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Abstract

Modularity of Generating functions of Special Cycles on Shimura Varieties

Wei Zhang

In this thesis we study special cycles on Shimura varieties of orthogonal type. We

confirm a conjecture of Kudla in [K2] on the modularity of generating functions of

special cycles of any codimension on Shimura varieties of orthogonal type, provided

their convergence. This is a generalization of theorems of Hirzebruch-Zagier, Gross-

Kohnen-Zagier and Borcherds to high codimensional cycles.
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Chapter 1

Introduction

1.1 Statement of main results

The study of algebraic cycles on algebraic varieties gives rise to various interesting

questions in arithmetic and algebraic geometry. On a Shimura variety there is a

large supply of algebraic cycles provided by sub-Shimura varieties and their Hecke

translations. In this paper, we will study certain special cycles defined by Kudla in

[K1] on Shimura varieties of orthogonal type. More precisely, assuming the conver-

gence we will prove the modularity of generating functions of special cycle classes

modulo rational equivalence. In codimension one, this is a theorem of Borcherds

([B1]), generalizing Gross-Kohnen-Zagier’s theorem ([GKZ]) for modular curves, and

Hirzebruch-Zagier’s theorem ([HZ]) for Hilbert modular surfaces to high dimensional

Shimura varieties of orthogonal type. Kudla and Millson in [KM] also obtained the

modularity of generating functions of cohomology classes of special cycles on more

general Shimura varieties. We now describe our results more precisely.

Throughout this paper, for a Z-module A and a field k, we define Ak = A ⊗Z k.

Let (L, q) be a nondegenerate even lattice ( i.e., q(v) is an even integer for every

v ∈ L ) with signature (n, 2), and let 〈·, ·〉 be the inner product associated to q. Let
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L∨ be its dual (thus L ⊆ L∨), and let Γ be a congruence subgroup of O(L) that

acts trivially on L∨/L. Let D be the Grassmannian of LR with points representing

negative definite 2-planes in LR. In our situation, D is a Hermitian symmetric space

of dimension n. When n = 1, 2, 3, D is the Poincaré upper half plane, the product of

two Poincaré upper half planes, and Siegel upper half space of genus 2, respectively.

Let XΓ be the connected Shimura variety whose complex points are

XΓ(C) = Γ\D.

When Γ is neat, XΓ is a smooth quasi-projective variety with a canonical model

generally defined over a cyclotomic extension of Q.

For an r-tuple v = (v1, ..., vr) ∈ λ + Lr where λ ∈ (L∨/L)r, let Z(v) be the im-

age in Γ\D of all negative definite 2-planes perpendicular to all of v1, ..., vr. Z(v) is

nonempty precisely when v1, ..., vr generate a positive definite subspace of LQ with di-

mension denoted by r(v). Obviously, Z(γv) = Z(v) for γ ∈ Γ where Γ acts diagonally

γ(v1, ..., vr) = (γv1, ..., γvr).

For an r-tuple λ ∈ (L∨/L)r and an r × r symmetric positive semi-definite matrix

T = (Tij) ∈ Symr(Q)≥0 of rank r(T ), let

Ω(T, λ) = {v ∈ λ + Lr|T = Q(v)}

where the r × r matrix Q(v) = 1
2
(〈vi, vj〉) is called the moment matrix of v. Kudla

defines a cycle ([K1], but there in adelic language) of codimension r(T )

Z(T, λ) = Z(T, λ; Γ) =
∑

v∈Γ\Ω(T,λ)

Z(v).

These cycles are compatible with the nature pull-back map pr : XΓ′ → XΓ for
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Γ′ ⊆ Γ, i.e.,

pr∗Z(T, λ; Γ) = Z(T, λ; Γ′).

Note that Z(T, λ) is empty unless Ti,j ≡ 1
2
〈λi, λj〉 (mod Z). In this paper, we call all

Z(T, λ) special cycles of moment T and residue class λ. All such cycles are defined

over abelian extension of Q.

As the most interesting examples, for small n our special cycles include:

1. (n = r = 1) CM points (including Heegner points) on a Shimura curve (modular

curve included).

2. (n = 2, r = 1) Hecke correspondences on the self-product of a Shimura curve,

and Hirzebruch-Zagier cycles on a Hilbert modular surface.

3. (n = 3, r = 1) Humbert surfaces on a Siegel modular variety.

4. (n = 3, r = 2) Shimura curves on a Siegel modular variety.

Let L = LΓ be the line bundle on XΓ that descends from the tautological bundle

LD on D, cf. Chap. (2.3).

Let CHr(XΓ)C be the Chow group with complex coefficients. Let {Z(T, λ)} ∈
CHr(T )(XΓ)C be the cycle class of the codimension-r(T ) special cycle Z(T, λ), and

let {L ∨} ∈ CH1(XΓ)C be the Chern class of the dual bundle of L .

We now define the generating function with coefficients in CHr(XΓ)C by

Θλ(τ) =
∑
T≥0

{Z(T, λ)} · {L ∨}r−r(T )qT

where qT = e2πitr(Tτ), and

τ ∈ Hr = {τ ∈ Symr(C)|Im(τ) > 0}
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is the Siegel upper half space of genus r. Here the product is the intersection product

on Chow groups.

For a linear functional ι on CHr(XΓ)C, we define

(ι, Θλ)(τ) =
∑
T≥0

(ι, {Z(T, λ)} · {L ∨}r−r(T ))qT

where (ι, v) = ι(v) for v ∈ CHr(XΓ)C.

Our first result is

Theorem A (Modularity Conjecture of Kudla, [K2]). For n ≥ 1, r ∈ {1, 2, ..., n},
an even lattice L of signature (n, 2) as above, and λ ∈ (L∨/L)r, assume that (ι, Θλ) is

absolutely convergent on Hr. Then it is a Siegel modular form of genus r and weight

n
2

+ 1 for a congruence subgroup in Sp(2r,Z).

Remark. 1. Note that when n = r = 1, our special cycles are precisely CM points

on Shimura curves (including modular curves). When L is isotropic, this is a

consequence of the Gross-Kohnen-Zagier theorem ([GKZ]). Using his construc-

tion of a family of meromorphic automorphic functions in [B0], Borcherds in [B1]

reproves their theorem and generalizes it to the situation where the Shimura

variety is attached to any signature-(n, 2) lattice L and the special cycles are

divisors (i.e., r = 1).

2. We would like to point out that in Borcherds’ theorem, he also proves that

all linear functionals ι on CH1(XΓ)C automatically satisfy the convergence as-

sumption above. But for r ≥ 2, we do not know how to prove, though we

expect, that all linear functionals on the Chow groups should satisfy this as-

sumption (see Conjecture 1). By the conjecture of Beilinson-Bloch ([Be]) on

the non-degeneracy of the (conditionally defined) height pairing between coho-

mologically trivial cycles, we only need to check those linear functionals given

by height pairings. An particularly interesting class of linear functional is given
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by height pairing with special cycles of complementary dimension. We hope to

investigate this aspect in the future.

3. In series of papers ([KM]), Kudla and Millson have proven the modularity of

generating functions of cohomology classes in a more generality for Shimura

varieties attached to orthogonal groups and unitary groups over not only Q but

also totally really fields. In the case of orthogonal groups, it is not hard to

check that a linear functional satisfies the convergence assumption above if it

factors through the cohomology group via the cycle class map. In fact, for a

closed (n − r, n − r) differential form η with compact support on XΓ, we can

define a linear functional ι mapping Z(x) to the integral
∫

Z(x)
η if the moment

matrix Q(x) is positive definite, and modify the integral by shifting η by a power

of the curvature form Ξ of L ∨ when Q(x) is only semi-positive. Then, since

|ι(Z(T, λ))| ≤ C · vol(Z(T, λ)) is bounded above by a constant multiple of the

volume vol(Z(T, λ)) =
∫

Z(T,λ)
Ξn−r(T ) of the special cycle Z(T, λ), it is not hard

to see the absolute convergence of ι(Θλ).

4. One of our main motivations for investigating special cycles is to obtain relations

between these cycles and special values or derivatives of certain automorphic

L-functions, generalizing the formula of Gross-Zagier and Zhang ([GZ],[Zh]) to

higher dimensional varieties. Once we know the modularity of the generating

function, we would like to know its spectral decomposition. For example, for a

cusp Siegel modular form f of genus r, weight 1 + n
2

and the same level Γ(N)

as Θ0, we can define an “arithmetic theta lifting” ([K2] and [KRY]) using the

Petersson inner product

Θ(f) :=

∫

Γ(N)\Hr

Θ0(τ)f(τ)dµ(τ) ∈ CHr(XΓ)C.

Inspired by the theory of theta lifting of automorphic forms, we would like to
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ask for a criterion for the (non-)vanishing of this lifting. One would hope for

the occurrence of central derivatives of certain automorphic L-functions in this

criterion in the same manner as the occurrence of central values of L-functions in

Waldspurger’s criterion on the non-vanishing of theta lifting for the reductive

pair (S̃L(2), O(3)). This method has been pursued by Kudla, Rapport and

Yang in [KRY] for n = r = 1. Based on Borcherds’ modularity result and

other ingredients, they succeed in relating the height pairing of certain special

points on Shimura curves to the central derivatives of L-functions of certain new

forms of weight 2, and thus establish a criterion of Waldspurger type. Further

speculations have been proposed in [K2].

The proof of Theorem A is in Chap. 2.4 (Theorem 2.9) and it turns out to be

an application of Borcherds’ modularity theorem to a family of subvarieties on XΓ.

In fact, we prove a criterion of modularity for formal power series. More precisely,

let L be an even lattice of signature (n, n′) with 2|n′ and let Γ be a congruence

subgroup of O(L). For an integer r ∈ {1, 2, ..., n}, let F be a function on Γ\Lr
Q.

Define F (T, λ) =
∑

x∈Γ\Ω(T,λ) F (x) for T ∈ Symr(Q)≥0 and λ ∈ (L∨/L)r. We define

formal q-series for λ ∈ (L∨/L)r,

ΘF,λ(τ) :=
∑
T≥0

F (T, λ)qT ∈ C[[q]].

Let ρ∗L,r be a fixed representation of the double covering S̃p(2r,Z) of Sp(2r,Z) acting

on the vector space S∗L,r with a basis consisting of {ϕ∗λ} (see Definition 2.2). The

representation ρ∗L,r essentially comes from the (dual of) Weil representation attached

to Lr
Q. Define vector valued q-series

ΘF =
∑

λ∈(L∨/L)r

ΘF,λϕ
∗
λ ∈ S∗L,r[[q]].
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For x = (x1, ..., xr−1) ∈ Lr−1
Q let Qx be the subspace

∑
1≤i≤r−1Qxi of LQ. If Qx is

positive definite of dimension denoted by r(x), let (Qx)⊥ be its orthogonal comple-

ment. Let Lx be the lattice L∩ (Qx)⊥, and let Γx ⊂ Γ be the stabilizer of x. Assume

that F (x) only depends on the space Qx and F (x) = 0 if Qx is not positive definite.

The restriction Fx of F on Lx,Q ∼= Lx,Q × {x} ⊆ Lr
Q is Γx-invariant. Then we have

Theorem B (Criterion of Modularity). Under the notation above, the q-series

ΘF ∈ S∗L,r[[q]] is the q-expansion of a Siegel modular form of type ρ∗L,r, weight n+n′
2

and genus r (see Definition 2.1) if F satisfies the following two conditions:

1. ΘF is absolutely convergent on Hr.

2. For every x ∈ L∨,r−1 with positive definite Qx of dimension r(x), the q-series

ΘFx ∈ S∗Lx,1[[q]] is absolutely convergent on H = H1 and defines a Siegel

modular form of type ρ∗Lx,1, weight n+n′−r(x)
2

and genus 1.

Remark. 1. As the simplest example, we can take a positive definite L of rank n

(i.e, n′ = 0). The the function F = 1 on Lr
Q yields the classical theta function.

2. It should also be possible to extend the criterion of modularity to unitary groups.

The proof of criterion of modularity is mainly based on an expansion of Fourier-

Jacobi type, and an explicit list of generators of the double covering S̃p(2r,Z) of

Sp(2r,Z).

Finally, some development related to the subject of this thesis should also be

noted. The author joint with Xinyi Yuan and Shou-Wu Zhang have generalized the

Gross–Kohnen–Zagier theorem (i.e., the case of codimension r = 1) to totally real

fields ([YZZ1]). Hence by the argument of this paper we obtain the modularity of

generating functions for any codimension r over totally real fields. Moreover, the

modularity result has been used in a crucial way in the proof of a general Gross–

Zagier formula for the Rankin L-series ([YZZ2]) and of the central derivative of triple

product L-series in terms of heights of Gross–Schoen cycles ([YZZ3]).
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1.2 The structure of this article

The organization of this paper is as follows: in Chap. 2.1, we define the Weil repre-

sentation of S̃p(2r,Z) attached to L, and we describe a simple list of generators of

S̃p(2r,Z). We then prove a criterion of modularity for generating functions in Chap.

2.2. In Chap. 2.3, we recall basic facts about our Shimura varieties and special cycles

following [K1]. As an application of our criterion of modularity, we prove in Chap.

2.4 the modularity of generating functions of special cycles. In Chap. 3, by an ad hoc

method, we prove the finite generation of the subspace of the Chow group generated

by special cycles of codimension two. In Chap. 4 we investigate the Hecke action on

the space of special cycles from a representation theoretical point of view. In partic-

ular, we prove a “multiplicity one” result (Corollary 4.4), generalizing the theorem of

Gross–Kohnen–Zagier for Heegner points to special divisors of high dimension.



Chapter 2

Modularity of generating functions

In this chapter we prove the main theorem of this thesis, namely the modularity of

generating functions of special cycles assuming the convergence.

2.1 Siegel modular groups Sp(2r,Z) and Weil rep-

resentations

In this section we want to define the Weil representation of the double covering

S̃p(2r,Z) of the Siegel modular group Sp(2r,Z) and vector valued Siegel modular

forms. We then give a simple list of generators of Sp(2r,Z) and S̃p(2r,Z), which will

be used to check modularity of generating functions.

2.1.1

Let Sp(2r,Z) be the symplectic group of integral matrices, i.e. all g ∈ GL(2r,Z)

satisfying

tgJg = J, J =




0 −Ir

Ir 0




and note that Sp(2,Z) = SL(2,Z).

9
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Let Hr be the Siegel upper half plane of genus r, i.e.

Hr = {τ ∈ Symr(C)|Im(τ) > 0}.

The group Sp(2r,Z) acts on Hr by

γτ = (Aτ + B)(Cτ + D)−1, γ =




A B

C D


 .

Let S̃p(2r,Z) be the double covering of Sp(2r,Z) ([S2]). For r = 1, this is also

denoted by S̃L(2,Z) defined as in [B1]. It consists of all elements of this form

γ =







A B

C D


 ,±

√
det(Cτ + D)


 ,




A B

C D


 ∈ Sp(2r,Z) (2.1)

where
√

det(Cτ + D) is a holomorphic function of τ in the Siegel upper half plane

whose square is det(Cτ + D). And the group law is given by

(P, f(·))(Q, g(·)) = (PQ, f(Q(·))g(·)).

The group S̃p(2r,Z) acts on Hr through its quotient Sp(2r,Z). And the auto-

morphic factor of the element γ (2.1) is defined to be

j (γ, τ) = ±
√

det(Cτ + D).
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2.1.2

Now we give the definition of (vector-valued) Siegel modular form of half integral

weight. In the rest of the paper we have the following convention

e(x) = e2πix, x ∈ C.

Let ρ be a representation of S̃p(2r,Z) on a (finite dimensional) complex vector space

Vρ. We assume that ρ factor through a finite quotient and Vρ is a direct sum of one

dimensional eigenspaces under the action of the subgroup







Ir B

0 Ir


 , 1


 .

So we can choose {vi} as a basis of Vρ consisting of eigenvectors and

ρ







Ir B

0 Ir


 , 1


 vi = e(tr(BTi))vi

where e(tr(BTi)) is the eigenvalue, and entries of Ti ∈ Symr(Q) are well-defined

modulo Symr(Z).

Definition 2.1. A Siegel modular form of genus r, weight k ∈ 1
2
Z and type ρ for

a representation of S̃p(2r,Z) on a (finite dimensional) complex vector space Vρ is a

holomorphic map f from Hr to Vρ such that

f(γτ) = j(γ, τ)2kρ(γ)f(τ)

for all

γ =







A B

C D


 ,

√
det(Cτ + D)


 ∈ S̃p(2r,Z).
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and such that f has vanishing Fourier coefficients unless T ≥ 0 in its Fourier expan-

sion

f(τ) =
∑

i

vi


 ∑

T∈Symr(Q)≥0

aT,iq
T


 ∈ Vρ[[q]]

where {vi} is the basis above and qT = e(tr(Tτ)) (so that aT,i = 0 unless T ≡
Ti (mod Z )) , and here an element in Vρ[[q]] is allowed to have fractional exponents.

Note that the vanishing condition on Fourier coefficients is automatically verified if

r > 1 by Koecher principle.

For a given r, the complex vector space A(k, ρ) of Siegel modular form of weight

1 + n
2

type ρ is finite dimensional by the finiteness result for cohomology of locally

free sheaves of finite rank.

2.1.3

One class of representations we will consider is the Weil representation associated to a

lattice. Let L be an even lattice of signature (n, n′). Let L∨ be its dual, thus L ⊆ L∨.

Then we have an induced quadratic pairing on (L∨/L)r valued in Q/Z given by

〈δ, λ〉 =
r∑

i=1

〈δi, λi〉

for δ, λ ∈ (L∨/L)r.

For r = 1, 2, ..., one can associate to L a family of unitary representation ρL,r

of S̃p(2r,Z) on the finite dimensional C-vector space SL,r = C[(L∨/L)r]. In the

following, we use ϕλ to denote the element in SL,r corresponding to λ ∈ (L∨/L)r.

Definition 2.2. The representation ρL,r of S̃p(2r,Z) on SL,r is given by

1. ρL,r










A 0

0 tA−1


 ,

√
det(A)





 ϕλ =

√
det(A)

(n′−n)
ϕλ A−1, for A ∈ GL(r,Z).
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2. ρL,r










Ir B

0 Ir


 , 1





 ϕλ = e(tr(Q(λ)B))ϕλ.

3. ρL,r










0 −Ir

Ir 0


 ,

√
det(τ)





 ϕλ =

e(− r(n−n′)
8

)

|L∨/L|r/2

∑
δ∈(L∨/L)r e(−〈δ, λ〉)ϕδ.

And we will consider its dual representation ρ∗L,r on the space S∗L,r. We fix a basis

of S∗L,r, i.e., the basis {ϕ∗λ} dual to {ϕλ}.

Remark. 1. To see that ρL,r essentially comes from a sub-representation of Weil

representation on the Schrödinger model, let us consider the standard additive

character ψ of the group of adèles Q\A→ C×

ψ(x) = e2πi(x∞−
∑

p<∞ x′p)

where x = (xp) ∈ A and for p < ∞, xp 7→ x′p is the image under the natural

map by taking “partial fraction”:

Qp → Qp/Zp.

Let V = LQ, and let the group of finite adèles be Af = Q̂ = Q ⊗Z Ẑ, Ẑ =
∏

p<∞ Zp. We denote by ωf the Weil representation of the double covering

S̃p(2r,Af ) of Sp(2r,Af ) on the space S (V (Q̂)r) of Schwartz functions. And

we consider the subspace SL,r generated by characteristic functions of closures

γ + L̂r in V (Q̂) of γ + Lr for all γ ∈ L∨,r where L̂r = Lr ⊗ Ẑ. Then clearly

SL,r is canonically identified with SL by identifying ϕγ with the characteristic

function of the coset γ + L̂r. Then we immediately see the relation between

Weil representation ωf and ρL,r defined above:

ρL,r(g)ϕγ = ω(gf )ϕγ.
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where g ∈ S̃p(2r,Z) ⊆ S̃p(2r,R) and gf is the unique element in the inverse

image in S̃p(2r,Af ) of Sp(2r, Ẑ) such that ggf ∈ Sp(2r,Q). Here Sp(2r,Q)

is canonically identified with a subgroup of the double covering S̃p(2r,A) of

Sp(2r,A). See also Appendix II of [K2] and section 4.6 of [KRY].

2. If N is an positive integer such that N〈λ, µ〉 and N〈λ, λ〉/2 are integers for

all λ, µ ∈ L∨, then the representation ρL,1 of S̃L(2,Z) on SL,1 factors through

the finite index subgroup Γ′(N), the inverse image of the principle congruence

subgroup Γ(N) under the map S̃L(2,Z) → SL(2,Z).

2.1.4

In the rest of this section we give a list of generators of Sp(2r,Z) and S̃p(2r,Z) which

will make it easy to check modularity of generating functions. Though the list seems

simple, we have not seen it before in the literature.

We consider embeddings of the group Sp(2i,Z), (1 ≤ i < r) into Sp(2r,Z) in

r!
i!(r−i)!

ways as follows:




A B

C D


 7→




A 0 B 0

0 Ir−i 0 0

C 0 D 0

0 0 0 Ir−i




defines an embedding

ωi,(1,2,...,i) : Sp(2i,Z) → Sp(2r,Z).

Similarly, by changing the position of entries in Ir−i, we can get other embedding

ωi,(j1,j2,...,ji), 1 ≤ j1 < j2 < ... < ji ≤ r. Note that these embeddings correspond to

different choices of dimension-2i sub-symplectic subspace in the original dimension-2r



15

symplectic space.

Lemma 2.3. Sp(2r,Z) is generated by




A B

0 tA−1


 , A ∈ GL(r,Z), B ∈ Sym(r,Z) (2.2)

and any one of the following

ωi,(j1,j2,...,ji)







0 −Ii

Ii 0





 , 1 ≤ i ≤ r, 1 ≤ j1 < j2 < ... < ji ≤ r.

Proof. It is a standard fact (see [A]) that Sp(2r,Z) is generated by 2.2 and




0 −Ir

Ir 0


.

So it suffices to prove that 2.2 and any ωi,(j1,j2,...,ji)







0 −Ii

Ii 0





 , 1 ≤ i < r gen-

erate Sp(2r,Z). Note also that for a fixed i and two choices of (j1, j2, ..., ji) and

(k1, k2, ..., ki),

ωi,(j1,j2,...,ji)







0 −Ii

Ii 0







and

ωi,(k1,k2,...,ki)







0 −Ii

Ii 0







are conjugate by an element in 2.2. It suffices to prove that for a fixed i < r,

all elements of the form ωi,(j1,j2,...,ji)







0 −Ii

Ii 0





 and 2.2 generate Sp(2r,Z).

Since the standard fact implies that, for any fixed i < r all elements of the form
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ωi,(j1,j2,...,ji)







0 −Ii

Ii 0





 and 2.2 generate all

ω1,(j)







0 −1

1 0





 .

Therefore, it suffices to prove this for i = 1. This follows from the following identity

ω1,(1)ω1,(2)...ω1,(r)







0 −1

1 0





 =




0 −Ir

Ir 0


 .

Corollary 2.4. The double covering group S̃p(2r,Z) is generated by (g,
√

det(Cτ + D))

for g =




A B

C D


 ∈ Sp(2r,Z) on the list of the previous lemma 2.3.

Remark. By the above lemma, to check modularity of a generating function, we only

need to check the transformation law under elements in the lemma. One element we

will use is the following

ω1,{1} =




0 0 −1 0

0 Ir−1 0 0

1 0 0 0

0 0 0 Ir−1




. (2.3)

Write an element τ in Hr as the form τ =




τ0 zt

z τ ′


 where τ ′ ∈ Hr−1, z ∈
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M(r−1)×1(C) and τ0 ∈ H = H1. After an elementary computation, we have




0 0 −1 0

0 Ir−1 0 0

1 0 0 0

0 0 0 Ir−1



·




τ0 zt

z τ ′


 =



− 1

τ0
zt

τ0

z
τ0

τ ′ − zzt

τ0


 . (2.4)

From now on, abusing notation, we denote by ωi,(j1,j2,...,ji) the element in S̃p(2r,Z):


ωi,(j1,j2,...,ji)







0 −Ii

Ii 0





 ,

√
det(τ0)


 .

2.2 A criterion of modularity

In this section we will prove a criterion of modularity for formal power series. The

inductive nature of Fourier coefficients of Siegel modular forms are reflected in its

Fourier-Jacobi expansion and this is the key ingredient of the proof.

2.2.1

Recall that (L, q) is an even lattice of signature (n, n′) with n′ even. Let Γ ⊆
O(L, q) be a congruence subgroup which acts trivially on L∨/L. For an integer

r ∈ {1, 2, ..., n}, let F be a function on Γ\Lr
Q. Here O(L, q) acts on Lr

Q diagonally.

For λ ∈ (L∨/L)r and T ∈ Symr(Q)≥0, we denote by ΩL,r
T,λ the set

ΩL,r
T,λ := {x|Q(x) = T, x ∈ λ + Lr}.

For simplicity, we denote by [x] the Γ-coset of x = (x1, ..., xr) ∈ Lr
Q. And for a

finite set A ⊆ Γ\Lr
Q, we denote by F (A) =

∑
a∈A F (a). Moreover we use F (T, λ) to

simplify F (ΩL,r
T,λ).
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For x ∈ Lr
Q with Q(x) ≥ 0. Let r(x) be the dimension of the space Qx =

∑
1≤r≤rQxi ⊆ LQ. Let r(Q(x)) be the rank of the moment matrix Q(x). Obviously

one has r(x) ≥ r(Q(x)) due to the possible presence of isotropic vectors.

In the following, we will only consider functions F which satisfy:

Hypothesis 1. F ([x]) depends only on the subspace Qx of LQ and is zero unless this

subspace is positive definite (i.e., r(x) = r(Q(x))).

2.2.2

Let ρL,r be the Weil representation on SL,r of the double covering group S̃p(2r,Z)

defined in previous section and ρ∗L,r its dual representation on S∗L,r.

Now consider q-series

ΘF =
∑

λ∈(L∨/L)r

ΘL
F,λϕ

∗
λ ∈ S∗L,r[[q]] (2.5)

where

ΘL
F,λ =

∑
T≥0

F (T, λ)qT ∈ C[[q]]. (2.6)

As formal power series, we can rewrite this as

ΘL
F,λ =

∑

[x]∈λ+Lr/Γ

F ([x])qQ(x).

This is allowed since the sum in F (T, λ) is actually finite due to the Hypothesis 1

and the finiteness of Γ-orbits ([KM], in the middle of page 132) in ΩL,r
T,λ for T > 0.

For our convenience, here we re-state Theorem B in the introduction. For x =

(x1, ..., , xr−1) ∈ L∨,r−1, with r(x) = r(Q(x)) (i.e., the space Qx is positive definite),

we have an orthogonal projector, denoted by px, from LQ to Qx. And let px be the

projector id− px from LQ to (Qx)⊥. Let Lx be the lattice L∩ (Qx)⊥, and let Γx ⊂ Γ

be the stabilizer of x. Note that Lx is an even lattice of signature (n − r(x), n′) for
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the induced quadratic form. The restriction Fx of F on Lx,Q ∼= Lx,Q × {x} ⊆ Lr
Q

is Γx-invariant. One can therefore associate to Fx a vector-valued formal q-series

ΘFx ∈ S∗Lx,1[[q]].

Theorem 2.5 (Criterion of Modularity). Let L be an even lattice of signature

(n, n′) with 2|n′ and r ∈ {1, 2, ..., n}. For a function F on Γ\Lr
Q satisfying Hypothesis

1, the q-series ΘF is the q-expansion of a Siegel modular form of type ρ∗L,r, weight

n+n′
2

and genus r if F satisfies the following two conditions:

1. ΘF is absolutely convergent on Hr.

2. For every x ∈ L∨,r−1 with positive definite Qx of dimension r(x), the q-series

ΘFx is absolutely convergent on H = H1 and defines a Siegel modular form of

type ρ∗Lx,1, weight n+n′−r(x)
2

and genus 1.

Remark. Theorem 2.5 will still be true if we fix any r′ ≤ r − 1 and replace “x ∈
L∨,r−1...on H = H1 and defines a Siegel modular form of type ρ∗Lx,1, weight n+n′−r(x)

2

and genus 1” by “x ∈ L∨,r′ ,...,on Hr−r′ and defines a Siegel modular form of type

ρ∗Lx,r−r′ , weight n+n′−r(x)
2

and genus r − r′”. And the proof goes through with trivial

modification. Our particular choice comes from the application in the subsequent

sections.

2.2.3 Proof of Theorem 2.5

2.2.3.1

By the condition 1, the formal power series ΘF defines a holomorphic map from Hr

to S∗L,r. Thus, it makes sense to talk of ΘF (−τ−1) for τ ∈ Hr. We then need only

to check that ΘF satisfies the transformation law under elements in Lemma 2.3. The

Fourier expansion gives the transformation law under elements in the unipotent group
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since for v ∈ ΩL,r
T,λ, B ∈ Symr(Z), we have

tr(Q(v)B) ≡ tr(Q(λ)B) (mod Z).

For the transformation law under elements in the Levi subgroup, by Equation 2.6 and

Definition of ρL,r (2.2), we need to check that, for any A ∈ GL(r,Z),

F (T, λ) =
√

det(A)
n′+n√

det(A)
n′−n

F (tATA, λA).

This follows from 2|n′ and the following two equalities for v ∈ L∨,r:

tAQ(v)A = Q(vA),

and

F ([v]) = F ([vA]).

The first equality is obvious and the second one follows from the fact that the subspace

Qv of LQ is the same as Q(vA) and the hypothesis that the image F ([v]) depends

only on the the subspace Qv.

Therefore, by Lemma 2.3 it suffices to check the transformation law under the

element ω1,{1}.

2.2.3.2

Now we consider the Fourier-Jacobi type expansion of ΘL
F,(λ,µ) for λ ∈ L∨/L and

µ ∈ (L∨/L)r−1 defined as follows.

Write τ =




τ0
tz

z τ ′


 as in (2.4) and similarly T =




m tp/2

p/2 t


. For t ∈
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Symr−1(Q)≥0, we define

θ(λ,µ),t(τ0, z) =
∑
m,n

F (




m tp/2

p/2 t


 , (λ, µ))e(mτ0)e(

tpz). (2.7)

Then, we have a expansion of Fourier-Jacobi type

ΘL
F,(λ,µ) =

∑

t∈Symr−1(Q)≥0

θ(λ,µ),t(τ0, z)e(tr(tτ ′)). (2.8)

Therefore, for ΘL
F,(λ,µ) to have the right transformation law under the action of

the element ω1,{1} (2.3), it suffices to prove the corresponding transformation law

for θ(λ,µ),t under (τ0, z) → (− 1
τ0

, z
τ0

) for all t ∈ Symr−1(Q)≥0. Note that θ(λ,µ),t is

absolutely convergent on H × Cr−1, hence it makes sense to talk of θ(λ,µ),t(− 1
τ0

, z
τ0

).

After some easy computation, we see that the right transformation law for ι(θλ,x) is

the following:

θ(λ,µ),t

(
− 1

τ0

,
z

τ0

)
=
√

τ0
n+2 e(−n−n′

8
)

|L∨/L|1/2
e

(
tztz

2τ0

) ∑

γ∈L∨/L

e(−〈λ, γ〉)θ(λ,µ),t(τ0, z). (2.9)

2.2.3.3

For x ∈ L∨,r−1 satisfying r(x) = r(Q(x)), we define

θλ,x(τ0, z) =
∑
m,n


 ∑

v∈λ+L/Γx,Q(v)=m,〈v,x〉=tp

F ([v, x])


 e(mτ0)e(

tpz).

By Hypothesis 1 the other [v, x] ∈ L∨,r will be mapped to zero under F . Therefore

we have an equality between formal power series

θ(λ,µ),t(τ0, z) =
∑

x∈µ+Lr−1/Γ,Q(x)=t

θλ,x(τ0, z) (2.10)
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This is allowed since the sum above is finite.

Note that for a functional F such that ΘF is absolutely convergent, it is not

necessarily true that θλ,x(τ0, z) is also convergent. However, under the condition 2

that ΘFx is absolutely convergent, we will show that θλ,x(τ0, z) is also absolutely

convergent.

Proposition 2.6. For λ ∈ L∨/L and any x ∈ Lr−1,∨ with Q(x) = t ≥ 0 and r(x) =

r(Q(x)), under the conditions 2 of Theorem 2.5, θλ,x(τ0, z) is absolutely convergent

on H × Cr−1. Moreover, it satisfies

θλ,x

(
− 1

τ0

,
z

τ0

)

=
√

τ0
n+2 e(−n−n′

8
)

|L∨/L|1/2
e

(
tztz

2τ0

) ∑

γ∈L∨/L

e(−〈λ, γ〉)θγ,x(τ0, z).

Remark. For this proposition, we do not need the condition 1 of Theorem 2.5.

Proof of Proposition 2.6. We will express θλ,x as a sum of products of components

of ΘFx and certain standard Jacobi forms associated to positive definite lattices.

Afterwards, the result will follow from the condition 2 and known facts about those

Jacobi forms.

More precisely, let Lx = L∩px(L), L1 = Lx⊕Lx. And when we have i ∈ (Lx)
∨, j ∈

Lx,∨, we will denote by (i, j) ∈ L∨1 the corresponding element. Obviously, we have

natural embeddings

L1 ⊆ L ⊆ L∨ ⊆ L∨1 . (2.11)

Lemma 2.7. The map px induces an isomorphism of (finite) abelian groups

L/L1 ' px(L)/Lx.
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Proof. Clearly px induces a surjective map

p : L → px(L)/Lx.

We need to prove the kernel of p is L1. Obviously p(L1) = 0. If p(α) = 0, i.e.,

β = px(α) ∈ L ∩ px(L). Then px(α) = α− β ∈ L. Therefore, px(α) ∈ L ∩ px(L).

In particular, we have a decomposition

L =
∐

α′∈px(L)/Lx

α + Lx ⊕ Lx

where we fix a set of liftings α ∈ L of α′ ∈ px(L)/Lx.

Note that F ([y, x]) = Fx([y]) for y ∈ Lx,Q = (Qx)⊥, we have

Θ
Lx

Fx,px(λ+α)(τ0) =
∑
m≥0


 ∑

y∈Γx\px(λ+α)+Lx,Q(y)=m

F ([y, x])


 e(mτ0).

Then, we have

θλ,x(τ0, z) =
∑

α∈L/L1

Θ
Lx

Fx,px(λ+α)(τ0)θpx(λ+α)+Lx,x(τ0, z) (2.12)

where θpx(λ+α)+Lx,x(τ0, z) is the theta function defined as in the following lem attached

to the positive definite lattice Lx.

Lemma 2.8. Let M be an even positive definite lattice of rank r1, M∨ be its dual.

For any λ ∈ M∨/M and a fixed x ∈ M∨,r2 with Q(x) = t ≥ 0, let

θλ+M,x(τ0, z) :=
∑

u∈λ+M

e(
1

2
〈u, u〉τ0)e(

r2∑
i=1

zi〈u, xi〉).

Then, θλ+M,x(τ0, z) absolutely convergent on H ×Cr2 and it satisfies the transforma-
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tion law

θλ+M,x(− 1

τ0

,
z

τ0

) =
√

τ0
r1

e(− r1

8
)

|M∨/M | 12
e

(
tztz

2τ0

) ∑

j∈M∨/M

e(−〈λ, j〉)θj+M,x(τ0, z)).

Proof. The proof is standard by applying the Poisson summation formula.

Remark. From the lemma above we can recognize the transformation law of a Jacobi

form.

2.2.3.4

For a proof of Proposition 2.6, it is now easy to see the absolute convergence of

θλ,x. We then proceed to prove the transformation law of θλ,x(τ0, z) under (τ0, z) →
(− 1

τ0
, z

τ0
).

We have

θλ,x(− 1

τ0

,
z

τ0

) =
∑

α∈L/L1

Θ
Lx

Fx,px(λ+α)(−
1

τ0

)θpx(λ+α)+Lx,x(− 1

τ0

,
z

τ0

) (2.13)

Since ΘFx is a Siegel form of type ρ∗Lx,1 and by Lemma 2.8 for r1 = r(x) and r2 = r,

we obtain

∑

α∈L/L1

√
τ0

n−r+2 e(−n−r(x)−n′
8

)

| (Lx)∨
Lx

| 12
∑

i∈(Lx)∨/Lx

e (−〈λ + α, i〉) Θ
Lx

Fx,i(τ0)

×√τ0
r e(− r(x)

8
)

|Lx,∨
Lx | 12

e

(
tztz

2τ0

) ∑

j∈Lx,∨/Lx

e(−〈λ + α, j〉)θj+Lx,x(τ0, z).
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Interchange the order of summation,

√
τ0

n+2 e(−n−n′
8

)

| (Lx)∨
Lx

| 12 |Lx,∨
Lx | 12

e

(
tztz

2τ0

) ∑

i∈(Lx)∨/Lx,j∈Lx,∨/Lx


 ∑

α∈L/L1

e(−〈α, (i, j)〉)× e(−〈λ, (i, j)〉)ΘLx

Fx,i(τ0)θj+Lx,x(τ0, z)


 .

Note that for any δ ∈ (L∨1 /L1)
r, we have

∑

α∈L/L1

e(〈α, δ〉) =





|L/L1| if δ ∈ L∨/L1,

0 otherwise.

By the following equality between discriminants of various lattices,

∣∣∣∣
(Lx)

∨

Lx

∣∣∣∣
∣∣∣∣
Lx,∨

Lx

∣∣∣∣ =

∣∣∣∣
L∨1
L1

∣∣∣∣ =

∣∣∣∣
L

L1

∣∣∣∣
2 ∣∣∣∣

L∨

L

∣∣∣∣ ,

we get

√
τ0

n+2 e(−n−n′
8

)

|L∨/L| r−1
2

e

(
tztz

2τ0

)

×
∑

δ∈L∨/L1

e(−〈λ, δ〉)ΘLx

Fx,px(δ)(τ0)θpx(δ)+Lx,x(τ0, z).

Note that e(−〈λ, δ〉) depends only on the coset γ = δ + L ∈ L∨/L. By the equation

(2.12) we can group terms in the above equation and end up with a sum of θγ,x(τ, z)

where γ run over all elements in L∨/L

√
τ0

n+2 e(−n−n′
8

)

|L∨/L|1/2
e

(
tztz

2τ0

) ∑

γ∈L∨/L

e(−〈λ, γ〉)θγ,x(τ0, z).
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Thus we have proven the desired formula

θλ,x

(
− 1

τ0

,
z

τ0

)

=
√

τ0
n+2 e(−n−n′

8
)

|L∨/L|1/2
e

(
tztz

2τ0

) ∑

γ∈L∨/L

e(−〈λ, γ〉)θγ,x(τ0, z).

And this completes the proof of Proposition 2.6.

2.2.3.5

By the equation 2.10, the proposition above immediately implies the transformation

law 2.9. Putting all together, by Lemma 2.3 we have proved Theorem 2.5.

2.3 Special cycles and their generating functions

In this section we briefly recall Kudla’s definitions of special cycles on Shimura vari-

eties of orthogonal type and their generating functions. We refer to [K1] and [K2] for

more details.

Let (V, q) be a quadratic space of signature (n, 2) defined over Q with induced

inner product 〈·, ·〉. Let G be the similitude spin group GSpin(V ). And let D be the

associated Hermitian symmetric domain, i.e. the Grassmannian of oriented negative

definite 2-planes. This can be identified with the open subset of a quadric in P(V ⊗C)

D = {v ∈ V ⊗ C|〈v, v〉 = 0, 〈v, v〉 < 0}/C∗, dimCD = n.

The above data defines a Shimura variety Sh(G,D) = lim←−
K

XK with a canonical

model over Q, where, for K ⊆ G(Af ) a compact open subgroup,

XK(C) = G(Q) \D ×G(Af )/K.
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If we write

G(A) =
∐

j

G(Q)G(R)gjK

then we can write XK(C) as disjoint union of connected components

XK(C) =
∐

j

Γj\D, Γj = G(Q) ∩ gjKg−1
j .

We can pick a distinguished component XΓ = XΓ,K corresponding to gj = 1,

XΓ(C) = Γ\D, Γ = G(Q) ∩K

where we omit K without confusion in the context. XΓ is defined over a cyclotomic

extension EK of Q depending on K. The Galois group Gal(EK/Q) acts simply

transitively on the group of connected components ([K1], (1.10))

XΓj
' X

σj

Γ

where σj ∈ Gal(EK/Q) is associated to gj ∈ G(Q̂) under the reciprocity map, so that

([K1], (1.11))

XK =
∐

j

XΓj
=

∐

σ∈Gal(EK/Q)

Xσ
Γ . (2.14)

Let LD be the tautological bundle of lines corresponding to points on D, or

equivalently, the restriction to D of the line bundle O(−1) on P(V ⊗ C). The group

G(Q) acts equivariantly on LD so that LD descends to a line bundle LK on XK .

We will use L to denote the line bundle without confusion. It also has a canonical

model over Q ([K1] and references therein).

For a positive definite subspace W of V , and g ∈ G(Af ), we define a cycle
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Z(W, g; K), at level K,

Z(W, g; K) := GW (Q) \DW ×GW (Af )/K
g
W → G(Q) \D ×G(Af )/K

GW (Q)(z, h)Kg
W 7→ G(Q)(z, hg)K

where GW the spin group associated to the quadratic space W⊥, i.e. the stabilizer of

W and

DW = {v ∈ D|v ⊥ W}, Kg
W = GW (Af ) ∩ gKg−1.

This cycle is again rational over Q. For an integer r, 1 ≤ r ≤ n, and an r-tuple

x = (x1, ..., xr) ∈ V r, we define Z(x, g; K) as Z(W, g; K) if the space W =
∑

iQxi

generated by xi, i = 1, ..., r is positively definite, 0 otherwise. Note that the tautolog-

ical bundle LW,g on Z(W, g; K) is naturally isomorphic to the restriction of L .

For a K-invariant Schwartz function ϕ ∈ S (V (Q̂)r), and an r × r symmetric

positive semi-definite matrix T ∈ Symr(Q)≥0 of rank r(T ), let

ΩT = {x ∈ V r|Q(x) = T, r(T ) = r(x)}.

Decompose

ΩT (Af ) ∩ supp(ϕ) =
∐

j

Kg−1
i x

for x ∈ ΩT (Q) and finitely many gj ∈ G(Af ). Then we define a cycle of codimension

r(T )

Z(T, ϕ; K) =
∑

j

ϕ(g−1
j x)Z(x, gj; K).

The cycle Z(T, ϕ; K) is compatible with the pull back map XK′ → XK for K ′ ⊆ K

([K1], proposition (5.10)). Therefore, we can drop K from the notation and write

them as Z(T, ϕ). The compatibility also holds for the tautological line bundle L .

One can also consider special cycles on the connected Shimura variety XΓ (2.14).
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If we denote the restriction of Z(T, ϕ; K) on XΓ by Z(T, ϕ; Γ), we have the following

decomposition

Z(T, ϕ; K) =
∑

σ∈Gal(EK/Q)

Z(T, ϕ; Γ)σ. (2.15)

We call all cycles Z(T, ϕ; K) defined above special cycles. They are all defined

over Q and their components lying on the connected Shimura variety are defined over

EK .

The generating function with coefficients in CHr(XK)C is defined to be

Θϕ(τ) :=
∑

T∈Symr(Q)≥0

{Z(T, ϕ)} · {L ∨}r−r(T )qT (2.16)

where qT = e2iπtr(Tτ), and

τ ∈ Hr = {τ ∈ Symr(C)|Im(τ) > 0}

is the Siegel upper half plane of genus r. And the intersection product is taken

according to the intersection pairing between Chow groups. We use {Z(T, ϕ)} to

denote its class in the Chow group.

For a linear functional ι on CHr(XK)C, let Θϕ,ι be the complex valued generating

function

Θϕ,ι =
∑

T∈Symr(Q)≥0

ι({Z(T, ϕ)} · {L ∨}r−r(T ))qT .

2.4 Modularity of generating functions of special

cycles

In this section, as an application of the criterion of modularity proved in section 2.2,

we will prove the modularity of generating functions of special cycles. In the first

half of the section we will work in the classical setting as in [B1], while in the second
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half we will re-formulate the result in adelic language as in [K1]. The reason for this

treatment is that we want to work with connected Shimura varieties whose geometry

is more convenient to describe. Though they are generally defined over a cyclotomic

extension of Q, connected components are linked together via Galois action, and

special cycles on different components are Galois conjugate to each other.

2.4.1

Suppose we are in the situation of the introduction. Let (L, q) be a nondegenerate

even lattice of signature (n, 2). For a neat Γ, let XΓ be the connected Shimura variety.

XΓ is a smooth quasi-projective variety with a canonical model generally defined over

a cyclotomic extension of Q depending on Γ. Let Z(T, λ) be the special cycle of

moment T ∈ Symr(Q)≥0 and residue class λ ∈ (L∨/L)r defined in Introduction 1.

All such cycles are defined over cyclotomic extension of Q. Note that the cycle Z(T, λ)

is of codimension r(T ).

Consider CHr
L = CHr(XΓ)C where we write down L to emphasize the dependence

on L. For a linear functional ι on CHr
L, we associate a function Fι on Γ\Lr

Q as

follows. For x = (x1, ..., xr) ∈ L∨,r with T = Q(x) ≥ 0, Fι maps the Γ-coset [x] to

ι({L }∨,r−r(T ) · {Z(x)}) ∈ C if the space Qx generated by x1, ..., xr is positive definite,

and maps the other [x] to zero. The function Fι obviously satisfies Hypothesis 1.

Theorem 2.9. (Modularity Conjecture of Kudla, [K2]) For any n ≥ 1, r ∈ {1, 2, ..., n},
and any ι ∈ Hom(CHr

L,C), if ΘFι is absolutely convergent, then it is a Siegel modular

form of type ρ∗L,r, weight 1 + n
2

and genus r.

Proof. To apply Theorem (2.5), we need to verify the condition 2 that for x ∈ L∨,r−1

with Q(x) ≥ 0 and r(x) = r(Q(x)), the generating function ΘFι,x ∈ S∗Lx,1[[q]] is

absolutely convergent and defines a modular form of type ρ∗L,1 and weight n+2−r(x)
2

.

Note that we have a morphism between Shimura varieties fx : XΓx → XΓ. The

morphism fx is a closed immersion (Theorem 5.16 in [Mi]), hence proper. This induces
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a push-forward map

(fx)∗ : CH
∗−r(x)
Lx → CH∗

L.

Shifting by a power of L ∨, we define

ix = (fx)∗ · {L ∨}r−1−r(x) : CH1
Lx
→ CHr

L.

Then ι ◦ ix ∈ Hom(CH1
Lx,C) and we can associate a generating function ΘFι◦ix

∈
S∗Lx,1[[q]]. It is a theorem of Borcherds ([B1]) that ΘFι◦ix

is absolutely convergent and

defines a modular form of type ρ∗L,1 and weight n+2−r(x)
2

. For a sketch of the proof,

we refer to [K2], Theorem 3.2.

Thus, to verify the condition 2, it suffices to prove that ΘFι,x = ΘFι◦ix
∈ S∗Lx,1[[q]].

To simplify notations, let y′ = px(y) ∈ Lx,Q. Let Zx(y
′) be the special cycle on XΓx

and let Lx be the tautological line bundle on XΓx . Abusing notation, Z(y, x), Zx(y
′)

etc. will also mean their cycles classes in the Chow group. Then, we only need to

prove that for any y ∈ LQ such that Qy +Qx is positive definite, we have an equality

Z(y, x) ·L ∨,r−r(y,x) = ix(Zx(y
′) ·L ∨,1−r(y′)

x ) ∈ CHr
L. (2.17)

If y is in Qx, then y′ = y and we have Z(y, x) = Z(x) ∈ CH
r(x)
L , and Zx(y

′) ·
L ∨,1−r(y′)

x = Zx(0) ·L ∨
x = L ∨

x ∈ CH1
Lx

. But the tautological line bundle Lx on XΓx

is isomorphic to the restriction of L . Equation 2.17 now follows easily. If y is not in

the subspace Qx, the proof of Equation 2.17 is similar and even more straightforward.

Therefore, by Theorem 2.5, we complete the proof of Theorem 2.9.

Remark. The convergence assumption for the linear functional ι in the case r ≥ 2 is

necessary and it seems that we can not deduce it from Borcherds’ theorem for r = 1.

In fact, we can only obtain the convergence of each individual Fourier-Jacobi coef-

ficient. Heuristically, we may look at the following question. Consider a generating
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function Θ =
∑

T∈Sym2(Z)≥0 aT qT , aT ∈ C, with the property that

1. The T -th coefficient aT is invariant when we switch T =




m n/2

n/2 t


 to

T ′ =




t n/2

n/2 m


.

2. The m-th “Fourier-Jacobi” coefficient θm is absolutely convergent and defines a

Jacobi form of index m ([EZ]).

But only these information does not imply the convergence of the series Θ since the

property 1) is not sufficient to yield a uniform control for the convergence of all θm.

Nevertheless, we would like to propose the following conjecture whose proof may

need some new ideas.

Conjecture 1. For any linear functional ι on CHr(XΓ)C, the generating function

ΘFι is absolutely convergent on Hr.

Let SCr(L) be the subspace of CHr(XΓ)C generated by codimension-r cycle

classes {Z(T, λ)} · {L ∨}r−r(T ) for all λ ∈ (L∨/L)r and T ∈ Symr(Q)≥0. Let SCr
0(L)

be the maximal quotient of SCr(L) on which any linear functional is of convergent

type (i.e., such that ΘFι is absolutely convergent). Then the dual space SCr
0(L)∨ =

Hom(SCr
0(L),C) is canonically identified with the space of all linear functionals of

convergent type on SCr(L). The conjecture above amounts to say SCr(L) = SCr
0(L).

Corollary 2.10. For r = 1, 2, ..., n, the space SCr
0(L) is finite dimensional.

Proof. The assignment ι 7→ ΘFι defines a linear map from Hom(SCr
0(L),C) to the

complex vector space A(1+ n
2
, ρ∗L,r) of Siegel modular form of weight 1+ n

2
, type ρ∗L,r.

The map is injective since the value of ι on the generator {Z(T, λ)} · {L ∨}r−r(T ) of

SCr
0(L) can be recovered as the Fourier coefficient aT,λ of the modular form ΘFι . Since

the space A(1+ n
2
, ρ∗L,r) is finite dimensional, so are Hom(SCr

0(L),C) and SCr
0(L).
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2.4.2

We now re-formulate our results in adelic language. We proceed from the previous

section where we have defined special cycles etc. on Shimura varieties Sh(G,D) =

lim←−
K

XK associated to a rational quadratic space V . Recall that ωf is the Weil repre-

sentation of S̃p2r(Q̂) on S (V (Q̂)r) (see Remark 1 after the definition of ρL,r).

Theorem 2.11. Let n ≥ 1,r ∈ {1, 2, ..., n}, and ϕ ∈ S (V (Q̂)r)K for a com-

pact subgroup K ∈ G(Af ). Let Θϕ be the generating function (2.16). Let ι ∈
Hom(CHr(XK)C) Then, assuming Conjecture 1 for all lattices L, we have

Θϕ,ι(γτ) = j(γ, τ)n+2Θωf (γ−1
f )ϕ,ι(τ), γ ∈ S̃p(2r,Z).

for any linear functional ι. Here γf is the unique element in S̃p(2r, Q̂) such that

γγf ∈ Sp(2r,Q).

Proof. Any function ϕ in S (V (Q̂)r) is a linear combination of characteristic functions

of λ + L̂r for λ ∈ V (Q) and a certain Z-lattice L ⊂ V (we require that all lattices

have full rank).

When λ ∈ V r, we can assume λ ∈ L∨ by replacing a smaller lattice. Then, if ϕ

is the characteristic function of λ + L̂r, λ ∈ L∨, by the relation 2.15 between special

cycles on XK and special cycles on its connected component XΓ , we have

Θϕ =
∑

σ∈Gal(EK/Q)

Θσ
λ

where the Galois group Gal(EK/Q) acts on Θλ via acting on its coefficients.

Now the assertion follows from Conjecture 1, Theorem 2.9 and the relation between

adelic Weil representation ωf and our ρ∗L,r.

Now it is routine that we can extend the generating function as a function defined

over S̃p(2r,A). Note that we have identified Sp(2r,Q) with a subgroup of S̃p(2r,A).
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For g ∈ S̃p(2r,A) and g = γ(g∞, k) where γ ∈ Sp(2r,Q) and k ∈ S̃p(2r, Ẑ), we define

Θ̃ϕ,ι(g) := j(g∞,
√−1Ir)

−n+2
2 Θωf (k)ϕ,ι(g∞(

√−1Ir)). (2.18)

Then, by the above corollary, this is independent of the choice of decomposition

g = γ(g∞, k) and is invariant under Sp(2r,Q), i.e.:

Corollary 2.12. Let n, r, ϕ and the linear functional ι be as in Theorem 2.11. Then,

assuming Conjecture 1 for all lattices L, we have

Θ̃ϕ,ι(γg) = Θ̃ϕ,ι(g), γ ∈ Sp(2r,Q), g ∈ S̃p(2r,A)

for any linear functional ι. Further, for g′ ∈ S̃p(2r,Af ),

Θ̃ϕ,ι(gg′) = Θ̃ωf (g′)ϕ,ι(g).

Proof. The first half is obvious. For the second half, the proof is completely parallel

to the proof for the case n = r = 1 in section 4.7 of [KRY].



Chapter 3

Finite generation of special cycles

of codimension two

3.1 The result

In this chapter we prove the finite generation of the subspace SC2(L) of CH2(XΓ)C

generated by special cycles of codimension two (without assuming Conjecture 1). Un-

fortunately our method for codimension two cycles is ad hoc and does not generalize

to higher codimension cycles.

Theorem 3.1. The space SC2(L) is finite dimensional.

Remark. It is generally very hard to detect rational equivalence for cycles other than

divisors. This can be illustrated by the example of Mumford ([Mum]) for zero-cycles

on a surface with a non-trivial holomorphic 2-form. According to the conjecture of

Beilinson-Bloch, it is expected for a smooth variety defined over a number field, the

Chow group should have finite rank. In the case of divisors, the finite generation

essentially follows from Mordell-Weil theorem for abelian variety. Little has been

proved for cycles of codimension larger than one. We can think of our result as a

piece of evidence for their conjecture.
35
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The proof relies the following simple observation. From Borcherds’ theorem, we

can not only obtain the finite generation of the space SC1(L) of special divisors but

also find a basis of SC1(L). In fact the first several terms already form the basis.

Otherwise, we would find a modular form with very high vanishing orders at all cusps.

This would contradict Riemann-Roch !

3.2 Preliminary on modular forms

Before we prove Theorem 3.1, we need some preparation. Recall that we have q-series

with coefficients in SC2
L for λ, µ ∈ L∨/L,

Θλ,µ =
∑
T≥0

Z(T ; λ, µ)qT .

Fix t > 0 and consider the t-the Fourier-Jacobi coefficients of Θλ,µ,

θλ,µ(τ, z) = θλ,µ;t(τ, z) =
∑
m,p

Zλ,µ(m, p)qmξp, q = e(τ), ξ = e(z)

where the sum runs over (m, p) such that mt− 1
4
p2 ≥ 0 and Zλ,µ(m, p) = Z(T ; λ, µ) for

T =




m 1
2
p

1
2
p t


 (cf. Equation 2.7, we change the letter τ0 to τ). Since the theorem

of Borcherds verifies the condition 2 of Theorem 2.5, by Equation 2.10 and Proposition

2.6 we know that ι(θλ,µ) is convergent for all linear functionals ι on SC2(L). Thus

for simplicity we can drop ι keeping in mind that all equalities hold when we apply

linear functionals. Now we see that θλ,µ obviously satisfies the following equations:

for a, b, c ∈ Z,

1) θλ,µ(− 1
τ
, z

τ
) =

√
τ

n+2 e(−n−2
8

)

|L∨/L|1/2 e(
tztz
τ

)
∑

γ e(〈λ, γ〉)θγ,µ(τ, z).

2) θλ,µ(τ + a, z) = e(1
2
a〈λ, λ〉)θλ,µ(τ, z).
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3) θλ,µ(τ, z + b) = e(b〈λ, µ〉)θλ,µ(τ, z).

4) θλ,µ(τ, z + cτ) = e(−2tcz − tc2τ)θλ−cµ,µ(τ, z).

Note that 4) is equivalent to

Zλ,µ(m, p) = Zλ−cµ,µ(m + pc + tc2, p + 2tc). (3.1)

Let N be a positive integer such that N
2

kills L∨/L. Then, if N |c we have Zλ,µ(m, p) =

Zλ,µ(m+pc+tc2, p+2tc). We can therefore define Zλ,µ;w(d) = Zλ,µ(m, p) for one (hence

for every) choice of representative p of w (mod 2Nt) and m such that d = m− p2

4t
. We

now have

θλ,µ(τ, z) =
∑

w (mod 2Nt)

θλ,µ;w(τ)θw,2Nt(τ, z).

where

θλ,µ;w(τ) =
∑

d≥0

Zλ,µ;w(d)qd

and

θw,2Nt(τ, z) =
∑

p≡w (mod 2Nt)

q
p2

4t ξp.

Lemma 3.2. For λ, µ ∈ L∨/L and w (mod 2Nt), θλ,µ;w(τ) is a modular form for

Γ′(2N2t) of weight k = 1+n
2

. Further, θλ,µ;w(− 1
τ
) is a linear combination of θλ′,µ′;w′

for λ′, µ′ ∈ L∨/L and w′ (mod 2Nt).

Proof. By our choice of N , the representation ρ∗L,1 factors through Γ′(N) (cf. Remark

2). Consider the one dimensional lattice Ze with a quadratic form q(e) = 2N2t.

Then, applying Lemma 2.8 to x = 1
N

e we know that θw,2Nt(τ, z) is a Jacobi form of

weight 1/2 and index t on Γ′(2N2t) (also by Remark 2). It follows that θλ,µ;w(τ) is

a modular form for Γ′(2N2t) of weight k = 1+n
2

. For the second statement, we just

compare the formula of θλ,µ(− 1
τ
, z

τ
) with that of θw,2Nt(− 1

τ
, z

τ
) using Equation 2.9 and

Lemma 2.8. This completes the proof.
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3.3 Proof of Theorem 3.1

We claim that SC2(L) is generated by Z(T ; λ, µ) for all λ, µ ∈ L∨/L and all T ≥ 0

of the form

T =




m 1
2
p

1
2
p t


 , m ≤ 4(k + 1)

3
, t ≤ 4(k + 1)

3
.

It follows from this claim that SC2(L) is finite dimensional.

For t > 0, let St be the space spanned by cycle classes of Z(T ; λ, µ) for T =


m 1
2
p

1
2
p t


 and all λ, µ ∈ L∨/L. Let S ′t be the subspace spanned by Z(T ; λ, µ) for

λ, µ ∈ L∨/L and T with det(T ) ≤ (k+1)t. We claim that St = S ′t. In fact, if S ′t 6= St,

one could construct a nontrivial linear functional ι on St that vanishes on S ′t. Thus

at least one of θλ,µ;w is a nonzero modular form. Since ι(Zλ,µ(m, p)) vanish for all λ, µ

and m, p with m− p2

4t
= det(T )

t
≤ k + 1, it follows from Lemma 3.2 that, at all cusps,

the Fourier expansion of ι(θλ,µ;w) vanishes up to (k + 1)-th coefficients. But this is

impossible due to the following lemma applied to the group Γ′(2N2t).

Lemma 3.3. For any integer N > 0, there does not exist a nonzero modular form f

of weight k on Γ′(N) with vanishing Fourier coefficient an,i for n ≤ k + 1 at all cusps

i ∈ ΣN . Here ΣN is the set of all inequivalent cusps.

Proof. If such f exists, one can assume that f is actually a form on Γ(N) after taking

square of f . At the cusp i ∈ ΣN , since the uniformizer for Γ(N) is q
1
N = e( τ

N
), the

vanishing order of f is at least N(k+1). Comparing with the degree of the line bundle

of modular form of weight k on Γ(N) (see [S1], page 23), we have an inequality:

kµN ≥
∑
i∈ΣN

N(k + 1)

where µN = [SL2(Z) : Γ(N)]. But Γ(N) has exactly µN

N
cusps. Contradiction! This

completes the proof.
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Moreover, by Equation 3.1, we can assume that St is generated by Z(T ; λ, µ) for

all λ, µ ∈ L∨/L and T =




m 1
2
p

1
2
p t


 with det(T ) ≤ t(k + 1) and −t ≤ p < t. Thus

we have m ≤ k+1+ t
4
. If t > 4(k+1)

3
, we have m < t. Since t,m are symmetric, we can

switch them and repeat the argument above. We thus prove that SC2(L) is generated

by Z(λ, µ; T ) for all λ, µ ∈ L∨/L and T =




m 1
2
p

1
2
p t


 ≥ 0 with m, t ≤ 4(k+1)

3
. This

completes the proof of Theorem 3.1.

Remark. 1. Lemma 3.3 also implies that the dimension of SC1(L) is at most

(n+3)
2
|L∨/L| and moreover that SC1(L) is generated by the first (n+3)

2
|L∨/L|

terms.

2. We give an explicit example. Consider the self-product S = X0(N) × X0(N)

of the level-N modular curve X0(N) defined over Q. A point x on X0(N)

represents a pair (E, G) consisting of an elliptic curve E and a cyclic N -subgroup

G of E. For T ∈ Sym2(Z)>0, let ZT be the zero cycle on S defined summing

all points (x1, x2) such that Hom(x1, x2) represents T . Here Hom(x1, x2) is

endowed with the quadratic form defined by the degree of morphism from x1 to

x2. Then it follows from Theorem 3.1 that for all T > 0, the rational equivalence

classes of zero-cycles ZT generate a finite dimensional subspace of CH2(S)Q.



Chapter 4

Hecke action on the space of

special cycles

In this chapter, we investigate the Hecke action on the space of special cycles from a

representation theoretical point of view.

4.1 Hecke action

Recall that V is a quadratic space over Q of signature (n, 2) and we have the Q-

algebraic group G = GSpin(V ). Let G′ = S̃p2r be the double covering of Sp2r.

Although G′ is not an algebraic group, we still denote by G′(Qp) (G′(Af ), respectively)

the double covering of Sp2r(Qp) (Sp2r(Af ), respectively). Let ωf be the restriction of

Weil representation of G(A)×G′(A) to G(Af )×G′(Af )) on S (V (Af )
r).

Let CHr be the inductive limit lim−→
K

CHr(XK)C of Chow groups with respect to

pull-back maps. Let SCr(XK) be the subspace of CH(XK)C generated by classes of

special cycles Z(T, ϕ) for all T ∈ Symr(Q)≥0 and ϕ ∈ S (V (Af )
r)K . Similarly, we

form the inductive limit

SCr = lim−→
K

SCr(XK).

40
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The group G(Af ) acts on CHr via Hecke correspondences. More precisely, for

g ∈ G(Af ), and Kg = gKg−1, there are two morphisms p1, p2 : XK∩Kg → XK with p1

induced by the inclusion K ∩Kg ⊆ K and p2 the composition

XK∩Kg
// XKg

·g // XK .

Then g acts on the Chow group via p1∗p∗2. One can check that SCr is G(Af )-stable

and we have a G(Af )-equivariant map from S (V (Af )
r) to SCr (see Corollary 5.11

of [K1]), i.e.,

gZ(T, ϕ) = Z(T, ωf (g)ϕ). (4.1)

And this induces an action of G(Af ) on the smooth dual space

SCr,∨ = Hom(SCr,C).

Here a linear functional is smooth if it is fixed by some open compact subgroup K of

G(Af ).

4.2 Multiplicity one

Let A (G′) be the space of automorphic forms on G′(A) on which G′(Af )× (G , K ′
∞)

acts by translation from the right. Let the (G , K ′
∞)-module σ∞,1+n/2 be the holomor-

phic discrete series of weight n
2

+ 1. Define a G′(Af )-module

A0(
n

2
+ 1, G′) = Hom(G ,K′∞)(σ∞,1+n/2, A (G′)).

Proposition 4.1. Assume Conjecture 1. Then there is a G(Af )-equivariant injective

map

SCr,∨ ↪→ HomG′(Af )(ωf , A0(
n

2
+ 1, G′)).



42

Proof. Firstly we have

HomG′(Af )(ωf , A0(
n

2
+ 1, G′)) = HomG′(Af )×(G ,K′∞)(ωf ⊗ σ∞,1+n/2, A (G′)).

For ι ∈ SCr,∨
0 , we can define a linear map Θ(ι) from S (V (Af )

r)⊗σ∞,1+n/2 to A (G′)

as follows. Let u be the lowest weight vector of σ∞,1+n/2 (unique up to scalars). For

ϕ ∈ S (V (Af )
r), let Θ(ι)(ϕ ⊗ u) be Θ̃ϕ,ι as defined in Equation 2.18. By Corollary

2.12, this defines an element in A (G′). Since u generates σ∞,1+n/2 under the action

of (G , K ′
∞), we can extend the map (G , K ′

∞)-equivariantly to S (V (Af )
r)⊗σ∞,1+n/2.

By Corollary 2.12, Θ(ι) is G′(Af )-equivariant.

This gives rise to a map from SCr,∨ to HomG′(Af )(ωf , A0(
n
2
+1, G′)). It is injective

since the generators of SCr can be recovered from Fourier coefficients of generating

functions. By the equation (4.1), the map ι 7→ Θ(ι) is G(Af )-equivariant. This

completes the proof.

We now consider an irreducible G(Af )-module πf =
∏

p<∞ πp. We assume that

the local Howe duality conjecture holds for the reductive pair (O(V ), G′) for all non-

archimedean places. Recall that the local Howe duality conjecture asserts that for any

irreducible representation πv of Gv, there is at most one irreducible representation σv

of G′
v such that Hom(ωv⊗πv, σv) 6= 0 and the Hom is at most one dimensional. Note

that our assumption does not hurt too much since the local Howe duality conjecture

is proved for reductive pairs over p-adic field with p 6= 2 by Waldspurger ([W2]), and

for any p and πv supercuspidal by Kudla ([K0]).

Note that G = GSpin(V ) and the action of G(Af ) on S (V (Af )
r) factors through

the special orthogonal group SO(V )(Af ).

Lemma 4.2. Let V be a quadratic space over a non-archimedean local field with

dimV ≥ r + 1. Assuming the local Howe duality conjecture for (O(V ), G′), then for
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an irreducible representation π (σ, respectively) of SO(V ) (G′, respectively) we have

dimHomSO(V )×G′(ω, π ⊗ σ) ≤ 1.

And for each π, there exists at most one σ such that the dimension of Hom is one.

Proof. Recall that SO(V ) is the kernel of the determinant homomorphism det :

O(V ) → {±1}. Take any element τ with determinant −1 and let πτ be the twist of π

by τ . Let ωσ be the O(V )-module HomG′(ω, σ). Then we have HomSO(V )×G′(ω, π ⊗
σ) = HomSO(V )(ωσ|SO(V ), π). We distinguish two cases.

1. When π 6= πτ , the induced representation Ind
O(V )
SO(V )π is irreducible. And the

space HomSO(V )(ωσ|SO(V ), π) is isomorphic to HomO(V )(ωσ, Ind
O(V )
SO(V )π). By the

local Howe duality for the reductive pair (O(V ), G′), the latter is at most one

dimensional and it is one dimensional for at most one σ.

2. When π = πτ , the representation Ind
O(V )
SO(V )π split into two components. In this

case, we can extend π to an irreducible representation of O(V ) in exactly two

ways. We denote them by π+ and π−. Then, π+ = π− ⊗ det and we have

HomSO(V )(ωσ|SO(V ), π) = HomO(V )(ωσ, π
+) + HomO(V )(ωσ, π

−).

Now note that dimV ≥ r + 1. By a result of Rallis (appendix of [R], see also

[P] sec. 5, page 282), at most one of π+ and π−⊗det appears in the local Howe

duality. Then it follows that dimHomSO(V )(ωσ|SO(V ), π) ≤ 1 and for at most

one σ the dimension is one.

This completes the proof.

Now Lemma 4.2 implies that, for an irreducible G(Af )-module πf =
∏

p<∞ πp,
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there exists at most one G′(Af )-module, denoted by θ(πf ) =
∏

p<∞ θp(πp), such that

dimCHomG(Af )×G′(Af )(πf ⊗ ωf , θ(πf )) = 1.

If such θ(πf ) exists, we only focus on the situation that the G′(Af )× (G , K∞)-module

θ(πf )⊗ σ∞,1+n/2 is cuspidal automorphic. For such πf , we define

m(πf ) = dimCHomG′(Af )(θ(πf ), A0(
n

2
+ 1, G′)).

Theorem 4.3. Assume Conjecture 1 and that the local Howe duality conjecture holds

for the reductive pair (O(V ), G′) for all non-archimedean places. Then for an irre-

ducible G(Af )-module πf , we have dimCHomG(Af )(πf , SCr,∨
0 ) = 0 if θ(πf ) does not

exist and dimCHomG(Af )(πf , SCr,∨
0 ) ≤ m(πf ) if θ(πf )⊗ σ∞,1+n/2 is a cuspidal auto-

morphic representation.

Proof. By Proposition 4.1, we have

HomG(Af )(πf , SCr,∨
0 ) ⊆ HomG(Af )(πf , HomG′(Af )(ωf , A0(

n

2
+ 1, G′))).

The latter is isomorphic to

HomG(Af )×G′(Af )(πf ⊗ ωf , A0(
n

2
+ 1, G′)).

If l is a non-trivial element in this space, let σf be an irreducible G′(Af )-invariant

subspace of the image of l. By Lemma 4.2, HomG(Af )×G′(Af )(πf ⊗ ωf , σf ) = 0 unless

σf ' θ(πf ). This proves the first assertion.

Since the space of cuspidal automorphic forms decomposes discretely and each

irreducible cuspidal automorphic representation has finite multiplicity, the argument

above shows that the image of any non-trivial linear functional l is actually a direct
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sum of finitely many of θ(πf ). The local Howe duality also implies that the image of

l is actually irreducible. Therefore, any l factors through θ(πf ) and it follows that

the dimension of HomG(Af )×G′(Af )(πf ⊗ωf , A0(
n
2

+ 1, G′)) is the same as m(πf ). This

completes the proof.

In particular, when r = 1, we get the following unconditional result.

Corollary 4.4. Suppose r = 1, i.e. G′ = S̃L2. And suppose that θ(πf )⊗ σ∞,1+n/2 is

a cuspidal automorphic representation. Then we have

dimCHomG(Af )(πf , SC1,∨) ≤ 1.

Proof. In this case, Conjecture 1 holds. And the local Howe duality conjecture is

known for (O(V ), S̃L2) for all non-archimedean places. The multiplicity one for cus-

pidal automorphic representations of S̃L2 is proved by Waldspurger ([W1]). Thus

under the assumption that θ(πf )⊗σ∞,1+n/2 is a cuspidal automorphic representation,

we have m(πf ) = 1. This completes the proof.

Remark. 1. One expects that the multiplicity one holds for cuspidal automorphic

representations on the group S̃p2r(A) with r > 1. But it seems to be unproven

at this moment.

2. One of the most interesting questions is to find a criterion when the space

HomG(Af )(π, SCr,∨) is non-trivial. In the classical case of Heegner points, the

answer is given by Gross-Zagier’s formula in terms of central derivative of certain

L-functions. We expect that the non-triviality of HomG(Af )(π, SCr,∨) is also

controlled by a formula of Gross-Zagier type. For more discussion, we refer to

[K2].

3. Gross-Kohnen-Zagier in [GKZ] proves that Heegner points with different dis-

criminants contribute at most one-dimension to the Mordell-Weil group of the
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elliptic curve attached to a newform of level N . Using the corollary above,

one can recover this result. This avoids computing Neron-Tate height pairing

between pairwise Heegner points.



Bibliography
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