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ABSTRACT

Action-Maslov Homomorphism for Monotone

Symplectic Manifolds

Mark Branson

The action-Maslov homomorphism I : π1(Ham(X,ω)) → R is an important tool

for understanding the topology of the Hamiltonian group of monotone symplectic

manifolds. We explore conditions for the vanishing of this homomorphism, and

show that it is identically zero when the Seidel element has finite order and the

homology satisfies property D (a generalization of having homology generated by

divisor classes). These properties hold for products of projective spaces, the Grass-

mannian of 2 planes in C4, and toric 4-manifolds. We show that these properties do

not hold for all Grassmannians. Finally, the relationship between these statements

and the geometry of π1(Ham(X,ω)) is explored.
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Chapter 1

Introduction

Let (X,ω) be a monotone symplectic manifold. Polterovich introduced the action-

Maslov homomorphism I : π1(Ham(X,ω)) → R in (Polterovich (1997)). Manifolds

where I = 0 have many interesting properties. For instance, the vanishing of I

has implications on the Hofer norm (Polterovich (1997)) and displaceability of La-

grangian fibers of torus actions (Entov and Polterovich (2009)). It has been known

for some time that I = 0 when X = CP n and for X = S2×S2. In (McDuff (2010),

McDuff gives several conditions which imply I = 0. Essentially, these criteria spec-

ify manifolds where most of the genus zero Gromov-Witten invariants vanish. We

extend these results by exploring the form of the Seidel element more deeply. For

monotone symplectic manifolds, the Seidel element always has integral coefficients

and a finite number of terms. By studying these constraints on the Seidel element

and properties of the quantum homology, we can show that I vanishes for products

of projective spaces and the Grassmannian G(2, 4).

Theorem 1.0.1 I = 0 for CP n1 × . . .× CP nk with a monotone symplectic form.

Theorem 1.0.2 I = 0 for G(2, 4).
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Theorem 1.0.1 is related to results of Pedroza (Pedroza (2008)) and Leclercq

(Leclercq (2009)). They showed that, for X ′ and X ′′ monotone symplectic mani-

folds, γ′ ∈ π1(Ham(X ′)), γ′′ ∈ π1(Ham(X ′′)), then S(γ ′ × γ′′) = S(γ ′) ⊗ S(γ ′′),

where S(γ) is the Seidel element. This is sufficient to show that I = 0 for any loop

γ′ ∈ π1(Ham(CPm×CP n)) which is a product of loops in the hamiltonian groups of

CPm and CP n. Our result shows that I = 0 for all loops in π1(Ham(CPm×CP n))

and for all products of projective spaces. Our method for proving that the action-

Maslov homomorphism vanishes depends on showing two facts. First we show that,

when X is one of the above manifolds and γ ∈ π1(Ham), there exists k > 0 such

that the Seidel element S(kγ) = 1⊗λ, where λ is in the Novikov coefficient ring Λ.

Then, we must prove that ν(1⊗ λ) = 0, where ν is the valuation map on quantum

homology. These terms will be defined in Section 2. This second condition ends up

following from the first, provided one of two technical assumptions is satisfied (we

will explain in the text what these conditions mean, especially property D):

Proposition 1.0.3 Let (X,ω) be a symplectic manifold. Suppose that one of the

following conditions holds:

• All genus 0 Gromov-Witten invariants of the form 〈a, b〉XA vanish when A 6= 0.

• The quantum homology QH∗(X,Λ) has property D.

Then for all γ ∈ π1(Ham(X,ω)) such that S(γ) = 1⊗ λ, ν(1⊗ λ) = 0.

The following theorem is an immediate consequence. Let 1 = [X ] ∈ H∗(X).

Theorem 1.0.4 Let (X,ω) be a monotone symplectic manifold. Assume that (X,ω)

satisfies one of the two conditions given in Proposition 1.0.3 and that for all γ ∈

π1(Ham(X,ω)), ∃n such that the Seidel element S(nγ) = 1 ⊗ λ for some λ ∈ Λ.

Then I = 0.
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These conditions are rather restrictive, but they are satisfied for almost all

manifolds where I = 0 (with the possible exception of CP 2×3CP 2, which may not

have S(nγ) = 1⊗ λ).

Property D is trivially satisfied when the even homology classes are generated

by divisors, so it includes many well-studied examples, such as toric varieties. In

many of these cases, it is difficult to show that that S(nγ) = 1 ⊗ λ. We will say

that such Seidel elements have finite order (this is not strictly true, but the reason

why this is a good term will be discussed in Chapter 2), and that Seidel elements

without this property have infinite order.

We can state a few propositions regarding these conditions for other Grass-

mannians. Let G(k, n) be the Grassmannian of complex k-planes in Cn.

Proposition 1.0.5 Let γ ∈ π1(Ham(G(2, 6), ω)). Then S(6γ) = 1⊗ λ.

However, we cannot show the more general result (that I = 0) for G(2, 6),

because the quantum homology - and that of most other Grassmannians - do not

satisfy property D:

Proposition 1.0.6 Let G(k, n) be a Grassmannian, k 6= {1, n− 1} and G(k, n) 6=

G(2, 4). Then the small quantum homology QH∗(G(k, n),Λ) does not satisfy prop-

erty D.

Even the statement that all Seidel elements have finite order is not true for

all Grassmannians, as shown in the following result:

Proposition 1.0.7 Let X = G(2, 2n+1). Then the element x1 = PD(c1(X)) has

infinite order in QH∗(X,Λ).

However, these results do tell us more about the structure of the quantum

homology of G(k, n), and are of interest on their own. They will be proven in

section 5.2
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Chapter 2

Definitions

Let X be a 2N dimensional symplectic manifold. All of these definitions can be

found in (McDuff and Salamon (2004)) - see index for exact locations. Let Keff ,

the effective cone of (X,ω), be the additive cone generated by the spherical homol-

ogy classes A ∈ HS
2 (X) with nonvanishing genus zero Gromov-Witten invariants

〈a, b, c〉XA 6= 0. Consider the Novikov ring Λenr given by formal sums

λ =
∑

A∈Keff

λ(A)e−A (2.0.1)

with the finiteness condition that, ∀c ∈ R

#{A ∈ Keff |λ(A) = 0, ω(A) ≤ c} <∞ (2.0.2)

where λ(A) ∈ R. Λenr has a grading given by |eA| = 2c1(A). We will call this the

enriched Novikov ring. The universal ring Λuniv is Λ[q, q−1], where Λ is generated

by formal power series of the form:

λ =
∑

ǫ∈R

λǫt
−ǫ (2.0.3)

with the same finiteness condition and λǫ ∈ R. The grading on Λuniv is given by

setting deg(q) = 2. Note that Λ is a field. The map ϕ : Λenr → Λuniv is given by
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taking

ϕ(e−A) = q−c1(A)t−ω(A)

and extending by linearity. While these two rings are thus related, different prop-

erties of the quantum homology become apparent when different coefficient rings

are used. In section 5.1 the enriched Novikov ring Λenr will be used to show that

the units are of a specific form. In chapter 3, calculations will be carried out using

the universal ring Λ. The quantum homology with respect to the Novikov ring Λenr

is given by QH∗(X,Λenr) = H∗(X,R)⊗ Λenr. The grading on QH∗(X,Λenr) will be

given by the sum of the grading onH∗(X,R) and the grading on Λenr. The quantum

homology admits a product structure, called the quantum product. Given a basis

ξi of H∗(X) and a dual basis ξ∗i , the quantum product of a, b ∈ H∗(X,R) is defined

by:

a ∗ b =
∑

i,A∈Keff

〈a, b, ξi〉
X
A ξ

∗
i e

−A (2.0.4)

We can then extend this to QH∗(X,Λenr) by linearity. The quantum homol-

ogy QH∗(X,Λuniv) is defined analogously and the map id ⊗ ϕ extends to a ring

homomorphism Φ : QH∗(X,Λenr) → QH∗(X,Λuniv). We define the valuation map

ν : QH∗(X,Λuniv) → R by

ν(λi ⊗ qaitbi) = max{bi|λi 6= 0}.

Next, we will discuss S(γ), the Seidel element (defined in Seidel (1997)).

Given a loop γ ∈ π1(Ham(X,ω)) with γ = {φt}, we define a bundle Pγ over S2

with fiber X . This bundle is given by the clutching construction - take two copies

of D2, D+ and D−. Then take X ×D+ and glue it to X ×D− (where D− has the

opposite orientation from D+ ) via the map

(φt(x), e
2πit)+ ∼= (x, e2πit)−.
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When the loop γ is clear from context, we will refer to this bundle as P . P

has two canonical classes - the vertical Chern class, denoted cvert1 and the coupling

class, denoted uγ. cvert1 is the first Chern class of the vertical tangent bundle.

uγ is the unique class such that uγ|X = ω and un+1
γ = 0. Given a section class

σ ∈ H2(Pγ,Z), we can define the Seidel element in QH∗(X,Λenr) by taking

S(γ, σ) =
∑

A∈HS
2
(X),i

〈ξi〉
Pγ

σ+Aξ
∗
i ⊗ e−A (2.0.5)

where {ξi} is a basis forH∗(X,R), {ξ
∗
i } is the dual (in H∗(X)) of that basis, and HS

2

is the image of π2(X) in H2(X) (the spherical homology classes). Note that σ +A

is a slight abuse of notation; we should actually write σ + ι∗(A), where ι : X → Pγ

is the inclusion map. We will continue this abuse throughout the paper. The Seidel

element can also be defined in QH∗(X,Λ) - in this case, the dependence on σ is

eliminated by an averaging process.

S(γ) =
∑

σ,i

〈ξi〉
Pγ

σ ξ∗i ⊗ q−cvert
1

(σ)t−uγ(σ) (2.0.6)

Although we have defined the Seidel element differently in these two rings,

note that the first determines the second, via the following lemma.

Lemma 2.0.8 For any section class σ ∈ Pγ, there exists an additive homomor-

phism Φσ : QH∗(X,Λenr) → QH∗(X,Λ) which takes S(γ, σ) to S(γ). This homo-

morphism restricts to the identity on H∗(X).

Proof : Define

Φσ(ξi ⊗ e−A) = ξi ⊗ q−cvert
1

(σ+A)t−uγ(σ+A).

Extend this map over QH∗(X,Λenr) by linearity. This is clearly an additive

homomorphism, and Φσ(ξi) = ξi. �

We now explain what we mean when we say that the Seidel element is finite

order.
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Definition 2.0.9 Let Λ be any Novikov ring, and let η ∈ QH2N(X,Λ). We say

that η has finite order if there exists k such that ηk = 1⊗λ for some λ ∈ Λ, λ 6= 0.

This is not strictly the traditional sense of order, as some power is equal

to 1 ⊗ λ rather than 1. However, by a result of Fukaya-Oh-Ohta-Ono (Fukaya

et al. (2010), Lemma A.1), we know that any Novikov ring with coefficients in an

algebraically closed field of characteristic 0 is algebraically closed. Therefore, by

enlarging Λ to have coefficients in C (we will call this ΛC, we can find η ∈ Λ such

that (S(γ)⊗ η)n = 1. Therefore, the statement that S(γ) has finite order is true in

the classic sense, up to multiplication by some η ∈ ΛC. If S(γ) does not have finite

order in this sense, we will say that it has infinite order.

Note that the Seidel element S(γ) is in degree 2N for dimensional reasons.

But we can identify QH2N (X,Λuniv) with the ring QHev(X,Λ) by taking

ψ(aqǫatδa) = atδa

This map is an isomorphism, since ψ−1(a) = aqN− 1

2
deg(a). Since Λ is a field,

working in this ring is more convenient for us. Therefore, we will frequently use

this isomorphism implicitly, especially in Chapter 3 and Section 5.2.

Now we can define the action-Maslov homomorphism I of Polterovich (Pol-

terovich (1997)). Although the original definition is the difference of the action

functional and the Maslov class, Polterovich shows in (Polterovich (1997), Proposi-

tion 3.a) that the homomorphism can also be defined as the difference between the

vertical Chern class and the coupling class. Namely,

uγ = κcvert1 + I(γ)PDPγ(X). (2.0.7)

Here, κ is the same constant of monotonicity from before: ω = κc1(X). We

will use this alternate definition of the action-Maslov homomorphism, because it is

more directly related to our results. Note in particular that if σ is a section class

with cvert1 (σ) = 0, then I(γ)PDPγ(X) = uγ(σ).
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Finally, we will define Property D. This should be seen as a generalization of

the statement that the even degree homology classes of X are generated by divisors.

Here, we will use the conventions that · represents the intersection product

Hd(X)⊗H2N−d(X) → H0(X) ≡ R,

and that all Gromov-Witten invariants are genus-zero invariants. We will use these

conventions throughout this paper.

Definition 2.0.10 QH∗(X,Λ) satisfies Property D if there exists an additive com-

plement V in Hev(X,Q) to the subring D ⊂ Hev(X,Q) generated by the divisors

such that:

• d · v = 0

• 〈d, v〉β = 0 for all β ∈ HS
2 (X)

for all d ∈ D, v ∈ V.
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Chapter 3

Seidel Elements with Vanishing

Valuation

Let (X,ω) be a 2N dimensional symplectic manifold, γ ∈ π1(Ham(X,ω)), and Pγ

the bundle coming from the coupling construction. Quantum homology and Seidel

elements in this chapter will always refer to those with respect to the universal

Novikov ring Λ defined in (2.0.3). In this chapter we will prove Proposition 1.0.3,

which states that if X has either property D or vanishing two-point invariants, and

every γ has some power S(kγ) = 1⊗λ, then ν(λ) = 0. We begin by defining a few

specific terms which will we use throughout this chapter.

Definition 3.0.11 Let Q−(X,Λ) =
⊕

i<2N Hi(X)⊗ Λ.

Definition 3.0.12 Let X and γ be as above, and suppose that S(γ) = 1 ⊗ λ + x,

where x is any element in Q−(X,Λ) and λ = 0. Consider the sections {σ} with

cvert1 (σ) = 0 which contribute to the Seidel element S(γ). Then define σ0 to be the

section such that uγ(σ0) = min{uγ(σ)}.

Note 3.0.13 Since Λ is a field, the condition that λ = 0 is equivalent to λ being a

unit in Λ.
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The main thrust of our argument will be that knowing the Seidel element

of γ tells us a great deal about the Gromov-Witten invariants of Pγ . We use this

knowledge to construct a homology representative of the Poincaré dual of uγ, and

to show that this homology representation has certain properties.

Lemma 3.0.14 (Lemma 3.4, (McDuff (2010))) Suppose S(γ) = 1⊗ λ+ x, where

x is any element in Q−(X,Λ), and there is an element H ∈ H2N(Pγ) such that

1. H ∩ [X ] is Poincaré dual in X to [ω].

2. H · σ0 = 0.

3. HN+1 = 0.

Then ν(1⊗ λ) = 0.

Here conditions (1) and (3) imply that H is a representative of the Poincaré

dual of the coupling class, so that (2) implies ν(1⊗ λ) = 0. We wish to construct

such an H . We will do so by “fattening up” a representative of the dual of ω in the

fibre. Define a map s : H∗(X,R) → H∗+2(P,R) by the identity

s(a) ·P v =
1

〈pt〉Pσ0

〈av〉Pσ0
, (3.0.1)

for all v ∈ H∗(P ). Let HP = s(PDX(ω)). Now we need to show that this HP

satisfies the properties in Lemma 3.0.14. Lemma 3.0.15 is a variant of parts (ii)

and (iii) of (McDuff (2010), Lemma 4.2). This is the one point in our argument

where we require that S(γ) = 1⊗ λ. This variant, and thus the stronger condition

on S(γ), is used at a key point in Lemma 3.0.19. Note that this version of the

lemma eliminates the requirement on the minimal Chern number.

Lemma 3.0.15 Suppose that S(γ) = 1⊗λ and let σ = σ0−B for some B ∈ H2(X)

where ω(B) > 0. Then for all a ∈ H∗(X):
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1. 〈a, b〉Pσ = 0, ∀b ∈ H∗(X).

2. ∀w ∈ H∗(P ), 〈a, w〉
P
σ depends only on w ∩X.

Proof : Begin with the proof of (3.0.15.i). Assume, without loss of generality, that

b is a basis element ξi. Such an invariant is determined by the Seidel representation.

Namely, as in (McDuff and Salamon (2004), (11.4.4)),

S(γ) ∗ a =
∑

i,σ

〈a, ξi〉
Pγ

σ ξ∗i ⊗ q−cvert
1

(σ)t−uγ(σ). (3.0.2)

Thus 〈a, ξi〉
P
σ is the coefficient of ξ∗Xi ⊗ q−cvert

1
(σ)t−uγ(σ) in

S(γ) ∗ a = (1⊗ λ) ∗ a = a⊗ λ. (3.0.3)

Since −uγ(σ) > −uγ(σ0) = ν(1⊗ λ), this invariant vanishes. Since any two

classes w,w′ with w ∩ X = w′ ∩ X differ by a fiber class, (3.0.15.ii) immediately

follows from (3.0.15.i). �

We will also need two lemmas from (McDuff (2010). The first is a special

case of (McDuff (2010), Lemma 4.5).

Lemma 3.0.16 Suppose that S(γ) = 1⊗ λ. Then:

1. s(pt) = σ0.

2. s(a) ∩X = a, ∀a ∈ H∗(X,R).

The second is (McDuff (2010), Lemma 4.1).

Lemma 3.0.17 Suppose that a, b ∈ H∗(X), v, w ∈ H∗(Pγ,R) and B ∈ H2(X,Z) ⊂

H2(Pγ,Z). Then

1. 〈a, b, v〉PB = 0.

2. 〈a, v, w〉 = 〈a, v ∩X,w ∩X〉XB .
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For proofs of these two lemmas, see (McDuff (2010)). Lemma 3.0.16 follows

from simple computations using the definition of s:

s(pt) · v = σ0 · v,

for any divisor class v). Lemma 3.0.17 essentially depends on the fact that the

two fiber constraints can be located in different fibers. If J is compatible with the

fibration, the J-holomorphic curve will reside entirely in one fiber, and thus can

intersect at most one of the fiber constraints. The second part follows similarly,

since the B curve must lie in the same fiber as a.

The two hypotheses for the results in this chapter will be thatH∗(X) satisfies

property D (or that the two point invariants 〈a, b〉XA vanish on X) and that S(γ) =1⊗ λ. If the two point invariants vanish, Lemma 3.0.18 is not needed for the proof

of Proposition 1.0.3. However, if this is not the case, we have property D and we use

Lemma 3.0.18 at exactly two points in the proof of Proposition 1.0.3 (specifically,

in the proofs of Lemma 3.0.19 and Lemma 3.0.21). The other results (and the main

result, Proposition 1.0.3) thus require these conditions only so that they can use

results of Lemma 3.0.19 and Lemma 3.0.21.

Lemma 3.0.18 Let (X,ω) be a symplectic manifold, γ ∈ π1(Ham(X,ω)), and P

the associated bundle. Assume D is the part of Hev(P,R) generated by divisors

{Di, X} and S(γ) = 1 ⊗ λ. Let a ∈ H∗(X,R) be a fiber class, v ∈ D, and

B ∈ H2(X,Z) such that ω(B) > 0. Then the Gromov-Witten invariant 〈v, a〉Pσ0−B

vanishes.

Proof : Suppose not. Take a section of minimal energy such that some invariant

of this form does not vanish and call it σ′. v is a product of divisors, and we claim

we may assume that each of these divisors Di satisfies Di · σ
′ = 0. First, we can

show that none of the Di = X . If any of them did, then v would be a fiber class,

and 〈v, a〉Pσ0−B would vanish by Lemma 3.0.15. Then to any other Di, we can add
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a multiple of X to obtain a new class D′
i which differs from Di by a fiber class and

has D′
i · σ

′ = Di · σ
′ + kX · σ′ = 0, for appropriate choice of k. Lemma 3.0.15 shows

that adding a fiber class to v does not change our Gromov-Witten invariant. Now

consider the set

{vi|〈vi, a〉
P
σ′ = 0}.

Each of these vi is a linear combination of products of k divisors. We will

assume, without loss of generality, that v is one of these vi and it is exactly a

product of k divisors. We will perform induction on k.

If k = 1, the invariant vanishes by the divisor axiom, which says that

〈D1, a〉
P
σ′ = 〈a〉Pσ′(D1 · σ

′) = 0. If k > 1, we use Theorem 1 of Lee-Pandharipande

from (Lee and Pandharipande (2004)), as restated in (McDuff (2010), (4.2)). This

identity is stated as follows. Take a basis ξi of H∗(X) and extend it to a basis

of H∗(P ) by adding classes ξ∗i such that ξi · ξ
∗
j = δij and ξ∗i · ξ

∗
j = 0. Note that

the ξi here are fiber classes, but the ξ∗i cannot be fiber classes. Now take classes

u, v, w ∈ H∗(Pγ), H ∈ H2N(P ) a divisor, and α ∈ H2(P ). Then Lee and Pandhari-

pande show that

〈Hu, v, w〉Pα = 〈u,Hv, w〉Pα + (α ·H)〈u, τv, w〉Pα

−
∑

i,α1+α2=α

(α1 · H)〈u, ξi, . . .〉
P
α1
〈ξ∗i , v, . . .〉

P
α2

(3.0.4)

where τ is a descendant constraint and “. . .” indicates that the w term may appear

in either factor.

Now, assume that the statement is true for all v ∈ D of codimension 2k− 2.

Let v = D1 · · ·Dk−1 ·Dk (where, as above, we can assume that all of these divisors

have Di ·σ
′ = 0). Given any section class σ, McDuff shows in Lemma 2.9 of (McDuff

(2000)) that in the above sum, a section class can only decompose into σ − α and

α where either α is a fiber class or σ − α is a fiber class. In both cases, the other
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element of the decomposition will be a section class by necessity. This follows from

considering J-holomorphic curves where J is compatible with the fibration. By

combining equation 3.0.4 and this decomposition into divisors, one sees that (we

take w = D1 · · ·Dk−1 and D = Dk, to simplify our notation)

〈w ·D, a〉Pσ′ = 〈w ·D, a,X〉Pσ′ (3.0.5)

= 〈w,D · a,X〉Pσ′ + (D · σ′)〈w, τa,X〉Pσ′ (3.0.6)

−
∑

c∈H∗(X),i

((σ′ − c) ·D)〈w, ξi, . . .〉
P
σ′−c〈ξ

∗
i , a, . . .〉

P
c (3.0.7)

−
∑

c∈H∗(X),i

((σ′ − c) ·D)〈w, ξ∗i , . . .〉
P
σ′−c〈ξi, a, . . .〉

P
c (3.0.8)

−
∑

c∈H∗(X),i

(c ·D)〈w, ξi, . . .〉
P
c 〈ξ

∗
i , a, . . .〉

P
σ′−c (3.0.9)

−
∑

c∈H∗(X),i

(c ·D)〈w, ξ∗i , . . .〉
P
c 〈ξi, a, . . .〉

P
σ′−c. (3.0.10)

We will go through the right hand side of this equation line by line and show

that each of them must vanish. Line (3.0.6) has two terms - the first one vanishes

because w is of codimension 2k−2 and the second one vanishes because D ·σ′ = 0.

If line (3.0.7) does not vanish then we must have either c = 0, or ω(c) > 0 and X

in the first factor (otherwise the second factor would vanish by Lemma 3.0.17 ). If

c = 0, then (σ′ − c) ·D = σ′ ·D = 0 and line (3.0.7) vanishes. Thus our first factor

is

〈w, ξi, X〉Pσ′−c

with ω(c) > 0 which vanishes by the minimality of σ′. Line (3.0.8) must vanish

by Lemma 3.0.17 because the second factor is a fiber invariant with two fiber

constraints. In line (3.0.9, the X must insert into the second term by Lemma

3.0.17), and thus we have invariants of the form

〈w, ξi〉
P
c 〈ξ

∗
i , a,X〉Pσ′−c.
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Note that c = 0, so this vanishes by minimality of σ′.

Finally, line 3.0.10 must vanish because the second factor is of the form

〈ξi, a,X〉Pσ′−c = 〈ξi, a〉
P
σ′−c which vanishes because this invariant has two fiber con-

straints. Assume it does not vanish. Then it would contribute to S(γ) ∗ a, as in

(3.0.3). But since it doesn’t vanish, ω(c) > 0, and thus σ′ − c has less energy than

σ0, which contradicts the definition of σ0. Therefore, the entire invariant vanishes,

and by induction, all such invariants vanish. �

Lemma 3.0.19 Assume the conditions of Theorem 1.0.4. Then 〈h, σ0〉
P
σ0

= 0

where h ∈ H∗(X,R) is the Poincaré dual of the symplectic form in X.

Proof : We can take any divisor class D in P such that D ∩X = h and add copies

of X to get a class K such that K ∩X = h and K · σ0 = 0. Then the identity of

Lee-Pandharipande gives us

〈h, σ0〉
P
σ0

= 〈h, σ0, X〉Pσ0

= 〈X,Kσ0, X〉Pσ0
+ (σ0 ·K)〈X, τσ0, X〉Pσ0

−
∑

α∈H2(P )

((σ0 − α) ·K)〈X, ξi, . . .〉
P
σ0−α〈ξ

∗
i , σ0, . . .〉

P
α

−
∑

α∈H2(P )

((σ0 − α) ·K)〈X, ξ∗i , . . .〉
P
σ0−α〈ξi, σ0, . . .〉

P
α

Note that, since K ·σ0 = 0, the first two terms on the right hand side vanish.

Now, assume the some term in the first sum does not vanish. Since the first factor

has two fiber constraints, σ0 − α must be a section class. Also, ω(α) > 0 since

otherwise, (σ0 − α) · K = σ0 · K = 0. But then 〈X, ξi, X〉σ0−α = 〈X, ξi〉σ0−α

vanishes by Lemma 3.0.15.i. Now, we assume that some term in the second sum

does not vanish. Note that σ0−α is a nonzero class (since (σ0−α) ·K = 0). If it is

a fiber class, then by Lemma 3.0.17, we have the first factor (either 〈X, ξ∗i 〉
P
σ0−α or

〈X, ξ∗i , X〉Pσ0−α) is either 〈X, ξ
∗
i ∩X〉Xσ0−α or 〈X, ξ∗i ∩X,X ∩X〉Xσ0−α. Both of these
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vanish because σ0 − α 6= 0 and the first term in the invariant is unconstrained.

Therefore, σ0 − α must be a section class. The invariant is thus of the form:

〈X, ξ∗i , X〉Pσ0−α〈ξi, pt〉
X
α

with α = 0 and ω(α) > 0 since ((σ−α)·K) = 0. Note that the second factor is a two

point invariant on the fiber. By our assumption, either this second factor vanishes

or we have property D. If the second factor does not vanish, then property D tells

us that the class ξi is generated by divisors, because pt ∈ D. If ξi is generated by

divisors, ξ∗i must be generated by divisors, and Lemma 3.0.18 tells us that the first

factor must vanish.

Corollary 3.0.20 Assuming condition (1) of Theorem 1.0.4, we have H · σ0 = 0.

Proof : By the definition of s, we have s(h) · σ0 = 1
〈pt〉Pσ0

〈h, σ0〉
P
σ0
, which is 0 by

Lemma 3.0.19.

Lemma 3.0.21 Assuming condition (1) of Theorem 1.0.4,

〈HN+1−k, XHk〉Pσ0
= 0

for all k.

The proof of this statement follows exactly as Lemma 4.8 in (McDuff (2010)).

We sketch the proof briefly.

Proof : We prove the statement using induction on k. For k = N , this invariant

vanishes by Corollary 3.0.20 and the divisor axiom. Now assume that this invariant

does not vanish for some k, and choose the maximal such k. Using equation 3.0.4,
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we have

〈HN+1−k, X ∩Hk〉Pσ0
= 〈HN+1−k, X ∩Hk, X〉Pσ0

= 〈HN−k, H ·XHk+1, X〉Pσ0

+ (σ0 ·H)〈HN−k, τXHk,X〉Pσ0

−
∑

α∈H2(P )

(α ·H)Hn−k, ξi, . . .〉
P
α 〈ξ

I
i , XH

k, . . .〉Pσ0−α

−
∑

α∈H2(P )

(α ·H)〈Hn−k, ξ∗i , . . .〉
P
α 〈ξi, XH

k, . . .〉Pσ0−α

The first two terms vanish by the inductive hypothesis and Corollary 3.0.20.

Now examine the first sum. If α is a section class, then it cannot be σ0, since

α ·H = 0. Thus, α = σ0 − β, β 6= 0. Then the term in the first sum becomes

(−ω(β))〈Hn−k, ξi, . . .〉
P
α 〈ξ

∗
i , XH

k, . . .〉Pβ

= (−ω(β))〈Hn−k, ξi, . . .〉
P
α 〈Xξ

∗
i , XH

k, . . .〉Xβ .

If QH∗(X,Λ) has property D, the second factor can only be nonzero if ξ∗i

is generated by divisors. But then ξi is generated by divisors, and the first factor

vanishes by Lemma 3.0.18. If QH∗(X,Λ) does not have property D, then the second

term vanishes by the other assumption because it is a two-point invariant. If α is a

fiber class then X must be in the second factor. Therefore, the first factor is a two

point invariant:

〈Hn−k ∩X, ξi〉
X
α

By hypothesis, either these invariants vanish, or QH∗(X,Λ) has property D.

In this case, for the first factor to be nonzero, ξi ∈ D, and thus ξ∗i is generated

by divisors. Then the second factor must vanish by Lemma 3.0.18. Therefore, the

first sum is 0. Now we examine the second sum. The second factor has two fiber

constraints, so σ0 −α must be a section class. σ0 −α must have lower energy than

σ0 because α ·H = 0. Therefore, this vanishes by Lemma 3.0.15.ii. �
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The following corollary is identical to Corollary 4.9 in (McDuff (2010)) and

the proof is the same.

Corollary 3.0.22 Assuming condition (1) of Theorem 1.0.4, HN+1 = 0.

Proof : Taking Lemma 3.0.21 with k = 1, one sees that

0 = 〈HN , h〉Pσ0
= 〈pt〉Pσ0

s(h) ·HN .

But s(h) = H , so HN+1 = 0. �

The proof of Proposition 1.0.3 now follows from these results.

Proof of Proposition 1.0.3: X satisfies the conditions of Lemma 3.0.19. Then by

Corollary 3.0.20, HPγ
· σ0 = 0. Similarly, Lemma 3.0.22 shows that Hm+n+1 = 0.

Thus, H satisfies the conditions of the Lemma 3.0.14. �

Proof of Theorem 1.0.4: Since S(nγ) is of the form 1⊗λ, Proposition 1.0.3 implies

that ν(S(nγ)) = 0. This implies that there exists a section class σ0 such that

cvert1 (σ0) = unγ(σ0) = 0. Therefore, by Equation 2.0.7, I(nγ) = 0. But I(nγ) =

nI(γ), so I(γ) = 0. �
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Chapter 4

Properties of Monotone

Symplectic Manifolds

Chapter 3 establishes that under certain conditions on X we can show I = 0

by showing that the Seidel element of some power is 1 ⊗ λ for all γ. Monotone

symplectic manifolds have several unique properties that allow us to make progress

on this question.

4.1 Constraints on S(γ)

Lemma 4.1.1 If (X,ω) is monotone and γ ∈ π1(Ham(X,ω)), then the Seidel

element S(γ, σ′) (and also the Seidel element S(γ)) will have coefficients in Z and

a finite number of terms.

Proof : Assume that the sum is not finite - that is, an infinite number of sections

σi contribute to S(γ, σ′). The difference of any two section classes is a fiber class,

so σi − σ′ = C for C ∈ H2(X). But the definition of the Seidel element implies

that 0 ≤ c1(C) ≤ 2N . For a monotone symplectic manifold, the bound on c1(C)

gives a bound on energy: 0 ≤ ω(C) ≤ κ2N , where ω = κc1(X). By Corollary 5.3.2
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in (McDuff and Salamon (2004)), there are only finitely many homotopy classes

which can be represented by J-holomorphic curves with energy 0 ≤ ω(C) ≤ κ2N .

Therefore, the sum must be finite.

It remains to show that the Seidel element has integral coefficients. Theorem

7.3.1 in (McDuff and Salamon (2004)) establishes that the genus 0 Gromov-Witten

invariants are integral for closed semipositive symplectic manifolds. This condition

is equivalent to showing that the evaluation map is a pseudocycle with bordism

class independent of the almost complex structure J . Of course, for a general γ,

Pγ is not a semipositive manifold. However, for the Seidel element to have integral

coefficients, one only needs two-pointed Gromov-Witten invariants where A is a

section class to satisfy this condition. The proof will be similar to that of Theorem

6.6.1 in (McDuff and Salamon (2004)), with appropriate modifications for this case

(6.6.1 addresses semipositive manifolds). In a semipositive manifold, one can show

that, while multiply covered curves might appear in the boundary of M0,A(J), they

have codimension at least 2 and do not affect the evaluation map. Therefore, the

Gromov-Witten invariants will be integral.

Although Pγ is not necessarily semipositive, even for monotone X , a similar

argument holds for the space M0,σ(J) where σ is a section class. Lemma 2.9 in

(McDuff (2000)) says that if J is a fibered almost complex structure, then each

element of the limit set can be divided into a unique component called the stem

which represents a section class and a finite number of connected pieces each lying

in a different fiber. The curves in the boundary of the moduli space will also have

a stem class, which cannot be multiply covered, because it represents a section

class. The curves lying in the fibers could contain multiply covered curves, but

the monotonicity condition forces these to be codimension at least 2. Thus, they

do not affect the evaluation map, and the Gromov-Witten invariants of the form

〈a, b, c〉
Pγ
σ will be integral. Since the definition of the Seidel element only involves
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invariants of this form, the Seidel element will have integral coefficients. Therefore,

the evaluation map is a pseudocycle. �

Therefore, the Seidel element actually lies in a subring of QH∗(X,Λenr) where

elements have integral coefficients and only a finite number of terms. Since we will

be working in this subring of QH∗(X,Λenr), we will give it a name.

Definition 4.1.2 Let Λenr,Z be the subring of Λenr with integral coefficients. Then

define Qenr(X) = QH∗(X,Λenr,Z) to be the subring of QH∗(X,Λenr) which consists

of finite sums of elements with coefficients in Z. Thus, a typical element is

n
∑

i=0

xie
−Ci

where xi ∈ H∗(X,Z) and Ci ∈ HS
2 (X,Z).

4.2 Products and Property D

If X and Y both have homology generated by divisors, it is clear that the homology

of X × Y will be generated by divisors by the Kunneth formula. We can make a

similar statement about property D, but we need to add an additional condition

on our manifolds; they must be monotone with the same constant of monotonicity

so that we can use the monotone version of the quantum Kunneth formula given

in section 11.1 of (McDuff and Salamon (2004)). A more general version of the

quantum Kunneth formula exists (see (Kaufmann (1996))) but it seems unlikely to

imply that property D holds.

Lemma 4.2.1 Assume that (X ′, ω) and (X ′′, η) are monotone symplectic mani-

folds with the same constant of monotonicity: c1(X
′) = κ[ω] and c1(X

′′) = κ[η].

Then if QH∗(X
′,Λuniv) and QH∗(X

′′,Λuniv) have property D, QH∗(X
′ ×X ′′,Λuniv)

also has property D.
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Proof : Let H∗(X
′) = D′ ⊕V ′ and H∗(X

′′) = D′′⊕V ′′ be the decompositions given

by property D. By the classical Kunneth formula,

Hk(X
′ ×X ′′) =

⊕

i+j=k

Hi(X
′)⊗Q Hj(X

′′)

Let

Dk =
⊕

i+j=k

D′
i ⊗Q D′′

j

Vk =
⊕

i+j=k

(

(D′
i ⊗Q V ′′

j )⊕ (V ′
i ⊗Q D′′

j )⊕ (V ′
i ⊗Q V ′′

j )
)

.

By the classical Kunneth formula, V is an additive complement for D, and

D is the part of H∗(X
′ × X ′′) generated by divisors. It remains to show that

d · v = 0 and 〈d, v〉 = 0. Let d = d′1 ⊗ d′′1. V is generated by elements of the form

v = d′2 ⊗ v′′1 + v′1 ⊗ d′′2 + v′2 ⊗ v′′2 (note that v′2 and v′′2 are either both of even degree

or both of odd degree). First we show that d · v = 0, using the classical Kunneth

formula:

d · v = (d′1 ⊗ d′′1) · (d
′
2 ⊗ v′′1 + v′1 ⊗ d′′2 + v′2 ⊗ v′′2 )

= (d′1 · d
′
2)⊗ (d′′1 · v

′′
1) + (d′1 · v

′
1)⊗ (d′′1 · d

′′
2) + (d′1 · v

′
2)⊗ (d′′1 · v

′′
2 )

= (d′1 · d
′
2)⊗ 0 + 0⊗ (d′′1 · d

′′
2) + 0⊗ 0

= 0.

Note that the intersections in the second line vanish because of property D

if the vi are of even degree and for dimensional reasons if the vi are of odd degree.

Now we will show that 〈d, v〉 = 0. This will follow from the monotone quantum

Kunneth formula. The monotone quantum Kunneth formula says that if X ′ and X ′′

are two monotone symplectic manifolds with the same constant of monotonicity,

QH∗(X
′ ⊗X ′′,Λuniv) = QH∗(X

′,Λuniv)⊗Λuniv
QH∗(X

′′,Λuniv).
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Then we have that

d ∗ v = (d′1 ⊗ d′′1) ∗ (d
′
2 ⊗ v′′1 + v′1 ⊗ d′′2 + v′2 ⊗ v′′2)

= (d′1 ∗ d
′
2)⊗ (d′′1 ∗ v

′′
1) + (d′1 ∗ v

′
1)⊗ (d′′1 ∗ d

′′
2) + (d′1 ∗ v

′
2)⊗ (d′′1 ∗ v

′′
2 )

= (d′1 ∗ d
′
2)⊗ 0 + 0⊗ (d′′1 ∗ d

′′
2) + 0⊗ 0

= 0.

As above, the quantum products vanish either because of property D or for

dimensional reasons. �
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Chapter 5

Manifolds with S(kγ) = 1⊗ λ and

Property D)

Now we will discuss several monotone symplectic manifolds which we can show

have I = 0, and several others where we can prove partial results. We do this by

showing results about property D and the form of the Seidel element. Note that

we need to show that the Seidel element S(γk) = 1 ⊗ λ. In some cases, it may

be easier to show that the enriched Seidel element S(kγ, kσ) has this form. Then

Lemma 2.0.8 implies that S(kγ) has the form 1⊗ λ.

5.1 CPm × CP n

Let X be CPm × CP n with the monotone symplectic form, and let N = m+ n.

Note 5.1.1 In fact, all of the results in this section are true for products of an

arbitrary number of projective spaces with the monotone symplectic form. For sim-

plicity of notation, though, we will prove them for CPm × CP n only.

In order to show that I = 0, we need to show that some power of the Seidel

element is of the form 1⊗λ. This is a consequence of the algebraic structure of the
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quantum homology: namely, that the subring Qenr is a group ring over an ordered

group.

Definition 5.1.2 An ordered group is a group G equipped with a total order ≤

which is translation invariant: g ≤ h⇒ g · a ≤ h · a and a · g ≤ a · h ∀g, h, a ∈ G.

Theorem 5.1.3 If X is CPm × CP n with the monotone symplectic form, then

Qenr(X) is an Z group ring over an ordered group.

Theorem 5.1.3 follows directly from Lemmas 5.1.4 and 5.1.5.

Lemma 5.1.4 If Qenr(X
′,Λ′

enr,Z) and Qenr(X
′′,Λ′′

enr,Z) are both group rings over

ordered groups, then Qenr(X
′ × X ′′,Λ′

enr,Z ⊗ Λ′′
enr,Z) is also a group ring over an

ordered group.

Proof : Qenr(X
′ ×X ′′,Λ′

enr,Z ⊗Λ′′
enr,Z)

∼= H∗(X
′ ×X ′′)⊗Z Λ

′
enr,Z ⊗Λ′′

enr,Z as additive

groups. Thus, by the classical Künneth formula, Qenr(X
′ × X ′′,Λ′

enr,Z ⊗ Λ′′
enr,Z)

∼=

Qenr(X
′,Λenr,Z) ⊗Z QH∗(X

′′,Λ′′
enr,Z) as additive groups. By the quantum Kun-

neth formula (Section 11.1, McDuff and Salamon (2004)), that this is actually

a ring isomorphism. Therefore, Qenr(X
′ ×X ′′,Λ′

enr,Z ⊗Λ′′
enr,Z)

∼= Qenr(X
′,Λenr,Z)⊗Z

Qenr(X
′′,Λ′′

enr,Z).

We assumed that both of these subrings were group rings over ordered

groups. Therefore, we have that Qenr(X
′ ×X ′′,Λ′

enr,Z ⊗ Λ′′
enr,Z)

∼= Z(G′)⊗Z Z(G′′).

But this is isomorphic to Z(G′×G′′). Give G′×G′′ the lexicographic ordering. The

product of two ordered groups with the lexicographic ordering is still an ordered

group: (g′, g′′) ≤ (h′, h′′) ⇒ (g′ · a′, g′′ · a′′) ≤ (h′ · a′, h′′ · a′′)and(a′ · g′, a′′ · g′′) ≤

(a′ · h′, a′′ · h′′). �

Lemma 5.1.5 Qenr(CP
n) is a group ring over an ordered group.
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Proof : Recall that

Qenr(CP
n) ∼=

Λenr,Z[x]

〈xn+1 = e−A〉
,

where A is the class of the generator in H2(X,Z). Let q = eA and then let G be

the group generated by x and q with relation xn+1 = q−1 (note that G = Z). This

group can be ordered by using the mapping φ : (G, ·) → (Q,+) where φ(x) = 1
n+1

and φ(q) = −1. Then G is ordered by the pullback of the ordering on Q. Clearly,

Qenr(CP
n) is just the Z group ring of G. �

Now we can combine Theorem 5.1.3 and an algebraic lemma to determine

the units of Qenr(X).

Lemma 5.1.6 If G is an ordered group, then the units of Z(G) are ±G.

Lemma 5.1.6 is proved as Lemma 45.3 of (Sehgal (1993)). The proof is

provided here for convenience of the reader:

Proof (Sehgal): Take a nonmonomial unitp =
∑t

i=1 ui ∗ gi of the group ring and

its inverse (which must also then be nonmonomial) p−1 =
∑ℓ

i=1 vi ∗ hi, with g1 <

g2 < . . . < gt and h1 < h2 < . . . < hℓ. If we multiply these two elements, we get

1G = u1v1 ∗ g1h1 + . . . + utvℓ ∗ gthℓ. Then, for this equation to be true, the group

element in any term on the right hand side must be 1G or cancel with the group

element from another term. However g1h1 < gihj , for i = 1, j = 1 and gihj < gthℓ

for i = t, j = ℓ, so these group elements cannot cancel with other terms. Thus,

we must have g1h1 = 1G = gthℓ and thus g−1
1 = h1 and g−1

t = hℓ. But we have

g1 ≤ gt ⇒ g−1
1 > g−1

t ⇒ h1 > hℓ, which is a contradiction. Therefore, p must be

monomial. �

Corollary 5.1.7 Let X = CPm ×CP n with the monotone symplectic form. Then

the only units in Qenr(X) are the monomial units - those of the form ±aibj ⊗ eC,

C ∈ H2(X,Z).
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Proof : Theorem 5.1.3 shows that Qenr(X) is isomorphic to an integral group ring

over the group generated by a, b, and eA (where A is a generator of H2(X,Z)).

Since this group is ordered, all of its units are monomial by Lemma 5.1.6. �

Theorem 5.1.8 For CPm ×CP n with the monotone symplectic form and for any

loop γ ∈ π1(Ham(CPm × CP n, ω)), S(γ) has finite order.

Proof : Let σ be a section class in H2(Pγ). Corollary 5.1.7 shows that S(γ, σ)

must be of the form ±afbg ⊗ e−C . Let k = (m + 1)(n + 1). Then S(kγ, kσ) =

akfbkg ⊗ e−C = 1 ⊗ e(kh−(n+1)f)Ae−C . By Lemma 2.0.8, the same k also works for

S(γk) = 1⊗ λ. �

Proof of Theorem 1.0.1: The first condition of Theorem 1.0.4 is satisfied because all

classes in H∗(CP
n1 × . . .×CP nk) are generated by divisors. Therefore, QH∗(X,Λ)

satisfies property D. Theorem 5.1.8 shows that the second condition is satisfied for

a product of two projective spaces, and thus Theorem 1.0.4 shows that I = 0. By

using Lemma 5.1.4 (k − 1) times, one can show Theorem 5.1.8 for the product of

more than two projective spaces. The result follows. �

5.2 Grassmannians

The next class of manifolds which we will discuss are the complex Grassmannians.

Let X = G(k, n) be the space of k-dimensional subspaces in Cn with the standard

symplectic form ω (note that [ω] = c1(X). Then Witten showed in (Witten (1995))

(further details were worked out by Siebert and Tian in (Siebert and Tian (1997)))

that the quantum homology could be completely described. Consider the two bun-

dles E and F over V , where the fibre EV = V and FV = Cn/V . Consider the
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Chern classes of their dual bundles:

xi = ci(E∗)

yj = cj(F∗)

These classes generate the cohomology (and thus their Poincaré duals, which

we will represent by the same notation, generate homology). Since E is of rank k

and F is of rank n− k, we have that xi = 0 = yj for all i > k and j > n− k. Also,

since E ⊕ F is isomorphic to the trivial bundle,

ℓ
∑

i=0

xiyℓ−i = 0

for ℓ = 1, . . . , n. This determines the yj inductively in terms of the xi :

yj = −x1yj−1 − · · · − xj−1y1 − xj .

Classically, the relations yj = 0 for j > n − k are known to be the only

relations on H∗(X,Q). Thus,

H∗(X,Q) =
Q[x1, . . . , xk]

〈yn−k+1, . . . , yn〉
.

The results of Witten and Siebert-Tian show that the quantum homology is

in fact very similar:

QH∗(X,Λuniv) =
Λ[x1, . . . , xk]

〈yn−k+1, . . . , yn−1, yn + (−1)n−kqn〉

Our main technique for dealing with the quantum homology will be a gen-

eralization of these results called quantum Schubert calculus.

5.3 An Introduction to Quantum Schubert Cal-

culus

To study the quantum homology of the Grassmannian, we will need an understand-

ing of quantum Schubert calculus. Bertram has defined quantum versions of the
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Giambelli and Pieri relations from classical Schubert calculus in (Bertram (1997)).

Recall that the Schubert cells are indexed by (n − k)-tuples of integers a with

k ≥ a1 ≥ a2 ≥ · · · ≥ an−k ≥ 0. The codegree of a is |a| =
∑n−k

i=1 ai. Let xi be

the Poincaré dual to the i-th Chern class of G(k, n) as above. Giambelli’s formula

states that σa, the Schubert cell associated to a, is given by the determinant of the

following matrix:

σa =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

xa1 xa1+1 xa1+2 · · · xa1+n−k−1

xa2−1 xa2 xa2+1 · · · xa2+n−k−2

xa3−2 sa3−1 xa3 · · · xa3+n−k−3

...
...

...
. . .

...

xan−k−(n−k)+1 . . . . . . . . . . . . . . . . . xan−k

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Here, x0 = 1 and xℓ = 0 for all ℓ > k. The quantum version of Giambelli’s

formula is identical, using the quantum product instead of the intersection prod-

uct. However, all of the quantum multiplications involved are undeformed, so the

quantum Schubert cells are the same as the ordinary Schubert cells.

The other classical formula from Schubert calculus, Pieri’s formula, is given

by

xi · σa =
∑

b

σb (5.3.1)

where the sum is taken over all b such that |b| = |a|+i and k ≥ b1 ≥ a1 ≥ b2 ≥ · · · ≥

bn−k ≥ an−k ≥ 0. For example, if X = G(3, 7), we have x1 ·σ3,2,1,1 = σ3,3,1,1+σ3,2,2,1.

In the quantum version of the formula, there is an additional quantum term:

xi · σa =
∑

b

σb + q
∑

c

σc (5.3.2)

where |c| = |a| + i − n and a1 − 1 ≥ c1 ≥ a2 − 1 ≥ · · · ≥ an−k − 1 ≥ cn−k ≥ 0,

where q is of degree 2n. Therefore, our example from G(3, 7) above would become

x1 ∗ σ3,2,1,1 = σ3,3,1,1 + σ3,2,2,1 + qσ1,0,0,0. Recall that in classical Schubert calculus,
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++=
2

12

1

2

1

Figure 5.3.1: The multiplication σ2,1,0,0 · σ1,1,0,0 in G(3, 7) with words labeled.

one can identify each Schubert cell with a corresponding Young tableau. The Young

tableau corresponding to σa1,...,an−k
consists of n rows of boxes with ai boxes in each

row, where k ≥ a1 ≥ · · · ≥ an−k ≥ 0 (we will refer to tableaux and their partitions

interchangeably). In classical Schubert calculus, the product of two Schubert cells

represented by Young tableaux is given by the Littlewood-Richardson rule. It says

that

σλ · σµ =
∑

ν

Nν
λµσν

where Nν
λµ is the number of tableaux on the skew shape ν/λ of content µ whose

word is a reverse lattice word. Tableaux on the skew shape of ν/λ of content µ

means that we look at tableaux ν where we can label the complement of λ with

µ1 1s, µ2 2s, . . ., and µn−k (n − k)s, so that the numbering is weakly increasing

across rows and strictly increasing down columns. The word of this numbering is

the list of entries read left-to-right, bottom-to-top. It is a reverse lattice word if,

at any point along its length, the number of 1s remaining is greater than or equal

to the number of 2s remaining, which is greater than or equal to the number of 3s

remaining, etc. The product of σ2,1,0,0 · σ1,1,0,0 in G(3, 7) is shown in Figure 5.3 for

illustration. We see that σ2,1,0,0 · σ1,1,0,0 = σ3,2,0,0 + σ3,1,1,0 + σ2,1,1,1.

Bertram, Ciocan-Fonatanine, and Fulton prove a quantum version of this

rule using the quantum Giambelli and Pieri formulas given above in (Bertram

et al. (1999)). In this rule, the quantum terms come from removing n-rim hooks.

An n-rim hook is a collection of n contiguous boxes along the right edge (or rim),
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starting at the bottom of one of the columns, which ends in the last box of a row.

If an n-rim hook does not end in the last box of a row, it is called an illegal n-rim

hook. The width of the rim hook w is the number of columns that its boxes are

contained in. Examples of n-rim hooks and quantum Young tableaux appear in

figures 5.7 and 5.7. Bertram, Ciocan-Fontanine, and Fulton prove the quantum

Littlewood-Richardson rule, given here:

Lemma 5.3.1 Let λ = λ1, . . . , λs be a Young tableau with s ≥ (n − k), λi ≤ k.

Then this tableau represents a quantum Schubert class. Specifically, it represents

the class:

1. 0, if λ contains an illegal n-rim hook, or if s > n− k and λ does not contain

an n-rim hook.

2. (−1)k−wqσµ, where µ is the tableau which results from removing an n-rim

hook of width w.

Then the quantum Littlewood-Richardson rule is exactly the same as the

classical Littlewood-Richardson rule, except quantum classes are represented by

tableaux with more than n− k rows.

5.4 G(2, 4)

We begin with our main result on Grassmannians, Theorem 1.0.2. This result states

that the action-Maslov homomorphism vanishes for the Grassmannian of 2-planes

in C4. We need to show two things to prove this statement: that S(kγ) = 1⊗λ and

that G(2, 4) satisfies property D. First, we will show that the Seidel element must

be cyclic. Unlike the products of projective spaces, here we do not even need to

use enriched coefficients. Instead of Qenr(X), we will look at the analogous subring
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Q(X) of finite sums with integral coefficients in QH∗(X,Λ). This ring can be stated

using the results of Siebert-Tian as

Q(X) =
Λ[x1, x2]

〈x31 − 2x1x2, x21x2 − x22 − t4〉

Because dim(X) = 8 and the minimal Chern number is 4, the terms which

can appear in the Seidel element are sharply limited. Assume that a section σ

contributes to the Seidel element. Then any other contributing sections are of the

form σ′ = σ + kL, where k ∈ Z and L = x1x2 is the class of a line in X). Since

contributing sections must have −8 ≤ cvert1 (σ′) ≤ 0, clearly another section can

only exist if σ′ = σ±L and cvert1 (σ) = 0 or −8. H∗(X) has generators organized by

degree as follows:

0 x22

2 x1x2

4 x21, x2

6 x1

8 1
The Seidel elements form a subgroup of the units - the product of two Seidel

elements is a Seidel element, and so is the inverse. All of these elements have degree

equal to the dimension of X , which is 8. Thus, the Seidel element can only be of

the form:

a1tǫ + bx22q
4t4+ǫ (5.4.1)

ax1q
1tǫ (5.4.2)

ax2q
2tǫ + bx2q

2tǫ (5.4.3)

ax1x2q
3tǫ (5.4.4)

Since these elements are of degree 8, we will work in QH∗(X,Λ) (note that

the Schubert calculations will retain qs, since the terms are not all in fixed degrees).
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Similarly, the exponent of t is determined up to a constant multiple λ = tǫ so we

will also suppress t. These elements must be units in the quantum homology (with

inverses of the same form), and since the symplectic form is monotone, a and b

must be integers.

Lemma 5.4.1 The Seidel element, up to appropriate powers of q and t, is either1, x2, x21 − x2, or x
2
2.

Proof : If S(γ) has the form given in (5.4.2), then S(γ−1) is of the form given in

(5.4.4). By the quantum Giambelli’s formula, x1 = σ1,0 = σ1 and x1x2 = σ2,1. By

quantum Pieri, we have

σ1 ∗ σ2,1 = σ2,2 + q4σ0,0

= x22 + q41.
Therefore,1 = (ax1) ∗ (bx1x2)

= abx21x2

= ab(1 + x22).

This implies that ab = 0 and ab = 1, which is impossible. Thus, no such

elements can be Seidel elements. Now we look at (5.4.1). First, note that by

Giambelli’s and Pieri’s formula,

x42 = σ2
2 ∗ σ2,2

= σ2 ∗ (q
4σ1,1)

= q8σ0,0

= 1q8.
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Then we have1 = (a1 + bx22) ∗ (c1 + dx22)

= (ac + bd)1+ (ad+ bc)x22.

Hence, (ad + bc) = 0 and (ac + bd) = 1. Then, either d = 0 or a = −bc
d
.

By substituting this for a, one obtains that b = d
d2−c2

and a = −c
d2−c2

. Since a and

b are both integers, this means that d2 − c2 divides both c and d. There are only

two cases when this occurs - when {a, b, c, d} = {0,±1, 0,±1} or {±1, 0,±1, 0}.

Therefore, the Seidel element must be either 1 or x22 multiplied by some λ.

Finally, we look at (5.4.3). For this, we will use

x41 = σ3
1 ∗ σ1,0

= σ2
1 ∗ (σ1,1 + σ2,0)

= σ1 ∗ (2σ2,1)

= 2σ2,2 + 2q4σ0,0

= 2x22 + 2q41
x21x2 = σ1 ∗ σ2,1

= σ2,2 + q4σ0,0

= x22 + q41.
This implies that1 = (ax21 + bx2) ∗ (cx

2
1 + dx2)

= acx41 + (bc+ ad)x21x2 + bdx22

= (2ac+ bc + ad+ bd)x22 + (2ac+ bc + ad)1.
This will be true if and only if (2ac + bc + ad) = −bd = 1. Thus we have

b = −d = ±1. If b = −d = 1, then c = 1−a
−1−2a

, which is only integral if {a, b, c, d} =
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{0, 1,−1,−1} or {−1, 1, 0,−1}. Similarly, if b = −d = −1, then c = 1+a
1−2a

, which is

only integral if {a, b, c, d} = {0,−1, 1, 1} or {1,−1, 0, 1}. Therefore, we have either

±(x21 − x2) or ±x2. This completes the proof. �

Lemma 5.4.2 Let S(γ) be the Seidel element of γ ∈ π1(Ham(X,ω)). Then S(4γ) =1⊗ λ.

Proof : S(γ) must be of a form listed in Lemma 5.4.1. Clearly, since Λ is a field, the

coefficient λ does not affect invertibility, and we only need to concern ourselves with

the homology terms. Since 14 = 1 and x42 = q8, this is obvious for the first two cases

and the third case, when c = 0. This leaves only the case where S(γ) = x21 − x2.

But (x21 − x2)
2 = x22, so the statement also holds in this case. �

In order to show that the action-Maslov homomorphism vanishes on G(2, 4),

we also need to show that it satisfies Property D. This is slightly weaker than

requiring that the quantum homology be generated by divisors. QH∗(G(2, 4),Λ) is

not generated by divisors, but does satisfy property D.

Lemma 5.4.3 The quantum homology of G(2, 4) with coefficients in Λ satisfies

property D.

Proof : First, note that the homology is generated (over Q) by x1 in every degree

except 4 (x1x2 = 1
2
x31 and x22 = x21x2 = 1

2
x41 ). Therefore, V must be generated by

some class ax21 + bx2. But by the dimension formula for genus 0 Gromov-Witten

invariants, if

〈d, v〉A 6= 0,

then the codegrees of d and v must add up to 8 + 2c1(A) − 2. If A 6= 0, we have

c1(A) ≥ 4, so the sum of the codegrees must be at least 14. But if v is ax21 + bx2, it

has codegree 4 and d must have codegree 10. But G(2, 4) is 8 dimensional, so this
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cannot happen. Therefore, 〈d, ax21 + bx2〉A = 0 for all d ∈ D and G(2, 4) satisfies

property D. �

Lemmata 5.4.2 and 5.4.3 are sufficient to show that the action-Maslov ho-

momorphism vanishes on G(2, 4). This completes the proof of Theorem 1.0.2

5.5 G(2, 5)

In the case of X = G(2, 5), though, neither of these conditions are satisfied.

Proposition 5.5.1 The element x1 = PD(c1(G(2, 5)) is a unit in QH∗(X,Λ) of

infinite order.

Proposition 5.5.2 G(2, 5) does not satisfy property D.

Proof : Using Giambelli’s formula, we see that:

σ(0, 0, 0) = 1 σ(1, 0, 0) = x1

σ(2, 0, 0) = x2 σ(1, 1, 0) = x21 − x2

σ(2, 1, 0) = x1x2 σ(1, 1, 1) = x31 − 2x1x2

σ(2, 2, 0) = x22 σ(1, 1, 1) = x31 − 2x1x2

σ(2, 2, 1) = x1x
2
2 σ(2, 2, 2) = x32.

Proof of Proposition 5.5.1: We will show that σ(1,0,0) = x1 is a unit with infinite

order.

x1 ∗ (x
2
1 − 2x22) = x1 ∗ (σ(2,1,1) − σ(2,2,0))

= qσ(0,0,0) + σ(2,2,1) − σ(2,2,1)

= q1
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Therefore, x1 is a unit. Now we will show that it has infinite order. Consider

the sequences of quantum Schubert cells given by

ai = {σ(1,0,0), σ(1,1,0), σ(2,1,0), σ(2,1,1), σ(2,2,1), qσ(1,0,0), qσ(1,1,0), qσ(1,1,1), . . .}

bj = {σ(2,0,0), σ(1,1,1), σ(2,2,0), qσ(0,0,0), σ(2,2,2), qσ(2,0,0), qσ(2,0,0), qσ(1,1,1), ...}

Using quantum Pieri, we can see that x1∗ai = ai+1+bi and that x1∗bj = aj+2.

Because of this recursive relation, we obtain that

xi1 = fiai + fi−1bi−1

where fi is the ith Fibonacci number. Clearly xi1 6= 1⊗ λ for any i > 0. Therefore,

it has infinite order. �

Proof of Proposition 5.5.2: Now we wish to show that G(2, 5) does not satisfy

property D. We will show that there does not exist an additive complement V to

the subring D generated by the divisors which has d · v = 0 and 〈d, v〉β = 0 for all

d ∈ D, v ∈ V. We will take v = x21x2 − 2x22. Then, by classical Giambelli,

x21 · (x
2
1x2 − 2x22) = x21 · (σ(2,1,1) − σ(2,2,0))

= x1 · (σ(2,2,1) − σ(2,2,1))

= 0.

However, there is a nontrivial two point invariant involving v:

pt ∗ v = x32 ∗ (σ(2,1,1) − σ(2,2,0))

= x22 ∗ (qσ(1,0,0) − σ(2,2,2))

= x2 ∗ (qσ(2,1,0) − qσ(1,1,1))

= qσ(2,2,1) − q2σ(0,0,0)

= qx1x
2
2 − q21.

〈pt, v〉ℓ is the coefficient of the x1x
2
2 term, so 〈pt, v〉ℓ = 1. Therefore, no such

additive complement exists, and property D is not satisfied. �
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5.6 G(2, 6)

Let X = G(2, 6). Then we can show using the same techniques that all Seidel

elements have finite order.

Proof of Proposition 1.0.5: The homology of X is generated by the Poincaré dual

of the first and second Chern classes - we’ll denote these homology classes by x1

and x2 respectively, with relations

x51 − 4x31x2 + 3x1x
2
2 = 0

x41x2 − 3x21x
2
2 + x32 = 0.

Then the homology is additively generated by these classes:

H0 = x21x
3
2 H2 = x31x

2
2

H4 = x21x
2
2, x

3
2 H6 = x51, x

3
1x2

H8 = x41, x
2
1x2, x

2
2 H10 = x31, x1x2

H12 = x21, x2 H14 = x1

H16 = 1.
The choice of generators in degrees 0 through 6 is arbitrary if we consider

homology over Q. However, this particular choice of generators generates the sub-

ring of homology with Z coefficients. The quantum homology is generated by the

same classes along with an additional divisor class q. The relations on quantum

homology are:

x51 − 4x31x2 + 3x1x
2
2 = 0

x41x2 − 3x21x
2
2 + x32 = −q6.

Recall that because X is monotone, the Seidel element will have integral

coefficients. Additionally, since the minimal Chern number is n = 6, we are rather
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limited in the what the Seidel element can be. The possible Seidel elements are

a1+ bx21x
2
2q

−6 + cx32q
−6 ax1q

−1 + bx31x
2
2q

−7

ax21q
−2 + bx2q

−2 + cx21x
3
2q

−8 ax31q
−3 + bx1x2q

−3

ax41q
−4 + bx21x2q

−4 + cx22q
−4 ax51q

−5 + bx31x2q
−5

up to some multiple of q, where all coefficients are integral. As with G(2, 4) and

G(2, 5), we use QH∗(X,Λ), ignoring the q terms. An element of the first type will

have an inverse of the same type:1 = (a1 + bx21x
2
2 + cx32) ∗ (d1+ ex21x

2
2 + fx32)

= ad1+ (ae + bd)x21x
2
2 + (af + cd)x32

+ (bf + ce)x21x
5
2 + bex41x

4
2 + cfx62 (5.6.1)

Using quantum Schubert calculus, we see that

x21x
5
2 = x21x2 ∗ σ(2,2,2,2)

= x21 ∗ (qσ(1,1,1,1)

= x1 ∗ (qσ(2,1,1,1))

= qσ(2,2,1,1) + q2σ(0,0,0,0)

= q21+ qx21x
2
2 − qx32

x41x
4
2 = x41 ∗ σ(2,2,2,2)

= x31 ∗ (qσ(1,1,1,0))

= x21 ∗ (qσ(1,1,1,1) + qσ(2,1,1,0))

= x1 ∗ (2qσ(2,1,1,1) + qσ(2,2,1,0))

= 3qσ(2,2,1,1) + qσ(2,2,2,0) + 2q2σ(0,0,0,0)

= 3qx21x
2
2 − 2qx32 + 2q21



40

x62 = x22 ∗ σ(2,2,2,2)

= x2 ∗ (qσ(1,1,1,1))

= q2σ(0,0,0,0)

= q21
Therefore, 5.6.1 reduces to1 = (ad+bf+ce+be+cf)1+(ae+bd+bf+ce+2be)x21x

2
2+(af+cd−bf−ce−be)x32.

Therefore, we have

ad+ bf + ce+ be + cf = 1 (5.6.2)

ae+ bd + bf + ce+ 2be = 0 (5.6.3)

af + cd− bf − ce− be = 0. (5.6.4)

Adding the first and third equation, we see that ad + af + cd + cf = (a +

c)(d + f) = 1. Since these are integers, (a + c) = (d + f) = ±1. Note that the

second equation is

(a+ c)e+ (d+ f)b+ 2be = (±1)(b+ e) + 2be (5.6.5)

e =
b

±2b− 1
. (5.6.6)

But e can only be integral if b = 0 or b = e = ±1. If b = e = 0, the equations

reduce to

ad+ cf = 1

af + cd = 0.
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Then either f = c = 0, a = d = ±1, or a = −cd
f
. Then we have

−cd2

f
+ cf = 1

c(f 2 − d2) = f

c(f − d)(f + d) = f

±c(f − d) = f

±c(2f ∓ 1) = f

f =
−c

1∓ 2c
.

Since f is integral, either c = 0 and we have either the same result as above

or c = f = ±1, a = d = 0. In these cases, we have that our invertible element is

either ±1 or ±x32. If b = e = ±1, then 5.6.4 becomes

af + cd∓ f ∓ c = 1

af + cd± f(a+ c)± c(d+ f) = 1(because a+ c = f + d = ±1)

2af + 2cd+ 2cf = 1 or − 2cf = 1.

However, neither of these has integral solutions, so we must have b = e = 0

as above.

We move on to elements of the second type. In this case, the potential inverse

is of the sixth type:1 = (ax1 + bx31x
2
2) ∗ (cx

5
1 + dx31x2)

= acx61 + bcx81x
2
2 + adx41x2 + bdx61x

3
2 (5.6.7)
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We perform quantum Schubert calculus again:

x61 = x21 ∗ (σ(1,1,1,1) + 3σ(2,1,1,0) + 2σ(2,2,0,0))

= x1 ∗ (4σ(2,1,1,1) + 5σ(2,2,1,0))

= 9σ(2,2,1,1) + 5σ(2,2,2,0) + 4qσ(0,0,0,0)

= 9x21x
2
2 − 4x32 + 4q1

x81x
2
2 = x71 ∗ (σ(2,2,1,0))

= x61 ∗ (σ(2,2,2,0) + σ(2,2,1,1))

= x51 ∗ (2σ(2,2,2,1) + qσ(1,0,0,0))

= x41 ∗ (2σ(2,2,2,2) + qσ(2,0,0,0) + 2qσ(1,1,0,0))

= x31 ∗ (4qσ(1,1,1,0) + 3qσ(2,1,0,0))

= x21 ∗ (4qσ(1,1,1,1) + 7qσ(2,1,1,0) + 3qσ(2,2,0,0))

= x1 ∗ (11qσ(2,1,1,1) + 10qσ(2,2,1,0))

= 21qσ(2,2,1,1) + 10qσ(2,2,2,0) + 11q2σ(0,0,0,0)

= 21qx21x
2
2 − 11qx22 + 11q21

x41x2 = x31 ∗ σ(2,1,0,0)

= x21 ∗ (σ(2,2,0,0) + σ(2,1,1,0))

= x1 ∗ (2σ(2,2,1,0) + σ(2,1,1,1))

= 3σ(2,2,1,1) + 2σ(2,2,2,0) + qσ(0,0,0,0)

= 3x21x
2
2 − x32 + q1
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x61x
3
2 = x51 ∗ σ(2,2,2,1)

= x41 ∗ (σ(2,2,2,2) + qσ(1,1,0,0))

= x31 ∗ (2qσ(1,1,1,0) + qσ(2,1,0,0))

= x21 ∗ (3qσ(2,1,1,0) + 2qσ(1,1,1,1) + qσ(2,2,0,0))

= x1 ∗ (5qσ(2,1,1,1) + 4qσ(2,2,1,0))

= 9qσ(2,2,1,1) + 4qσ(2,2,2,0) + 5q2σ(0,0,0,0)

= 9x21x
2
2 − 5x32 + 5q21

Therefore, 5.6.7 reduces to1 = (4ac+11bc+ad+5bd)1+(−4ac−11bc−ad−5bd)x32+(9ac+21bc+ad+9bd)x21x
2
2.

The first coefficient is equal to 1 and the second is equal to 0, but they are

the same up to sign. So there are no solutions (not even rational) to this set of

equations. So there are no units of this type.

The same phenomenon occurs when we have an element of the fourth type:1 = (ax31 + bx1x2) ∗ (cx
3
1 + dx1x2)

= acx61 + bdx21x
2
2 + (ad+ bc)x41x2

= (4ac+ ad+ bc)1 + (−4ac− ad− bc)x32

+ (9ac + bd + ad + bc)x21x
2
2

So there are no solutions to this equation, and thus no units of this type.
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Finally, we examine units of the third and fifth types:1 = (ax21 + bx2 + cx21x
3
2) ∗ (dx

4
1 + ex21x2 + fx22)

= adx61 + (bd+ ae)x41x2 + cdx61x
3
2 + (be + af)x21x

2
2 + cex41x

4
2 + bfx32 + cfx21x

5
2

= (4ad+ bd+ ae + 5cd+ 2ce+ cf)1
+ (−4ad− bd− ae− 5cd− 2ce+ bf − cf)x32

+ (9ad + 3bd + 3ae + 9cd + be + af + 3ce + cf)x21x
2
2.

Therefore, we have the equations

4ad+ bd+ ae + 5cd+ 2ce+ cf = 1 (5.6.8)

−4ad − bd − ae− 5cd− 2ce+ bf − cf = 0 (5.6.9)

9ad+ 3bd+ 3ae+ 9cd+ be + af + 3ce+ cf = 0 (5.6.10)

Summing the first two equations, we have bf = 1, and thus b = f = ±1. If

b = f = 1, we subtract twice the first equation from the third equation to obtain

ad+ d+ ae− cd+ e+ a− ce− c+ 2 = 0

(a− c+ 1)(d+ e+ 1) = −1

(c− a− 1)(d+ e+ 1) = 1

c− a− 1 = d+ e+ 1 = ±1.

If c − a − 1 = d + e + 1 = 1, we have c = 2 + a and d = −e. Then 5.2.14

becomes

−6ae− 7e+ 2 + a = 1

e =
1 + a

7 + 6a
.

This is only integral if a = −1, e = 0. Then c = 1 and d = 0, and we have
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the units −x21 + x2 + x21x
3
2 and x2. However, by Schubert calculus,

−x21q + x2q + x21x
3
2 = −x21q + x2q + x1 ∗ σ(2,2,2,1)

= −x21q + x2q + σ(2,2,2,2) + qσ(1,1,0,0)

= −x21q + x2q + x42 + q(x21 − x2)

= x42.

If c − a − 1 = d + e + 1 = −1, then we have c = a and d = −2 − e. Then

5.6.8 becomes

−6ae− 17a− 2− e = 1

a =
3 + e

−17− 6e

This is only integral if e = −3, a = 0. Then c = 0 and d = 1, and we have

the units x2 and x41 − 3x21x2 + x22. As above, we can see that

x52 = x2 ∗ σ(2,2,2,2)

= qσ(1,1,1,1)

= q(x41 − 3x21x2 + x22)

Thus, all of the units found here are equal to xi2q
j . If we take b = f = −1, we

can follow the same process to obtain these same units multiplied by −1. Therefore,

all of the potential Seidel elements in all cases have the form xi2q
j. Since x62 = 1⊗q2,

this completes our proof. �

Unfortunately, G(2, 6) does not satisfy property D.

Proposition 5.6.1 G(2, 6) does not satisfy property D.

Proof : To show that the quantum homology satisfies property D, we need to show

that the subring D generated by the divisors has additive complement V such that

d · v = 0 and 〈d, v〉Xβ = 0 for all d ∈ D, v ∈ V.
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In order for 〈d, v〉β = 0, we need codim(d) + codim(v) + 2 = 16 + 12 and

β = ℓ, the class of the line (this is x31x
2
2 in our notation above). Then we have

either codim(d) = 16, codim(v) = 10 or codim(d) = 14, codim(v) = 12 (because

H0 and H2 are both generated by divisors, we cannot reverse these codegrees). If

codim(v) = 10, then v = rx51 + sx31x2 for some r, s ∈ Q. In order for v · d = 0 for

all d ∈ D, we would need

0 = x31 · (rx
5
1 + sx31x2)

= x31 · ((4r + s)σ(2,1,1,1) + (5r + 2s)σ(2,2,1,0))

= x21 · ((9r + 3s)σ(2,2,1,1) + (5r + 2s)σ(2,2,2,0))

= x1 · (14r + 5s)σ(2,2,2,1)

= (14r + 5s)σ(2,2,2,2)

= (14r + 5s)pt.

Here, all calculations are carried out using classical Pieri and Giambelli. In order

for this to be 0, we need 14r+5s = 0, and thus (r, s) = k(5,−14) (we’ll take k = 1).

Unfortunately, 〈pt, v〉ℓ 6= 0. We look at

pt ∗ (5x51 − 14x31x2) = x42 ∗ (6σ(2,1,1,1) − 3σ(2,2,1,0))

= x32 ∗ (6qσ(1,0,0,0) − 3σ(2,2,2,1))

= x22 ∗ (6qσ(2,1,0,0) − 3qσ(1,1,1,0))

= x2 ∗ (6qσ(2,2,1,0) − 3qσ(2,1,1,1))

= 6qσ(2,2,2,1) − 3q2σ(1,0,0,0)

= 6qx1x
3
2 − 3q2x1.

〈pt, v〉ℓ is the coefficient of the x1x
3
2 term in this product, so we have 〈pt, v〉ℓ =

6. Therefore, G(2, 6) does not satisfy property D. �
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5.7 Grassmannians do not satisfy property D

The methods that we have used in the proofs of Propositions 5.5.2 and 5.6.1 to

show that G(2, 5) and G(2, 6) do not satisfy property D generalize to other Grass-

mannians.

Proof of Proposition 1.0.6 : We will use the quantum Schubert calculus techniques

from above, as expanded in (Bertram et al. (1999)). We will consider the classes

d = pt = σk,...,k and v = rσk,1,...,1 − sσk,2,1,...,1,0 for some r, s > 0. The classical

Pieri’s formula tells us that v is not in D, where D is the subring of QH∗(X,Λ)

generated by divisors (see the definition of Property D in section 2). Specifically,

it tells us that

σn−1
1 = σn−2

1 · σ1,0,...,0

= σn−3
1 · (σ1,1,0,...,0 + σ2,0,...,0)

= σn−4
1 · (σ1,1,1,0,...,0 + σ3,0,...,0 + 2σ2,1,0,...,0)

= . . .

=
∑

|a|=n−1

baσa

Here, ba is the number of paths from σ0,...,0 to σa in the adjacency graph of

the acceptable partitions. The adjacency graph is formed by taking all partitions

as vertices and placing a directed edge from a to b if σb appears in the product

σ1 · σa. Figure 5.7 shows the adjacency graph for G(3, 7), where one can see by

counting paths that σ6
1 = 5σ3,1,1,1 + 9σ2,2,1,1 + 5σ2,2,2,0 + 2σ3,2,1,0 + σ3,3,0,0.

The actual numbers ba determined by the adjacency graph are unimportant.

Since σn−1
1 has positive coefficients for each term in degree n−1 and v has a negative

coefficient in one of those classes, v /∈ D.

We can use the classical Pieri’s formula to find r and s such that

σ
(k−1)∗(n−k−1)
1 · v = 0.
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2,2,0,0

3,3,3,0

3,3,2,0

3,3,1,0

3,3,0,0

3,3,3,3

3,3,3,2

3,3,2,2

3,2,2,2

2,2,2,2

3,2,2,0

3,2,1,0

3,2,0,0

3,3,3,1

3,3,2,1

3,2,2,1

2,2,2,1

2,2,2,0

3,1,1,0

3,1,0,0

3,3,1,1

3,2,1,1

2,2,1,1

2,2,1,0

3,0,0,0

3,1,1,1

2,1,1,1

2,1,1,0

2,1,0,0

2,0,0,0

1,1,1,1

1,1,1,0

1,1,0,0

1,0,0,0

0,0,0,0

Figure 5.7.1: Adjacency graph for the Schubert cells of G(3, 7).
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Figure 5.7.2: The Young tableaux for the quantum product d ∗ v when k = 2. The
original tableaux are shown outlined in bold, and the n-rim hooks are represented
as bold lines.

We can do this because

σ
(k−1)∗(n−k−1)
1 · σk,1,...,1 = sσk,...,k

σ
(k−1)∗(n−k−1)
1 · σk,2,1,...,1,0 = rσk,...,k

with r, s > 0. These numbers can be found by using the classical Pieri’s formula,

and count the number of paths from the partition (k, 1, . . . , 1) (respectively, the

partition (k, 2, 1, . . . , 1, 0)) to the partition (k, . . . , k) in the adjacency graph of

Schubert cells, as in Figure 5.7. For G(3, 7) the number of paths from σ3,1,1,1 to

σ3,3,3,3 is 14, and the number of paths from σ3,2,1,0 to σ3,3,3,3 is 16.

Unfortunately, this number does not have a simple closed form. However, it

is clearly positive and nonzero, which is sufficient for our purposes. We have thus

shown that for some positive r and s, d · v = 0.

Now we will show, using quantum Littlewood-Richardson, that d ∗ v 6= 0 for
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Figure 5.7.3: The Young tableaux for the quantum product d ∗ v when k > 2. The
original tableaux are shown outlined in bold, and the n-rim hooks are represented
as bold lines.

some d ∈ D. The only possible class which could have nontrivial quantum product

with v is the class of a point, σk,...,k, for dimensional reasons. The class of a point

is in D. There are two cases - when k = 2 and when k > 2. Let k = 2. The

only possible tableau which results from multiplying any tableau α by σk,...,k is the

tableau with n − k additional boxes in each column. Therefore, if k = 2, the two

elements in d ∗ v have the tableau given by Figure 5.7. Note that these tableaux

are only valid if n ≥ 7. If n ≥ 7, we have

σ2,...,2 ∗ (rσ2,1,...,1 − sσ2,2,1,...,1,0) = rσ2,...,2,1 − sq2σ2,2,1,...,1,0,0,0.

Note that we have already calculated this result above for n = 5 and n = 6.

This completes the case when k = 2.

If k > 2, a very similar result holds, with slightly different n-rim hooks. The
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quantum calculation is shown in Figure 5.7. We thus have that

σk,...,k ∗ (rσk,1,...,1 − sσk,2,1,...,1,0) = rqσk,...,k,k−1 − sq2σk−1,...,k−1,k−2,k−2,0

Note that this only holds if n− k ≥ 4. If we assume that k ≤ n, this leaves

exactly the case G(3, 6). For G(3, 6), we have:

σ3,3,3 ∗ (rσ3,1,1 − sσ3,2,0) = rqσ3,3,2 − sq2σ1,1,0

In all of these cases, since r, s > 0, the quantum product is nontrivial, and

thus 〈d, v〉 = 0. Therefore, the Grassmannians other than the projective spaces and

G(2, 4) do not have property D. �

5.8 G(2, 2n+ 1) has units of infinite order

For G(2, 5), we showed that there exist units which have infinite order. In fact,

this is merely the first case of a more general result, which we stated as Proposition

1.0.7. The proof uses quantum Schubert calculus.

Proof of 1.0.7: Let u = σ1,0,...,0 = σ1 = x1, and take

v = σ2,1,...,1 − σ2,2,1,...,1,0 + σ2,2,2,1,...,1,0,0 + · · ·+ (−1)n−1σ2,...,2,0,...,0.

Then by the quantum Pieri’s formula, we have

σ1 ∗ v = qσ0,...,0 + σ2,2,1,...,1 − σ2,2,1,...,1 − σ2,2,2,1,...,1,0

+ σ2,2,2,1,...,1,0 + · · ·+ (−1)n−2σ2,...,2,1,0,...,0 + (−1)n−1σ2,...,2,1,0,...,0

= qσ0,...,0

= 1⊗ q

Therefore, vq−1 is the inverse of σ1, and σ1 is a unit. However, σ1 has infinite order.

Lemma 5.8.1 σ
ℓ(2n+1)
1 6= 1⊗ qℓ for all ℓ > 0.
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Proof : Assume not. Then

σ
ℓ(2n+1)
1 = 1⊗ qℓ

σ
ℓ(2n+1)
1 q−ℓ+1 = 1⊗ q

σ1 ∗ (σ
ℓ(2n+1)−1
1 q−ℓ+1) = 1⊗ q

σ
ℓ(2n+1)−1
1 q−ℓ+1 = v

But by the quantum Pieri’s formula, any power of σ1 will only have posi-

tive coefficients in the Schubert cells. But v has negative coefficients, so this is a

contradiction. �

The lemma completes the proof that x1 has infinite order. Therefore, any

power of x1 is a unit of infinite order in QH∗(G(2, 2n+ 1),Λ). �

5.9 Monotone Toric 4-manifolds

The monotone toric 4-manifolds are CP 1 × CP 1, CP 2, and CP 2 blown up at 1,

2, and 3 points. I = 0 for CP 1 × CP 1 and CP 2 in the monotone case (from the

results of this paper, but also as previously shown in McDuff (2010), Entov and

Polterovich (2008), Ostrover (2006)). However, McDuff shows in (McDuff (2002))

that I 6= 0 on CP 2 blown up at one point, even in the monotone case. A similar

argument can be carried out to show that I 6= 0 for CP 2#2CP 2.

This leaves one monotone toric 4-manifold, X = CP 2#3 ¯CP 2. But we can

easily show I = 0 using a result independently proven by Pinsonnault (Pinsonnault

(2009)) and Evans (Evans (2009)). They show that π1(Ham(X,ω)) = Z2. This

implies that the toric actions on X generate π1(Ham(X,ω)). We can combine this

with another result (see the final digression in section 1.4 of (Entov and Polterovich

(2009)) which states that for a Fano toric manifold, I vanishes on toric loops if and

only if the special point of the moment polytope corresponds to the barycenter. In
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4 dimensions, these points are aligned for CP 2 blown up at 3 points. Therefore, I

vanishes on the toric loops, and thus on the entirety of π1(Ham(X,ω)). Therefore,

I = 0 for CP 1 × CP 1, CP 2, and CP 2 blown up at 3 points.

Therefore I(γ) = 0 when γ is a circle action is equivalent to I(γ) = 0 for all

γ if X is a monotone toric 4-manifold or if X is a monotone product of projective

spaces. It would be interesting to see if this result extends to all monotone toric

manifolds - namely, if X is monotone, toric, and has I(γ) = 0 for all circle actions

γ, does I(γ) = 0 for all γ? The answer is currently unknown, but these results

provide evidence that it is true.
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Chapter 6

Consequences

The action-Maslov homomorphism is related to a number of other important prop-

erties of symplectic manifolds. These include the spectral invariants, the Hofer

diameter, and quasimorphisms.

6.1 Spectral Invariants

Let a be a class in QH(X,Λ) and φ̃ ∈ H̃am(X,ω). The spectral invariant c(a, φ̃)was

defined by Schwarz in (Schwarz (2000)) and extended to all symplectic manifolds

by Oh and Usher (Oh (2005), Usher (2008)). If H : X → R is the Hamiltonian

corresponding to φ̃ ∈ H̃am(X,ω), then

c(a, φ̃) = inf
α∈R/Spec(H)

{a ∈ im(iα)}

where iα : HFα∗(X, φ̃) → QH∗(X,Λ) is the map from the filtered Floer homology at

level α to the quantum homology (see McDuff and Salamon (2004)). These c(a, φ̃)

are the spectral invariants, and the asymptotic spectral invariants are given by

c̄(a, φ̃) lim
k→∞

c(a, φ̃
k
)

k
.
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The spectral invariants always exist and have the following properties:

− ‖φ̃‖ ≤ c(a, φ̃) = c(a, ψ̃φ̃ψ̃
−1
) ≤ ‖φ̃‖ ∀a ∈ H∗(X), ψ̃ ∈ H̃am(X,ω) (6.1.1)

c(λa, φ̃) = c(a, φ̃) + ν(λ) for all λ ∈ Λ (6.1.2)

c(a, φ̃ ◦ γ) = c(S(γ) ∗ a, φ̃) for all γ ∈ π1(Ham(X,ω)) (6.1.3)

c(a ∗ b, φ̃ ◦ ψ̃) ≤ c(a, φ̃) + c(b, ψ̃) (6.1.4)

Property 6.1.1 implies that c(a, id) = 0 for all a ∈ H∗(X), where id denotes

the constant loop at the identity. Then the other two properties imply that

c(1, id) = c(S(γ), id)

= ν(S(γ))c(1, id)
= lim

k→∞

ν(S(kγ))

k
.

Recall that we showed that for X equal to a monotone product of projective

spaces or G(2, 4), for all γ ∈ π1(Ham(X,ω)), we have S(kγ) = 1⊗λ, with ν(λ) = 0.

Therefore, we have:

Corollary 6.1.1 Let (X,ω) be a monotone product CP i1 × · · · × CP ik or G(2, 4).

Then the asymptotic spectral invariants vanish on π1(Ham(X,ω)) ⊂ H̃am(X,ω)

and are well defined on Ham(X,ω).

6.2 Hofer diameter

A well known result, stated in (McDuff (2010)), states that vanishing of the asymp-

totic spectral invariants implies that Ham(X,ω) has infinite Hofer diameter. We

restate the argument as presented in (McDuff (2010)) for completeness.

Lemma 6.2.1 Let (X,ω) be a monotone product CP i1 × · · · × CP ik or G(2, 4).

Then there exist Hamiltonian diffeomorphisms ψs such that lims→∞‖ψs‖ = ∞.
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Proof : The definition of these maps is originally due to Ostrover (Ostrover (2003)).

Without loss of generality, assume that
∫

X
ωn = 1. Let H be a small mean-

normalized Morse function and U an open set displaced by its time 1 map φH .

Now let F be a Hamiltonian function with support on U such that F −
∫

X
Fωn is

mean normalized. Let ft be the flow of F . Now, take

ψ̃s = {ftsφH}t∈[0,1]

Each ψ̃s is an element of Ham(X,ω). ψ̃s is generated by the mean-normalized

Hamiltonian sF +H ◦ fts − s
∫

X
Fωn. Since supp(F ) is displaced by φH1 , fsφ

H
1 will

have the same fixed points as φH
1 . Therefore, the fixed point pa whose critical value

is c(a, ψ̃s) will remain unchanged as s → ∞. However, it’s value does change.

When s = 0, there exists pa such that

c(a, ψ̃0) = −H(pa).

Therefore, we have

c(a, ψ̃s) = −H(pa) + s

∫

X

Fωn. (6.2.1)

Now we need to show that if the asymptotic spectral invariants descend,

then ‖π(p̃sis)‖ = ‖ψs‖ → ∞ as s goes to ∞. First, we will show that there exist

gi conjugate to φ̃
H

1 such that

ψ̃skg̃1 · · · g̃k−1 = (ψs)
k.

But this follows from simple algebra: let a = f̃s and b = φ̃
H

1 . Then ψ̃sk = akb

and (ψ̃s)
k = (ab)k. Then we have

(ab)k = abab · · · ab = (akbb−1a−k+1)(b)(ak−1a−k+2)(b) · · · (a2a−1)(b)(a)(b)

= (akb)(b−1)(a−k+1bak−1)(a−k+2bak−2) · · · (a−1ba)b

= (akb)b−1(a−k+1bak−1)(a−k+2bak−2) · · · (a−1ba)b.
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Now let e be an idempotent. By 6.1.4, we have c(e, (ψ̃)k) ≤ kc(e, ψ̃) for all

k > 1. Then for all γ ∈ π1(Ham(X,ω)),

c(e, ψ̃s ◦ γ) = lim
k→∞

c(e, (ψ̃s ◦ γ)
k) ≤ c(e, ψ̃s ◦ γ) ≤ ‖ψs ◦ γ‖.

Since the invariants descend, we have

c̄(e, ψ̃s ◦ γ) = c̄(e, ψ̃s)

= lim
k→∞

1

k
c(e, (ψ̃s)

k)

= lim
k→∞

1

k
c(e, ψ̃skg̃1 · · · g̃k−1)

≥ lim
k→∞

1

k

(

c(e, ψ̃sk)−

k−1
∑

i=1

c(e, g̃i)

)

≥ s

∫

X

Fωn − ‖φ̃
H

1 ‖.

Here, we use (6.1.4) and (6.2.1). Therefore, we have

‖ψs‖ = inf
γ∈π1(Ham(X,ω))

{‖ψ̃s ◦ γ‖}

≥ inf
γ∈π1(Ham(X,ω))

{c(a, ψ̃s ◦ γ)}

≥ s

∫

X

Fωn − ‖φ̃
H

1 ‖

and the Hofer diameter of Ham(X,ω) is infinite. �

6.3 Quasimorphisms

Banyaga showed in (Banyaga (1978)) that if X is a compact symplectic manifold,

Ham(X,ω) is a simple group, and thus there is no nontrivial homomorphism from

Ham(X,ω) → R. However, there may exist nontrivial quasimorphisms. A quasi-

morphism is a map f : X → Y such that

|f(x) + f(y)− f(x+ y)| ≤ Cf.
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In his thesis (Py (2008)), Py defines a quasimorphism G : H̃am(X,ω) → R.

This quasimorphism is constructed as follows.

Let (V, ω) be a monotone symplectic manifold, and let π :M → V be an S1

bundle over V with Euler class equal to 2c1(V ). Let X be the vector field on M

generated by the S1 action ψ. Then there exists a 1-form α on M with α(X) = 1

and dα = π∗(sω).

Choose an almost complex structure J on V compatible with ω. This makes

TV a hermitian vector bundle, and we can choose a trivialization over a covering

{Uγ} with unitary transition maps gβγ : Uβ ∩ Uγ → U(n). The family of maps

(det2 gβγ) determines an S1 bundle E → V which is isomorphic to M . Now take

Λ(V ) to be the lagrangian Grassmannian bundle over V . Over any trivialization

Uγ ×Cn, an element L ∈ Λ(V ) is (x, uγ(R
n)) for some unitary uγ. Therefore, there

is a map det2 : Λ(V ) → E given by taking (x, uγ(R
n)) → (x, det2(uγ)). If we choose

an isomorphism from E to M , then we obtain a map φ : Λ(V ) → M . This map

depends on the isomorphism, but restricted to the fiber, induces an isomorphism

on fundamental groups. Therefore, for another such map φ′ : Λ(V ) → R we have

φ′(L) = ψ(χ(π(L))) · ψ(e2πiκ(L)) · φ(L)

for some maps χ : V → S1 and κ : Λ(V ) → R.

Now we are ready to construct our quasimorphism. Let Ht : S
1 × V → R

be a mean-normalized time-dependent 1-periodic Hamiltonian with vector field Zt

and flow ft ∈ H̃am(X,ω). Zt can be lifted to a vector field Ẑt on M such that

α(Ẑt) = 0. Let Θ(ft) be the flow of the vector field

Ẑt − (Ht ◦ π)X.

Then by our discussion above, we have

φ(dft · L) = e2πiϑ(t)Θ(ft)(φ(L)).
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Then we can define a map angle : Λ(V ) × H̃am(X,ω) → R by angle(L, ft) =

ϑ(1) − ϑ(0). This map in turn, allows us to define a map which we will also call

angle : V → R by

angle(x, ft) = inf
L∈Λ(V )x

angle(L, ft).

This allows us to define a quasimorphism

G(ft) =

∫

V

angle(x, ft)ω
n.

The homogenization of this quasimorphism

G(ft) = limp→∞
1

p
G(f p

t )

is what we refer to as Py’s quasimorphism. It does not depend on φ or J , and

Py shows in Proposition 2.3.1 of his thesis (Py (2008)) that the restriction of G to

π1(Ham(X,ω)) is

G(ft) = vol(V ) · I(ft)

Therefore, if the action-Maslov homomorphism vanishes, Py’s quasimor-

phism is well-defined on Ham(X,ω). We thus have the following corollary:

Corollary 6.3.1 Py’s quasimorphismG descends to a quasimorphismG : Ham(X,ω) →

R when (X,ω) is a monotone product of projective spaces or G(2, 4).
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