1−

, vt,υni−1
)hdW (u)

1

2
th∇xFt+υi−1(U

n,W (u)−W (υi−1)
t+υni−1−

, vt,υni−1
)hdu (4.40)

Summing all of the above from i = 1 to∞ (the sum is finite) yields, denoting i(s) the index

such that s ∈ [υni , υ
n
i+1[:

∞∑
i=0

Ft+υni−1
(Unt+υni−1

, vt,υni−1
)− Ft+υni−1

(Unt+υni−1−, vt,υ
n
i−1

) =∫ σ

0
∇xFt+υi(s)(U

n,W (u)−W (υi(s))

t+υn
i(s)
− , vt,υn

i(s)
)hdW (u)

+

∫ σ

0

th∇2
xFt+υi(s)(U

n,W (u)−W (υi(s))

t+υn
i(s)
− , vt,υn

i(s)
)hdu
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Taking the expectation of the above leads to, since the stochastic integral is a true martingale

because the integrand is bounded, and because the integrand of the Lebesgue integral is

greater or equal to α:

E[
∞∑
i=0

Ft+υni−1
(Unt+υni−1

, vt,υni−1
)− Ft+υni−1

(Unt+υni−1−, vt,υ
n
i−1

)] > αE[σ] (4.41)

We have therefore established, taking the lim inf, that E[Z(σ) − Z(0)] > αE[σ]. But

Z(σ) = Z(0) = 0 almost surely because F is zero on continuous first arguments, and

P(σ > 0) > 0. A contradiction.

4.3.3 Derivatives of a locally regular functional

The following crucial observation, which is an immediate consequence of the definition of

optionality, allows to define the derivatives of a locally regular functional.

Lemma 4.1. Let (x, v), (x′, v′) ∈ C0([0, T ],Rd)×ST , t < T and τ1 ≤ τ2 two optional times.

Then:

(xt, vt) = (x′t, v
′
t)⇒ 1t∈[τ1(x,v),τ2(x,v)[ = 1t∈[τ1(x,v),τ2(x′,v′)[ (4.42)

For all t < T , we will therefore define the functional 1t∈[τ1,τ2) on C0([0, t],Rd) × St by its

unique value on the pre-image of (x, v) in the set C0([0, T ],Rd) × ST by the operator of

restriction to [0, t].

Theorems 4.2 and 4.3 allow to define the vertical derivatives of a locally regular func-

tional:

Definition 4.12 (Derivatives of a locally regular functional). Define the horizontal and

vertical derivatives of a locally regular functional on Υc− as:

DtF =
∑
i≥0

DtF
i1t∈[τi,τi+1[

∇xFt =
∑
i≥0

∇xF it 1t∈[τi,τi+1[

∇2
xFt =

∑
i≥0

∇2
xF

i
t 1t∈[τi,τi+1[ (4.43)
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where the sequence (τi)i≥0 and (F i)i≥0 are as in definition 4.10. These definitions do not

depend on the choice of the sequences (τi)i≥0 and (F i)i≥0.

Remark 4.2. Being able to state this definition is the reason why we defined the space of

continuous functionals on optional interval F∞([τ1, τ2[) rather than a space of left-continuous

functionals F∞l ([τ1, τ2[). Had we done that, theorems 4.2 and 4.3 would give coincidence

of the vertical derivatives on ]τ1, τ2[ instead of [τ1, τ2[, hence the vertical derivatives of a

locally regular functional would not have been defined at the countable times (τi(x, v))i≥0

which depend on the argument (x, v). Martingale representation theorem would however

still be true.

Note also that, if the vertical derivatives were defined to belong to a space of right-continuous

functionals on optional intervals F∞r ([τ1, τ2[), we would not have been able to state a local

version of the functional Itô formula 4.1 because the subdivision used in the proof is random

(see the discussion in the proof of proposition 2.4).

Since vertical derivatives are defined by cadlag perturbations of the path, defining ver-

tical derivatives for functionals on Υc requires extending them locally to cadlag paths, and

invoking theorems 4.2 and 4.3 to ensure that the definition does not depend on the cho-

sen extension, as is done in definition 4.12. However, since the horizontal extensions of a

continuous path are themselves continuous, horizontal derivatives could have been defined

directly by equation 2.22. The following lemma ensures that it would be the same notion

of horizontal derivative:

Lemma 4.2. Let F ∈ Rloc, t < T and (x, v) ∈ C0([0, T ],Rd)× ST . Then:

lim
h→0+

Ft+h(xt,h, vt,h)− Ft(xt, vt)
h

= DtF (xt, vt) (4.44)

Proof. Let i be the index such that t ∈ [τi(x, v), τi+1(x, v)[. By lemma 4.1, then also

t ∈ [τi(xt,T−t, vt,T−t), τi+1(xt,T−t, vt,T−t)[, so that for h > 0 small enough:

t+ h < τi+1(xt,T−t, vt,T−t)

. For any such h,

Ft+h(xt,h, vt,h) = F it+h(xt,h, vt,h) (4.45)
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and hence:

lim
h→0+

Ft+h(xt,h, vt,h)− Ft(xt, vt)
h

= DtF i(xt, vt) (4.46)

4.3.4 Continuity and measurability properties

The two following results on pathwise regularity and measurability for locally continuous

functionals are straightforward:

Theorem 4.4 (Pathwise regularity for locally regular functionals). Let F ∈ Rloc and

(x, v) ∈ C0([0, T ],Rd) × ST . Then the path t 7→ (Ft(xt, vt),∇xFt(xt, vt),∇2
xFt(xt, vt)) is

right-continuous, with a finite number of jump in any interval [0, t0], t0 < T .

Proof. Following the proof of theorem 4 for the functionals F i between times τi and τi+1

proves that F and its vertical derivatives are continuous between times τi and τi+1.

Theorem 4.5 (Measurability properties). Let F ∈ Rloc. Then: the processes (Ft(Xt, At)),

(DtF (Xt, At), (∇xFt(Xt, At)), (∇2
xFt(Xt, At)) are optional.

Proof. One just has to observe that the indicators 1[τi,τi+1[ are optional, that the processes

are adapted by definition, and that their paths are right-continuous.

4.4 Martingale representation theorem

In this section, we will state the extension of theorem 3.2 to locally regular functionals. The

process X is assumed to be a continuous local martingale.

Theorem 4.6. Consider an FT measurable random variable H with E[|H|] < ∞ and

consider the martingale Y (t) = E[H|Ft]. If Y (t) admits the functional representation

Y (t) = Ft(Xt, At) for some F ∈ Rloc, and that F has continuous path on some set D

such that P(XT ∈ D) = 1, then:

H = E[H|F0] +

∫ T

0
∇xFt(Xt, At)dX(t) (4.47)
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Proof. Y (t) = Ft(Xt, At) almost surely for some functional F ∈ Rloc. Let the sequences

(τi), (F
i) be as in definition 4.10. At a fixed i, let the sequence σni be as in remark 4.1.

Applying the local version of the functional Itô formula 4.1 between times τi ∨ t and σni ∧ t

yields:

Y (σni ∧ t)− Y (τi ∨ t) =

∫ σni ∧t

τi∨t
DuF (Xu, Au)du

+

∫ σni ∧t

τi∨t
tr[t∇2

xFu(Xu, Au) d[X](u)]

+

∫ σni ∧t

τi∨t
∇xFu(Xu, Au)dX(u) (4.48)

which can be re-written:

Y (σni ∧ t)− Y (τi ∨ t) =

∫ t

0
1[τi,σni [(u)

[
DuF (Xu, Au)du+ tr[t∇2

xFu(Xu, Au) d[X](u)]
]

+

∫ t

0
1[τi,σni [(u)∇xFu(Xu, Au)dX(u) (4.49)

By optional sampling theorem, the process t 7→ Y (σni ∧ t)− Y (τi ∨ t) is a martingale, hence

by uniqueness of decomposition of a continuous semimartingale in sum of local martingale

and continuous variation process, the first line in (4.49) is 0. So we established that:

Y (σni ∧ t)− Y (τi ∨ t) =

∫ t

0
1[τi,σni [(u)∇xFu(Xu, Au)dX(u) (4.50)

Letting n → ∞, since the process Y is almost surely continuous because X ∈ D with

probability 1, we obtain:

Y (τi+1 ∧ t)− Y (τi ∧ t) =

∫ t

0
1[τi,τi+1[(u)∇xFu(Xu, Au)dX(u) (4.51)

Summing the above equality on all indices i yields:

Y (t)− Y (0) =

∫ t

0
∇xFu(Xu, Au)dX(u) (4.52)

Taking the limit t→ T finishes to establish the theorem.
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4.5 Functional equation for conditional expectations

Consider now as in section 3.5 a continuous semimartingale X satisfying a stochastic dif-

ferential equation with functional coefficients:

dX(t) = bt(Xt, At)dt+ σt(Xt, At)dW (t) (4.53)

where b, σ are non-anticipative functionals on Υ with values in Rd-valued (resp. Rd×n),

and the coordinates of σ are in F∞r . We can state the locally regular version of theorem

3.7. A major difference arises here as this theorem only provides with a sufficient condition

on a locally regular functional to define a local martingale, rather than a necessary and

sufficient condition in the case of C1,2
b ([0, T [) ∪ F∞l ([0, T ]) functionals. The reason is that

locally regular functionals do not necessarily have regularity on Υc endowed with natural

topologies, hence a natural support can not be identified for the functional differential

equation. For the same reason, uniqueness theorem 3.8 does not have a version for locally

regular functionals.

Theorem 4.7 (Functional differential equation for locally regular functionals). If F ∈ Rloc
satisfies for t ∈ [0, T [:

DtF (xt, vt) + bt(xt, vt)∇xFt(xt, vt) +
1

2
tr[∇2

xF (xt, vt)σt
tσt(xt, vt)] = 0, (4.54)

on the set:

{(x, v) ∈ C0([0, T ],Rd)×D([0, T ], S+
d ), v(t) = σt

tσt(xt, vt)} (4.55)

and if F has continuous path on some set D such that P(XT ∈ D) = 1 then the process

Y (t) = Ft(Xt, At) is a local martingale.

Proof. Define the process Y (t) = Ft(Xt, At). Let the sequences (τi), (F
i) be as in definition

4.10. At a fixed i, let the sequence σni be as in remark 4.1. Applying the local version of

the functional Itô formula 4.1 between times τi ∨ t and σni ∧ t yields:

Y (σni ∧ t)− Y (τi ∨ t) =

∫ σni ∧t

τi∨t
DuF (Xu, Au)du+

1

2
tr[∇2

xFu(Xu, Au)σu
tσu(Xu, Au)]du

+

∫ σni ∧t

τi∨t
bu(Xu, Au)∇xFu(Xu, Au)du+

∫ σni ∧t

τi∨t
∇xFu(Xu, Au)σu(Xu, Au)dW (u)



CHAPTER 4. LOCALIZATION 86

where A(u) = σu
tσu(Xu, Au) almost surely, hence taking into account the functional differ-

ential equation leads to:

Y (σni ∧ t)− Y (τi ∨ t) =

∫ σni ∧t

τi∨t
∇xFu(Xu, Au)σu(Xu, Au)dW (u) (4.56)

Since the process Y is continuous because X ∈ D with probability 1, one can let n → ∞

and obtain:

Y (τi+1 ∧ t)− Y (τi ∨ t) =

∫ τi+1∧t

τi∨t
∇xFu(Xu, Au)σu(Xu, Au)dW (u) (4.57)

Summing over all i ≥ 0 (since the sum is actually finite) yields:

Y (t)− Y (0) =

∫ t

0
∇xFu(Xu, Au)σu(Xu, Au)dW (u) (4.58)

which proves that Y is a local martingale.
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Chapter 5

Sensitivity analysis of

path-dependent derivatives

5.1 Motivation

In this chapter we use the formalism of functional Itô calculus to study the pricing and

hedging of derivative securities. The tools developed in Chapters 2-4 allow to extend

the sensitivity analysis which is traditionally developed for non-path-dependent options

in Markovian models to settings where the payoff and/or the volatility process are allowed

to be path-dependent.

In financial markets, the value of a derivative security depends on market history and may

be viewed as a functional of the path of the underlying financial assets from the contract

inception date to the current date. This functional is parameterized by relevant market

data at the current date, such as the interest rate curve and the prices of traded derivatives

on the underlying assets. The notion of vertical derivative of the functional is therefore a

natural expression of the sensitivity of the derivative with respect to the prices of underlying

assets, while its horizontal derivative is the sensitivity with respect to the passage of time.

Sensitivity to the passage of time and first and second order sensitivities to the underlying

prices are known by derivatives traders to satisfy a relationship known as Theta - Gamma

(Θ−Γ) tradeoff, which can be formalized through a functional differential equation. Deriva-

tives of the functional with respect to the parameters are the sensitivities of the derivatives
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with respect to observable market variables such as the implied volatility surfaces or the

interest rate curves.

We will start this chapter by an introduction to derivatives securities pricing and hedging.

The first part will be a short introduction to the usual no-arbitrage pricing of deriva-

tives securities in Quantitative Finance, which is centered around the concept of replication

portfolio. The second part will consider pricing and hedging from the point of view of a

derivatives trader, which is centered around the concept of sensitivity, as documented in

the few reference books on options from a trading point of views [13, 62, 2]. We will then

proceed to state a valuation equation (theorem 5.1), similar to the one appearing in Dupire

[23]. This equation reconciles the theoretical point of view with the trader’s one, as it shows

that the replication portfolio corresponds to the hedging of directional sensitivity. Theorem

5.2 then gives rigorous meaning to the Θ−Γ tradeoff. We then use this expression of Θ−Γ

tradeoff to link the second order price sensitivity of the derivative to its implied volatility

sensitivity in section 5.4, where we will be able to define the sensitivity of a path-dependent

derivative to observable market variables, in particuler its ”bucket Vegas” ([62], chapter 9).

We are then able to define the Black-Scholes Delta and the Delta at a given skew stickiness

ratio, which are the actual Deltas that are used on the markets to trade derivative portfo-

lios; and we conclude the section by proposing an efficient numerical algorithm to compute

the sensitivites to the market variables and the Deltas of a derivative.

5.1.1 A short introduction to no-arbitrage pricing of derivatives securities

In this chapter, we shall introduce the usual setting of mathematical modeling of portfolios

and options in quantitative finance literature. A more detailed discussions with less restric-

tive assumptions can be found in [42]. We consider a world of d tradable assets, modeled by

an Rd-valued process S defined on a filtered probability space (Ω,B,Bt,P), satisfying the

relation:

dS(t)

S(t)
= µ(t)dt+ ν(t)dB(t) (5.1)

where dS(t)
S(t) = (dS

1(t)
S1(t)

, . . . , dS
d(t)

Sd(t)
), for some bounded progressively measurable processes µ

and σ, and where B is an n-dimensional Brownian motion on (Ω,B,Bt,P). We will always
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make the additional assumption that the eigenvalues of tν(t)ν(t) are bounded from below

by some ε > 0. We assume that there is also an short-term rate of lending-borrowing, which

is represented by a bounded progressively measurable process r. A portfolio is represented

by an initial value V0 ∈ R and a progressively measurable Rd-valued process δ, where δi(t)

represents the number of shares of asset i held at time t, and is such that the following

portfolio value process is well-defined:

V (t) =

∫ t

0
(V (s)− δ(s)S(s))r(s)ds+

∫ t

0
δ(s)dS(s) (5.2)

This process represents the value of the portfolio at time t. The heuristic meaning of this

equation is that the value of the tradable assets in the portfolio at time s is δ(s)S(s), hence

the cash balance is V (s)−δ(s)S(s). If the cash balance is positive, it can be lent short-term

and hence grows at the short-term interest rate r(s), while if it is negative, the portfolio has

to be financed at the short-term borrowing rate and hence the negative balance grows at

rate r(s), hence the first integral represents the aggregation of interest incomes on positive

cash balances and interest expenses on negative cash balances. On other hand, the change

in value of the holding in tradable assets between times s and s+ds is δ(s)(S(s+ds)−S(s)),

hence the stochastic integral representing the change of value of the portfolio due to the

fluctuation of prices of the tradable assets. A rigorous formulation of this heuristic, starting

from portfolios with piecewise constant holdings then considering the limit of continuous

rebalancing, can be found in [42] or [25].

Our assumptions on µ, σ and r guarantee (see [42]) that there exists a bounded progressively

measurable Rn-valued process λ such that µ(t)− r(t)1 = ν(t)λ(t), where 1 is the vector of

Rd whose coordinates are all 1, hence switching to the probability Q, which is defined on

the σ-algebra Bt by

dQ
dP

= e−
∫ t
0 λ(s)dB(s)− 1

2

∫ t
0 |λ(s)|2ds (5.3)

makes the process
(
e−

∫ t
0 r(s)dsS(t)

)
t≥0

a Q-martingale, and consequently, for any portfolio

δ with value process V , the process
(
e−

∫ t
0 r(s)dsV (t)

)
t≥0

is a local martingale. A portfolio

(V0, δ) will be said admissible if this local martingale is a true martingale. Q is called

a risk-neutral probability, because under this probability risky portfolios have the same
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instantaneous return than cash, hence there is no reward for bearing risk. The financial

securities satisfy the dynamics:

dS(t) = r(t)dt+ ν(t)dW (t) (5.4)

where W (t) = B(t) +
∫ t

0 λ(s)ds is a Brownian motion under Q. We will denote throughout

this chapter E[.] the expectation under the risk-neutral probability Q.

On financial markets, an option with maturity T is a contract between two counterpar-

ties, guaranteeing a settlement between the counterparts which depend on publicly available

market data. Some options are over the counter, meaning that the definition of the settle-

ment payment between the counterparts is specified in a written contract between both of

them and called “term sheet”, or exchange traded, meaning that it has standardized terms

defined by an exchange, and traders with exchange membership take either side of the con-

tract without explicitly knowing their counterpart, as orders are matched by the exchange.

The natural modeling for an option is therefore a functional g defined on C0([0, T ],Rd),

representing the payment from counterpart 1 to counterpart 2 as a function of the observed

paths of tradable securities between inception of the option at time 0 and its maturity at

time T . The option is said to be replicable, if there exists an admissible portfolio (V0, δ)

such that V (T ) = g(ST ) almost surely. In case the option is replicable, the price of the

option g at time t is defined to be V (t) because holding the option or holding the portfolio

until time T are equivalent. Since
(
V (t)e−

∫ t
0 r(s)ds

)
t≥0

is a martingale, then the price at

time t of a replicable option g is:

V (t) = E
[
g(ST )e−

∫ T
t r(s)ds|Bt

]
(5.5)

A model is said to be complete if every option g with linear growth with respect to the

supremum norm, is replicable.

A common procedure used by market practitioners to price options, wether they are repli-

cable or not, is to assume a model such as (5.4), and then define for price P (t) of the option

g at time t as:

P (t) = E[g(ST )e−
∫ T
t r(s)ds|Bt] (5.6)

This procedure is called risk neutral-pricing. It guarantees that the price of the options is

what it should be for options that are replicable on one hand, and on the other hand that
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the set of option prices it generates is arbitrage-free, meaning that there is no admissible

portfolio combining the financial securities S and a set of available options (g1, ..., gN )

with price processes (P1, ..., PN ) defined by (5.6), which can generate a positive profit with

nonzero probability while having 0 probability of generating a loss (see [42]). Such a property

is required for the internal option valuation system of an investment bank, otherwise its

traders themselves could arbitrage the system by being credited for taking positions whose

final value can only be positive. It also satisfies the important property of being linear,

which required within a derivatives house because a derivative must be marked at the same

price by an individual trader, a trading desk, the firm as a whole, and independent market

makers representing the firm on the exchange floor, although all of them have different

aggregate positions.

5.1.2 A short introduction to derivatives pricing and hedging: a sell-side

trader’s point of view

From a sell-side trading point of view, the price of a derivative is some (deterministic)

function of the underlying assets paths from the inception of the derivative contract to the

current date, and some observable market variable at the current date, such as interest rate

and credit curves, and the prices on other derivative contracts on the same instrument which

are liquidly traded on exchanges such as the Chicago Board of Exchange for US markets.

Hence the right formalism for the price of a derivative should be a functional of the path

of the underlyings up to current time, parameterized by the vector of observable market

variables at the current time which are relevant for the pricing of this derivative contract.

In practice, this pricing functional is defined as the expectation of the final payoff, given

that the underlying will follow from current time to expiry some discrete time, diffusion or

jump diffusion model, parameterized by some vector of parameters which are functions of

the observable market prices at the current time, typically chosen in order to maximize the

fit of the model to the prices of exchange-traded derivatives contract. An example would

be to choose as market observable the price of one call or put and choose the volatility

parameter of a Black-Scholes model [8], and industry standard in equity markets is to fit a

Dupire local volatility model [22] or an implied tree [20] to the traded strikes and expiries
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for the underlying. The existence of a dynamic replication in the model or not (complete

or incomplete market) is of little relevance to the trader since the role of the model is

only to give a price to the derivative contract at a given time; at any future revaluation

time the model will actually be different since its parameters will have changed. Decision

making and hedging is done through sensitivity analysis, where the sensitivities are first

and upper derivatives of the price functional with respect to the current underlying price,

passage of time and observable market variables. In particular, sensitivity with respect to

the underlying price is computed by “bumping” the current price of the underlying by a

small value, keeping history up to current date constant, hence corresponds to the notion

of vertical derivative introduced in the formalism of functional Itô calculus in definition 2.8.

Many notions of sensitivities to the underlying prices can actually be defined, depending

on what observable market variables are expected to change when the underlying price is

“bumped” (see section 5.4.3), one possibility being a “constant model” assumption, i.e. that

they move so that model parameters are unchanged. A derivatives position is summarized

by its different sensitivities, and traders choose their exposure by combining instrument in

order to achieve the sensitivities they want in different scenarii. Hedging consists of taking

positions in order to reduce or annul the sensitivities to the market variables the trader

does not want exposure to.

5.2 Functional valuation equation and greeks for exotic deriva-

tive

5.2.1 Valuation equation

Within all chapter 5, the open set U is taken to be U =]0,∞[d.

We assume that the pricing model is a functional volatility model, i.e. the assets price

process in the model follows a diffusion taking the form:

dS(t)

S(t)
= µtdt+ σt(St, [S]t)dB(t) (5.7)

where µ is a bounded progressively measurable process and σ is a bounded Md,n-valued

non-anticipative functional, and that the short-term lending and borrowing rate takes the
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form rt(St, [S]t), where r is a bounded functional. Hence, under the risk-neutral measure,

S is a weak solution of the stochastic differential equation with functional coefficients:

dS(t)

S(t)
= rt(St, [S]t)dt+ σt(St, [S]t)dW (t) (5.8)

Denote at = tσtσt. We shall make the further assumption that the eigenvalues of a are

bounded away from 0 and that the process at(St, [St]) has cadlag trajectories, so that the

process A(t) defined by

Ai,j(t) = ai,jt (St, [S]t)Si(t)Sj(t), 1 ≤ i, j ≤ d

is the cadlag representative of d[S](t)
dt .

Remark 5.1. In the case where the interest rate r and the functional a do not depend

on the second argument (quadratic variation), the assumption that at(St, [St]) has cadlag

trajectories can be removed, and all results presented in this chapter hold with functionals

F not depending on the second argument v.

The following theorem links the price of options to the solution of a functional differential

equation. It was stated by Dupire [23] for functionals depending on the first argument only

and with regular functionals (C1,2
b with F∞ derivatives) with no dependence in the second

argument) and is the generalization of the partial differential equation for pricing in a local

volatility model [22], which itself generalizes the original Black-Scholes partial differential

equation [8]. The extension to functionals with dependence in A allows to treat the case

of functional local volatility depending on the realized quadratic variance-covariance as in

section 5.3.6; more importantly, the extension to local regularity allows to price almost all

real-life derivatives in a local volatility model as solutions of the valuation equation, since

most of them fail to satisfy the regularity assumptions in [23].

This theorem is mathematically the expression of theorem 4.7 in the context of option

pricing. However, it differs from an economic interpretation since the argument is based

on constructing a portfolio that replicates the option rather than computing a conditional

expectation; the link between both is that the price of the replication portfolio is its risk-

neutral conditional expectation. The important point is that the drift µ of the process under
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the physical probability P does not matter for the pricing of options; in the functional differ-

ential equation, the instantaneous short-term lending/borrowing rate rt(St, [S]t]) appears

as the coefficient of the first derivative of the function. This theorem links the trader’s

sensitivity to the underlying prices to Mathematical Finance’s dynamic replication, since

the replication portfolio consists of ∇xFt(St, At) shares.

Theorem 5.1. Let F be a locally regular functional and g be an option. Assume that, for

all t < T , F satisfies:

DtFt(xt, vt) + r(xt, (

∫ s

0
v(u)du)s≤t)

d∑
i=1

∂iFt(xt, vt)x
i(t)

+
1

2

∑
1≤i,j≤d

∂ijFt(xt, vt)x
i(t)xj(t)aijt (xt, (

∫ s

0
v(u)du)s≤t) = 0 (5.9)

with terminal condition:

FT (xT , vT ) = g(xT ) (5.10)

on the following subset of UcT × ST :

{(x, v) ∈ UcT × ST |∀t ≤ Tvij(t) = xi(t)xj(t)a
ij
t (xt, (

∫ t

0
v(s)ds)s≤t)} (5.11)

together with the integrability condition:

E[ sup
t∈[0,T ]

|Ft(St, At)|] < +∞ (5.12)

and if F has continuous path on some set D such that P(ST ∈ D) = 1, then option g is repli-

cable by the portfolio with initial value F0(S0, a0(S0, 0)) and position ∇xFt(St, at(St, [S]t)),

and its price at time t ≤ T is Ft(St, at(St, [S]t)).

If the context of this theorem, we will say that the functional F prices the option g.

We will give here the elementary proof of the theorem with the further assumption

F ∈ C1,2
b ([0, T [) ∩ F∞l ([0, T ]) in order to express clearly the idea without getting into the

technicalities of working with local regularity. A full proof goes applying Itô’s formula

locally along the lines of the proof of theorem 4.7.
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Proof. Applying Itô’s formula 3.1 to Ft(St, at(St, [S]t)) and taking the functional differential

equation into account yields:

dFt(St, at(St, [S]t) = [Ft(St, at(St, [S]t))−∇xFt(St, at(St, [S]t))S(t)] rt(St, at(St, [S]t)dt

+∇xFt(St, at(St, [S]t))dS(t)

which proves that Ft(St, at(St, [S]t)) is the price process of a portfolio with initial value

F0(S0, a0(S0, [S]0)). Moreover, terminal condition ensures that it coincides with the payoff

of the option g at expiry T , and integrability condition ensures that it is an admissible

portfolio. Hence it replicates the option and its price process coincides with the price

process of the option.

5.2.2 Delta, gamma and theta

Let g be an option priced by a functional F as in theorem 5.1. The price of the option at

time t within the model, Ft(St, At), is therefore a deterministic functional of the path of

(S,A) up to time t. Remarking that Ft(St, At) = Ft(St, At−) since F is predictable in the

second variable, it can be furthermore seen as a deterministic functional of the current time

t and the two observations:

1. The path in the past, which is (St−, At−) and models the fixings already determined

and the barrier events already triggered, which is fixed and can not be moved.

2. The current prices of assets S(t), of which one can consider perturbations in order to

perform sensitivity analysis

As functional F can be locally extended to a functional on cadlag paths, one can therefore

defines the sensitivities or greeks of the option:

Definition 5.1 (Sensitivities of an option). Define the model Delta or ∆ of the option g

as the Rd-valued process:

∆t = ∇xFt(St, At) (5.13)

∆ is the sensitivity of the option to a perturbation of the current prices of the underlyings.

Define the Gamma or Γ of the option g as the Md,d-valued process:

Γt = ∇2
xFt(St, At) (5.14)
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Γ is the sensitivity of the ∆ to a perturbation of the current prices of the underlyings.

Define the Theta or Θ of the option as:

Θt = DtF (St, At) (5.15)

Θ is the sensitivity of the option to the passage of time.

Remark 5.2. The right notion of Θ as it appears from the partial differential equation does

not always correspond to the decay of the price in a “frozen” market. It is a derivative where

S is assumed to remain constant but the market is still assumed to realize volatility since

the derivative A of the realized quadratic variance-covariance is also assumed to remain

constant. A real “frozen market” decay would be defined as:

Θ0vol = DtF (St, A
−A(t)
t ) (5.16)

where the instantaneous variance-covariance is also bumped to zero. In cases where the

interest rate and the functional volatility σ only depend on the first variable, both notions

of Θ are the same, but in the case where they have explicit dependence in the realized

variance-covariance the good notion of Θ actually differs from the zero-volatility Θ, as

shown in section 5.3.6. The real interpretation of Θ for the trader in that case is that at the

next revaluation time, the market will trade at the same point where it trades now, but in

between it will still have realized the instantaneous variance-covariance A(t) = at(St, [S]t)

assumed by the model.

As pointed out by Dupire in [23], the formalism of functionals of the path together with

the notions of vertical and horizontal derivatives allow to give a meaning to the greeks for

exotic derivatives, in a way that is coherent with practitioners’ understanding. Moreover,

theorem 5.1 underlies that the sensitivity hedge of the ∆ is indeed the portfolio making

the dynamic hedge of the option within the model (5.7), hence it allows reconciliation

between the practitioners’ understanding of ∆ as a sensitivity and its traditional view in

mathematical finance literature as the integrand in a martingale representation theorem.

Before [23], this reconciliation have only appeared in literature in the case where the option

price is a classic function of the underlyings’ current price and the current time.
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5.2.3 Θ− Γ tradeoff

Having defined the greeks of a derivative contract, one can note that the valuation functional

equation can be rewritten (omitting the variables of the functionals):

1

2

∑
1≤i,j≤d

ai,jxixjΓi,j = r(F −
∑

1≤i≤d
∆ixi)−Θ (5.17)

This way of writing the valuation functional euqation is actually well-known for vanilla

options in Black-Scholes and local volatility model (see for example [2], [13]) as an expression

of the Θ− Γ tradeoff. It is also well-known by traders, but not referenced in mathematical

finance litterature before [23], that this also should hold for positions in path-dependent

derivatives; theorem 5.1 gives precise meaning to this well-known fact. The heuristics is

that, as the underlying prices moves from S to S + δS and time from t to t+ δt, the price

of the derivative contract should move by (this is formally Taylor expansion at order 2 in

S and order 1 in t) :

∑
1≤i≤d

∆iδSi +
1

2

∑
1≤i,j≤d

ai,jΓi,jδSiδSj + Θδt (5.18)

A long derivative delta-neutral’s trader position would annul the first-order variation by

taking a position −∆ in the underlyings. His overall position is long a derivative contract

and short ∆ in the underlyings hence it cost him r(F −
∑

1≤i≤d ∆iSi)δt to finance it at the

short-term rate. His total loss from passage of time is therefore [r(F −
∑

1≤i≤d ∆ixi)−Θ]δt

while his gain from the underlyings moving is 1
2

∑
1≤i,j≤d ai,jΓi,jδSiδSj . The Γ−Θ tradeoff

formula tells that it breaks even when E[δSiδSj ] = ai,jSiSjδt, that is if the instantaneous

variance-covariance structure assumed in the pricing model corresponds to the realized one.

The following theorem is the expression of El Karoui’s Black-Scholes robustness formula

[26] in the context of a functional volatily model, and is the dynamic expression of Θ − Γ

tradeoff as it characterizes the break-even volatility for a trader delta-hedging a derivative at

constant model. Its financial meaning has many implications in option pricing and actual

volatility trading [31]. It has been stated by Dupire [23] for regular functionals with no

dependence in quadratic variation.

Theorem 5.2 (Θ - Γ tradeoff). Assume that the stock price process is a diffusion with
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bounded coefficients:

dS(t)

S(t)
= µ(t)dt+ ν(t)dB(t) (5.19)

and denote ξ(t) = tν(t)ν(t). Let g be an option, and F a solution of the valuation functional

w’ as in theorem 5.1 for a functional volatility model σt(., .), such that ∇xF is bounded and

E[|tr[∇2
xFt(St, At)

tS(t)S(t)]|] ≤ h(t) (5.20)

for some positive measurable function h : [0, T [7→ R,
∫ T

0 h(t)dt < ∞. Then the final value

of the admissible porfolio (F0(S0, A0),∆t(St, At)) is:

g(ST ) +

∫ T

0

1

2

∑
1≤i,j≤d

(ai,jt (St, [S]t)− ξi,j(t))Si(t)Sj(t)e
∫ T
t r(Ss,[S]s)dsΓi,jt (St, At)dt (5.21)

This theorem is actually the expression of Θ − Γ tradeoff since it expresses that the

infinitesimal gain between time t and t+dt of the strategy consisting of holding the derivative

contract and hedging it by being short its replication portfolio according to the functional

local volatility model σt(., .) is (ai,j(t) − ai,jt (St, At))Si(t)Sj(t)Γ
i,j
t (St, At)dt, that is the Γ-

weighted difference between the actual realized variance-covariance realized by the assets

and the one assumed by the pricing model.

We will give the proof here for a functional that is furthermore in C1,2
b ([0, T [) ∩ F∞l ([0, T ]);

a proof for the functional being only Rloc would go applying Itô’s formula between stopping

times and going to the limit along the lines of the proof of theorem 4.7.

Proof. Define the process:

V (t) = Ft(St, At)

+

∫ t

0

1

2

∑
1≤i,j≤d

(ai,js (Ss, [S]s)− ai,j(s))Si(s)Sj(s)e
∫ t
s r(Su,[S]u)duΓi,js (Ss, As)ds (5.22)

Applying the functional Itô formula yields:

dV (t) = DtF (St, At)dt

+rt(St, [S]t)

∫ t

0

1

2

∑
1≤i,j≤d

(ai,js (Ss, [S]s)− ai,j(s))Si(s)Sj(s)e
∫ t
s r(Su,[S]u)duΓi,js (Ss, As)ds

 dt
+∆t(St, At)dS(t) +

1

2

∑
1≤i,j≤d

ai,jt (St, [S]t)Si(t)Sj(t)Γ
i,j
t (St, At)dt
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Taking into account the functional differential equation satisfied by F yields:

dV (t) = rt(St, [S]t)(V (t)−∆t(St, At)S(t))dt+ ∆t(St, At)dS(t) (5.23)

which proves that V (t) is the price process of the portfolio (V0 = F0(S0, A0),∆t(St, At)).

The integrability condition (5.20) and F having continuous path on a set of full measure

allow to pass to the limit t → T . The ∆ being bounded ensures that the portfolio is

admissible.

5.3 Examples of the valuation equation

We will give here examples of the valuation functional differential equation applied to some

commonly encountered options priced in the standard Dupire local volatility model [22],

where the volatility is actually a function of time and the current level of the underlying.

Sections 5.3.1, 5.3.2, 5.3.3 will show how the valuation standard partial differential equa-

tions well known for those products are actually particular cases of the functional valuation

partial differential equation. The valuation functional equation can therefore be seen as a

unifying general valuation equation in a functional volatility model. One should note that

the pricing functional in 5.3.2 is locally regular but fails to be even continuous at fixed

times. Section 5.3.4 will treat the case of a theoretical (continuous-time) Variance Swap

and show that the functional valuation partial differential equation holds for this product

as well, and gives rise to the standard local volatility partial differential equation with an

additional source term. Section 5.3.5 shows that the valuation functional equation holds for

payoffs which are functionals of a finite number of observation of the stock price, which is

actually the case of almost all real-life options (the exception being continuously monitored

barrier clauses). In this case as well, the pricing functional is locally regular but fails to

be C1,2
b ([0, T [). Finally, section 5.3.6 considers multi-asset functional volatility model, with

dependence on the realized quadratic co-variation.

In all the above examples, except in section 5.3.6, the model is a standard local volatility
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model in dimension 1, i.e. d = n = 1 and:

σt(St, [S]t) = σ(t, S(t)) (5.24)

for some function σ which is assumed to be continuous, bounded by some constant M > 0

and bounded from below by some constant η > 0, and

rt(St, [S]t) = r (5.25)

for some constant r ≥ 0.

5.3.1 Vanilla options

A vanilla option takes the form:

g(x) = h(x(T )) (5.26)

for some measurable function g with linear growth. A functional of the form:

Ft(xt, vt) = f(t, x(t)) (5.27)

where f is C1,2 on [0, T [×]0,∞[ and continuous on [0, T ]×]0,∞[ , satisfies the valuation

functional equation if and only if f is a C1,2 solution of the classical valuation PDE in

Dupire’s local volatility model [22], on [0, T [×(0,∞):

ft(t, x) + rxfx(t, x) +
1

2
x2σ2(t, x)fxx(t, x) = rf(t, x) (5.28)

with terminal condition:

f(T, x) = g(x) (5.29)

Classical parabolic PDE theory [44] guarantees existence and uniqueness of a solution with

at most exponential growth. Hence, the vanilla option valuation PDE in local volatility is

a particular case of 5.1.
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5.3.2 Continuously monitored barrier options

Continuously monitored barrier options trade in the market. In case of litigation, it would

be up to the side benefitting from the barrier to prove that a trade has breached the barrier.

He usually places a stop loss order at the barrier with a respectable prime-broker, so that if

the barrier is triggered his own trade will be executed at or beyond the barrier. The option

is in that case:

g(x) = h(x(T ))1sup0≤t≤T x(t)<U (5.30)

where h is a measurable function with linear growth, for an up-and-out option. In barriers

can be written as differences of out options and vanillas, and down barriers would have a

similar treatment. We look for a solution to the valuation functional equation of the form:

Ft(xt, vt) = 1sup0≤t≤T x(t)<Uf0(t, x(t)) + 1sup0≤t≤T x(t)≥Uf1(t, x(t)) (5.31)

where f0 is C1,2 on [0, T [×]0, U [ and continuous on [0, T ]×]0, U ]− {(T,U)}, and f1 is C1,2

on [0, T [×]0,∞[ and continuous on [0, T ]×]0,∞[. As in example 4.4, such a functional is in

Rloc, but fails to be continuous at fixed times. It satisfies the valuation functional equation

if and only if f0 satisfies the classical barrier PDE:

ft(t, x) + rxfx(t, x) +
1

2
x2σ2(t, x)fxx(t, x) = rf(t, x) (5.32)

with boundary and terminal conditions:

f0(t, U) = 0, f0(T, x) = h(x) (5.33)

while f1 satisfies the classical vanilla PDE 5.28 with terminal condition h. Hence the

classical PDE with boundary condition for pricing continuously monitored barrier options

also appears as a particular case of the valuation functional equation.

5.3.3 Continuously monitored Asian options

A continuously monitored Asian option is defined as:

g(x) = h

(∫ T

0
x(s)ds

)
(5.34)
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where the function h is measurable and has linear growth. A functional F of the form:

Ft(xt, vt) = f(t,

∫ t

0
x(s)ds, x(t)) (5.35)

where f is C1,1,2 on [0, T [×]0,∞[×]0,∞[ and continuous at time T is solution of the valua-

tion functional equation if and only if f solves:

ft(t, a, x) + rxfx(t, a, x) + xfa(t, a, x) +
1

2
x2σ2(t, x)fxx(t, a, x) = rf(t, a, x) (5.36)

with terminal condition:

f(T, a, x) = h(a) (5.37)

Hence the standard Asian PDE is a particular case of the valuation functional equation.

Note that in [23] a better parametrization of the functional F is introduced to obtain another

PDE which is more suitable for numerical solutions, and that [63] shows how the value of

the functional F at time 0 can be recovered by solving a 1 + 1-dimensional PDE.

5.3.4 Continuously monitored variance swap

A continuously monitored Variance Swap is the exchange between two counterparties of the

realized quadratic variation of the logarithm of the stock price between contract inception

and payment date versus an amount determined at inception. It can be priced in the local

volatility model as the payoff:

g(x) =

∫ T

0
σ2(t, x(t))dt−K (5.38)

A Variance Swap is usually priced using the fact that it has the same value as a static

combination of calls and puts [19]. We look here for a solution to the valuation functional

equation of the form Ft(xt, vt) =
∫ t

0 σ
2(s, x(s))ds + f(t, x(t)). Elementary computation

shows that, if f is a C1,2 solution of the following standard local volatility valuation PDE

with an added source term on [0, T [×(0,∞), which is continuous on [0, T ]× (0,∞) :

ft(t, x) + rxfx(t, x) +
1

2
x2σ2(t, x)fxx(t, x)− rf(t, x) = −σ2(t, x) (5.39)

with terminal condition:

f(T, x) = 0 (5.40)

then F is a regular solution of the valuation functional equation 5.1.
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5.3.5 Path-dependent options with discrete monitoring

With the exception of continuously monitored barriers, all real-life exotic derivatives are

actually payoff taking the form:

g(x) = h(x(t0), x(t1), ..., x(tm)) (5.41)

where 0 = t0 ≤ t1 < . . . < tm = T . Some frequently encountered examples are:

• Variance Swap:

h(x(t0), x(t1), ..., x(tm)) =
1

T

m−1∑
i=0

log2

(
x(ti+1)

x(ti)

)
with typically ti+1 − ti = 1 trading day

• Discretely monitored barrier:

h(x(t0), x(t1), ..., x(tm)) = 1max0≤i≤m x(ti)≤U (x(tm)−K)+

with typically daily but sometimes weekly monitoring.

• Asian:

h(x(t0), x(t1), ..., x(tm)) =

(
1

m− 1

m−1∑
i=0

x(ti)−K

)+

where observation can be daily, weekly, monthly.

• Cliquet:

h(x(t0), x(t1), ..., x(tm)) = min

[
m−1∑
i=0

(
x(ti+1)

x(ti)
−K

)+

, U

]
with typically ti+1 − ti = 1 or 3 months.

• Lookback:

h(x(t0), x(t1), ..., x(tm)) =

[
max

1≤i≤m
x(ti)− x(T )

]
or a similar expression with the min. Observation frequence can be daily, weekly,

monthly...
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Remark 5.3. The prices of Asians and Variance Swaps described above are approximated

by the prices of their theoretical versions, however the behavior of the greeks is different.

In trading floors, theoretical continuous-time options are often used to compute prices, but

the greeks are computed in a way that takes into account the discrete fixings.

Define

fm(x0, . . . , xm, tm, x) = h(x0, . . . , xm) (5.42)

and then backward recursively for 0 ≤ i ≤ m−1, f i(x0, x1, . . . , xi, t, x), as the C1,2 solutions

of:

f it (x0, x1, . . . , xi, t, x) + rxf ix(x0, x1, . . . , xi, t, x)

+
1

2
x2σ2(t, x)f ixx(x0, x1, . . . , xi, t, x) = rf i(x0, x1, . . . , xix, t) (5.43)

on [ti, ti+1[×]0,∞[ with terminal conditions:

f i(x0, x1, . . . , xi, ti+1, x) = f i+1(x0, x1, . . . , xi, x, ti+1, x) (5.44)

and at most exponential growth. Then define the functional:

Ft(xt, vt) =
m−1∑
i=0

f i(x(t0), . . . , x(ti), t, x(t))1t∈[ti,ti+1[ + fn(x(t0), . . . , x(tn), tn, x(tm)1t=tm

This functional is in Rloc because it satisfies for x ∈ C0([0, T ], ]0,∞[):

Ft(xt, vt)1t∈[ti,ti+1[ = f i(x(t0−), . . . , x(ti−), t, x(t)) (5.45)

and it satisfies the functional valuation partial differential equation. If it has continuous

path on some set D with full measure, F then prices the option on periodic fixings.

Remark 5.4. What allows us to show that F ∈ Rloc is the apparent “trick” to apply the

function f i at points xti− rather than xti (otherwise the functional defined as such would

fail to be vertically differentiable at time ti). This is more than a trick but points out to the

correct understanding of the ∆ of an option: if tj is an observation time, a trader computes

the ∆ at time tj by moving the spot “right after” having made the observation which is

kept constant.
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5.3.6 Options on basket in a model with an unobservable factor

In this section, for the sake of keeping notations as simple as possible, it is assumed that

the interest rate is 0. An important segment of the exotics business of equity derivatives

houses are the options on basket of indices. Typical payoffs include the following:

• Best-of option: g(sT ) = max(max1≥i≥d(
si(T )
si(0)

), 0)

• Call on basket: g(sT ) = max(
∑d

i=1 ci
si(T )
si(0)

,K), where ci is the weight of asset i in the

basket

• Outperformance option: g(sT ) = max( s
1(T )
s1(0)

− s2(T )
s2(0)

)

These options are usually written on indices such as S&P500, bond indices, technology

companies index, utilities index, etc, which are typically sectors for which institutional

investors decide target allocations, and very sensitive to the correlation parameter. A

model proposed by Cont [10] takes into account the price-impact effect of the trades of

institutional investors on the variance-covariance structure of the assets. The idea is that

institutional investors typically profit from the dispersion by allocating constant weights to

the different sectors in which they trade, hence the value of their portfolio evolves as:

dV (t)

V (t)
=
∑

xi
dSit
Sit

(5.46)

where xi represent the weight allocated to sector index i by the institutional investors. It

is straightforward that V (t) = h(St, At) where:

h(st, vt) =

h0 exp

∑
i

xi log
si(t)

si(0)
+

1

2

∑
i

∫ t

0

xi
(si(s))2

vii(s)ds− 1

2

∑
i,j

∫ t

0

xixj
si(s)sj(s)

vi,j(s)ds


defines an element of F∞ which is predictable in the second variable. The model for the evo-

lution of the indices incorporates the modification of the local drift and variance-covariance

structure due to the trading of the institutional investors; both are actually bounded func-

tions of the spot prices and the size of the institutional investors, so that the model is

actually a functional volatility model:
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dSit
Sit

= bi(S(t), h(St, At))dt+ σi(S(t), h(St, At)).ΣdBt (5.47)

where the matrix Σ is a square-root of fundamental variance-covariance in the market in

the absence of price impact. We look for a solution to the functional valuation of the form

Ft(st, vt) = f(t, s(t), h(st, vt)). Then (omitting the variables for the sake of readability):

DtF (st, vt) =
∂f

∂t
+

1

2

∂f

∂h
h
∑

i
xi

(si(t))2
σiΣσ

′
i

−1

2

∂f

∂h
h
∑

i, j
xixj

si(t)sj(t)
σiΣσ

′
j (5.48)

∂jFt(st, vt) =
∂f

∂sj
+
∂f

∂h

xj
sj
h (5.49)

∂2
ijFt(st, vt) =

∂2f

∂sj∂si
+
∂f

∂h

xixj
si(t)sj(t)

h

+
∂2f

∂2v

xixj
si(t)sj(t)

h2 +
∂2f

∂h∂sj
xi
si(t)

h, i 6= j (5.50)

∂2
iiFt(st, vt =

∂2f

∂2si
+
∂f

∂v

x2
i − xi

(si(t))2
h

+
∂2f

∂2v

x2
i

(si(t))2
h2 +

∂2f

∂v∂si
xi
si(t)

h (5.51)

Therefore, if the function f is a solution of the PDE

∂f

∂t
+

1

2

∑
i,j

∂2f

∂si∂sj
sisjσiΣσ

′
j +

1

2

∂2f

∂2h
h2
∑
i,j

xixjσiΣσ
′
j

+
1

2

∑
i,j

∂2f

∂v∂si
xihs

jσiΣσ
′
j = 0 (5.52)

with the terminal condition

f(T, s, v) = g(s) (5.53)

that is C1 in t, jointly C2 in (s, h) on the set [0, T [×]0,∞[d×]0,∞[, and continuous on

[0, T ]×]0∞[d×]0,∞[, then the functional F prices the option g. Hence the Greeks of the

option are as follows:

Θt = DtF (St, At) =
∂f

∂t
+

1

2

∂f

∂h
h
∑
i

xi
(Si(t))2

σiΣσ
′
i

−1

2

∂f

∂h
h
∑
i,j

xixj
Si(t)Sj(t)

σiΣσ
′
j (5.54)
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∆i
t =

∂f

∂sj
+
∂f

∂h

xj
Sj(t)

h (5.55)

Γiit =
∂2f

∂2si
+
∂f

∂h

x2
i − xi

(Si(t))2
h

+
∂2f

∂2h

x2
i

(Si(t))2
h2 +

∂2f

∂h∂si
xi
Si(t)

h (5.56)

Γijt =
∂2f

∂sj∂si
+
∂f

∂v

xixj
Si(t)Sj(t)

h

+
∂2f

∂2v

xixj
Si(t)sj(t)

h2 +
∂2f

∂v∂sj
xi
Si(t)

h (5.57)

Note that in this case Θ0vol = ∂f
∂t 6= Θ, because if time passes and the indices realize

zero volatility then V does not move either. The correct definition of the Θ is that time has

passed, the spot are still at the same level at the next observation time for the trader but

they have realized their instantaneous variance-covariance meanwhile, so that V has moved

accordingly. Also note that the ∆ and the Γ in this case are not the naive derivatives of

the function f with respect to the spot.

5.4 Sensitivities to market variables

In this section, we will consider functionals dependent on the first argument only, the short-

term interest rate is some deterministic function r(t) and we are working in dimensions

d = n = 1. Generalization to higher dimensions is straightforward with heavier notations.

We consider that options g are priced in a functional volatility model:

S(t) = S(t)r(t)dt+ S(t)σt(St, V )dW (t) (5.58)

where V ∈ Rm+1 is such that V0 = x is the price of the underlying asset at date 0, and

the vector Ṽ = (V1, . . . , Vm) is a set of observable market variables at date 0, called the

calibration data of the model. We assume that, for any V ∈ Rm+1, the coefficients of the

stochastic differential equation satisfy the assumptions of theorem B.1. In particular, there

exists a unique strong solution to this SDE and it is square-integrable. This situation mod-

els the reality of pricing at a trading desk, which is using a pricing model parameterized by
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calibration data at a given time to price the option at this time.

In-house research departments in well-known derivatives houses have been developing

various methods to compute the sensitivities to these observable market variables, but most

of this work is not publicly available. One common way, when working in a local volatility

model and pricing by PDE methods, is to perform a perturbation analysis of the valuation

PDE. However, in the general path-dependent case, valuation PDEs are generalized by

the valuation functional equation (5.9) and therefore PDE perturbation theory does not

apply. Using the functional formalism, we will give in this chapter a precise meaning to the

notion of sensitivity to calibration parameters. Building on Dupire’s insight [23], we will

use our perturbation result for stochastic differential equations with functional coefficients

(theorem 5.3) and the Θ− Γ tradeoff formula (theorem 5.2) to actually obtain expressions

for these sensitivities which can be used for efficient numerical computation (section 5.4.2).

In particular, we will be able to define and compute the Vega buckets and total Vega of a

path-dependent derivative. In section 5.4.3, we will define the “Sticky Strike” Delta, which

can be viewed as the Black-Scholes delta of any derivative, and Deltas with partial or null

realization of the skew, which are the deltas actually used by traders to delta-hedge their

derivatives position rather than the model delta from definition 5.1. We will conclude in

section 5.4.4 by suggesting an efficient numerical algorithm for computing the sensitivities

to market variables and Deltas in a local volatility model.

Remark 5.5. The sensitivities treated in this section do not include the observable points

of the interest rate curve, since the short-term rate t 7→ r(t) of the pricing model does not

depend on the market data V .

5.4.1 Directional derivatives with respect to the volatility functional

Let σ be a functional such that (xt) 7→ x(t)σ(xt) satisfies the assumptions of theorem B.1,

and σε be a family of functionals such that (xt) 7→ x(t)σεt(xt) satisfies the assumptions of

theorem B.1. Denote Sε the unique strong solution of:

dSε(t)

Sε(t)
= r(t)dt+ σεt(S

ε
t )dW (t) (5.59)
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We assume that there exists a bounded functional σ̃ satisfying:

|σεt(xt)− σt(xt)− εσ̃t(xt)| ≤ εφ(ε) (5.60)

where φ is an increasing function from (0,∞) to (0,∞), limε→0 φ(ε) = 0. Denote Sε the

solution of 5.58 for volatility σε. Let g be a payoff priced by a functional F in the model

σ, satisfying the assumptions of theorem 5.2. We furthermore make the assumption that

there exists a positive measurable function g : [0, T ] 7→ (0,∞), such that:

|x2(t)∇2
xFt(xt)− x′2(t)∇2

xFt(x
′
t)| ≤ g(t) sup

s∈[0,t]
|x(t)− x′(t)| (5.61)

and that for some constant C > 0, for all t ≤ T :

|σ̃t(xt)− σ̃t(x′t)| ≤ C sup
s∈[0,t]

|x(t)− x′(t)| (5.62)

The following theorem was first given with a heuristic argument in [23].

Theorem 5.3 (Sensitivity to the functional volatility).

lim
ε→0

1

ε

∣∣∣∣E[g(SεT )− g(ST )]e−
∫ T
0 r(s)ds − εE

[∫ T

0
σ̃tσt(St)S

2(t)∇2
xFt(St)e

−
∫ t
0 r(s)ds

]∣∣∣∣ = 0

Proof. Remember that E[g(ST )]e−
∫ T
0 r(s)ds = F0(S0). Applying theorem 5.2 to F and the

process Sε yields:

E

[
(SεT )e−

∫ T
0 r(s)ds +

1

2
[(σε)2

t (S
ε
t )− σt(Sεt )](Sε(t))2∇2

xFt(S
ε
t )e
−

∫ t
0 r(s)ds

]
= F0(S0) (5.63)

Now, (σε)2
t (S

ε
t ) − σ2

t (S
ε
t ) = 2εσ̃tσt(S

ε
t ) + εR(Sεt , ε) where R(Sεt , ε) is bounded by Cφ(ε) for

some constant C because of assumption (5.60).

Therefore, we just have to prove that:∫ T

0
|σ̃tσt(Sεt )(Sε(t))2∇2

xFt(S
ε
t )− σ̃tσt(St)S2(t)∇2

xFt(St)|dt→ 0 (5.64)

as ε → 0. Let η > 0, and h an integrable function bounding E[|S2(t)∇2
xFt(St)|] as in

(5.20), and C a constant bounding σ̃σ and for which condition (5.62) is satisfied. We can

first fix R > 0 such that
∫
{t:g(t)∨h(t)>R} h(t) < η

4C , so that the integral (5.64) on the set
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{t : g(t) ∨ h(t) > R} is bounded by η
2 .

On the complementary set {t : g(t) ∨ h(t) ≤ R}, we will work with the decomposition:

σ̃tσt(S
ε
t )(S

ε(t))2∇2
xFt(S

ε
t )− σ̃tσt(St)S2(t)∇2

xFt(St) =

[σ̃t(S
ε
t )− σ̃t(St)]σt(Sεt )(Sε(t))2∇2

xFt(S
ε
t )

+σ̃t(St)[σt(S
ε
t )− σt(St)](Sε(t))2∇2

xFt(S
ε
t )

+σ̃tσt(St)[(S
ε(t))2∇2

xFt(S
ε
t )− S2(t)∇2

xFt(St)] (5.65)

The difference under brackets in the three terms in decomposition (5.65) are bounded by

max(C,R) sups≤t |Sεt −St|, because of assumptions (5.62), (5.60), while the rest is bounded

by a constant. Hence the stochastic differential equation perturbation theorem 5.3 and

Cauchy-Shwarz inequality conclude.

5.4.2 Sensitivities to market variables

We assume that σ is differentiable with respect to V for the sup norm, uniformly in time,

that is for any V ∈ Rm+1, t ≥ 0 there exists functionals ∂σt
∂Vi

(., ., V ), 0 ≤ i ≤ m such that, for

h ∈ Rm+1, |h| = 1:

|σt(xt, V + εh)− σt(xt, V )− ε
m∑
i=0

hi
∂σt
∂Vi

(xt, V )| ≤ εφ(ε, V ) (5.66)

where φ(., V ) is an increasing function from (0,∞) to (0,∞), limε→0 φ(ε, V ) = 0. Let g be

a payoff priced in the model σt(., V ) by a functional F (., V ) satisfying the assumptions of

theorem 5.3. The following proposition is an immediate consequence of theorem 5.3 and

allows to compute the sensitivity of the option g to market variables Ṽ . Let (e0, . . . , em)

denote the canonical basis of Rm+1.

The following proposition, which is a direct corollary to theorem 5.3, allows for the explicit

computation of the sensitivities of a derivative with respect to observable market variables:

Proposition 5.1.

lim
ε→0

F0(S0, V + εei)− F0(S0, V )

ε
=

E

[∫ T

0

∂σt
∂Vi

(St, V )σt(St, V )S2(t)∇2
xFt(St, V )e−

∫ t
0 r(s)dsdt

]
(5.67)
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This quantity is called the sensitivity of the derivative g in to the market variable Vi.

Implied volatility of call and put options on the underlying S which are traded on

exchanges are naturally among the market variables parameterizing the model. From now,

we will assume that there are m0 ≤ m traded pairs of strike and expiries (Si, Ti), 1 ≤ i ≤ m0

and that the coordinates Vi, 1 ≤ i ≤ m0 are the implied volatilities at those strike-expiry

pairs.

Definition 5.2 (Local Vega). For i ≤ m0,

V egaTi,Ki := lim
ε→0

F0(S0, V + εei)− F0(S0, V )

ε
(5.68)

is called the local Vega of the derivative g at the bucket (Ti,Ki).

V ega :=

m0∑
i=1

V egaTi,Ki = lim
ε→0

F0(S0, V + ε
∑m0

i=1 ei)− F0(S0, V )

ε
(5.69)

is called the Vega of the derivative g.

The Vega of the derivative g in the bucket (Ti,Ki) is its sensitivity to a move of the

implied volatility at (Ti,Ki), with the underlying and all other market variables remaining

constant. Its Vega is its sensitivity to a parallel shift in the implied volatility surface. These

sensitivities are actually the main tools for volatility traders to understand their position,

and their decision-making process often consists of deciding a target Vega bucket exposure.

5.4.3 Multiple Deltas of a derivative

The notion of model ∆ (definition 5.1) of a derivative is a sensitivity assuming that the

model, that is the functional volatility σ, remains constant when the spot in bumped. In

terms of observable market quantities, it means that, if the current price V0 = x is bumped

to x + ε, the observable market variables Vi, 1 ≤ i ≤ m are bumped to some new value V ′i

so that σ(., ., V ) = σ(., ., (x + ε, Ṽ ′)). This joint dynamics imposed by the model to the

underlying and the implied volatility smile has no intuitive meaning to practitioners, and

has been shown to be unrealistic on the market [3, 4]. On another hand, vanillas are usually

traded according to their Black-Scholes ∆, which assumes that implied volatility at a given
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strike and expiry remains constant as the underlying moves. Consistency when trading a

portfolio comprising of exotics and vanillas requires to trade also exotics according to a

∆ factoring the same assumption on implied volatilities, which is defined in definition 5.2.

This Delta is often called “Sticky Strike” delta by practitioners, but, as it is the natural

generalization of the Black-Scholes Delta of a European call or put, we will call it here

Black-Scholes Delta of a general path-dependent derivative.

Definition 5.3. Define the Black-Scholes Delta of a derivative priced by the functional F

as:

∆BS = ∆0(S0, V ) + lim
ε→0

F0(S0, V + εe0)− F0(S0, V )

ε
(5.70)

The following proposition allows for explicit computation of the Black-Scholes Delta:

Proposition 5.2.

∆BS = ∇xF0(S0, V )

+E

[∫ T

0

∂σt
∂V0

(St, V )σt(St, V )S2(t)∇2
xFt(St, V )e−

∫ t
0 r(s)dsdt

]
(5.71)

Many traders would trade their derivatives portfolio (exotic or vanillas) according to

their Black-Scholes ∆, but many would rather incorporate a view on the realized skew in

their ∆. To the best of our knowledge, this concept has only appeared in literature in [4].

The valuation system of a trading desk often incorporates an interpolation/extrapolation

tool which maps the market data V to a full volatility surface

σBS(., ., V ) such that σBS(Ti,Ki, V ) = Vi. It is assumed that the implied volatility surface

σBS(T,K, V ) is differentiable in K. The skew realization ratio is the expected variation of

the implied volatility at a relative strike (T, k) for a relative bump in the spot price x of

the underlying, expressed in units of the relative skew K ∂σBS(T,K,V )
∂K in the original implied

volatility surface. More precisely, if one defines σ̃BS(T, k) = σBS(T, kx) the reparameteri-

zation of the implied volatility surface in terms of relative strike, then:

α =
∆σ̃BS(T, k)

K ∂σBS
∂K (T,K, V )∆x

x

(5.72)
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α is called the skew-stickiness ratio [4]. It should of course be dependent of the strike and

maturity, but traders use to choose some constant value for this ratio and compute their

delta in consequence. It represents the amount by which implied volatility at the constant

relative bucket (T, k) varies, for a small relative move ∆x
x in the underlying, expressed in

units of the relative implied volatility skew. α = 1 represents a so-called “Sticky Strike”

dynamics, which corresponds to the Black-Scholes Delta. α = 0 is called a “Sticky Delta”

dynamics and represents a volatility surface which is invariant in terms of relative strikes;

this is the dynamics that the implied volatility has in exponential Lévy models [11]. Bergomi

[4] shows that, at the limit of small skews and small times, diffusion models imply a smile

dynamics with α ≈ 2 at-the-money. He also shows that realistic values observed in the

market for the skew stickiness ratio at-the-money tend to be strictly between 1 and 2.

The variation of the implied volatility at the constant absolute bucket (T,K), can be ex-

pressed as:

∆σ(T,K) = ∆σ̃BS(T, k)−K∆(x)

x

∂σBS
∂K

(T,K, V ) (5.73)

so that:

∆σBS(T,K)

∆x
= (α− 1)

K

x

∂σBS
∂K

(T,K, V ) (5.74)

We can there give a rigorous definition to the Delta at skew stickiness α of a derivative as

follows:

Definition 5.4 (Delta with skew stickiness ratio). Define the Delta at skew stickiness α of

a derivative priced by the functional F as:

∆α = ∆0(S0, V )

+ lim
ε→0

F0

(
S0, V + εe0 + ε

∑m0
i=1(α− 1)Kix

∂σBS
∂K (Ti,Ki, V )

)
− F0(S0, V )

ε

The following proposition allows for the explicit computation of the Delta at skew stick-

iness ratio α:
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Proposition 5.3.

∆α = ∇xF0(S0, V )

+E[

∫ T

0

(
∂σ

∂V0
(t, S(t), V ) +

m0∑
i=1

(α− 1)
Ki

x

∂σBS
∂K

(Ti,Ki, V )
∂σt
∂Vi

(St, V )

)
σt(St, V )S2(t)∇2

xFt(St, V )e−
∫ t
0 r(s)dsdt]

Remark 5.6. Deltas at any skew stickiness ratio can be recovered from the Sticky Strike

(Black Scholes) Delta and the Sticky Delta Delta:

∆α = α∆BS + (1− α)∆0 (5.75)

Hence only those two Deltas are returned by valuation systems, and the traders use the

linear combination corresponding to their view on the skew stickiness ratio.

5.4.4 Efficient numerical algorithm for the simultaneous computation of

Vega buckets and Deltas

Computing the bucket exposure of a derivative and is usually done by bumping the implied

volatility in the concerned bucket, re-constructing the local volatility corresponding to the

new implied volatility surface, and re-pricing the derivative. Similarly, its Black-Scholes

Delta is usually computed by bumping the spot, keeping implied volatilities constant, re-

constructing a local volatility surface and then repricing the derivative. Since for well-traded

indices buckets are usually quite numerous, such a method is often too time-consuming to

be performed intraday. In the case where the functional F (and not only the initial price

of the derivative) is computable (which is true for example for barriers, Asians, variance

swaps, since the valuation functional equation reduces to low-dimensional ordinary PDEs),

propositions 5.1, 5.2 already give a better algorithm to compute those sensitivities by a

unique Monte-Carlo under the original local volatility, and where the integral is computed

numerically for each path. This will require a numerical integration per sensitivity and per

path.

Assume now that the pricing model is a Dupire local volatility model [22]:

σt(St, [S]t) = σ(t, S(t)) (5.76)
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Assume also that the in-house valuation system allows for almost instantaneous precise com-

putation of the prices of vanilla option payoffs, that is quantities taking the form E[S(ti)].

We are then able suggest a more efficient algorithm that only requires a unique Monte-Carlo

followed by a single numerical integration per sensitivity. The idea is that:

E

[∫ T

0

∂σ

∂Vi
(t, S(t), V )σ(t, S(t), V )S2(t)∇2

xFt(St, V )e−
∫ t
0 r(s)ds

]
=

E

[∫ T

0

∂σ

∂Vi
(t, S(t), V )σ(t, S(t), V )S2(t)E[∇2

xFt(St, V )e−
∫ t
0 r(s)ds|S(t)]

]
(5.77)

The projection E[∇2
xFt(St, V )e−

∫ t
0 r(s)ds|S(t)] can be approximated by the projection on a

finite-dimensional subspace of the Hilbert space of the space of functions of S(t). Hence the

method is:

• Simulate N paths S(ω1), . . . , S(ωN ) of the underlying S under the original local volatil-

ity:
dS(t)

S(t)
= r(t)dt+ σ(t, S(t))dW (t)

• choose a finite number of bounded functions fj , 1 ≤ j ≤ K

• For each time step ti in the simulation of the path, perform the linear regression

of the Gamma: ∇2
xFt(Sti) on the explanatory variables fj(S(ti)) using the draws

Sti(ω1), . . . , Sti(ωn): define (α0(ti), . . . , αK(ti)) solving the minimization problem:

min
u∈RK+1

n∑
j=1

|∇2
xFt(Sti(ωj))− u0 −

K∑
k=1

ukfk(S(ti)(ωj))|2 (5.78)

and define f(ti, x) = α0(ti) +
∑K

j=1 αj(ti)fj(x)

• For each bucket, compute the sum:

∑
ti<T

(ti+1 − ti)E
[
∂σ

∂Vi
(ti, S(ti), V )σ(ti, S(ti), V )S2(ti)f(ti, S(ti))

]
(5.79)
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[38] J. Jacod, S. Méléard, and P. Protter, Explicit form and robustness of martingale

representations, Ann. Probab., 28 (2000), pp. 1747–1780.

[39] J. Jacod and A. N. Shiryaev, Limit theorems for stochastic processes, Springer-

Verlag, Berlin, second ed., 2003.



BIBLIOGRAPHY 119

[40] I. Karatzas, D. L. Ocone, and J. Li, An extension of Clark’s formula, Stochastics

Stochastics Rep., 37 (1991), pp. 127–131.

[41] I. Karatzas and S. Shreve, Brownian motion and Stochastic calculus, Springer,

1987.

[42] , Methods of Mathematical Finance, Springer, 1998.

[43] N. Krylov, Controlled Diffusion Processes, Springer Verlag, 1980.

[44] N. V. Krylov, Lectures on elliptic and parabolic equations in Hölder spaces, vol. 12
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Appendix A

Proof of theorems in chapter 2

A.1 Some results on cadlag functions

For a cadlag function f : [0, T ] 7→ Rd we shall denote ∆f(t) = f(t)− f(t−) its discontinuity

at t.

Lemma A.1. For any cadlag function f : [0, T ] 7→ Rd

∇ε > 0, ∃η > 0, |x− y| ≤ η ⇒ |f(x)− f(y)| ≤ ε+ sup
t∈[x,y]

{|∆f(t)|} (A.1)

Proof. Assume the conclusion does not hold. Then there exists a sequence (xn, yn)n≥1 such

that xn ≤ yn, yn − xn → 0 but |f(xn)− f(yn)| > ε+ supt∈[xn,yn]{|∆f(t)|}. We can extract

a convergent subsequence (xψ(n)) such that xψ(n) → x. Noting that either an infinity

of terms of the sequence are less than x or an infinity are more than x, we can extract

monotone subsequences (un, vn)n≥1 of (xn, yn) which converge to x. If (un), (vn) both

converge to x from above or from below, |f(un)− f(vn)| → 0 which yields a contradiction.

If one converges from above and the other from below, supt∈[un,vn]{|∆f(t)|} > |∆f(x)| but

|f(un) − f(vn)| → |∆f(x)|, which results in a contradiction as well. Therefore (A.1) must

hold.

The following lemma is a consequence of lemma A.1:
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Lemma A.2 (Uniform approximation of cadlag functions by step functions).

Let h be a cadlag function on [0, T ]. If (tnk)n≥0,k=0..n is a sequence of subdivisions 0 = tn0 <

t1 < ... < tnkn = t of [0, T ] such that:

sup
0≤i≤k−1

|tni+1 − tni | →n→∞ 0 sup
u∈[0,T ]\{tn0 ,...,tnkn}

|∆f(u)| →n→∞ 0

then

sup
u∈[0,T ]

|h(u)−
kn−1∑
i=0

h(ti)1[tni ,t
n
i+1)(u) + h(tnkn)1{tnkn}

(u)| →n→∞ 0 (A.2)

A.2 Proof of theorem 2.1

Lemma A.3. Consider the canonical space UT endowed with the natural filtration of the

canonical process X(x, t) = x(t). Let α ∈ R and σ be an optional time. Then the following

functional:

τ(x) = inf{t > σ, |x(t)− x(t−)| > α} (A.3)

is a stopping time.

Proof. We can write that:

{τ(x) ≤ t} =
⋃

q∈Q
⋂

[0,t)

({σ ≤ t− q}
⋂
{ sup
t∈(t−q,t]

|x(u)− x(u−)| > α} (A.4)

and

{ sup
u∈(t−q,t]

|x(u)− x(u−)| > α} =
⋃
n0>1

⋂
n>n0

{ sup
1≤i≤2n

|x(t− q i− 1

2n
)− x(t− q i

2n
)| > α} (A.5)

thanks to the lemma A.1 in Appendix A.1.

We can now prove Theorem 2.1 using lemma A.1 from Appendix A.1.

Proof of Theorem 2.1: Let’s first prove point 1.; by lemma 4 it implies point 2. for right-

continuous functionals and point 3. for left-continuous functionals. Introduce the following

random subdivision of [0, t]:

τN0 (x, v) = 0

τNk (x, v) = inf{t > τNk−1(x, v)|2N t ∈ N or |v(t)− v(t−)| ∨ |x(t)− x(t−)| > 1

N
} ∧ t (A.6)
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From lemma A.3, those functionals are stopping times for the natural filtration of the

canonical process. We define the stepwise approximations of xt and vt along the subdivision

of index N :

xN (s) =
∞∑
k=0

xτNk (x,v)1[τNk (x,v),τNk+1(x,v)[(s) + x(t)1{t}(s)

vN (s) =
∞∑
k=0

vτNk (x,v)1[τNk (x,v),τNk+1(x,v)[(t) + v(t)1{t}(s) (A.7)

as well as their truncations of rank K:

Kx
N (s) =

K∑
k=0

xτNk
1[τNk ,τ

N
k+1[(s)

Kv
N (t) =

K∑
k=0

vτNk
1[τNk ,τ

N
k+1[(t) (A.8)

First notice that:

Ft(x
N
t , v

N
t ) = lim

K→∞
Ft(Kx

N
t ,K v

N
t ) (A.9)

because (Kx
N
t ,K v

N
t ) coincides with (xNt , v

N
t ) for K sufficiently large. The truncations

Fnt (Kx
N
t ,K v

N
t )

are Ft-measurable as they are continuous functionals of the measurable functions:

{(x(τNk (x, v)), v(τNk (x, v))), k ≤ K}

so their limit Ft(x
N
t , v

N
t ) is also Ft-measurable. Thanks to lemma A.2, xNt and vNt converge

uniformly to xt and vt, hence Ft(x
N
t , v

N
t ) converges to Ft(xt, vt) since F is continuous at

fixed times.

Now to show optionality of Y (t) for a left-continuous functional, we will exhibit it as

limit of right-continuous adapted processes. For t ∈ [0, T ], define in(t) to be the integer

such that t ∈ [ iTn ,
(i+1)T
n ). Define the process:

Y n((x, v), t) = F in(t)T
n

(
x (in(t))T

n

, v (in(t))T
n

)
, which is piecewise-constant and has right-continuous trajectories, and is also adapted by

the first part of the theorem. Now, by d∞ left-continuity of F , Y n(t)→ Y (t), which proves
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that Y is optional.

We similarly prove predictability of Z(t) for a right-continuous functional. We will exhibit

it as a limit of left-continuous adapted processes. For t ∈ [0, T ], define in(t) to be the integer

such that t ∈ ( iTn ,
(i+1)T
n ]. Define the process:

Zn((x, v), t) = F (in(t)+1)T
n

(
x
t−, (i

n(t)+1)T
n

−t, vt−, (i
n(t)+1)T

n
−t

)
, which has left-continuous trajectories since as s→ t−, t−s sufficiently small, in(s) = in(t)

and (x
s−, (i

n(s)+1)T
n

−s, vs−, (i
n(s)+1)T

n
−s) converges to (x

t−, (i
n(t)+1)T

n
−t, vt−, (i

n(t)+1)T
n

−t) for d∞.

Moreover, Zn(t) is Ft-measurable by the first part of the theorem, hence Zn(t) is pre-

dictable. Since F ∈ F∞r , Zn(t)→ Z(t), which proves that Y is predictable.

A.3 Measure-theoretic lemmas used in the proof of theorem

2.4 and 2.5

Lemma A.4. Let f be a bounded left-continuous function defined on [0, T ], and let µn be

a sequence of Radon measures on [0, T ] such that µn converges vaguely to a Radon measure

µ with no atoms. Then for all 0 ≤ s < t ≤ T , with I being [s, t], (s, t] ,[s, t) or (s, t):

lim
n

∫
I
f(u)dµn(u) =

∫
I
f(u)dµ(u) (A.10)

Proof. Let M be an upper bound for |f |, Fn(t) = µn([0, t]) and F (t) = µ([0, t]) the cumu-

lative distribution functions associated to µn and µ. For ε > 0 and u ∈ (s, t], define:

η(u) = inf{h > 0||f(u− h)− f(u)| ≥ ε} ∧ u (A.11)

and we have η(u) > 0 by right-continuity of f . Define similarly θ(u):

θ(u) = inf{h > 0||f(u− h)− f(u)| ≥ ε

2
} ∧ u (A.12)

By uniform continuity of F on [0, T ] there also exists ζ(u) such that ∀v ∈ [T−ζ(u), T ], F (v+

ζ(u))− F (v) < εη(u). Take a finite covering

[s, t] ⊂
N⋃
i=0

(ui − θ(ui), ui + ζ(ui)) (A.13)
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where the ui are in [s, t], and in increasing order, and we can choose that u0 = s and uN = t.

Define the decreasing sequence vj as follow: v0 = t, and when vj has been constructed,

choose the minimum index i(j) such that vj ∈ (ui(j), ui(j)+1], then either ui(j) ≤ vj − η(vj)

and in this case vj+1 = ui(j), else ui(j) > vj−η(vj), and in this case vj+1 = max(vj−η(vj), s).

Stop the procedure when you reach s, and denote M the maximum index of the vj . Define

the following piecewise constant approximation of f on [s, t]:

g(u) =
M−1∑
j=0

f(vj)1(vj+1,vj ](u) (A.14)

Denote J1 the set of indices j where vj+1 has been constructed as in the first case, and J2

its complementary. If j ∈ J1, |f(u)−g(u)| < ε on [vj−η(vj), vj ], and vj−η(ui(j)))−vj+1 <

ζ(ui(j)+1) = ζ(vj+1), because of the remark that vj − ηvj < ui(j) − θ(ui(j)). Hence:∫
(vj ,vj+1]

|f(u)− g(u)|dµ(u) ≤ ε[F (vj+1)− F (vj)] + 2Mεη(vj+1) (A.15)

If j ∈ J2, |f(u) − g(u)| < ε on [vj+1, vj ]. So that summing up all terms we have the

following inequality:∫
[s,t]
|f(u)− g(u)|dµ(u) ≤ ε (F (t)− F (s) + 2M(t− s)) (A.16)

because of the fact that: η(vj) ≤ vj − vj+1 for j < M . The same argument applied to µn

yields: ∫
[s,t]
|f(u)− g(u)|dµn(u) ≤ ε[Fn(t)− Fn(s−)]

+2M
M−1∑
j=0

Fn(vj+1)− Fn(vj+1 − ζ(vj+1)) (A.17)

so that the lim sup satisfies (A.16) since Fn(u) converges to F (u) for every u.

On other hand, it is immediately observed that

lim
n

∫
I
g(u)dµn(u) =

∫
I
g(u)dµ(u) (A.18)

since Fn(u) and Fn(u−) both converge to F (u) since µ has no atoms (g is a linear combi-

nation of indicators of intervals). So the lemma is established.
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Lemma A.5. Let (fn)n≥1, f be left-continuous functions defined on [0, T ], satisfying:

∀t ∈ [0, T ], lim
n
fn(t) = f(t) ∀t ∈ [0, T ], fn(t) ≤ K (A.19)

Let also µn be a sequence of Radon measures on [0, T ] such that µ(n) converges vaguely to

a Radon measure µ with no atoms. Then for all 0 ≤ s < t ≤ T , with I being [s, t], (s, t]

,[s, t) or (s, t): ∫
I
fn(u)dµn(u)→n→∞

∫ t

s
f(u)dµ(u) (A.20)

Proof. Let ε > 0 and let n0 such that µ({supm≥n0
|fm−f | > ε}) < ε. The set {supm≥n0

|fm−

f | > ε} is a countable union of disjoint intervals since the functionals are left-continuous,

hence it is a continuity set of µ since µ has no atoms; hence, since µn converges vaguely to

µ [5]:

lim
n
µn({ sup

m≥n0

|fm − f | > ε}) = µ({ sup
m≥n0

|fm − f | > ε}) < ε (A.21)

since µn converges vaguely to µ which has no atoms.

So we have, for n ≥ n0:∫
I
|fn(u)− f(u)|dµn(u) ≤ 2Kµn

(
{ sup
n≥n0

|fn − f | > ε}
)

+ εµn(I) (A.22)

Hence the lim sup of this quantity is less or equal to:

2Kµ({ sup
m≥n0

|fm − f | > ε}+ εµ(I) ≤ (2K + µ(I))ε (A.23)

On other hand:

lim
n

∫
I
f(u)dµn(u) =

∫
I
f(u)dµ(u) (A.24)

by application of lemma A.4.
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Appendix B

Stochastic Differential Equations

with functional coefficients

B.1 Stochastic differential equations with path dependent

coefficients

B.1.1 Strong solutions

In this section, we will state a theorem providing conditions in which the stochastic differ-

ential equations with functional coefficients (B.1) and (B.3) have a unique strong solution.

It is a non-markovian counterpart of the standard theorem from the Itô theory [37], (the-

orem 5.2.9 in [41]). Theorem B.1 can be found in a very similar form in [54], however we

include it here with a proof in order to remain self-contained for the reader not familiar

with stochastic differential equations with path-dependent coefficients. Let b,σ be function-

als on
⋃
t≥0C0([0, t],Rd) × A, respectively Rd and Md,n valued, and ξ a C0([0, t0])-valued

random variable, independent from the Brownian motion W , A a subset of Rm and α be

an A-valued admissible control for the filtration (σ(ξ) ∨ Bt)t≥0, in the sense of definition

3.7. We assume that for any T ≥ 0, the function: (t, x, u) → (bt(xt, u), σt(xt, u)) defined

on [0, T ] × C0([0, T ],Rd) × A is Borel-measurable, which ensures that for any filtration G,

for any continous G-adapted process X and any admissible control α ∈ AG , the process

(bt(Xt, α(t)), σt(Xt, α(t)) is G-progressively measurable.
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Definition B.1. Assume that α is an admissible control for the filtration σ(ξ) ∨ Bt. A

strong solution of the Stochastic differential equation:

dX(t0 + t) = bt0+t(Xt0+t, α(t))dt+ σt0+t(Xt0+t, α(t))dW (t) (B.1)

with initial value

Xt0 = ξ (B.2)

is a continuous process X such that (Xt0+t)t≥t0 is a σ(ξ) ∨ Bt-adapted continuous semi-

martingale, and:

1. Xt0 = ξ a.s.

2.
∫ t−t0

0 [|bt0+s(Xt0+s, α(s))|+ |σt0+s(Xs, αs)|2]ds < +∞ a.s. for every t ≥ t0

3. X(t)−X(t0) =
∫ t−t0

0 bt0+s(Xt0+s, α(s)) + σt0+s(Xt0+s, α(s))dWs a.s. for every t ≥ t0

Assume now that you are furthermore given a C0([0, t0], S+
d )-random variable χ, such

that for all 0 ≤ s < t ≤ t0, the increment χ(t) − χ(s) is almost surely in S+
d ; and assume

that b,σ be functionals on
⋃
t≥0C0([0, t],Rd)×C0([0, t],S+

d )×A, respectively Rd andMd,n

valued, such that for any T ≥ 0, the function (t, x, v, u)→ (bt(xt, vtu), σt(xt, vt, u)) defined

on [0, T ]× C0([0, T ],Rd)× C0([0, T ], S+
d )×A is Borel-measurable.

Definition B.2. Assume that α is an admissible control for the filtration σ(ξ)∨ σ(χ)∨Bt.

A strong solution of the Stochastic differential equation:

dX(t0 + t) = bt0+t(Xt0+t, [X]t0+t, α(t))dt+ σt0+t(Xt0+t, [X]t0+t, α(t))dW (t) (B.3)

with inital value

Xt0 = ξ, [X]t0 = χ (B.4)

is a continuous process X such that (Xt0+t)t≥t0 is a σ(ξ) ∨ σ(χ) ∨ Bt-adapted continuous

semimartingale, such that, denoting with a slight abuse of notation:

[X](t) = 1t≤t0χ(t) + 1t>t0 (χ(t0) + [X(t0 + .)−X(t0)](t− t0)) (B.5)
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1. Xt0 = ξ a.s.

2.
∫ t−t0

0 [|bt0+s(Xt0+s, [X]t0+s, α(s))| + |σt0+s(Xs, [X]t0+s, αs)|2]ds < +∞ a.s. for every

t ≥ t0

3. X(t)−X(t0) =
∫ t−t0

0 bt0+s(Xt0+s, [X]t0+s, α(s)) + σt0+s(Xt0+s, [X]t0+s, α(s))dWs a.s.

for every t ≥ t0

Theorem B.1. In the setting of definition B.1, assume that b and σ satisfy the following

Lipschitz and linear growth constraints:

|bt(x, α)− bt(y, α)|+ |σt(x, α)− σt(y, α)| ≤ K sup
s≤t
|x(s)− y(s)| (B.6)

|bt(x, u)|+ |σt(x, u)| ≤ K(1 + sup
s≤t
|x(s)|+ |u|) (B.7)

for all t ≥ t0, x, y ∈ C0([0, t],Rd) and u in A. Then the stochastic differential equation B.1

has a unique strong solution. Moreover, if

E[ sup
s∈[0,t0]

|ξ(s)|2] <∞ (B.8)

then, for every T < 0, there exists a constant C depending on T , K and α only such that:

∀t ∈ [t0, T ], E[ sup
s∈[0,t]

|X(s)|2] ≤ C(1 + E[ sup
s∈[0,t0]

|ξ(s)|2])eC(t−t0) (B.9)

The proof follows the methodology used to prove theorem 5.2.9 in [41].

Proof. Suppose first that the condition E[sups∈[0,t0] |ξ(s)|2] <∞ holds. Define the following

sequence of processes, starting with X0(t) = ξ(t)1t≤t0 + ξ(t0)1t>t0 :

Xn+1
t = ξ(t)1t≤t0 + [ξ(t0) +

∫ t−t0

0
bt0+s(X

n
t0+s, α(s))ds

+

∫ t−t0

0
σt0+s(X

n
t0+s, α(s))dW (s)]1t>t0 (B.10)

We will first prove by induction that for all T ≥ t0, there exists a constant C depending

only on K,T , and α such that

∀n ≥ 0∀t ∈ [t0, T ], E[ sup
s∈[0,t]

|Xn(s)|2] ≤ C(1 + E[ sup
s∈[0,t0]

|ξ(s)|2])eC(t−t0) (B.11)



APPENDIX B. STOCHASTIC DIFFERENTIAL EQUATIONS WITH FUNCTIONAL
COEFFICIENTS 131

The property is obvious for n = 0 for any C, assume it true for n. Define the processes:

B(s) =

∫ s

0
bt0+u(Xn

t0+u, α(u))ds,M(s) =

∫ s

0
σt0+u(Xn

t0+u, α(u))dW (u) (B.12)

and define the constant L = E[
∫ T−t0

0 |α(s)|2ds] Then:

|B(s)|2 ≤ 2sK2

∫ s

0
[1 + ( sup

v∈[0,u]
|Xn(t0 + v)|2 + sup

v∈[0,t0]
|ξ(v)|2) + |α(u)|2]du (B.13)

(using Cauchy-Schwarz inequality), so that:

E[ sup
s∈[0,t−t0]

|B(s)|2] ≤ 2TK2[T + L+ E[ sup
v∈[0,t0]

|ξ(v)|2]]

+2KT 2(1 + E[ sup
v∈[0,t0]

|ξ(v)|2])eC(t−t0) (B.14)

On other hand:

[M ](t− t0) ≤ 2K

∫ t−t0

0
[1 + ( sup

v∈[0,u]
|Xn(t0 + v)|2 + sup

v∈[0,t0]
|ξ(v)|2) + |α(u)|2]du (B.15)

so using Brukholder-Davis-Gundy Inequalities (Theorem 3.3.28 in [41] in dimension 1 and

Problem 3.3.29 for multidimensional case), there exists a universal constant Λ such that:

E[ sup
s∈[0,t−t0]

|M(s)|2] ≤ 2K2Λ[T + L+ E[ sup
v∈[0,t0]

|ξ(v)|2]]

+2K2Λ(1 + E[ sup
v∈[0,t0]

|ξ(v)|2])eC(t−t0) (B.16)

And hence finally

E[ sup
s∈[t0,t]

|Xn+1(s)|2ds] ≤ 2[E[ sup
v∈[0,t0]

|ξ(v)|2] + E[ sup
s∈[0,t−t0]

|M(s)|2] + E[ sup
s∈[0,t−t0]

|B(s)|2]]

≤ 2K2(Λ + T )(T + L+ E[ sup
v∈[0,t0]

|ξ(v)|2])

+2K2(Λ + T )(1 + E[ sup
v∈[0,t0]

|ξ(v)|2])eC(t−t0)

Hence choosing C = 2K2(Λ+T )(1+T+L+E[supv∈[0,t0] |ξ(v)|2]) ensures that the inequality

passes by induction. We now define the processes:

B(s) =

∫ s

0
[bt0+u(Xn+1

t0+u, α(u))− bt0+u(Xn
t0+u, α(u))]ds

M(s) =

∫ s

0
[σt0+u(Xn+1

t0+u, α(u))− σt0+u(Xn
t0+u, α(u))]dW (u) (B.17)
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It is obvious by Brukholder-Davis-Gundy Inequalities that:

E[ sup
s∈[0,t−t0]

|M(s)|2] ≤ ΛK2

∫ t−t0

0
E[ sup

u∈[0,s]
|Xn(u)−Xn−1(u)|2]ds (B.18)

and using Cauchy-Schwarz inequality:

E[ sup
s∈[0,t−t0]

|B(s)|2] ≤ tK2

∫ t−t0

0
E[ sup

u∈[0,s]
|Xn(u)−Xn−1(u)|2]ds (B.19)

so that:

∀t ≤ T,E[ sup
s∈[0,t−t0]

|Xn+1(s)−Xn(s)|2] ≤

2K2(Λ + T )

∫ t−t0

0
E[ sup

u∈[0,s]
|Xn(u)−Xn−1(u)|2]ds (B.20)

so that reiterating ensures that:

∀t ≤ T, E[ sup
s∈[0,t−t0]

|Xn+1(s)−Xn(s)|2] ≤ C∗ [2K2(Λ + T )]ntn

n!
(B.21)

with C∗ = E[supt∈[t0,T ] |X1(t) −X0(t)|2] < ∞ thanks to B.11. Chebychev inequality now

ensures that:

P[ sup
t∈[t0,T ]

|Xn+1(t)−Xn(t)| > 1

2n+1
] ≤ 4C∗

8K2(Λ + T )T ]n

n!
(B.22)

Hence by Borel-Cantelly lemma almost surely there exists n0 such that

n ≥ n0 ⇒ sup
t∈[t0,T ]

|Xn+1(t)−Xn(t)|2 ≤ 1

2n+1
(B.23)

. Hence there exists a continuous process X such that almost surely Xn → X uniformly on

compact intervals, and inequality (B.11) passes to the limit by Fatou’s lemma. Moreover,

inequality (B.11) together with the linear growth condition on b and σ allows to pass to

the limit in the Lebesgue and stochastic integrals by dominated convergence, so the limit

X satisfies the stochastic differential equation.

We now forget the assumption E[sups∈[0,t0] |ξ(s)|2] <∞, and we will show the uniqueness of

the solution. Assume that X and Y are two solutions, let τN = inf{t ≥ t0||X(s)| ∨ |Y (s)| ≥

N}. The previous methodology immediately proves that:

∀t ≤ TE[ sup
s∈[0,t−t0]

|XτN (s)− Y τN (s)|2] ≤ C ′
∫ t−t0

0
E[ sup

u∈[0,s]
|XτN (u)− Y τN (u)|2]ds (B.24)
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for some constant C ′, which can be reiterated to prove that for any n:

∀t ≤ T,E[ sup
s∈[0,t−t0]

|XτN (s)− Y τN (s)|2] ≤

[C ′(t− t0)]n

n!

∫ t−t0

0
E[ sup

u∈[0,s]
|XτN (u)− Y τN (u)|2]ds (B.25)

Since this is true for any n, then E[sups∈[0,T−t0] |XτN (s)−Y τN (s)|2] = 0 By Fatou’s lemma,

we can take the limit N → +∞ to obtain:

E[ sup
s∈[0,T−t0]

|X(s)− Y (s)|2] = 0 (B.26)

Which proves the uniqueness of the solution.

We will finally show existence in the general case. Note that the event {sups∈[0,t0] ξ ≤ N}

belongs to σ(ξ), and denote for N ≥ 1 XN the solution with initial value ξ1sups∈[0,t0] ξ≤N
,

and X0 the solution whose initial value is the identically 0 trajectory. Since for M < N ,

XN1sups∈[0,t0] ξ≤M
+X01sups∈[0,t0] ξ>M

is solution with initial value ξ1sups∈[0,t0] ξ≤M
, and since

uniqueness has been established, thenXN1sups∈[0,t0] ξ≤M
= XM1sups∈[0,t0] ξ≤M

. Hence almost

surely the sequenceXN is constant from a given rank, hence it has a limitX which is solution

of the SDE with initial value ξ.

Corollary B.1. In the setting of definition B.2, assume that b and σ satisfy the following

Lipschitz and linear growth constraints:

|bt(x, v, α)− bt(y, w, α)|+ |σt(x, v, α)− σt(y, w, α)| ≤

K sup
s≤t
|x(s)− y(s)|+ |v(s)− w(s)| (B.27)

|bt(x, v, u)| ≤ K(1 + sup
s≤t
|x(s)|+ sup

s≤t
|v(s)|+ |u|) (B.28)

|σt(x, v, u)| ≤ K (B.29)

for all t ≥ t0, x, y ∈ C0([0, t],Rd),v, w ∈ C0([0, t],S+
d ) and u ∈ A, then there exists a unique

strong solution to the equation B.3. with initial value

Xt0 = ξ, [X]t0 = χ (B.30)
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If moreover

E[ sup
s∈[0,t0]

|ξ(s)|2 + |χ(t0)|2] <∞ (B.31)

, then for every T < 0, there exists a constant C depending on T , K and α only such that:

∀t ∈ [t0, T ], E[ sup
s∈[0,t]

|X(s)|2] ≤ C(1 + E[ sup
s∈[0,t0]

|ξ(s)|2] + E[|χ(t0)|2])eC(t−t0) (B.32)

Proof. Note that the fact that σ is bounded and Lipschitz ensures that tσσ is Lipschitz.

Theorem B.1 ensures that the following d(d + 1)-dimensional SDE has a unique strong

solution:

dX(t0 + t) = bt0+t(Xt0+t, Vt0+t, α(t))dt+ σt0+t(Xt0+t, Vt0+t, α(t))dW (t)

dV (t0 + t) = tσt0+t(Xt0+t, Vt0+t, α(t))σt0+t(Xt0+t, Vt0+t, α(t))dt (B.33)

with initial value

(Xt0 , Vt0) = (ξ, χ) (B.34)

B.1.2 Continuity in the initial value

We can furthermore state continuity of the solutions in the initial value, in the sense of the

following theorem and corollary:

Theorem B.2. Let b, σ be as in theorem B.1, and let ξ and ξ′ be two C0([0, t0],Rd) -

valued random variable, independent from the Brownian motion W , satisfying the assump-

tion (B.8), and α be an admissible control. Denote Xξ and Xξ′ the solutions of (B.1) with

respective initial values ξ and ξ′. Then, for every T ≥ t0 and every ε > 0, there exists a

constant C depending only on ε, T and K in assumption (B.6), such that:

∀t0 ≤ t ≤ T,E[ sup
0≤s≤t

|Xξ(s)−Xξ′(s)|2] ≤ E[sup
s≤t0
|ξ(s)− ξ′(s)|2 + ε|ξ(t0)− ξ′(t0)|2]eC(t−t0)

Proof. For s ≤ T − t0, let f(s) = E[sup0≤u≤t0+s |Xξ(u) − Xξ′(u)|2]. Obviously f(0) =

E[sups≤t0 |ξ(s)− ξ
′(s)|2]. Define the processes:

B(s) =

∫ s

0
[bt0+u(Xξ

t0+u, α(u))− bt0+u(Xξ′

t0+u, α(u))]ds

M(s) =

∫ s

0
[σt0+u(Xξ

t0+u, α(u))− σt0+u(Xξ′

t0+u, α(u))]dW (u) (B.35)
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Then using the global Lipschitz assumption (B.6) and Cauchy-Schwarz inequality:

E[sup
u≤s
|B(u)|2] ≤ K2T

∫ s

0
f(u)du (B.36)

Using the global Lipschitz assumption (B.6):

E[[M ](s)] ≤ K2

∫ s

0
f(u)du (B.37)

so that using Brukholder-Davis-Gundy Inequalities there exists a universal constant Λ such

that:

E[sup
u≤s
|M(u)|2] ≤ ΛK2

∫ s

0
f(u)du (B.38)

so that finally:

E[sup
u≤s

(|M(u)|+ |B(u)|)2] ≤ 2K2(Λ + T )

∫ s

0
f(u)du (B.39)

Note that:

|Xξ(t0 + u)−Xξ′(tu)|2 ≤ (1 + ε)(ξ(t0)− ξ′(t0))2 + (1 +
1

ε
)(M(u) +B(u))2 (B.40)

so that:

f(s) ≤ E[sup
s≤t0
|ξ(s)− ξ′(s)|2 + ε|ξt0 − ξ′(t0)|2] + 2(1 +

1

ε
)K2(Λ + T )

∫ s

0
f(u)ds (B.41)

Hence applying Gronwall lemma [32] with C = 2(1 + 1
ε )K

2(Λ + T ) concludes the proof.

Corollary B.2. Let b, σ are as in corollary B.1, and (ξ, χ) and (ξ′, χ′) be two initial values

as in corollary B.1 satisfying (B.31), and let α be an admissible control. Then, denoting

Xξ,χ, Xξ′,χ′ the strong solutions of the SDE (B.3) with respective initial values (ξ, χ),(ξ′, χ′),

then, for every T ≥ t0, and every ε > 0, there exists a constant C depending only on ε, T

and K in assumptions (B.27), (B.29) such that:

∀t0 ≤ t ≤ T, E[ sup
0≤s≤t

|Xξ,χ(s)−Xξ′,χ′(s)|2] ≤

E[sup
s≤t0
|ξ(s)− ξ′(s)|2 + |χ(s)− χ′(s)|2 + ε|ξ(t0)− ξ′(t0)|2]eC(t−t0)
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B.1.3 Perturbation of coefficients

A probabilistic analysis of perturbations of the coefficient of the SDE is required to allow

us to prove theorem 5.3, which is important for the sensitivity analysis of path-dependent

derivatives. We state the following theorem and its corollary:

Theorem B.3. Let b, σ and ξ be as in theorem B.1, with ξ satisfying the assumption

(B.8), and α be an admissible control. Let (bε)ε>0 and (σε)ε>0 be families of functionals on⋃
t≥0C0([0, t],Rd)× A, respectively Rd and Md,n valued, satisfying the usual measurability

assumption. Assume that there exists φ : R+ 7→ R+, such that for any t ≤ T and any

x ∈ C0([0, t],Rd), |bt(xt) − bεt(xt)| + |σt(xt) − σεt(xt)| < sups∈[0,t] |x(s)|φ(ε). Denote X the

solution of the SDE (B.1) with coefficients b, σ and initial value ξ, and let (Xε)ε>0 be a

family of square-integrable processes satisfying the SDE with coefficients bε, σε and initial

value ξ, and such that for any T > t0, there exists constants AT > 0, εT > 0,∀ε < εT ,∀t0 ≤

t ≤ T,E[|Xε(t)|2] < AT . Then for any T > t0, there exists a constant C depending only on

K, T and A such that, for any t ≤ T, ε < εT :

E[ sup
s∈[0,t−t0]

|X(s)−Xε(s)|2] ≤ Cφ2(ε)
(
eC(t−t0) − 1

)
(B.42)

Proof. Let T ≥ t0 + s ≥ t0.

X(t0 + s)−Xε(t0 + s) =

∫ s

0
[bt0+u(Xu, αu)− bεt0+u(Xε

u, αu)]du

+

∫ s

0
[σt0+u(Xu, αu)− σεt0+u(Xε

u, αu)]dW (u)

(B.43)

We have therefore:

|X(t0 + s)−Xε(t0 + s)| ≤ |B(s)|+ |M(s)|+ |R(s)| (B.44)

where

B(s) =

∫ s

0
[bt0+u(Xt0+u, α(u))− bt0+u(Xε

t0+u, α(u))]ds

M(s) =

∫ s

0
[σt0+u(Xt0+u, α(u))− σt0+u(Xε

t0+u, α(u))]dW (u)

R(s) =

∫ s

0
[bt0+u(Xε

t0+u, α(u))− bεt0+u(Xε
t0+u, α(u))]du

+

∫ s

0
[σt0+u(Xε

t0+u, α(u))− σεt0+u(Xε
t0+u, α(u))]dWu (B.45)
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Then using the global Lipschitz assumption (B.6) and Cauchy-Schwarz inequality:

E[sup
u≤s
|B(u)|2] ≤ K2T

∫ s

0
sup
v∈[0,u]

|X(t0 + v)−Xε(t0 + v)|2du (B.46)

Using the global Lipschitz assumption (B.6):

E[[M ](s)] ≤ K2

∫ s

0
sup
v∈[0,u]

|X(t0 + v)−Xε(t0 + v)|2du (B.47)

so that using Brukholder-Davis-Gundy Inequalities there exists a universal constant Λ such

that:

E[sup
u≤s
|M(u)|2] ≤ ΛK2

∫ s

0
sup
v∈[0,u]

|X(t0 + v)−Xε(t0 + v)|2du (B.48)

Using Cauchy-Schwarz inequality:

E[sup
u≤s

R2(u)] ≤ 4sφ2(ε)A2
T (B.49)

so that finally:

E[sup
u≤s

(|M(u)|+ |B(u)|)2] ≤ 2K2(Λ + T )

∫ s

0
sup
v∈[0,u]

|X(t0 + v)−Xε(t0 + v)|2du (B.50)

and hence:

E[sup
u≤s
|X(t0 + s)−Xε(t0 + s)|2] ≤ 8A2

T sφ
2(ε)

+2K2(Λ + T )

∫ s

0
supv∈[0,u]|X(t0 + v)−Xε(t0 + v)|2du (B.51)

So Gronwall lemma [32] concludes the proof.

Corollary B.3. Let b, σ and (ξ, χ) be as in corollary B.1, with ξ, χ satisfying the assumption

(B.8), and α be an admissible control. Let (bε)ε>0 and (σε)ε>0 be families of functionals on⋃
t≥0C0([0, t],Rd)× A, respectively Rd and Md,n valued, satisfying the usual measurability

assumption. Assume that there exists φ : R+ 7→ R+, such that for any t ≤ T and any

x ∈ C0([0, t],Rd), v ∈ C0([0, t], S+
d ) |bt(xt, vt) − bεt(xt, vt)| + |σt(xt, vt) − σεt(xt, vt)| < φ(ε).

Denote X the solution of the SDE (B.1) with coefficients b, σ and initial value (ξ, χ), and

let (Xε)ε>0 be a family of square-integrable processes satisfying the SDE with coefficients
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bε, σε and initial value (ξ, χ), and such that for any T > t0, there exists constants AT >

0, εT > 0, ∀ε < εT , such that ∀t0 ≤ t ≤ T,E[|Xε(t)|2 + [|[Xε](t)|2] < AT . Then for any

T > t0, there exists a constant C depending only on K, T and AT such that, for any t ≤ T :

E[ sup
s∈[0,t−t0]

|X(s)−Xε(s)|2 + |[X](s)− [Xε](s)|2] ≤ cφ2(ε)
(
eC(t−t0) − 1

)
(B.52)
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