
PROBABILITY ON GRAPHS AND GROUPS: THEORY AND

APPLICATIONS

Natalia Mosina

Advisor: Ioannis Karatzas

Submitted in partial fulfillment of the

Requirements for the degree

of Doctor of Philosophy

in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2009



c©2009

Natalia Mosina

All Rights Reserved



Abstract

PROBABILITY ON GRAPHS AND GROUPS: THEORY AND

APPLICATIONS

Natalia Mosina

We introduce the notion of the mean-set (expectation) of a graph- or group-

valued random element. Using this concept, we prove a novel generalization of the

strong law of large numbers on graphs and groups. Some other relevant results about

configurations of mean-sets (or center-sets) in trees and free groups, which may be

of independent interest, are discussed. We enhance our theory with other theoretical

tools, such as an analogue of Chebyshev inequality for graphs and the notion of

central order on graphs. Furthermore, we consider technical difficulties of computing

sample mean-sets and some practical ways of dealing with this issue. Moreover,

we provide results of actual experiments supporting many of our conclusions. In

addition, we show that our generalized law of large numbers, as a new theoretical tool,

provides a framework for motivating practical applications; namely, it has implications

for group-based cryptanalysis. At the end of this exposition, we explain, among

other things, how to analyze the security of a particular zero-knowledge, i.e., security

preserving, group-based authentication protocol. Our analysis allows us to conclude

that the security and reliability of a well-known authentication scheme in group-

based cryptography proposed by Sibert is questionable. The present work provides

a completely new direction of such analysis – it shows that there is a probabilistic

approach to cryptographic problems, which are usually treated only from the algebraic

point of view, and that this approach can be very effective.
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Chapter 1 1

Chapter 1

Introduction

”Mathematics compares the most diverse phenomena and

discovers the secret analogies that unite them.“

Josephe Fourier

1.1 Introduction

Random objects with values in groups and graphs are often dealt with in many ar-

eas of applied mathematics and theoretical computer science. Group-valued random

elements would have a broader range of applications (supported by rigorous math-

ematical treatment) if we had such theoretical tools as the notion of the average

(expectation) of a random element in a group, laws of large numbers with respect to

this average, some results on the rate of convergence in these laws, and so forth. The

purpose of this work is to start developing a necessary probability theory on graphs

and groups that would serve as a theoretical framework for practical applications in

different areas dealing with random objects in graphs and groups, in particular, in

group-based cryptography, where these objects are very important.
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1.1.1 Some history and theoretical motivation

One of the most profound and, at the same time, fundamental results studied in

probability theory is undoubtedly the strong law of large numbers (SLLN). For inde-

pendent and identically distributed (i.i.d.) real-valued random variables ξi, it states

that
1

n

n
∑

i=1

ξi → E(ξ1) (1.1)

almost surely (with probability one) as n → ∞, provided that expectation E(ξ1)

is finite. Depending on the assumptions one is willing to make there are different

versions of the result, but, nevertheless, they all are known under the general name

of laws of large numbers. On the one hand, the assertion above may seem to be

elementary in the sense that it is intuitively transparent that a sample (empirical)

average should converge to a population (theoretical) average. On the other hand,

the statement is indisputably deep because it entails the possibility to acquire precise

information about randomly-occurring phenomena, or, quoting A. V. Skorokhod (35),

“it allows us to make reliable conclusions from random premises,” meaning that the

average of a large number of random variables is “practically” non-random.

Starting from 1950′s, there have been ongoing attempts in the probabilistic liter-

ature to explore the existence of generalizations of the strong law of large numbers

to general group-valued random variables. For example, works of R. Bellman (2) and

H. Kesten (24) regarding the behavior of Zn := g1g2 . . . gn as n → ∞ (where gi are

i.i.d. random variables in a general group G) date back to 1954 and 1959. The object

of study for the desirable generalization was a random walk on groups. In 1960, the

generalization of the law was obtained by Furstenberg and Kesten only for groups of

matrices, which was further generalized in 1968. More detailed account of existing

attempts to prove generalizations of the strong law of large numbers dealing with the

objects of type Zn := g1g2 . . . gn for groups can be found in the recent work (year

of 2006) by Anders Karlsson and François Ledrappier (23) where they present their

version of a general law of large numbers for random walks on general groups. Never-
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theless, even a minor touch on the history of the subject dealing with generalizations

of SLLN to groups, employing the random walk Zn, reveals some inherent difficulty

of this long-term endeavor. This is from where we derive our theoretical motivation

to look at the problem from another angle, and this is what we want to contrast with

a drastically different approach our work is going to undertake.

As Anders Karlsson and François Ledrappier reasonably notice, it is not clear how

exactly to formulate an assertion that would generalize the law of large numbers to

groups. We think that this is precisely what causes the potential difficulty – the ab-

sence of clear intuitive grounds in dealing with g1g2 . . . gn in a desirable generalization.

Indeed, a mere attempt to mimic the left-hand side of (1.1) by writing
∑n

i=1 ξi in a

multiplicative form for group elements immediately eliminates its interpretation as an

average, which is the heart of the matter of the SLLN (1.1). Keeping this in mind, we

are not going to formulate the strong law of large numbers for group-valued random

elements by considering a random walk on a general group that would lead to losing

the information contained in the elements of a given group on the one side, as well as

to hindering the idea behind the strong law of large numbers itself on the other side.

Instead, we adhere to the basic principles in our approach. We remember that laws of

large numbers establish that the average (or mean) of random variables converges to

the average of their expectations (or just the expectation of a random variable in the

i.i.d. case). In other words, the classical SLLN states that the sample mean should

converge to the population mean with probability one. We want this fundamental

idea to be reflected in our generalization of the strong law of large numbers for graphs

and groups. We reach this goal in several steps.

1.1.2 The core of our work

Consider a locally finite graph Γ = (V (Γ), E(Γ)) (see Section 2 for basic graph- and

group-theoretic preliminaries). First, we introduce the notion of the mean-set (ex-

pectation) E for graph-valued random elements ξ : Ω → V (Γ) defined on a given
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probability space (Ω,F ,P). Dealing with a random element ξ(ω), we find it conve-

nient to work with a new (image) probability space (V (Γ),S, µ) where µ is the atomic

probability measure on V (Γ) induced by ξ and defined by

µ(g) = P
(

{ω ∈ Ω | ξ(ω) = g}
)

, g ∈ V (Γ).

Next, we introduce a weight function Mξ : V (Γ)→ R by

Mξ(v) :=
∑

s∈V (Γ)

d2(v, s)µ(s),

where d(v, s) is the distance between v and s in Γ, and prove that the domain of

definition of Mξ(·) is either the whole V (Γ), in which case we say that M is totally

defined, or ∅. In the case when domain(Mξ) = V (Γ), we define the mean-set of the

graph-valued random element ξ to be

E(ξ) := {v ∈ V (Γ) |Mξ(v) ≤ Mξ(u), ∀u ∈ V (Γ)}. (1.2)

Observe the analogy with classical theory, where quadratic function E[(ξ1 − c)2]

achieves its minimum at c = E(ξ) if ξ1, ξ2, . . . are i.i.d. L2 real-valued random vari-

ables. The above definition of E(ξ), ξ : Ω→ V (Γ), provides the corresponding notion

for groups via their Cayley graphs.

Next, we consider the empirical measure on V (Γ), denoted by µn, of the sample of

random graph elements ξ1(ω), . . . , ξn(ω). In other words, for every ω ∈ Ω, µn(u;ω) =

µn(u) (suppressing the second argument) is the relative frequency with which the

value u ∈ V (Γ) occurs in the sample above (see (3.6) further in the exposition),

and µn → µ almost surely as n → ∞. We let Mn(v) :=
∑

i∈V (Γ) d
2(v, i)µn(i) be

the random weight, corresponding to v ∈ V (Γ), and Mn(·) the resulting random

sampling weight function. Now, we define the sample mean-set relative to the sample

{ξ1, . . . , ξn} as the set of vertices

S(ξ1, . . . , ξn) := {v ∈ V (Γ) |Mn(v) ≤Mn(u), ∀u ∈ V (Γ)}. (1.3)
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The function S(ξ1, . . . , ξn) is an analogue of the average function (x1, . . . , xn) 7→ (x1 +

. . . + xn)/n for x1, . . . , xn ∈ R. We let Sn = S(ξ1, . . . , ξn). With these notions at

hand, we prove a generalization of the strong law of large numbers on graphs and

groups.

Theorem A. (SLLN for graph-valued random elements) Let Γ be a locally-

finite connected graph and {ξi}
∞
i=1 a sequence of i.i.d. Γ-valued random elements

ξi : Ω → V (Γ). If Mξ1(·) is totally defined and the mean set E(ξ1) = {v} for some

v ∈ V (Γ), i.e., E(ξ1) is a singleton set, then the following holds

S(ξ1, . . . , ξn)
a.s.
−→ E(ξ1) as n→∞.

Note: Further in the exposition, we may find it convenient to write E(µ), and to

speak of the mean-set of the distribution µ induced by ξ on V (Γ).

As we shall see (cf. Example 3.12 below), the classical limit of sets does not

work in instances when mean-sets contain more than one vertex. Nevertheless, limits

superior (limsup’s) do the job in these cases. We discuss more general strong law of

large numbers for multi-point mean-sets in Section 3.3 in Theorems 3.17, 3.20, 3.25,

and Corollary 3.29.

It turns out that other definitions of mean-sets are possible. Given a random

element ξ, we define a set

E(c)(ξ) := {v ∈ V (Γ) |M
(c)
ξ (v) ≤ M

(c)
ξ (u), ∀ u ∈ V (Γ)} (1.4)

and call it a mean-set of class c, where

M
(c)
ξ (v) :=

∑

s∈V (Γ)

dc(v, s)µ(s), v ∈ V (Γ)

is the weight function of class c. Despite these different possibilities, we choose to

work with (1.2), which is just a mean-set of class two, for reasons explained in Chapter

3, Section 3.1.2.
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Once we have the notion of mean-set for a graph- and group-valued random ele-

ments, we notice that it satisfies the so-called “shift” property; namely,

E(gξ) = gE(ξ), ∀g ∈ G. (1.5)

This “shift” property proves to be very useful in practice because, together with the

strong law of large numbers for groups, it allows our theory to be in accord with

practical motivations and applications.

To enhance our theory with yet another tool, we prove an analogue of classical

Chebyshev’s inequality - the concentration of measure inequality for a graph- (group-

)valued random element ξ.

Theorem B. (Chebyshev’s inequality for graph-valued random elements)

Let Γ be a locally-finite connected graph and {ξi}
∞
i=1 a sequence of i.i.d. Γ-valued

random elements ξi : Ω→ V (Γ). If the weight function Mξ1(·) is totally defined then

there exists a constant C = C(Γ, ξ1) > 0 such that

P
(

S(ξ1, . . . , ξn) 6⊆ E(ξ)
)

≤
C

n
.

1.1.3 Further developments

We go further than proving the novel strong law of large numbers for graph- and

group-valued random elements; we make some observations about possible configu-

rations of mean-sets in certain graphs that, in turn, lead to some implications about

trees and free groups. This indicates that our work may also have applications in

group theory. For example, we are able to conclude that if Γ is a tree and µ a prob-

ability measure on V (Γ), then |Eµ| ≤ 2. Moreover, if E(µ) = {u, v}, then u and v

are adjacent in Γ. This immediately implies that if µ is a probability distribution on

a free group F , then the number of points in the mean-set of any F -valued random
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element ξ is at most two. In addition, we can draw some conclusions about the repre-

sentation of center-sets for a free product of finitely-generated groups; namely, if G1

and G2 are finitely generated groups and G = G1 ∗G2 is the free product of G1 and

G2, then, for any distribution µ on G, the set Eµ is a subset of elements of the forms

gG1 or gG2 for some element g ∈ G. These developments indicate that our work is

not restricted to the probabilistic domain only, but it goes beyond it by showing, yet

another time, how intricately interconnected different areas of mathematics are.

In order to apply our results in practice, we have to be able to compute Sn effi-

ciently, which may be technically hard. For that reason, we study special cases when

Sn is easily computable and define an algorithm for computing it. We show that for

concrete configurations of mean-sets in graphs and some local properties of Mξ(·) we

can achieve good results.

As we continue to build up our probability theory on graphs and groups, we

introduce the notion of median-set on graphs that, as it turns out, possesses the same

optimality property as medians in classical probability theory. Further developments

lead us to the concept of central order on vertices of Γ (introduced in Definition 6.11)

and, as a result, to the proposal of a more general definition of mean-sets of class c

relevant to the central order (see Definition 6.14 below). This definition agrees with

the definition of classical expectation on the real line when the weight function M(·) is

finite, as well as with our first definition (see (1.2)) of mean-sets on graphs. However,

to its great advantage, Definition 6.14 makes sense even when the weight function is

infinite, due to the possibility of comparing the vertices of Γ using the binary relation

of central order established in Definition 6.11. It turns out that if we use more general

notion of expectation for graphs relevant to the central order, then our Strong Law

of Large Numbers for graph- and group-valued random elements still holds and can

be proved in a fashion similar to its original proof.
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1.1.4 Practical Motivation

Any theory is worth much more if it actually finds applications to real world problems,

or if it helps illuminate other areas within pure mathematics in unexpected ways. As

indicated above, the theoretical motivation of our approach is rooted in the history

of the subject, and on the conviction that the fundamental intuition about the law

of large numbers should prevail. Our motivation is actually two-fold: theoretical and

practical. Our theory can be used to analyze security (or reliability) of certain au-

thentication protocols used in group-based cryptography. There are numerous sources

that can help the reader unfamiliar with this area to get a quick grasp of the subject

should he or she become interested; for example, surveys by Oded Goldreich (17) and

by P. Dehornoy (10) are good available sources. One may also consult a book by

A. G. Miasnikov, V. Shpilrain, and A. Ushakov on group-based cryptography (28).

In addition, a good source on foundations of cryptography is (16). In a nutshell,

modern cryptography is concerned with the construction of efficient schemes that are

easy to operate but hard to foil. One of the major cryptographical problems is the

authentication problem: the prover P wishes to prove his (her) identity to the verifier

V via some secret information (such as password, for instance), but does not want V

to discover anything about this secret. In other words, P wants to prove that he/she

knows some private (secret) key without enabling an intruder (or eavesdropper, or

cheating verifier) to obtain the private key. “Preservation of security” is at the heart

of this problem. The existing authentication schemes (or protocols) use the so-called

zero-knowledge proofs as a major tool for verifying the validity of secret-based actions

of P , without revealing these secrets. One should intuitively think of zero-knowledge

as another expression for “preservation of security.”

In order to make it easier for the uninitiated reader to understand the idea of the

analysis, we shall provide, firstly, an oversimplified example that highlights the idea of

zero-knowledge protocol (the idea of this example was borrowed from the paper “How

to Explain Zero-Knowledge Protocols to Your Children” published by Jean-Jacques
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Quisquater and others (32)). Secondly, we shall place ourselves in the more realistic

frame of a group-based cryptography application and give some insight into how this

practical problem motivates our developments. More advanced reader may skip the

example and proceed further.

Example 1.1. Baby-Example of Zero-Knowledge (i.e., security-preserving)

authentication scheme.

This is a simple story about the prover (or seller), who knows the secret and wants

to sell it, and the verifier (or buyer), who wants to buy it. Let Peter be the prover

and Victor the verifier. The story is as follows. Imagine that Peter knows the secret

word that can serve as a secret key to open a door in a labyrinth. The labyrinth has

only one entrance and two paths (labeled p1 and p2) that meet only once, and there

is a magic door connecting the paths. We make an important assumption here:

It is impossible to break the door open without the special word.

Victor is willing to pay Peter for his secret, but not until he is sure that Peter indeed

knows it. Peter refuses to reveal the secret until he receives the money. They have to

come up with a security-preserving scheme by which Peter can prove that he knows

the secret word without telling it to Victor.

P1

P2Verifier

Prover

Figure 1.1: Labyrinth. Security-preserving scheme.

First, Victor waits outside of the labyrinth as Peter goes in and randomly takes
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either path p1 or p2; see Figure 1.1. Then Victor enters the labyrinth and shouts

the name of the path he wants Peter to use to return, chosen at random. Given that

Peter really does know the magic word, he opens the door (if needed) and returns

along the required path. Observe that Victor does not know which path Peter had

gone down initially.

If Peter is not honest and does not know the word, then he can only return by

the required path if Victor gives the name of the same path Peter entered by. Since

Victor chooses p1 or p2 randomly, Peter has 50 percent chance of guessing correctly.

If they repeat the scheme many times, say 20 or 30, in a row, the probability of

successfully anticipating all of Victor’s requests gets negligibly small, and Victor

should be convinced that Peter, indeed, knows the secret. In that case, the transaction

will take place.

This naive example actually provides a very good intuition about what the zero-

knowledge authentication protocols are. We devote the entire Chapter 7 to applica-

tions of our theory to the cryptanalysis of group-based authentication schemes, where

we describe one of the existing authentication protocols, analyze it, and conclude, us-

ing our theory, that its security is questionable.

Now, let us just briefly imagine the following situation in cryptography. Let G be

a group and let the Prover’s private key be an element s ∈ G and his public key a pair

(w, t), where w is an arbitrary element of the group G and t = s−1ws. In 2003, several

identification protocols (authentication schemes) were proposed by Sibert, Dehornoy,

and Girault in (34) (see also (10)), where the authors were claiming that the schemes

enable the Verifier to check that the Prover knows the secret key, while ensuring the

confidentiality of the private key, and, thus, meeting necessary security compliance.

Security of the protocols is based on the complexity of certain algebraic problem(s)

in G, for instance, conjugacy search problem (this complexity is an analogue of the

assumption in the simple example above about the magic door being unbreakable).

We present one of such schemes in detail later, in Chapter 7. For now, we just say
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that during the authentication phase of the protocol, the Prover sends to the Verifier

a sequence of random elements of 2 types (depending of the value of random bit c,

chosen by the Verifier): r and sr, where r is a randomly generated element and s is

a secretly chosen fixed element. The process is repeated many times. Right now it is

not important exactly how the scheme goes. What is important to observe, is that

any eavesdropper (or intruder, or cheating verifier) can obtain two strings of elements:

R1 = {ri1, . . . , rik}

and

R2 = {srj1, . . . , srjn−k
}.

The Eavesdropper’s goal is to recover the element s based on the intercepted sets

above. The important assumption is:

The random elements ri1, . . . , rik and rj1, . . . , rjn−k
have the same distribu-

tion, i.e., all these elements are generated by the same random generator.

To explain the idea of how we can, in fact, obtain the secret key using our theory,

assume for a moment that the group G is an infinite cyclic group Z. (Of course this

is never the case in cryptography, since conjugation does not make much sense in an

abelian group, but nevertheless lets make that assumption for simplicity.) In that

case we can rewrite the elements of R2 in additive notation as {s+ rj1, . . . , s+ rjn−k
}.

Then we can compute the average

r1 =
1

k

k
∑

m=1

rim

of the elements in R1 ⊂ Z and the average

r2 =
1

n− k

n−k
∑

l=1

(s+ rjl
) = s+

1

n− k

k
∑

l=1

rjl

of the elements in R2 ⊂ Z. By the strong law of large numbers for real-valued random

variables the larger the string R1 is, the closer the value of r1 to the mean E(µ) of the
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distribution µ on Z, induced by ri1 . Similarly, the larger the string R2 is, the closer

the value of r2 is to the number s + E(µ). Therefore, subtracting r1 from r2, we can

obtain a good guess of what s is, depending on sizes of the sets R1 and R2.

Let us observe three crucial properties that allow us to compute the secret element

in the commutative case:

(SL) (Strong law of large numbers for real-valued random variables, as in (1.1).)

1

n

n
∑

i=1

ξi
a.s.
→ Eξ1.

(LP) (Linearity property) For any real-valued random variable ξ, we have

E(ξ + c) = E(ξ) + c.

(EC) (Effective/efficient computations) The average value
1

n

n
∑

i=1

ξi is efficiently com-

putable.

Now it is clear what our practical motivation is, and how it affects our approach to

the formulation of the generalized strong law of large numbers for graphs and groups,

as in Theorem A. We generalize the notion of a sample average 1
n

∑n
i=1 ξi for real-

valued random variables to any finitely generated group and locally finite graph, as in

(1.3), so that the properties above are satisfied (with linearity property being replaced

by the ”shift“ property of (1.5)). With this theory at hand, the Eavesdropper breaks

the scheme by computing the set

S(srj1, . . . , srjn−k
) · [S(ri1 , . . . , rik)]

−1.

When n is sufficiently large, this set contains the private key s, or rather, a very good

guess of what s is. We conclude that the proposed zero-knowledge authentication

(security-preserving) protocol is not reliable. The detailed definition of the scheme,

as well as its analysis, attack, and supporting experiments are presented in Chapter

7 in the sequel.
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Remark 1.2. One of the contributions and novelties of this work is that it provides

a completely new approach to the security analysis of some identification protocols

existing in group-based cryptography. Such analysis is usually based on the complex-

ity of certain algebraic problem(s) in the platform group G. The present work shows

that there is a probabilistic approach to the cryptographic problem that is usually

treated only from the algebraic point of view, and that this approach can be very

effective.

1.2 Summary

Chapter 2 reviews some necessary graph- and group-theoretic preliminaries that con-

stitute the setting of our work. In particular, we review the notions of a graph Γ,

X-digraph, distance in a graph, and a Cayley graph of a group relative to a given

generating set X. In addition, we recall definitions of a free group and free abelian

group since we deal with these concepts in Chapter 5, Section 5.1, and use them to

conduct experiments supporting our SLLN in Section 5.3. At the end of Chapter 2,

we briefly speak about braid groups, which are often used in group-based cryptogra-

phy as we shall see in Chapter 7. Next, in Chapter 3, we prepare the ground for the

main result of our work by introducing the notion of (graph-) group-valued random

element ξ : Ω → V (Γ), weight function v 7→ Mξ(v), and mean-set of graph-valued

random element as the set of vertices in Γ that minimize the weight function Mξ, as in

(1.2). We prove a series of results relevant to the newly defined objects. In particular,

we show that if ξ : Ω→ V (Γ) is a random element with values in a connected locally

finite graph Γ with totally defined weight function Mξ(·), then the mean-set E(ξ)

is non-empty and finite. Next, we prove the so-called “shift” property (1.5) of the

expectation on groups that is so useful in practical applications. Finally, in Section

3.1.2, we consider other possible definitions of E; namely, mean-sets of class c, as in

(1.4).



CHAPTER 1. INTRODUCTION 14

Next, we turn to the formulation of the strong law of large numbers for graph-

and group-valued random elements. We give a careful proof of the law in the case of

a singleton mean-set. We also consider cases of multi-point center-sets and generalize

the law of large numbers to these situation. These tasks are carried out in Chapter

3, Section 3.2. Chapter 4 is devoted to the analogue of the Chebyshev inequality on

graphs and groups.

In Chapter 5, Section 5.1, we consider configurations of center-sets in graphs. We

start with the observation that it is impossible for certain combinations of vertices

to comprise center-sets of some graphs. This leads to the notion of a so-called cut-

point for a metric space, in general, and for a graph (Γ, d), in particular. It turns

out that existence of a cut-point in Γ affects possible configurations of mean-sets

dramatically, and this is a subject of a Cut-Point Lemma that we prove. The Lemma

is followed by a series of Corollaries featuring applications to trees and free groups.

More specifically, we prove that if Γ is a tree and µ is a probability measure on V (Γ),

then |Eµ| ≤ 2. From this, we deduce that if µ is a probability distribution on a free

group F , then the number of elements in its mean-set cannot exceed two points, for

any F -valued random element ξ. Moreover, the representation of a center-set for a

free product of finitely generated groups becomes apparent.

Section 5.2 deals with computational problems and methods of computing of Sn =

S(ξ1, . . . , ξn). We propose an algorithm (Direct Descent) that can be used to compute

the minimum of a given real-valued function f : V (Γ) → R. We show that if a

function in question (weight function) satisfies certain local monotonicity properties,

then we can achieve good results. In particular, we prove that our algorithm finds a

central point for trees.

Further, in Section 5.3, we demonstrate how the technique of computing mean-

sets, employing the Direct Descent Algorithm, works in practice. We perform series

of experiments in which we compute the sample mean-sets of randomly generated

samples of n random elements and observe the convergence of the sample mean-
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set to the actual mean. The results are presented in the tables for free and free

abelian groups with a uniform distribution µL on a sphere of radius L, defined as

SL := {w ∈ F (X) | |w| = L}, in Section 5.3. From the tables, we clearly see that our

experimental results support the strong law of large numbers for graphs and groups;

namely, the law works in practice, indeed.

Section 6.1, in Chapter 6, is devoted to the mean-set of class one, i.e., E(1)(ξ),

as in (1.4) with c = 1. We interpret this set as the median-set of the distribution

induced by ξ on Γ by proving Proposition 6.1 featuring the connection of E(1)(ξ) with

the classical median of a given distribution on the real line R. Further in this section,

we introduce a function ρ(1)(u, v) :=
∑

s∈Γ(d(u, s)− d(v, s))µ(s), for u, v ∈ Γ, which

allows us to define a binary relation <(1) on the vertices of Γ by

u <(1) v ⇔ ρ(1)(u, v) < 0.

This new development permits us to eliminate the problem of dependence of median-

sets on finiteness of the weight function of class one, i.e., M (1)(·); it also allows us to

define a median-set in Γ relative to µ by E(1)(µ) = {v ∈ Γ | u 6<(1) v, ∀u ∈ Γ} which,

as we prove in Proposition 6.8, is always finite and non-empty, despite the finiteness

of M (1)(·). Towards the end of this section, we remark on an optimality property of

median-sets and their interpretation in terms of Lp-spaces, pointing out the fact that

our median-sets on graphs correspond to L1 settings, as well as the classical ones.

In Section 6.2, we introduce a notion of central order on Γ via a certain binary

relation (denoted by <(c)), which allows us to compare vertices sometimes; similar to

<(1) of Section 6.1, but more general. This idea leads us to the proposal of a new,

more general, definition of mean-sets on graphs and groups relevant to the central

order, which coincides with the original definition of E in the case when weight func-

tion, for a given distribution µ, is finite. The advantage of the new treatment of E via

the binary relation of central order though is that mean-sets relevant to this central

order make sense even if the weight function is infinite. Moreover, it allows us to relax

our assumptions in several major results of the sequel. In particular, we prove that
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SLLN for graph- and group-valued random elements with singleton mean-sets rele-

vant to <(c) holds with the assumption of M (1) <∞, as opposed to the requirement

of finiteness of M = M (2) in Section 3.2. We continue Section 6.2 by bringing forth

the connection between mean-sets relevant to <(c) and Lp-spaces. Finally, we con-

clude the theme of ordering of the vertices of Γ by giving several examples of central

order, illuminating the idea of comparability of vertices, in general, and, hopefully,

facilitating a better perception of the reader, in particular.

At the end of the exposition, we indicate how our theory works in practice. We

provide careful analysis of an existing zero-knowledge group-based authentication

scheme in cryptography. The analysis is supported by real experiments, providing

an illustration of how the private element s gets revealed. We demonstrate that the

analysis of a security feature of the well-known protocol leads to a rather disappointing

(to the authors of the protocol) conclusion - the scheme is not reliable, and is far from

secure. The secret information can be retrieved, using the strong law of large numbers

for groups as the theoretical rationale of the retrieving procedure. This is the subject

of the Chapter 7.

We conclude the present work with Chapter 8, where we state several problems

that may be of interest to group geometry and its connection with our theory. In

addition, we indicate our future goals and possible directions of research.
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Chapter 2

Preliminaries on graphs and groups

Let us briefly recall some elementary notions and ideas from group and graph theory

that will constitute the setting of our work. The reader may skip this chapter and

consult it later if necessary. For a better insight into graph theory, the reader is

referred to (40), while (26) can serve as a good introduction into group theory.

2.1 Graphs

An undirected graph Γ is a pair of sets (V,E) where:

• V = V (Γ) is called the vertex set;

• E = E(Γ) is a set of unordered pairs (v1, v2) ∈ V × V called the edge set.

Elements in V are called vertices and elements in E are called edges. If e = (v1, v2) ∈ E

then we say that v1 and v2 are adjacent in Γ. The set of all vertices adjacent to v1 in

Γ is denoted by Adj(v1). The number of vertices adjacent to v is called the degree of

v and is denoted by deg(v). We say that the graph Γ is locally finite if every vertex

has finite degree (see (41)).

A directed graph Γ is a pair of sets (V,E) where E = E(Γ) is a set of ordered pairs

(v1, v2) ∈ V × V . If e = (v1, v2) ∈ E then we say that v1 is the origin of the edge e
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and v2 is the terminus of e. For an edge e = (v1, v2) ∈ E, we denote by o(e) its origin

v1 and by t(e) its terminus v2. Observe that any undirected graph can be viewed as

a directed graph in which a pair (v1, v2) ∈ E serves as two edges (v1, v2) and (v2, v1).

A path p in a directed graph Γ is a finite sequence of edges e1, . . . , en such that

t(ei) = o(ei+1). The vertex o(e1) is called the origin of the path p and is denoted by

o(p). The vertex t(en) is called the terminus of the path p and is denoted by t(p).

The number n is called the length of the path p and is denoted by |p|. We say that

two vertices v1, v2 ∈ V (Γ) are connected, if there exists a path from v1 to v2 in Γ. The

graph Γ is connected if every pair of vertices is connected.

The distance between v1 and v2 in a graph Γ is the length of a shortest path

between v1 and v2; if v1 and v2 are disconnected, then we say that the distance is

infinite. The distance between v1 and v2 is denoted by d(v1, v2). We say that a path

p = e1, . . . , en from v1 to v2 is geodesic in a graph Γ if d(o(p), t(p)) = d(v1, v2) = n,

i.e., if p is a shortest path from v1 to v2.

A path p = e1, . . . , en in a graph Γ is closed, if o(p) = t(p). In this event we say

that p is a cycle in Γ. A path p is simple, if no proper segment of p is a cycle. The

graph Γ is a tree if it does not contain a simple cycle.

2.2 Cayley graphs and groups

Consider a finite set, also called alphabet, X = {x1, . . . , xn}, and let X−1 be the set of

formal inverses {x−1
1 , . . . , x−1

n } of elements in X. This defines an involution −1 on the

set X±1 := X ∪X−1 which maps every symbol x ∈ X to its formal inverse x−1 ∈ X−1

and every symbol x−1 ∈ X−1 to the original x ∈ X. An alphabet X is called a group

alphabet if X contains x−1 corresponding to each x ∈ X, i.e., X−1 ⊆ X, and there is

an involution which maps elements of X to their inverses. An X-digraph is a graph

(V,E) with edges labeled by elements in X±1 = X ∪ X−1 such that for any edge

e = u
x
→ v there exists an edge v

x−1

→ u, which is called the inverse of e and is denoted
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by e−1. Let Γ and ∆ be X-digraphs. A mapping ϕ : Γ → ∆ is called an X-digraph

morphism, if it preserves connectedness and labeling on edges.

We say that an X-digraph is non-folded, if it contains a pair of distinct edges

e1 = u
x
→ v1 and e2 = u

x
→ v2 equally labeled and having the same origin. Otherwise,

an X-digraph is called folded.

Now we recall some definitions from the theory of groups. Let G be a set equipped

with a binary operation · : G×G→ G. A pair (G, ·) is called a group if the following

conditions are satisfied:

(G1) The operation · is associative, i.e., for any a, b, c ∈ G, (a · b) · c = a · (b · c).

(G2) G contains an element e such that for any g ∈ G, g · e = e · g = g. Such an

element e is called the identity of the group G.

(G3) For every g ∈ G, there exists an element h ∈ G such that g · h = h · g = e. In

this event the element h is called the inverse of g and is denoted by g−1.

Since · is the only operation defined on a group, the sign · is usually omitted in

notation. Let X ⊂ G be a set of generators for G, i.e. G = 〈X〉. Assume that X is

closed under inversion, i.e., X = X±1. The Cayley graph CG(X) of G relative to X is

a labeled graph (V,E), where the vertex set is V = G, and the edge set E contains

only edges of the form g1
x
→ g2 where g1, g2 ∈ G, x ∈ X and g2 = g1x. The distance

between elements g1, g2 ∈ G relative to the generating set X is the distance in the

graph CG(X) between the vertices g1 and g2 or, equivalently,

dX(g1, g2) = min{n | g1x
ε1

1 x
ε2

2 . . . xεn

n = g2 for some xi ∈ X, εi = ±1, i = 1, . . . , n}

Notice that if we change the generating set X, the distance dX changes. Nevertheless,

if X is fixed, we write d(·, ·) instead of dX(·, ·). When we work with groups and Cayley

graphs related to them, we always assume that X is fixed.

Lemma 2.1. Let X be a group alphabet and Γ = (V,E) be a folded X-digraph. The

graph Γ is the Cayley graph of some group G, if and only if



CHAPTER 2. PRELIMINARIES ON GRAPHS AND GROUPS 20

(1) Γ is connected, and

(2) for any two vertices u, v ∈ V there exists an X-digraph isomorphism ϕ : Γ→ Γ

such that ϕ(u) = v.

Proof. Clearly, if an X-digraph Γ is a Cayley graph then it satisfies both properties.

Conversely, assume that Γ satisfies properties (1) and (2). We directly construct

a group G and choose a generating set X ⊂ G such that Γ is the Cayley graph of

G relative to X. Put G = V (Γ). To define multiplication on V (Γ) fix some vertex

v0 ∈ Γ. For each v ∈ Γ choose any path from v0 to v and denote its label by wv. Now,

for u, v ∈ V (Γ) put u · v to be the endpoint of the path starting at v0 labeled with

wu ◦ wv. It is straightforward to check that V (Γ) with so defined product satisfies

properties of a group. Furthermore, choose as generators the endpoints of the paths

starting at v0 labeled by the letters X. Clearly, Γ is the Cayley graph of G relative

to the chosen generating set.

Let G1 and G2 be groups. We define a new group called the direct or Cartesian

product of G1 and G2, denoted by G1×G2, as follows. The group G1×G2 is the set

of all pairs (g1, g2) where g1 ∈ G1 and g2 ∈ G2 with multiplication defined coordinate-

wise. If X1 ⊂ G1 generates the group G1 and X2 ⊂ G2 generates the group G2, then

the set

X = {(g1, e2) | g1 ∈ X1} ∪ {(e1, g2) | g2 ∈ X2}

generates the group G1 × G2 and the length function on G1 × G2 is usually defined

relative to X.

2.3 Free groups

Since some of the results in the sequel are concerned with trees, which are Cayley

graphs of free groups, we collect basic definitions and notions about this specific kind



CHAPTER 2. PRELIMINARIES ON GRAPHS AND GROUPS 21

of group in a separate subsection for the convenience of the reader. Recall that,

abstractly, a group G is called free if it contains a subset X such that any non-trivial

product of elements from X is a non-trivial element in G. In this event, we say that

X is a free basis for G. The cardinality |X| of X is called the rank of G. It is a fact

from group theory that any two free groups of equal ranks are isomorphic and can

be considered the same. Therefore, a free group of rank n ∈ N is denoted by Fn. We

work with free groups of finite ranks only.

The definition of a free group given above is one of the several possible abstract

definitions. The efficient realization of Fn is as follows. Let X be a set of distinct

symbols. We can consider the corresponding group alphabet X±1 which contains X

and the formal inverses of the elements in X. Consider the set of all words over X±1.

We say that a word w is reduced, if it does not contain a subword of the type xx−1 or

x−1x for some x ∈ X. The process of removal of subwords of the type xx−1 and x−1x

is called reduction. It can be shown that any sequence of removing xx−1 and x−1x in

a non-reduced word w always results in the same word, which we denote by w.

The set of all reduced words is denoted by F (X). We can define multiplication

on F (X) as follows. For u, v ∈ F (X) we define

u · v = u ◦ v

where u ◦ v is the concatenation of u and v. It is easy to check that the so-defined

pair (F (X), ·) is a group; moreover, it is a free group of rank |X|, and X is a free

basis for F (X).

Since every element in F (X) has a unique representation as a reduced word over

X±1, it follows that the length dX(w) of an element

w = xε1

1 . . . xεn

n ∈ F (X),

where εi = ±1, is the total number of symbols involved in writing of w which is n.

The Cayley graph of the free group of rank n relative to its free basis is a regular

infinite tree in which every vertex has degree 2n. For example, Figure 2.1 depicts
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b
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a -1
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ε

Figure 2.1: The Cayley graph of a free group F2

the Cayley graph of a free group F2 =< a, b >. Black dots on the picture indicate

all elements of length 2 (all words of length 2); they comprise the so-called sphere or

radius 2, S2, which we will encounter later, in Chapter 5.

2.4 Free abelian groups

Another important class of groups is that of free abelian groups. Recall that a group

G is called abelian if for any two elements a, b ∈ G the equality ab = ba holds. An

abelian group G is called a free abelian group with free abelian basis X ∈ G if for any

abelian group H and any mapping ϕ : X → H there exists a homomorphism ϕ∗ such
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that the diagram below commutes.

X ⊂
ϕ

- G

H

ϕ∗

?

ϕ

-

The defined property is called the universal property of the free abelian groups. The

cardinality of the subset X is called the rank of the group G and it is easy to show

that any two free abelian groups of equal ranks are isomorphic. In fact, the free

abelian group of rank n is isomorphic to the direct product of n infinite cyclic groups

An = Z× Z× . . .× Z.

Hence, we may think of the elements of An as n-tuples of integers, with the binary

operation denoted by + given by

(a1, . . . , an) + (b1, . . . , bn) = (a1 + b1, . . . , an + bn).

The standard generating set X for Zn consists of n tuples e1, . . . , en where each

ei = (0, . . . , 0, 1, 0, . . . , 0) contains 0’s everywhere except the ith position, where it

contains 1. The length of an element a = (a1, . . . , an) relative to X is given by

|a| = |a|X =
n
∑

i=1

|ai|.

The Cayley graph of a free abelian group of rank n is an infinite n-dimensional

grid.

2.5 A group of braids and its presentation

Practical applications of our theory are concerned with cryptanalysis of group-based

protocols that employ braid groups as their platform. We collect some preliminaries

on these groups in this section, following the exposition of (11) and (28). To make
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it clear, we choose to give an intuitive view of this group, illuminating it with many

pictures.

A braid is obtained by laying down a number of parallel pieces of string and

intertwining them, without loosing track of the fact that they run essentially in the

same direction. In our pictures the direction is horizontal. We number strands at

each horizontal position from the top down. See Figure 2.2 for example.

1

2

3

4

Figure 2.2: A 4-strand braid.

* =

Figure 2.3: Product of braids.

If we put down two braids u and v in a row so that the end of u matches the

beginning of v we get another braid denoted by uv, i.e., concatenation of n-strand

braids is a product (see Figure 2.3).

We consider two braids equivalent if there exists an isotopy between them, i.e., if

it is possible to move the strands of one of the braids in space (without moving the

endpoints of strands and moving strands through each other) to get the other braid.

See Figure 2.4 to visualize it. We distinguish a special n-strand braid which contains

no crossings and call it a trivial braid (Figure 2.5).

Clearly the trivial braid behaves as left and right identity relative to the defined

multiplication. The set Bn of isotopy classes of n-strand braids has a group structure

because if we concatenate a braid with its mirror image in a vertical plane the result



CHAPTER 2. PRELIMINARIES ON GRAPHS AND GROUPS 25

~~

Figure 2.4: Isotopy of braids.

Figure 2.5: A trivial 4-strand braid.

is isotopic to the trivial braid. See Figure 2.7 to visualize an inversion of a 4-strand

braid.

Basically, each braid is a sequence of strand crossings. A crossing is called positive

if the front strand has a negative slope, otherwise it is called negative. There are

exactly n − 1 crossing types for n-strand braids, we denote them by σ1, . . . , σn−1,

where σi is a positive crossing of ith and (i + 1)st strands. See Figure 2.6 for an

example for B4.

Since, as we mentioned above, any braid is a sequence of crossings the set {σ1, . . . , σn−1}

generates Bn. It is easy to see that crossings σ1, . . . , σn−1 are subject to the relations

[σi, σj ] = 1

for every i, j such that |i− j| > 1 and

σiσi+1σi = σi+1σiσi+1

for every i such that 1 ≤ i ≤ n−2. The corresponding braid configurations are shown

in Figure 2.8.

It is more difficult to prove that these two types of relations actually describe the

equivalence on braids, i.e., the braid group Bn has the following (Artin) presentation

Bn =

〈

σ1, . . . , σn−1

∣

∣

∣

∣

σiσjσi = σjσiσj if |i− j| = 1

σiσj = σjσi if |i− j| > 1

〉

.
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σ1 σ2 σ3 σ1 σ2 σ3
-1-1 -1

Figure 2.6: Generators of B4 and their inverses.

From this description, one can see that there are many pairs of commuting sub-

groups in Bn, which makes it possible to use Bn as the platform group for crypto-

graphic protocols such as Ko, Lee et al. (25).

=

-1

( )
Figure 2.7: Inversion of a 4-strand braid.

~~ ~~

σ1 σ2σ3 σ1σ3 σ1 σ1 σ2σ1σ2

Figure 2.8: Typical relations in braids.
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Chapter 3

Mean-set and the strong law of

large numbers – I.

3.1 Mean of a group-valued random element

Let (Ω,F ,P) be a probability space and ξ : Ω→ G a random variable taking values

in the group G. The goal of this section is to introduce a G-valued functional E on

the space of random variables ξ : Ω→ G satisfying the property

E(gξ) = gE(ξ),

which would lead to practical applications.

In addition to that, the required definition of E must incorporate the geometric

structure of the group, or, more precisely, the structure of its Cayley graph. In

Subsection 3.1.1 we propose a definition of E for graph-valued random elements. The

same definition will hold for random elements on finitely-generated groups, because

every such group is associated with its Cayley graph.

Recall that if ξ1, ξ2, . . . are i.i.d. L2 real-valued random variables, then a quadratic

function E[(ξ1−c)
2] achieves its minimum at c = E(ξ). We can think about the sample

mean cn in a similar way, considering
∑n

i=1[ξi − cn]2. We specialize this situation to
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graphs and groups, make it precise, prove the strong law of large numbers, and support

it by the actual experiments with free groups. This goal is reached in several steps.

3.1.1 The mean set in a graph

Consider a measurable mapping ξ from (Ω,F) to a discrete measurable space (V,S).

This mapping is called a random element in V defined on a given probability space

(Ω,F ,P). We can think of V as the state- (or phase-) space of the element. Let

Γ = (V (Γ), E(Γ)) be a graph and consider a random element ξ : Ω → V (Γ) with

values in the set of vertices of Γ. This ξ induces the atomic probability measure µ on

V (Γ) defined by

µ(g) = P
(

{ω ∈ Ω | ξ(ω) = g}
)

(3.1)

for each g ∈ V (Γ). If we want to emphasize the random element ξ, we write µξ(g);

otherwise, we suppress the subindex. Naturally, dealing with a random element

ξ : Ω → V (Γ), we may (and often will) work on the induced probability space

(V (Γ),S, µ). For each vertex v ∈ V (Γ) we define the value

Mξ(v) :=
∑

i∈V (Γ)

d2(v, i)µ(i) (3.2)

called the weight of v relative to the measure µ, where d(v, i) is the distance between

v and i in Γ. If Mξ(v) is finite, we say that the weight function Mξ : V (Γ) → [0,∞]

is defined at v. Observe that the weight function is not always finite. The case of

interest of course, is when M(v) is totally defined, meaning that M(v) is finite on the

whole set V (Γ).

Definition 3.1. Let (Ω,F ,P) be a probability space and ξ : Ω → V (Γ) a random

element. We denote the set of vertices in Γ that minimize the weight function v 7→

Mξ(v) by

E(ξ) := {v ∈ V (Γ) |Mξ(v) ≤ Mξ(u), ∀u ∈ V (Γ)}, (3.3)

and refer to it as the mean-set (or the center-set) of the random element ξ : Ω→ V (Γ).
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Remark 3.2. Very often we leave the random element ξ in the background to shorten

the notation and write M(v) instead of Mξ(v) if this causes no confusion. Moreover,

we may write E(µ) instead of E(ξ) sometimes and speak of the mean set of distribution

µ induced by ξ on V (Γ).

Lemma 3.3. Let Γ be a connected graph and u, v be adjacent vertices in Γ. If the

value M(u) is defined, then M(v) is defined.

Proof. Since d(u, v) = 1, by the triangle inequality for v, u, i ∈ V (Γ) we have d(v, i) ≤

d(u, i) + d(u, v) = d(u, i) + 1 and

M(v) =
∑

i∈V (Γ)

d2(v, i)µ(i) ≤
∑

i∈V (Γ)

[d(u, i) + 1]2µ(i) ≤

≤
∑

i∈V (Γ), d(u,i)=0

µ(i) +
∑

i∈V (Γ), d(u,i)≥1

[d(u, i) + 1]2µ(i) ≤

≤ 1 + 4
∑

i∈V (Γ), d(u,i)≥1

d2(u, i)µ(i) = 1 + 4M(u).

Lemma 3.3 immediately implies that the weight function on a connected graph

Γ is either defined on the whole set V (Γ) or undefined on the whole set V (Γ); we

formulate this below as a corollary.

Corollary 3.4. Let (Ω,F ,P) be a probability space, Γ a connected graph, and ξ : Ω→

V (Γ) a random element in Γ. Then either domain(M) = V (Γ) or domain(M) = ∅.

Lemma 3.5. Let ξ : Ω→ V (Γ) be a Γ-valued random variable, where Γ is a connected

locally finite graph, with totally defined weight function Mξ(·). Then the mean set E(ξ)

is non-empty and finite.

Proof. Let µ be a measure of (3.1) induced on Γ by ξ. For an arbitrary but fixed

vertex v ∈ Γ, the weight function

M(v) =
∑

i∈V (Γ)

d2(v, i)µ(i) =
∞
∑

n=0



n2
∑

i∈V (Γ),d(v,i)=n

µ(i)
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is defined at v by assumption. Choose r ∈ N such that

1

2
M(v) ≤

r
∑

n=0



n2
∑

i∈V (Γ),d(v,i)=n

µ(i)



 =
∑

i∈Bv(r)

d2(v, i)µ(i),

where

Bv(r) := {i ∈ V (Γ) | d(v, i) ≤ r} (3.4)

is the ball in Γ of radius r centered at v.

If we take a vertex u such that d(u, v) ≥ 3r, then using the triangle inequality we

obtain the following lower bound:

M(u) =
∑

i∈V (Γ)

d2(u, i)µ(i) =
∑

i∈Bv(r)

d2(u, i)µ(i) +
∑

i6∈Bv(r)

d2(u, i)µ(i) ≥

≥
∑

i∈Bv(r)

[2r]2µ(i)+
∑

i6∈Bv(r)

d2(u, i)µ(i) ≥
∑

i∈Bv(r)

[2r]2µ(i) ≥ 4
∑

i∈Bv(r)

d2(v, i)µ(i) ≥ 2M(v).

Thus, d(v, u) ≥ 3r implies u 6∈ E(ξ) and, hence, E(ξ) ⊆ Bv(3r). Since the graph Γ

is locally finite, it follows that the sets Bv(3r) and E(ξ) are finite. This implies that

the function M attains its minimal value in Bv(3r) and hence E(ξ) 6= ∅.

Let G be a group and X ⊆ G its generating set. It follows from the definition of

the distance dX that for any a, b, s ∈ G the equality

dX(a, b) = dX(sa, sb) (3.5)

holds. This equality implies that E(ξ) possesses the desirable property E(gξ) = gE(ξ),

as the following proposition shows.

Proposition 3.6. (“Shift” Property) Let G be a group and g ∈ G. Suppose that

(Ω,F ,P) is a given probability space and ξ : Ω→ G a G-valued random element on

Ω. Then for the random element ξg defined by ξg(ω) := gξ(ω) we have

E(ξg) = gE(ξ).
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Proof. Let µξg
be the measure induced on G by ξg, in the manner of (3.1). It follows

from the definition of ξg that for any h ∈ G

µξg
(h) = P

(

{ω | ξg(ω) = h}
)

= P
(

{ω | gξ(ω) = h}
)

=

= P
(

{ω | ξ(ω) = g−1h}
)

= µξ(g
−1h).

This, together with (3.5), implies that for any h ∈ G

Mξg
(h) =

∑

i∈G

d2(h, i)µξg
(i) =

∑

i∈G

d2(g−1h, g−1i)µξ(g
−1i) =

∑

i∈G

d2(g−1h, i)µξ(i) = Mξ(g
−1h).

Hence, the equality Mξg
(h) = Mξ(g

−1h) holds for any random variable ξ and elements

g, h ∈ G. Therefore, for any h1, h2 ∈ G

Mξg
(h1) < Mξg

(h2)⇔Mξ(g
−1h1) < Mξ(g

−1h2)

and

E(ξg) =
{

h ∈ G |Mξg
(h) ≤Mξg

(f), ∀f ∈ G
}

=
{

h ∈ G |Mξ(g
−1h) ≤ Mξ(g

−1f), ∀f ∈ G
}

=

=
{

h ∈ G |Mξ(g
−1h) ≤Mξ(f), ∀f ∈ G

}

=
{

gh ∈ G |Mξ(h) ≤Mξ(f), ∀f ∈ G
}

= gE(ξ).

The equality dX(a, b) = dX(as, bs) does not hold for a general group G = 〈X〉.

It holds in abelian groups. As a corollary we have the following result, proved in

essentially the same way as Proposition 3.6.

Proposition 3.7. Let G be an abelian group and g ∈ G. Suppose that (Ω,F ,P) is

a probability space and ξ : Ω → G a G-valued random element on Ω. Then for the

random element ξg defined by ξg(ω) := ξ(ω)g we have

E(ξg) = (E(ξ))g.
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3.1.2 Other possible definitions of E

There are many other possible definitions of E for which the statement of Proposition

3.6 holds. Let c be a positive integer. By analogy to the function Mξ(v), define a

weight function M
(c)
ξ (v) of class c by

M
(c)
ξ (v) :=

∑

i∈V (Γ)

dc(v, i)µ(i).

Definition 3.8. We define the mean-set E(c)(ξ) of class c by

E(c)(ξ) := {v ∈ V (Γ) |M (c)(v) ≤M (c)(u), ∀u ∈ V (Γ)}.

The weight function Mξ(·) and the mean-set E(ξ) are special cases of M
(c)
ξ (·) and

E(c)(ξ), namely,

Mξ = M
(2)
ξ and E = E(2).

It is straightforward to check that all the statements of the previous section hold

for M
(c)
ξ (·) and E(c)(ξ). All proofs work with minimal modifications. Nevertheless, we

choose to work with E = E(2), which is in better agreement with the classical case. It

is easy to observe that our definition of E agrees with the classical definition of the

expectation on R, in the following sense.

Proposition 3.9. Let ξ : Ω→ Z be an integer-valued random variable with classical

expectation

m =
∑

n∈Z

nP(ξ = n).

Assume that M ≡ M
(2)
ξ is defined on Z. Then 1 ≤ |E(2)(ξ)| ≤ 2 and for any

v ∈ E(2)(ξ), we have |m− v| ≤ 1
2
.

Proof. We can naturally extend the functionM (2)(·) from Z to R by definingM (2)(v) =
∑

n∈Z
|v − n|2P(ξ = n) for any v ∈ R. For the function M (2) : R→ [0,∞), we have:

[M (2)(v)]′ = 2
∑

n∈Z

(v − n)P(ξ = n).
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It is easy to check that the function M (2)(v) attains its minimum at

∑

n∈Z
nP(ξ = n)

∑

n∈Z
P(ξ = n)

=
∑

n∈Z

nP(ξ = n) = m

and is strictly decreasing on the interval (−∞,m) and strictly increasing on the

interval (m,∞). Now, we recall that

E(2)(ξ) = {v ∈ Z |M (2)(v) ≤M (2)(u), ∀u ∈ Z},

and it becomes clear that E(2)(ξ) can contain the integers ⌊m⌋ and ⌈m⌉ only. Finally,

since M (2)(v) is a quadratic function, it follows that it is symmetric relative to its

vertex point m. Therefore, M (2)(v) restricted to Z attains its minimum at the integer

points closest to m. In other words, ⌊m⌋ ∈ E(2)(ξ) if and only if m− ⌊m⌋ ≤ 1/2; and

⌈m⌉ ∈ E(2)(ξ) if and only if ⌈m⌉ −m ≤ 1/2. Hence the result.

Remark 3.10. Unfortunately, E(2) does not coincide with the classical mean in R2.

Recall that the classical mean in R2 is defined coordinate-wise, i.e., the mean of

(x1, y1), . . . , (xn, yn) is a point in R2 defined by

(EX,EY ).

Now consider the distribution on Z2 such that µ(0, 0) = µ(0, 3) = µ(3, 0) = 1/3 and

for all other points µ = 0. Then the classical mean defined by the formula above

is the point (1, 1) and the mean E(2) is the point (0, 0). See Figure 3.1 (each vertex

marked by gray has probability 1/3, others have probability 0. The classical mean is

at the point v, while the mean defined by E(2) is at the point O).

At last, it is worth noticing that, in some cases, E(1) contradicts our intuition of

where the average should be:

• Let µ be a distribution on R such that µ(−1) = µ(1) = 1/2. Then E(1)(µ) =

[−1, 1] the whole interval between −1 and 1, which is counterintuitive.
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v1

v2

v

O

Figure 3.1: E(2) does not coincide with the classical mean in R2.

• Let 0 < ε < 1/2 and µ(−1) = 1/2− ε and µ(1) = 1/2 + ε. Then E(1)(µ) = {1}.

This means that even very small perturbations of the distribution change the

mean-set dramatically.

In spite of the fact that we refrain from employing E(c) of class c = 1 as a mean-set

in our theory, E(1) deserves special attention and will be treated separately in Section

6.1 below, where we interpret it as a median-set of Γ.

3.1.3 Centers of Rubinshtein vs. mean-sets (center-sets).

It turns out that class one is a particular class of mean-sets that have already found

its use in probabilistic literature as a possible notion of a center of a distribution.

Let us briefly indicate what it was about. The notion of measure, and, in partic-

ular, of normalized measure, lies at the foundation of the whole probability theory.

Availability of various characteristics of such measures on different spaces facilitates

the productiveness of the ongoing research in theoretical and applied probability. We

introduced the notion of the mean-set of a (graph-)group-valued random element ξ

– one of the possible discrete characteristics of probability measure on state spaces,

such as graphs or groups. In the process of our research, we discovered that one of

the well-known mathematicians, G. Sh. Rubinstein (a student and a co-author of the

outstanding scientist of the 20th century, L. V. Kantorovich) was also interested in

the discrete characteristics of normalized measures, but, of course, with the different
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goals in mind. In 1995, in his article ”On Multiple-point centers of normalized mea-

sures on locally compact metric spaces“ (see (33)), G. Sh. Rubinstein introduces the

notion of one-point centers and multiple-point centers, which constitute the families

of discrete characteristics of distributions on the function space Φ(E). This is the

space of probability distributions on an arbitrary unbounded locally compact metric

space E = (E, ρ) with the corresponding σ-algebra of Borel sets B. In other words,

Φ(E) consists of non-negative normalized σ-additive functions ϕ, defined on B with

the finite first integral moments

m1(u, ϕ) =

∫

E

ρ(x, u)ϕ(dex), ∀u ∈ E.

Rubinshtein’s one-point centers u∗ ∈ E are characterized by the fact that the first

moments m1(u
∗, ϕ) corresponding to them are minimal, i.e., the moments coincide

with

µ∗
1 = inf

u∈E
m1(u, ϕ).

These one-centers are just a special case of Rubinshtein’s multiple-point centers that

are defined using a certain partition of the original metric space E = (E, ρ) (see

(33) for details). While one-centers of Rubinshtein correspond to our mean-sets of

class one, namely, to E(1)(µ), his k-centers of (33) have no analogues in the present

work. As indicated in Subsection 3.1.2, E(1)(µ), as a possible candidate for the mean-

set on graphs, does not suit our purposes, even though it is easier to work with it,

especially when it comes to computations. On the contrary, choosing to minimize

the first integral moment is in accord with the settings of Rubinshtein’s article (33)

that relates his k-centers directly to the generalizations of the well-known studies

of Kantorovich, Monge, and Appell on optimal volume-preserving transportation of

masses over metric compacta. In short, G. Sh. Rubinshtein characterizes his k-centers

in terms of the famous Monge-Appell-Kantorovich metric (or just ”transportation

metric“ – the optimal value of the objective functional in the mass transportation

problem). The reader is referred to (33), (21), (22), and Chapter VIII of (20) for
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more details, while we feel especially appreciative of the opportunity to pay a tribute

of respect to the scientific legacy of L. V. Kantorovich and his famous transportation

problem. The reason for introducing of Rubinshtein’s k-centers goes back to the

general theory of the famous metric. The theory was presented in 1958, in the joint

article of L. V. Kantorovich and G. Sh. Rubinshtein (see (22)), which shows how the

transportation metric can be used for introducing a norm in the space of measures,

and how Kantorovich’s optimality criterion becomes a theorem on the duality of the

space of measures with the Kantorovich metric and the space of Lipschitz functions.

Before 1958, it was not known whether the space of Lipschitz functions is conjugate

to any Banach space. The interested reader may consult the above mentioned sources

plus recent (2005, 2007) surveys on history of the above metric by A. Vershik ((39),

(38)).

The purpose of this digression to the domain of transportation problem is to

indicate how similar, in some sense, notions and ideas can serve completely different

purposes. The settings in which Rubinshtein’s centers were introduced and the goals

that were pursued clearly diverge from ours. We deal with the (graph-)group-valued

random elements and prove the generalization of the Strong Law of Large Numbers

for such elements. Our mean-set (or center-set) is the expectation that we use in

the formulation of the law and other results. Our findings lead to some unexpected

corollaries and applications, while, at the same time, interconnecting different areas

of mathematics (probability theory, graph theory, group theory), cryptanalysis and

theoretical computer science.

3.2 Strong Law of Large Numbers (SLLN)

Let ξ1, . . . , ξn be a sample of independent and identically distributed graph-valued

random elements ξi : Ω → V (Γ) defined on a given probability space (Ω,F ,P). For
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every ω ∈ Ω, let µn(u;ω) be the relative frequency

µn(u;ω) :=
|{i | ξi(ω) = u, 1 ≤ i ≤ n}|

n
(3.6)

with which the value u ∈ V (Γ) occurs in the random sample ξ1(ω), . . . , ξn(ω). We

shall suppress the argument ω ∈ Ω to ease notation, and let

Mn(v) :=
∑

s∈V (Γ)

d2(v, s)µn(s)

be the random weight, called the sampling weight, corresponding to v ∈ V (Γ), and

Mn(·) the resulting random sampling weight function.

Definition 3.11. The set of vertices

Sn = S(ξ1, . . . , ξn) := {v ∈ V (Γ) |Mn(v) ≤Mn(u), ∀u ∈ V (Γ)}

is called the sample mean-set (or sample center-set) relative to ξ.

Our goal is to prove that our (empirical) sample mean-set Sn converges, in some

sense, to the (theoretical) mean-set E(ξ) as n → ∞. To achieve this goal, we need

to consider the notion of limit for a sequence of subsets of vertices in V (Γ), in a

context that would make our theory work mathematically and, at the same time,

would not contradict practical considerations. It turns out that the limit-superior

limsup does the job. One can easily see from the simple Example 3.12 below that it

may happen, in cases when the mean-sets in graphs contain more than one vertex,

that lim supn→∞ Sn = E(ξ), while lim infn→∞ Sn = ∅. This implies that we cannot

formulate the desired law in terms of the classical limit for a sequence of sets for multi-

vertex mean-sets, since that would require perfect agreement of the limit-superior

limsup and the limit-inferior liminf.

Let {Vn}
∞
n=1 be a sequence of subsets of V . Recall that

lim sup
n→∞

Vn = {v | v ∈ Vnk
, k = 1, 2, . . .}
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for some subsequence {nk} depending on v. We write that lim sup
n→∞

Vn = {v | v ∈

Vn, i.o.}, where i.o. stands for “infinitely often.” Similarly,

lim inf
n→∞

Vn = {v : v ∈ Vn for all n except for a finite number } =

= {v : v ∈ Vn for all n ≥ n0(v)}.

Properties of limits of sets can be found in numerous sources in the literature, (3) in

particular.

Example 3.12. Consider a graph Γ = (V,E) where V = {v1, v2} and E = {(v1, v2)},

i.e., the graph Γ is the connected graph on 2 vertices. Let µ be the probability measure

on V (Γ) induced by some random element ξ1 : Ω→ V and defined by µ(v1) = µ(v2) =

1/2. In that case M(v1) = M(v2) = 1/2 and, consequently, E(ξ) = {v1, v2}.

Consider a sequence ξ1, ξ2, . . . of such random elements (independent and identi-

cally distributed). In other words, we just deal with a sequence of randomly generated

vertices v1, v2 of the graph Γ. By definition,

Mn(v1) =
1

n
|{i | ξi = v2, 1 ≤ i ≤ n}| and Mn(v2) =

1

n
|{i | ξi = v1, 1 ≤ i ≤ n}|.

Hence,

v1 ∈ Sn ⇔ Mn(v1) ≤Mn(v2) ⇔ |{i | ξi = v2, 1 ≤ i ≤ n}| ≤ |{i | ξi = v1, 1 ≤ i ≤ n}|

and, similarly,

v2 ∈ Sn ⇔ Mn(v2) ≤Mn(v1) ⇔ |{i | ξi = v1, 1 ≤ i ≤ n}| ≤ |{i | ξi = v2, 1 ≤ i ≤ n}|.

Let

R(n) := nMn(v1)− nMn(v2) = |{i | ξi = v2, 1 ≤ i ≤ n}| − |{i | ξi = v1, 1 ≤ i ≤ n}|.

Observe that we can think of R(n) as a simple symmetric random walk on Z starting

at 0 and






R(n+ 1) = R(n)− 1, if ξn+1 = v1;

R(n+ 1) = R(n) + 1, if ξn+1 = v2.
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In other words, R(0) = 0, R(n) =
∑∞

i=1 ζi where ζ1, ζ2, . . . are i.i.d. random variables

such that

ζ1 =







1, with probability 1/2;

−1, with probability 1/2.

Moreover, we have

{v1 ∈ Sn} = {Mn(v1) ≤Mn(v2)} = {R(n) ≤ 0}

and

{v2 ∈ Sn} = {Mn(v1) ≥Mn(v2)} = {R(n) ≥ 0}.

Now, since a simple symmetric random walk on Z is recurrent, it follows that for

every i = 1, 2, P{vi ∈ Sn, i.o.} = 1 Hence, almost always we have

lim sup
n→∞

Sn = {v1, v2} = Eξ.

lim inf
n→∞

Sn = ∅,

and lim
n→∞

Sn does not exist.

Lemma 3.13. Let Γ be a locally-finite connected graph, v ∈ V (Γ), and {ξi}
∞
i=1 a

sequence of i.i.d. Γ-valued random elements ξi : Ω → V (Γ) such that Mξ1(v) is

defined. Then

P
(

Mn(v)→M(v) as n→∞
)

= 1. (3.7)

Proof. For every v ∈ V (Γ), the value M(v) =
∑

u∈V (Γ) d
2(v, u)µ(u) is equal to the

expectation E(d2(v, ξ1)) of the random variable d2(v, ξ1). Hence, by the strong law

of large numbers for i.i.d. random variables {d2(v, ξi)}
∞
i=1, we have the required a.s.

convergence Mn(v) to M(v).

It is important to notice that in general the convergence in Lemma 3.13 is not

uniform in a sense that, for some distribution µ on a locally finite (infinite) graph Γ

and some ε > 0, it is possible that

P
(

∃N s.t. ∀n > N ∀v ∈ V (Γ), |Mn(v)−M(v)| < ε
)

6= 1.
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In other words, the convergence for every vertex, as in Lemma 3.13, is insufficient to

prove the strong law of large numbers, stated in introduction. Next lemma is a key

tool in the proof of our strong law of large numbers.

Lemma 3.14 (Separation Lemma). Let Γ be a locally-finite connected graph and

{ξi}
∞
i=1 a sequence of i.i.d. Γ-valued random elements ξi : Ω → V (Γ). If the weight

function Mξ1(·) is totally defined, then

P
(

∃N s.t. ∀n > N, max
v∈E(ξ1)

Mn(v) < inf
u∈V (Γ)\E(ξ1)

Mn(u)
)

= 1.

Proof. Our goal is to prove that for some δ > 0

P
(

∃N ∀n > N ∀v ∈ E(ξ1), ∀u ∈ V (Γ) \ E(ξ1), Mn(u)−Mn(v) ≥ δ
)

= 1. (3.8)

We prove the formula above in two stages. In the first stage we show that for some

fixed v0 ∈ E(ξ1) and for sufficiently large number m > 0 the following holds

P
(

∃N s.t. ∀n > N ∀v ∈ E(ξ1), ∀u ∈ V (Γ) \Bv0
(m), Mn(u)−Mn(v) ≥ δ

)

= 1

(3.9)

in the notation of (3.4). In the second stage we prove that

P
(

∃N s.t. ∀n > N ∀v ∈ E(ξ1), ∀u ∈ Bv0
(m) \ E(ξ1), Mn(u)−Mn(v) ≥ δ

)

= 1

(3.10)

Having the formulae above proved we immediately deduce that (3.8) holds using

σ-additivity of measure.

Let v0 ∈ E(ξ1) and µ be the probability measure on Γ induced by ξ1, as in (3.1).

As described in the beginning of Section 3.1.1, we can naturally put ourselves on the

probability space (V (Γ),S, µ), which is the image of the original probability space

under the mapping ξ : Ω→ V (Γ). Since the weight function M(·) is defined at v0, we

can choose r ∈ R as in Lemma 3.5, such that 1
2
M(v0) ≤

∑

i∈Bv0
(r) d

2(v0, i)µ(i). Put

m = 3r. In Lemma 3.5 we proved that, if a vertex u is such that d(u, v0) ≥ 3r, then

M(u) =
∑

i∈V (Γ)

d2(u, i)µ(i) ≥ 4
∑

i∈Bv0
(r)

d2(u, i)µ(i) ≥ 2M(v0). (3.11)



CHAPTER 3. MEAN-SET AND THE STRONG LAW OF LARGE NUMBERS – I.41

It implies that E(ξ1) ⊆ Bv0
(3r).

Since Γ is locally finite, the set Bv0
(r) of (3.4) is finite. We also know from the

SLLN for the relative frequencies µn(u) that µn(u)
a.s.
→ µ(u) as n → ∞. These facts

imply that for any ε > 0, the event

Cε := {∃N = N(ε), ∀n > N, ∀u ∈ Bv0
(r), |µn(u)− µ(u)| < ε} (3.12)

has probability one. In particular, this is true for

ε = ε∗ :=
1

4
min{µ(u) | u ∈ Bv0

(r), µ(u) 6= 0},

and the event Cε∗ is a subset of

{

∃N = N(ε∗), ∀n > N, ∀u ∈ V (Γ) \Bv0
(3r), Mn(u) ≥

3

2
M(v0)

}

. (3.13)

Indeed, on the event Cε∗, as in (3.12), we have µn(i) ≥
3
4
µ(i), i ∈ Bv0

(r). Using this

fact together with (3.11), we can write

Mn(u) =
∑

i∈V (Γ)

d2(u, i)µn(i) ≥ 4
∑

i∈Bv0
(r)

d2(u, i)µn(i) ≥ 3
∑

i∈Bv0
(r)

d2(u, i)µ(i) ≥
3

2
M(v0).

Thus we have

P

(

∃N s.t. ∀n > N, ∀u ∈ V (Γ) \Bv0
(3r), Mn(u) ≥

3

2
M(v0)

)

= 1. (3.14)

By Lemma 3.13, for any v ∈ V (Γ), for any ε > 0, we have

P
(

∃N = N(ε), ∀n > N, |Mn(v)−M(v)| < ε
)

= 1

and, since Bv0
(3r) is a finite set, we have simultaneous convergence for all vertices in

Bv0
(3r), i.e.,

P
(

∃N = N(ε), ∀n > N, ∀v ∈ Bv0
(3r), |Mn(v)−M(v)| < ε

)

= 1. (3.15)

In particular, remembering that E(ξ1) ⊆ Bv0
(3r), for ε = M(v0)/4,

P

(

∃N = N(ε), ∀n > N, ∀v ∈ E(ξ1),
3

4
M(v) < Mn(v) <

5

4
M(v)

)

= 1. (3.16)
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Finally, we notice that on the intersection of the events in (3.14) and (3.16), we have

Mn(u)−Mn(v) ≥
3

2
M(v)−

5

4
M(v) =

1

4
M(v) =

1

4
M(v0),

by the virtue of the fact that M(v0) = M(v) (as both v0, v ∈ E(ξ1)), and formula

(3.9) holds for any δ such that δ ≤ 1
4
M(v0).

For the second part of our proof we use statement (3.15) that holds, in particular,

for

ε = ε′ :=
1

4
min{M(u)−M(v0) | u ∈ Bv0

(3r), M(u)−M(v0) > 0}.

It means that, with probability 1, there exists N = N(ε′) such that for any n > N

and all u ∈ Bv0
(3r), we have |Mn(u)−M(u)| < ε′. Moreover, since E(ξ1) ⊆ Bv0

(3r),

we can assert the same for any v ∈ E(ξ1); namely, |Mn(v) −M(v)| < ε′. Together

with the fact that M(u) − M(v0) > 0, the obtained inequalities imply that, with

probability 1, there exists number N = N(ε′) such that for any n > N and all

u ∈ Bv0
(3r) \ E(ξ1),

Mn(v0) < M(v0) + ε′ ≤ M(v0) +
1

4
(M(u)−M(v0))

M(u)−
1

4
(M(u)−M(v0)) ≤M(u)− ε′ < Mn(u),

and, hence,

Mn(u)−Mn(v0) ≥M(u)−
1

4
(M(u)−M(v0))−M(v0)−

1

4
(M(u)−M(v0)) =

=
1

2
(M(u)−M(v0)) ≥ 2ε′, i.e.,

P
(

∃N = N(ε), ∀n > N, ∀u ∈ Bv0
(3r) \ E(ξ1) : Mn(u)−Mn(v0) ≥ 2ε′

)

= 1.

Therefore, (3.10) holds for any δ ≤ 2ε′. Choosing δ = min(1
4
M(v0), 2ε

′) finishes the

proof.

Corollary 3.15 (Inclusion Lemma). Let Γ be a locally-finite connected graph, {ξi}
∞
i=1

a sequence of i.i.d. Γ-valued random elements defined on a given probability space
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(Ω,F ,P) with values in V (Γ), and µ the probability measure on Γ induced by ξ1.

Suppose that weight function M is totally defined. Then

P

(

lim sup
n→∞

Sn ⊆ E(ξ1)

)

= 1.

Proof.

P
(

∃N s.t. ∀n > N, max
v∈E(ξ1)

Mn(v) < inf
u∈V (Γ)\E(ξ1)

Mn(u)
)

= 1,

by Separation Lemma 3.14. Thus, for every u /∈ E(ξ1), we have

P
(

∃N s.t. ∀n > N, u 6∈ Sn

)

= P
(

u 6∈ lim sup
n→∞

Sn

)

= 1

By σ-additivity of measure, we obtain,

P
(

u /∈ lim sup Sn, for every u ∈ V (Γ) \ E(ξ1)
)

= 1.

Now we are ready to prove the strong law of large numbers for center-sets con-

taining only one element. This is the only case when the classical limit of sets works,

as opposed to multi-vertex center-sets, when the law holds in the sense of limsup.

Theorem 3.16. (SLLN for graph-valued random elements with a singleton mean-

set.) Let Γ be a locally-finite connected graph and {ξi}
∞
i=1 a sequence of i.i.d. Γ-valued

random elements ξi : Ω → V (Γ). If the weight function Mξ1(·) is totally defined and

E(ξ1) = {v} for some v ∈ V (Γ), i.e., if E(ξ1) is a singleton, then the following holds

almost surely:

S(ξ1, . . . , ξn)−→E(ξ1) as n→∞.

Proof. Observe that the conclusions of the theorem can be expressed by the statement

P
(

∃N s.t. ∀n > N, S(ξ1, . . . , ξn) = {v}
)

= 1

or, equivalently,

P
(

∃N s.t. ∀n > N ∀u ∈ V (Γ) \ {v}, Mn(v) < Mn(u)
)

= 1. (3.17)
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By Separation Lemma 3.14,

P
(

∃N s.t. ∀n > N, Mn(v) < inf
u∈V (Γ)\{v}

Mn(u)
)

= 1,

and the statement P
(

∃N s.t. ∀n > N, {v} = S(ξ1, . . . , ξn)
)

= 1 is proved.

3.3 SLLN for multi-vertex mean-sets

In this section we investigate a multi-vertex center-set case and conditions under

which the strong law of large numbers holds for such set. We reduce this problem to

the question of recurrence of a certain subset in Zn relative to a random walk on this

integer lattice. If 2 ≤ |E(ξ)| ≤ 3, no restrictive assumptions are required; we formulate

and prove the strong law of large numbers for these special instances separately. The

case of |E(ξ)| > 3 requires more technical assumptions, and, therefore, more work to

handle it.

3.3.1 Case of 2 vertices

Theorem 3.17. (SLLN for graph-valued random elements with two point mean-set.)

Let Γ be a locally-finite connected graph and {ξi}
∞
i=1 be a sequence of i.i.d. Γ-valued

random elements ξi : Ω → V (Γ). If the weight function Mξ1(·) is totally defined and

|E(ξ)| = 2, then

lim sup
n→∞

S(ξ1, . . . , ξn) = E(ξ1)

holds with probability 1.

Proof. By Inclusion Lemma 3.15, lim supn→∞ Sn ⊆ E(ξ1). Thus, in order to prove the

theorem, it suffices to show the reverse inclusion. Assume E(ξ1) = {v1, v2}, i.e., the

weight function Mξ(·) attains its minimum value at the vertices v1 and v2, and only

those:

M(v1) = M(v2) < M(u) for any u ∈ Γ \ {v1, v2}.
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By definition,

M(v1) =
∑

s∈Γ

d2(v1, s)µ(s), M(v2) =
∑

s∈Γ

d2(v2, s)µ(s),

Mn(v1) =
∑

s∈Γ

d2(v1, s)
|{i | ξi = s, 1 ≤ i ≤ n}|

n
, Mn(v2) =

∑

s∈Γ

d2(v2, s)
|{i | ξi = s, 1 ≤ i ≤ n}|

n
,

and by Lemma 3.13, Mn(v1)→M(v1) and Mn(v2)→M(v2) almost surely as n→∞.

By Separation Lemma 3.14 it follows that, with probability one, for the sequence of

random elements ξ1, ξ2, . . ., there exists a number N such that for any n > N , we

have

max{Mn(v1),Mn(v2)} < inf
u∈Γ\{v1,v2}

Mn(u).

Hence, for any n > N ,

v1 ∈ Sn if and only if Mn(v1) ≤ Mn(v2)

if and only if
∑

s∈Γ

(

d2(v1, s)− d
2(v2, s)

)

|{i | ξi = s, 1 ≤ i ≤ n}| ≤ 0.

Similarly,

v2 ∈ Sn if and only if Mn(v2) ≤ Mn(v1)

if and only if
∑

s∈Γ

(

d2(v2, s)− d
2(v1, s)

)

|{i | ξi = s, 1 ≤ i ≤ n}| ≤ 0.

Observe that in order to show that {v1, v2} ⊆ lim supn→∞ Sn, it is enough to prove

that the difference Mn(v1) −Mn(v2) takes on positive and negative values infinitely

often. For every n ∈ N, define

R(n) := n(Mn(v2)−Mn(v1)) =
∑

s∈Γ

(

d2(v2, s)− d
2(v1, s)

)

· |{i | ξi = s, 1 ≤ i ≤ n}|

and notice that

R(n+ 1)− R(n) =
∑

s∈Γ

[d2(v2, s)− d
2(v1, s)] 1{ξn+1=s}.

We immediately recognize {R(n)}n∈N0
as a random walk on Z starting at 0; namely,

R(0) = 0, R(n) =

n
∑

i=1

ζi, with ζi = ζi(s) : V (Γ) → Z, i = 1, 2, . . . are i.i.d. random
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variables such that E(ζ1) = 0 (since M(v1) = M(v2)), ζi(s) = d2(v2, s) − d2(v1, s)

with probability µ(s), s ∈ V (Γ). Now, notice that for any n > N

v1 ∈ Sn ⇔ R(n) ≥ 0 and v2 ∈ Sn ⇔ R(n) ≤ 0.

It is known that a general (not simple, not symmetric) one-dimensional random walk

R(n) =

n
∑

i=1

ζi on Z is recurrent if
∑

s∈Γ

|ζ1(s)|µ(s) <∞ and
∑

s∈Γ

ζ1(s)µ(s) = 0 (see (36),

pg. 23). We have seen that the second condition holds since

E(ζ1) =
∑

s∈Γ

(d2(v2, s)− d
2(v1, s))µ(s) = M(v1)−M(v2) = 0.

The first sufficient condition for recurrence is also trivial to check:

∑

s∈Γ

|ζ1(s)|µ(s) =
∑

s∈Γ

|d2(v2, s)− d
2(v1, s)|µ(s) ≤

≤
∑

s∈Γ

(d2(v2, s) + d2(v1, s))µ(s) = M(v1) +M(v2) <∞

since both weight functions are assumed to be defined. Thus, our random walk takes

on positive and negative values infinitely often. We conclude that almost always

lim supn→∞ Sn = {v1, v2} = Eξ.

3.3.2 Case of 3 and more vertices

Assume E(ξ1) = {v1, v2, . . . , vk}, i.e., for any u ∈ Γ \ {v1, v2, . . . , vk}, M(v1) =

M(v2) = . . . = M(vk) < M(u). Our goal is to formulate conditions that would guar-

antee the inclusion E(ξ1) ⊆ lim supn→∞ Sn or, without loss of generality, conditions

for {v1} ∈ lim supn→∞ Sn.

By Separation Lemma 3.14, it follows that, with probability one, for a sequence

of random elements ξ1, ξ2, . . ., there exists a number N such that for any n > N we

have

max{Mn(v1),Mn(v2), . . . ,Mn(vk)} < inf
u∈Γ\{v1,v2,...,vk}

Mn(u).
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Hence, for any n > N , v1 ∈ Sn if and only if Mn(v1) ≤Mn(vi) for every i = 2, . . . , k.

Thus, to achieve our goal, we have to show that conditions

Mn(v2)−Mn(v1) ≥ 0, . . . ,Mn(vk)−Mn(v1) ≥ 0

simultaneously hold infinitely often.

As in the case for two-point mean-sets, for every i = 1, . . . , k−1 and n ∈ N, define

Ri(n) := n(Mn(vi+1)−Mn(v1)) =
∑

s∈Γ

(

d2(vi+1, s)− d
2(v1, s)

)

·|{i | ξi = s, 1 ≤ i ≤ n}|

and observe, as before, that

Ri(n + 1)− Ri(n) =
∑

s∈Γ

[d2(vi+1, s)− d
2(v1, s)] 1{ξn+1=s}, (3.18)

i.e., Ri(n), i = 1, . . . , k−1, represent random walks, associated with v1, on Z starting

at 0.

Consider a random walk R, associated with v1, in Zk−1, starting at the origin

(0, . . . , 0) with the position of the walk after n steps given byR(n) = (R1(n), R2(n), . . . , Rk−1(n)).

An increment step in Zk−1 is given by ζ(s) = (ζ1(s), . . . , ζk−1(s)), s ∈ V (Γ), with

probability µ(s), where ζi(s) : V (Γ)→ Z, ζi(s) = d2(vi+1, s)−d
2(v1, s), i = 1, . . . , k−

1. The following lemma shows the significance of this random walk.

Lemma 3.18. In the notation of this section, {v1} ∈ lim supn→∞ Sn if and only if

the random walk R visits the set Zk−1
+ = {(a1, . . . , ak−1) | ai ≥ 0} infinitely often.

Therefore,

P(v1 ∈ lim sup
n→∞

Sn) = P(R(n) ∈ Zk−1
+ , i.o.).

Proof. Follows from the discussion preceding the lemma.

It is worth redefining R in the terms of transition probability function, as in

(36). Let 0 ∈ Zk−1 be the zero vector and xi = ζi(s), s ∈ V (Γ). For every x =

(x1, . . . , xk−1) ∈ Zk−1, we define a function P (0, x) by

P (0, x) = µ{s | xi = d2(vi+1, s)− d
2(v1, s) for every i = 1, . . . , k − 1}. (3.19)
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This is trivial to check that this is, indeed, the transition probability for R. To

continue further, we investigate some properties of our random walk R.

Lemma 3.19. Let R be a random walk defined above. Then

m1 =
∑

x∈Zk−1

xP (0, x) = 0 and m2 =
∑

x∈Zk−1

|x|2P (0, x) <∞.

Proof. The first equality trivially holds. Consider the left hand side of the second

inequality

∑

x∈Zk−1

|x|2P (0, x) =
∑

s∈V (Γ)

k−1
∑

i=1

(

d2(vi+1, s)− d
2(v1, s)

)2

µ(s)

=

k−1
∑

i=1

∑

s∈V (Γ)

(

d(vi+1, s)− d(v1, s)
)2(

d(v1, s) + d(vi+1, s)
)2

µ(s)

≤
k−1
∑

i=1

d2(v1, vi+1)
∑

s∈V (Γ)

(

d(v1, s) + d(vi+1, s)
)2

µ(s)

≤
k−1
∑

i=1

d2(v1, vi+1)(4M(v1) + 4M(vi+1)) <∞,

where, in the last estimate, we break the sum
∑

s∈V (Γ)

(

d(v1, s) + d(vi+1, s)
)2

µ(s)

into two sums over s ∈ V (Γ) with d(v1, s) < d(vi+1, s) and d(v1, s) ≥ d(vi+1, s) and

overestimate them.

Clearly, conditions under which this random walk is recurrent would guarantee

that {v1} ⊆ lim supn→∞ Sn (see (36, page 30, Proposition 3.3)). Sufficient conditions

for the recurrence of two-dimensional random walk involve the finiteness of its second

moment and can be found in (36, page 83). The result stated there indicates that

genuinely 2-dimensional random walk is recurrent if its first moment is zero, and its

second moment is finite. Let us recall the notion of genuinely-dimensional random

walk, as well as some other relevant concepts, before we go on.

Consider an arbitrary random walk R on Zn given by a transition probability P ,

as in (3.19). The support, supp(P ), of the probability measure P is defined to be
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the set supp(P ) := {v ∈ Zn | P (v) 6= 0} of all possible one-step increments of R.

Further, with R, one can associate an abelian subgroup AR of Zn generated by the

vectors in supp(P ). It is well-known in group theory that any subgroup AR of Zn

is isomorphic to Zk, where k ≤ n (the reader can also check (36, Proposition7.1 on

pg.65) for details), in which case we write dim(AR) = k and say that R is genuinely

k-dimensional. Let us stress that we speak of an n-dimensional random walk on

Zn when P (0, x) is defined for all x in Zn; this walk is genuinely n-dimensional if

dim(AR) = n. We say that R is aperiodic if AR = Zn. Observe that genuinely n-

dimensional random walk does not have to be aperiodic. A standard simple random

walk, which we denote by S = S(n), is an example of an aperiodic random walk on

Zn. It will be convenient to define a vector space VR ⊂ Rn spanned by the vectors in

supp(P ). It is easy to see that the genuine dimension of R is equal to the dimension

of VR. We shall need another notion for our developments. Assume that D is an

k × n matrix (not necessarily integer valued) which maps AR onto Zk. Then D

naturally induces a random walk R
D

on Zk with transition probability PD given by

PD(u) = P (v ∈ Zn | D(v) = u) for every u ∈ Zk. Now, we have our strong law of

large numbers for mean-sets with three elements almost for free.

Theorem 3.20 (SLLN for graph-valued random elements with three point mean-set).

Let Γ be a locally-finite connected graph and {ξi}
∞
i=1 be a sequence of i.i.d. Γ-valued

random elements ξi : Ω → V (Γ). If the weight function Mξ1(·) is totally defined and

|E(ξ)| = 3, then

lim sup
n→∞

S(ξ1, . . . , ξn) = E(ξ1)

holds with probability 1.

Proof. Let v ∈ E(ξ1) and R a random walk in Z2, associated with v1. This random

walk can be genuinely m-dimensional, where m ∈ {0, 1, 2}. By Lemma 3.19, the

first moment of R is (0, 0) and the second moment is finite. Therefore, by (36,

Theorem 8.1) the genuinely 2-dimensional random walk is recurrent, and, hence,
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Zk−1
+ is visited infinitely often with probability 1. Finally, by Lemma 3.18, it follows

that P(v ∈ lim supn→∞ Sn) = 1 for every v ∈ E(ξ1). Thus the result.

Recall that a subset of Zn is called recurrent if it is visited by a given random

walk infinitely often with probability one, and it is transient otherwise (according to

the Hewitt-Savage 0− 1 law, any set is either visited infinitely often with probability

one or with probability zero). The criterion for whether a given set is recurrent or

transient for simple random walk was obtained by Itô and McKean (19) for n = 3

(it can also be found in (36, Theorem 26.1)). It turns out that the criterion does

not depend on the random walk in question, if the walk is aperiodic. This is the

subject of the extension of the Wiener’s test, proved in (37), that we state below.

This invariance principle is one of the main tools we use in our investigation of the

recurrence properties of the positive octant in Zn for our random walk R.

Theorem (Extension of Wiener’s test – Invariance Principle, (37)). Let n ≥ 3. Then

an infinite subset A of Zn is either recurrent for each aperiodic random walk R on

Zn with mean zero and a finite variance, or transient for each of such random walks.

For a positive constant α ∈ R and a positive integer m ≤ n define a subset of Rn

Conem
α =

{

(x1, . . . , xn) ∈ Rn | x1 = 0, . . . , xn−m = 0,
√

x2
n−m+1 + . . .+ x2

n−1 ≤ αxn

}

called an m-dimensional cone in Rn. If m = n, then we omit the superscript in

Conem
α . For an n× n matrix D and a set A ⊆ Rn, define a set AD = {D · v | v ∈ A},

which is a linear transformation of A. If D is an orthogonal matrix, then the set

(Coneα)D is called a rotated cone. Following (19), for any non-decreasing function

i : N→ R+ define a set

Thorni = {v ∈ Zn |
√

v2
1 + . . .+ v2

n−1 ≤ i(vn)}.

Observe that Coneα ∩ Zn = Thorni where i(t) = αt. In (19), Itô and McKean prove

the recurrence criterion for Thorni; namely, the authors show that Thorni is visited
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infinitely often by standard random walk with probability one if
∑

k≥1

(

2−ki(2k)
)n−3

=

∞ for dimensions n ≥ 4. Since in our case i(t) = αt, we have i(2k) = α2k, and, hence,

∑

k≥1

(

2−ki(2k)
)n−3

=
∑

k≥1

(

2−kα2k
)n−3

=∞.

Thus, the criterion is satisfied. When dimension is n = 3, the same authors show

that even the thinnest thorn
⋃

k≥1(0, 0, k) is recurrent (see (19)). In their proofs, Itô

and McKean evaluate Wiener’s sum from the Wiener’s test using capacities of the

spherical shells. We are not going to get into the domain of capacities because it is

not relevant to our work. We just use the results about the recurrence of sets that we

need to achieve our goal. Keeping in mind that capacities of sets are invariant under

orthogonal transformations (see (19) again), we arrive at the following important

theorem.

Theorem 3.21. For any α > 0 and any orthogonal matrix D,

P
(

S(n) ∈ (Coneα)D, i.o.
)

= 1,

i.e., the probability that the simple random walk on Zn visits (Coneα)D infinitely often

is 1.

Proof. Direct consequence of (6.1) and (4.3) in (19), where the criterion for recurrence

of Thorni is given (see also the discussion above).

Lemma 3.22. Assume that a set A ⊆ Rn contains a rotated cone. Then for any

invertible n× n matrix D, the set AD contains a rotated cone.

Proof. Exercise in linear algebra. See Lemma 3.35 below.

Lemma 3.23. If S1 ⊆ S2 ⊆ Rn and S1 is visited by the simple random walk infinitely

often with probability 1 then S2 is visited by the simple random walk infinitely often

with probability 1.
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Proof. Obvious.

Now, we return to our strong law of large numbers for multi-vertex mean-sets.

Assume that Eξ = {v1, . . . , vk}, where k ≥ 4. Let R
i

be a random walk on Zk−1,

associated with vi, where i = 1, . . . , k (in our notation, R = R
1

). This is a (k − 1)-

dimensional random walk which, in general, is not aperiodic. In fact, R
i
is not even

genuinely (k − 1)-dimensional. Fortunately, it turns out that it does not matter to

what vertex vi we associate our random walk, since the choice of the vertex does not

affect the dimension of the corresponding walk, as the following lemma shows.

Lemma 3.24. Let µ be a probability measure on a locally finite graph Γ such that

Eµ = {v1, . . . , vk}, where k ≥ 2. Then the random walks R
1
, . . . , R

k
, associated with

vertices v1, . . . , vk respectively, all have the same genuine dimension.

Proof. We prove that random walks R
1

and R
2

have the same genuine dimension.

Recall that the subgroup A
R

1 is generated by the set of vectors v1 ∈ Zk−1 such that

v1 = v1(s) = (d2(v2, s)− d
2(v1, s), d

2(v3, s)− d
2(v1, s), . . . , d

2(vk, s)− d
2(v1, s)), where

s ∈ supp(µ), and the subgroup A
R

2 is generated by the set of vectors v2 ∈ Zk−1 such

that v2 = v2(s) = (d2(v1, s) − d
2(v2, s), d

2(v3, s) − d
2(v2, s), . . . , d

2(vk, s) − d
2(v1, s)),

where s ∈ supp(µ). Now observe that for every s ∈ supp(µ), we have

v2(s) = D · v1(s),

where D is a (k − 1)× (k − 1) matrix

D =























−1 0 0 0 . . .

−1 1 0 0 . . .

−1 0 1 0 . . .

−1 0 0 1 . . .

. . .























Therefore, A
R

2 = (A
R

1)D. Since the matrix D is invertible it follows that A
R

1 and

A
R

2 have the same dimension.
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Theorem 3.25 (multi-vertex SLLN-I). Let Γ be a locally-finite connected graph and

{ξi}
∞
i=1 be a sequence of i.i.d. Γ-valued random elements ξi : Ω→ V (Γ). Assume that

the weight function M is totally defined and E(ξ) = {v1, . . . , vk}, where k ≥ 4. If the

random walk R
1
, associated to v1, is genuinely (k − 1)-dimensional, then

lim sup
n→∞

S(ξ1, . . . , ξn) = E(ξ1)

holds with probability 1.

Proof. Since R
1

is genuinely (k − 1)-dimensional it follows that the subgroup A
R

1 is

isomorphic to Zk−1 and there exists an invertible matrix D that isomorphically maps

A
R

1 ⊆ Zk−1 onto Zk−1. We are interested in P
(

R
1
∈ Zk−1

+ , i.o.
)

, but, instead, we

consider a set Rk−1
+ = {(x1, . . . , xk−1) | xi ≥ 0} and observe that

P
(

R
1
∈ Zk−1

+ , i.o.
)

= P
(

R
1
∈ Rk−1

+ , i.o.
)

,

since R
1

”lives“ in Zk−1
+ only. Let (R

1
)D be the induced random walk on Zk−1 by

application of D to R
1
. The random walk (R

1
)D is aperiodic since D maps A

R
1 onto

Zk−1. Moreover, by construction of (R
1
)D,

P
(

R
1
∈ Rk−1

+ , i.o.
)

= P
(

(R
1
)D ∈ (Rk−1

+ )D, i.o.
)

.

Let S be the simple random walk on Zk−1. Since (R
1
)D and S are both aperiodic

random walks on Zk−1, it follows from the Invariance Principle (Extension of Wiener’s

test) that

P
(

(R
1
)D ∈ (Rk−1

+ )D i.o.
)

= P
(

S ∈ (Rk−1
+ )D i.o.

)

.

Clearly, the set Rk−1
+ contains a rotated cone and, hence, by Lemma 3.22, its image

under an invertible linear transformation D contains a rotated cone too. Now, by

Theorem 3.21 and by Lemma 3.23,

P
(

S ∈ (Rk−1
+ )D, i.o.

)

= 1.

It follows that P
(

R
1
∈ Zk−1

+ i.o.
)

= 1 and, by Lemma 3.18,

P(v1 ∈ lim sup
n→∞

Sn) = 1.
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Finally, it is proved in Lemma 3.24 that for any i = 2, . . . , k the random walk R
i
is

genuinely (k − 1)-dimensional. For any i = 2, . . . , k we can use the same argument

as for v1 to prove that P(vi ∈ lim supn→∞ Sn) = 1. Hence the result.

3.3.3 The case when random walk is not genuinely (k − 1)-

dimensional.

The case when R
1
is not genuinely (k−1)-dimensional is more complicated. To answer

the question whether v1 belongs to lim supn→∞ Sn (namely, how often v1 visits the set

Sn), we need to analyze how the space V
R

1 “sits” in Rk−1 (in other words, we have

to look at its dimension). We know that the subgroup A
R

1 ⊂ Zk−1 is isomorphic

to Zm, where m < k − 1 in the case under consideration. Therefore, there exists a

m× (k − 1) matrix D which maps the subgroup A
R

1 onto Zm and which is injective

on A
R

1. Furthermore, the mapping D maps the subspace V
R

1 bijectively onto Rm.

The linear mapping D induces an aperiodic random walk (R
1
)D on Zm in a natural

way and

P
(

R
1
∈ (Rk−1

+ ), i.o.
)

= P
(

R
1
∈ (Rk−1

+ ∩ V
R

1), i.o.
)

= P
(

(R
1
)D ∈ (Rk−1

+ ∩ V
R

1)D, i.o.
)

.

The main problem here is to understand the structure of the set (Rk−1
+ ∩V

R
1)D and, to

be more precise, the structure of the set Rk−1
+ ∩V

R
1 . Clearly Rk−1

+ ∩V
R

1 is a monoid,

i.e., it contains the trivial element and a sum of any two elements in Rk−1
+ ∩ V

R
1

belongs to Rk−1
+ ∩ V

R
1. We can define dimension of Rk−1

+ ∩ V
R

1 to be the maximal

number of linearly independent vectors in Rk−1
+ ∩ V

R
1 .

Theorem 3.26 (SLLN for ”not genuine“ dimension). Suppose A
R

1 ≃ Zm and the set

Rk−1
+ ∩ V

R
1 has dimension m. Then P

(

vi ∈ lim supn→∞ S(ξ1, . . . , ξn)
)

= 1.

Proof. Since Rk−1
+ ∩ V

R
1 is a monoid of dimension m, we know that Rk−1

+ ∩ V
R

1

contains an m-dimensional rotated cone (see Lemma 3.37 below). Since D is a linear
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isomorphism from V
R

1 onto Rm it follows from Lemma 3.22 that (Rk−1
+ ∩ V

R
1)D

contains an m-dimensional rotated cone in Rm. If S is a simple random walk in Zm,

then

P
(

S ∈ (Rk−1
+ ∩ V

R
1)D i.o.

)

= 1.

Since S and (R
1
)D are both aperiodic, by the extension of Wiener’s test (Invariance

Principle), we see that

P
(

(R
1
)D ∈ (Rk−1

+ ∩ V
R

1)D i.o.
)

= 1.

Hence, P
(

R
1
∈ (Rk−1

+ ) i.o.
)

= 1 by the discussion preceding the theorem, and, finally,

by Lemma 3.18, P(vi ∈ lim supn→∞ Sn) = 1.

Next, we investigate under what conditions the subgroup A
R

1 and the set Rk−1
+ ∩

V
R

1 have the same dimension m.

Lemma 3.27. Assume that A
R

1 contains a positive vector. Then the sets A
R

1 and

Rk−1
+ ∩ V

R
1 have the same dimension.

Proof. Exercise in linear algebra. See Lemma 3.36 below.

Lemma 3.28. Assume that µ(v1) 6= 0. Then A
R

1 and the set Rk−1
+ ∩ V

R
1 have the

same dimension.

Proof. Observe that if µ(v1) 6= 0 thenA
R

1 contains the vector (d2(v2, v1), . . . , d
2(vk, v1))

which has all positive coordinates. Therefore, by Lemma 3.27, the set A
R

1 and

Rk−1
+ ∩ V

R
1 have the same dimension.

Corollary 3.29 (Multi-vertex SLLN - II). Let Γ be a locally-finite connected graph

and {ξi}
∞
i=1 be a sequence of i.i.d. Γ-valued random elements ξi : Ω→ V (Γ). Assume

that the weight function Mξ1(·) is totally defined and E(ξ) = {v1, . . . , vk}, where k ≥ 4.

If E(ξ1) ⊆ supp(µ), then

lim sup
n→∞

S(ξ1, . . . , ξn) = E(ξ1)
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holds with probability 1.

Proof. Follows from Lemmas 3.28, 3.27, and Theorem 3.26.

3.4 Cones, subspaces, and monoids.

3.4.1 Properties of cones

Lemma 3.30. Let C = Coneα. Then for any u, v ∈ C and a ≥ 0 and b ≥ 0,

au+ bv ∈ C, i.e., C is closed under taking nonnegative linear combinations.

Proof. This is easy to see by application of the discrete version of Minkowski inequal-

ity :
(

n
∑

k=1

|ak + bk|
p
)

1

p

≤
(

n
∑

k=1

|ak|
p
)

1

p

+
(

n
∑

k=1

|bk|
p
)

1

p

for (a1, . . . , an), (b1, . . . , bn) ∈ Rn, 1 ≤ p <∞.

Indeed, u = (u1, . . . , un) ∈ C means
√

u2
1 + . . .+ u2

n−1 ≤ αun and v = (v1, . . . , vn) ∈

C means
√

v2
1 + . . .+ v2

n−1 ≤ αvn. Now,

√

(au1 + bv1)2 + . . .+ (aun−1 + bvn−1)2 ≤

≤
√

(au1)2 + . . .+ (aun−1)2+

+
√

(bv1)2 + . . .+ (bvn−1)2 ≤

≤ aαun + bαvn = α(aun + bvn)

and, thus, au+ bv ∈ C.

Lemma 3.31. Let D be a matrix and A ⊆ Rn. If A is closed under taking nonnegative

linear combinations, then so is AD.

Proof. D is a linear transformation.

Corollary 3.32. Let D be a matrix and C = ConeD
α . Then C is closed under taking

nonnegative linear combinations.
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Lemma 3.33. Let D be an n× n orthogonal matrix. Then for any r > 0 and v ∈ R

we have

(Bv(r))
D = BvD(r).

In other words any orthogonal matrix shifts a ball of radius r at v to a ball of radius

r at vD.

Proof. Orthogonal matrix preserves distances.

Lemma 3.34. Let A ⊆ Rn. The set A contains a rotated cone, ConeD
α , if and only

if there exist B ⊆ A such that:

• B is closed under taking nonnegative linear combinations;

• B contains a ball Bv(r) for some r > 0 and v ∈ Rn.

Proof. ”⇒” Assume that for some α > 0 and an orthogonal matrix D, ConeD
α ⊆ A.

Clearly, B = ConeD
α satisfies both of the stated properties.

”⇐” Assume that some B ⊆ A satisfies the properties stated above for some r > 0

and v ∈ Rn. Let D be any orthogonal matrix that maps a point v to a point Dv =

vD = v′ = (0, . . . , 0,
√

v2
1 + . . .+ v2

n). By Lemmas 3.31 and 3.33 above, the set BD

is closed under nonnegative linear combinations and contains a ball BvD(r) = Bv′(r).

It implies that BD contains Coneα where

α =
r

√

v2
1 + . . .+ v2

n

.

Therefore, Coneα ⊆ BD ⊆ AD. If E = D−1, then ConeE
α ⊆ A.

Lemma 3.35. Assume that a set A ⊆ Rn contains a rotated cone. Then for any

invertible n× n matrix D, the set AD contains a rotated cone.

Proof. Assume that for some α > 0 and orthogonalD′, ConeD′

α ⊆ A. Then by Lemma

3.34 there is B ⊆ A which closed under taking nonnegative linear combinations and

contains some ball Bv(r).
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Since B ⊆ A, we have BD ⊆ AD. As proved in Lemma 3.31, BD is closed under

taking nonnegative sums. Even though (Bv(r))
D is not a ball for a general invertible

matrix, it still contains a ball in itself with the center at vD and some radius, which

depends on eigenvalues of D. Thus, BD meets the assumptions of Lemma 3.34 and,

hence, it contains a rotated cone. Since BD ⊆ AD, AD contains a rotated cone

too.

3.4.2 Subspaces and monoids

Let us accept the following notation for this section of Appendix A only:

• S ⊂ Zn,

• A = 〈S〉 ⊆ Zn is a subgroup of Zn generated by S,

• V ⊆ Rn is a vector subspace spanned by S.

Lemma 3.36. Assume that A contains a positive vector. Then A and Rn
+ ∩ V have

the same dimension.

Proof. Clearly Rn
+ ∩ V cannot have bigger dimension than A, because V is spanned

by the same vectors as A.

Conversely, let {v1, . . . , vk} be a basis for A and v = a1v1 + . . . + akvk ∈ A

be a positive vector. Then for some sufficiently large m ∈ N, the vectors {mv +

v1, . . . , mv + vk} belong to Rn
+ ∩A ⊆ Rn

+ ∩ V . In addition, it is not hard to see that

these vectors are linearly independent. Indeed, consider an n× k matrix M , columns

of which are the vectors v1, . . . , vk. Adding the vector mv to v1, . . . , vk corresponds

to multiplication of the matrix M by the k × k matrix

Mm =

















ma1 + 1 ma1 ma1 . . .

ma2 ma2 + 1 ma2 . . .

ma3 ma3 ma3 + 1 . . .

. . . . . . . . . . . .

















.
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Now, consider a polynomial function m 7→ |Mm|, where | · | stays for determinant.

Clearly, 0 7→ 1 and hence, this function is not trivial. Since non-trivial polynomial

function cannot have infinitely many roots, the matrix M cannot be degenerate for

infinitely many m’s. Therefore, for some sufficiently large m, |Mm| 6= 0, and the

vectors {mv + v1, . . . , mv + vk} remain independent.

Therefore, the dimension of Rn
+ ∩ V is not smaller than that of A.

Lemma 3.37. Assume that a set B ⊆ Rk is closed under taking nonnegative linear

combinations and contains k independent vectors. Then B contains a rotated cone.

Proof. If we show that B contains a ball, then both assumptions of Lemma 3.34 will

be satisfied, and the result follows.

Let {v1, . . . , vk} be independent vectors in B. Consider a mapping ϕ : Rk → Rk

defined by

(α1, . . . , αk)
ϕ
7→ α1v1 + . . . αkvk.

Clearly, ϕ is a linear automorphism of Rk and it has an inverse automorphism ψ.

Notice that both maps ϕ and ψ are nice continuous mappings. For i = 1, . . . , k define

the usual projection functions πi : Rk → R, which are continuous.

Now, consider a point v0 = v1 + . . . + vk. We claim that there exists ε > 0

such that Bv0
(ε) ⊆ B. Indeed, note that for i = 1, . . . , k, πi(ψ(v0)) = 1. Moreover,

πi ◦ ψ is a continuous mapping and, hence, for some εi > 0 and any v ∈ Bv0
(εi),

πi(ψ(v)) ⊂ (1
2
, 3

2
). Put ε = min{ε1, . . . , εk}. By the choice of ε, for any v ∈ Bv0

(ε),

πi(ψ(v)) ∈ (1
2
, 3

2
), i.e., any v ∈ Bv0

(ε) is a positive linear combination of vectors

{v1, . . . , vk}. It follows that Bv0
(ε) ⊂ B, and, by Lemma 3.34, B contains a rotated

cone.
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3.5 Example of random walk for a cyclic graph.

Let µ be a probability measure on a locally finite graph Γ. Assume that the function

M (c) is defined for Γ. Define a |V (Γ)| × |V (Γ)| matrix D(c) of cth powers of distances

between vertices in Γ. Clearly,

M (c) = D(c)µ.

The purpose of this section is to work out a particular example of a random walk

construction for the cyclic graph of length 4, see Figure 3.2. Here we assume that all

four vertices are centers with µi > 0, 1 ≤ i ≤ 4. The corresponding distance matrix

v1

v2 v3

v4

Figure 3.2: Cycle-4.

D(2) with D(2)(i, j) = d2(vi, vj), 1 ≤ i, j ≤ 4 is

D(2) =

















0 1 4 1

1 0 1 4

4 1 0 1

1 4 1 0

















In order to show, for instance, that v1 ∈ lim sup Sn, we can look at the recurrence

property of a corresponding random walk R in Z3, which we are going to construct

now.

According to the above discussion, we need to write down a matrix of increments

(steps) Iζ of our walk that we obtain by subtracting the first row of D(2) from the

rest of the rows and removing the first row (since we do not consider v1 relative to

itself). We obtain 3× 4 matrix of increments
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Iζ =











1 −1 −3 3

4 0 −4 0

1 3 −3 −1











To be consistent with the notation used in the section on (two-) three-point center-

sets, we denote increments in Z3 by ζ(s) = (ζ1(s), ζ(s)2, ζ3(s)), s ∈ V (Γ). For this

particular example we have

ζ1(s) = d2(v2, s)− d
2(v1, s)

ζ2(s) = d2(v3, s)− d
2(v1, s)

ζ3(s) = d2(v4, s)− d
2(v1, s)

s = v1, v2, v3, v4.

It is even better to look at the matrix Iζ as the following table (see Table 3.1).

ζi(s)\s v1 v2 v3 v4

ζ1(s) 1 -1 -3 3

ζ2(s) 4 0 -4 0

ζ3(s) 1 3 -3 -1

Table 3.1: Increments of the random walk

Here, each column gives us a vector ζ(s) = (ζ1(s), ζ(s)2, ζ3(s)) – a possible incre-

ment step in Z3 with µ(ζ(s)) = µ(s), where s ∈ V (Γ). These vectors define a random

walk R in Z3 which is genuinely 3-dimensional. Thus, SLLN holds by Theorem 3.25
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Chapter 4

Chebyshev’s inequality on graphs

4.1 Introduction

Every area of mathematics in general, as well as every trend of probability theory

in particular, possesses some important inequalities. For instance, inequalities, as

humble as they may seem, often provide necessary bounds and are at the heart of the

matter of proving many theorems. One of such inequalities in classical probability

theory is due to Pafnuty L. Chebyshev. It asserts that if ξ is a random variable with

E(ξ2) <∞, then for any ε > 0, we have

P
(

|ξ − E(ξ)| ≥ ε
)

≤
σ2

ε2
, (4.1)

where σ2 = V ar(ξ). This inequality can be found in any classical probability theory

text, in particular, in (3).

The inequality applied to the sample mean random variable X = Sn

n
, where Sn =

ξ1 + . . .+ ξn, E(ξi) = m,V ar(ξi) = σ2, i = 1, . . . , n results in

P
(

|X −m| ≥ ε
)

≤
σ2

nε2
(4.2)

Chebyshev discovered it when he was trying to prove the law of large numbers,

and the inequality is widely used ever since. We can think of Chebyshev’s inequality
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as a result concerning the concentration of measure, giving a quantitative description

of this concentration. Indeed, it provides a bound on the probability that a value

of a random variable ξ with finite mean and variance will differ from the mean by

more than a fixed number ε. In other words, we have a crude estimate for concentra-

tion of probabilities around the expectation, and this estimate has a big theoretical

significance.

In this chapter we prove an analog of the classical Chebyshev’s inequality - the

concentration of measure inequality for a graph- (group-)valued random element ξ.

The usual setting is as follows. We consider the image of the given probability space

under the mapping ξ(·) : Ω → V (Γ); namely, we work with a discrete probability

space (V (Γ),S, µ), and we remember that for every fixed v, d2(v, ξ) is a real-valued

random variable, i.e., d2(v, ·) : V (Γ)→ R.

4.2 Concentration of measure inequality on graphs

(groups)

First, let us prove the following lemma, which is going to be useful in the proof of the

main theorem below.

Lemma 4.1. Let µ be a distribution on a locally finite graph Γ such that M ≡ M (2)

is defined. If for some r ∈ N and v0 ∈ V (Γ) the inequality

∑

s∈V (Γ)\Bv0
(r/2)

d(v0, s)µ(s)−
r

2
µ(v0) < 0 (4.3)

holds, then for any u ∈ V (Γ) \Bv0
(r), M(u) > M(v0).

Proof. Indeed, pick any u ∈ V (Γ) \Bv0
(r) and let d = d(v0, u). Then

M(u)−M(v0) =
∑

s∈V (Γ)

(

d2(u, s)− d2(v0, s)
)

µ(s)

≥ d2µ(v0)−
∑

d(v0,s)>d(u,s)

(

d2(v0, s)− d
2(u, s)

)

µ(s)
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≥ d2µ(v0)−
∑

d(v0,s)>d(u,s)

(d(v0, s)− d(u, s))(d(v0, s) + d(u, s))µ(s)

≥ d2µ(v0)− 2d
∑

d(v0,s)>d(u,s)

d(v0, s)µ(s)

≥ d2µ(v0)− 2d
∑

s∈V (Γ)\Bv0
(r/2)

d(v0, s)µ(s).

Since d > r, it follows from the assumption of the lemma that we get a positive

quantity at the end. To make it more clear, let us note that in the last estimate, we

used the observation that

{

s ∈ V (Γ)| d(v0, s) > d(u, s)
}

⋂

Bv0
(r/2) = ∅,

which implies that
{

s ∈ V (Γ)| d(v0, s) > d(u, s)
}

⊆ V (Γ) \Bv0
(r/2) and, therefore,

∑

d(v0,s)>d(u,s)

d(v0, s)µ(s) ≤
∑

s∈V (Γ)\Bv0
(r/2)

d(v0, s)µ(s).

We conclude that M(u) > M(v0) as required.

4.2.1 Singleton mean-set

Theorem 4.2. Let Γ be a locally-finite connected graph and {ξi}
∞
i=1 a sequence of

i.i.d. Γ-valued random elements ξi : Ω → V (Γ). If the weight function Mξ1(·) is

totally defined and E(ξ1) = {v} for some v ∈ V (Γ) then there exists a constant

C = C(Γ, ξ1) > 0 such that

P
(

S(ξ1, . . . , ξn) 6= {v}
)

≤
C

n
, (4.4)

for a sample of random elements ξ1(ω), . . . , ξn(ω) of size n.

Proof. Observe that, by the definition of the sample mean-set, we can rewrite the

event in question in terms of sample weight functions Mn(·):

{

Sn 6= {v}
}

=
{

∃u ∈ V (Γ) \ {v}, Mn(u) ≤Mn(v)
}

.
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Therefore, in order to prove the theorem, it suffices to bound the probability of this

equivalent representation of the event. We show that

P

(

∃u ∈ V (Γ) \ {v}, Mn(u) ≤Mn(v)

)

≤
C

n
(4.5)

for some constant C, in two stages; namely, we prove that for some v0 ∈ V (Γ) with

µ(v0) > 0 and constants r ∈ N, C1, C2 ∈ R such that v ∈ Bv0
(r), the inequalities

P

(

∃u ∈ Bv0
(r) \ {v}, Mn(u) ≤Mn(v)

)

≤
C1

n
(4.6)

and

P

(

∃u ∈ V (Γ) \Bv0
(r), Mn(u) ≤Mn(v0)

)

≤
C2

n
(4.7)

hold. It is not hard to see that if we find C1 and C2 satisfying (4.6) and (4.7)

respectively, then (4.4) holds for C = C1 + C2 and the theorem is proved.

Indeed, consider the following events:

Dn =
{

∃u ∈ V (Γ) \ {v}, Mn(u) ≤Mn(v)
}

, as in (4.5),

An =
{

∃u ∈ Bv0
(r) \ {v}, Mn(u) ≤Mn(v)

}

, as in (4.6),

Bn =
{

∃u ∈ V (Γ) \Bv0
(r), Mn(u) ≤Mn(v) and ∄u ∈ Bv0

(r) \ {v}, Mn(u) ≤Mn(v)
}

,

and

En =
{

∃u ∈ V (Γ) \Bv0
(r), Mn(u) ≤Mn(v0)

}

, as in (4.7).

Clearly, Dn = An

⊔

Bn is a disjoint union, and P(Dn) = P(An) + P(Bn). Now,

observe that for any u, v0, v ∈ V (Γ), ifMn(u) ≤Mn(v) then either Mn(u) ≤Mn(v0) or

Mn(v0) ≤ Mn(v). In particular, this is true on the event Bn. But on this event, Mn(v0)

cannot be smaller than Mn(v), because it would contradict the second property of

Bn with u taken to be v0 ∈ Bv0
(r) \ {v}. Hence, for any ω ∈ Bn, if Mn(u) ≤ Mn(v),

then Mn(u) ≤Mn(v0), and, consequently,

Bn ⊆ En.
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Thus,

P(Dn) = P(An) + P(Bn) ≤ P(An) + P(En),

and it is sufficient to prove (4.6) and (4.7), as claimed.

First we argue (4.7). Choose any v0 ∈ V (Γ) such that µ(v0) > 0 and r ∈ N such

that the inequality (4.3) holds, i.e.,

∑

s∈V (Γ)\Bv0
(r/2)

d(v0, s)µ(s)−
r

2
µ(v0) < 0.

We can choose such r since M (1)(v0) is finite. Observe that the left hand side of

the inequality above is the expectation (with respect to the measure µ) of a random

variable η : V → R defined as

η(s) := d(v0, s)1V (Γ)\Bv0
(r/2)(s)−

r

2
1v0

(s), s ∈ V (Γ)

where

1A(s) =







1, if s ∈ A;

0, if s /∈ A

is a usual indicator function with A ⊆ S and s ∈ V (Γ).

Since by our assumption M ≡ M (2) is defined, it follows that σ2(η) <∞, and we

can apply classical Chebyshev inequality to

η =

∑n
i=1 η(si)

n
=





∑

s∈V (Γ)\Bv0
(r/2)

d(v0, s)µn(s)



−
r

2
µn(v0).

Now, observe that, since E(η) < 0, by our choice of v0 and r, the event

{∣

∣

∣

∑

s∈V (Γ)\Bv0
(r/2)

d(v0, s)µn(s)−
r

2
µn(v0)− Eη

∣

∣

∣
< |Eη|/2

}

implies that
∑

s∈V (Γ)\Bv0
(r/2)

d(v0, s)µn(s)−
r

2
µn(v0) < 0, and, by Lemma (4.1), it follows

that for any u ∈ V (Γ) \Bv0
(r), we have Mn(u) > Mn(v0). Thus

{∣

∣

∣

∑

s∈V (Γ)\Bv0
(r/2)

d(v0, s)µn(s)−
r

2
µn(v0)− Eη

∣

∣

∣
< |Eη|/2

}
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⊆
{

∀u ∈ V (Γ) \Bv0
(r), Mn(u) > Mn(v0)

}

.

Taking complements of the above events as well as employing Chebyshev inequal-

ity (4.8) applied to η with ε = |Eη|/2, we can obtain the following estimate:

P

(

∃u ∈ V (Γ) \Bv0
(r), Mn(u) ≤Mn(v0)

)

≤ P

(

∣

∣

∣

∑

s∈V (Γ)\Bv0
(r/2)

d(v0, s)µn(s)−
r

2
µn(v0)− Eη

∣

∣

∣
≥ |Eη|/2

)

≤
4σ2(η)

n|Eη|2
.

Hence, inequality (4.7) holds for C2 = C2(r, v0, µ) = 4σ2(η)
|Eη|2

.

To prove (4.6) we notice that for any u ∈ V (Γ) \ {v},

M(u)−M(v) =
∑

s∈V (Γ)

(d(u, s)− d(v, s))(d(u, s) + d(v, s))µ(s),

i.e., M(u)−M(v) is the expectation of a random variable τ : V → R defined as

τu,v(s) := (d(u, s)− d(v, s))(d(u, s) + d(v, s)), s ∈ V (Γ).

Furthermore, since Mξ1(·) is defined by assumption and because for every s ∈ V (Γ),

we have d(u, s)−d(v, s) ≤ d(v, u), it is easy to see that σ2(τu,v(s)) <∞ and, therefore,

classical Chebyshev inequality applies to

τ =

∑n
i=1 τ(si)

n
= Mn(u)−Mn(v).

Thus,

P

(

|Mn(u)−Mn(v)− (M(u)−M(v))| ≥ ε

)

≤
σ2(τu,v(s))

nε2
.

holds. Now, if 0 < ε < M(u)−M(v) then

P

(

Mn(u) < Mn(v)

)

≤ P

(

|Mn(u)−Mn(v)− (M(u)−M(v))| ≥ ε

)

,

by the reasoning that we used above with taking complements of sets.

Finally, we choose ε to be 1
2
inf{M(u) −M(v) | u ∈ Bv0

(r) \ {v}} and, using σ

additivity (or, rather, just additivity in our case) of measure, we can write

P
(

∃u ∈ Bv0
(r) \ {v}, Mn(u) ≤Mn(v)

)
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≤
∑

u∈Bv0
(r)\{v}

P
(

Mn(u) ≤Mn(v)
)

≤

∑

u∈Bv0
(r) σ

2(τu,v(s))

nε2

we conclude that inequality (4.6) holds for the constant

C1 = ε−2
∑

u∈Bv0
(r)

σ2(τu,v(s)).

4.2.2 Multi-vertex mean-set

In fact, one can easily generalize the previous theorem to the following statement for

the multi-vertex mean-sets.

Theorem 4.3. Let Γ be a locally-finite connected graph and {ξi}
∞
i=1 a sequence of

i.i.d. Γ-valued random elements ξi : Ω → V (Γ). If the weight function Mξ1(·) is

totally defined then there exists a constant C = C(Γ, ξ1) > 0 such that

P
(

S(ξ1, . . . , ξn) 6⊆ E(ξ)
)

≤
C

n
. (4.8)

Proof. Suppose E(ξ) = {v1, . . . , vk}. As before, by definition of the sample mean-set,

{

Sn 6⊆ E(ξ)
}

=
{

∃u ∈ V (Γ) \ E(ξ), Mn(u) ≤Mn(vi) ∀i = 1, . . . k
}

.

Clearly,

{

∃u ∈ V (Γ) \ E(ξ), Mn(u) ≤ Mn(vi) ∀i = 1, . . . k
}

⊆
{

∃u ∈ V (Γ) \ E(ξ), Mn(u) ≤Mn(v1)
}

,

and we have the result by the Theorem 4.2.
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Chapter 5

Computations, applications, and

experiments

5.1 Configurations of mean-sets

In this section we demonstrate several configurations of mean-sets on graphs and how

they lead to results that allow us to make some implications about trees and free

groups. In addition, considerations of this section help us in dealing with computa-

tional problems. First, we make a simple observation stated in the lemma below.

Lemma 5.1. Let Γ be a connected graph. Then for any v ∈ V (Γ) there exists a

measure µ such that Eµ = {v}.

Proof. Indeed, the statement of the lemma holds for the distribution defined by

µ(u) =







1, if u = v;

0, otherwise.

On the other hand, it is easy to see that not any subset of V (Γ) can be realized

as Eµ. For instance, consider a graph as in Figure 5.1. Let µ0 = µ(v0), µ1 = µ(v1),
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v1 v0 v2

Figure 5.1: Impossible configuration of centers (gray vertices).

µ2 = µ(v2), M0 = M(v0), M1 = M(v1), M2 = M(v2) Then

M1 = µ0 + 4µ2,

M0 = µ1 + µ2,

M2 = 4µ1 + µ0.

Clearly, for no values of µ0, µ1, and µ2 both inequalities M0 > M1 and M0 > M2 can

hold simultaneously (since we can not have 2M0 > M1 + M2). Thus, v1 and v2 can

not comprise E(µ). In fact a tree can have only a limited configuration of centers as

proved in Proposition 5.8 below.

v1
v2

v0

v3

v4

Γ0

Γ1
Γ2

Figure 5.2: A graph with a cut point v0.

Let Γ be a graph and v0 ∈ V (Γ). We say that v0 is a cut-point if removing v0 from

Γ results into a disconnected graph (see Figure 5.2). The same definition applies to

any metric space (Γ, d). It turns out that existence of a cut-point in Γ affects possible
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configurations of center-sets dramatically. The following Lemma provides a useful

inequality that holds for any metric space with a cut-point.

Lemma 5.2 (Cut-point inequality). Let (Γ, d) be a metric space and v0 a cut point in

Γ. If v1, v2 belong to distinct connected components of Γ−{v0} then for any s ∈ V (Γ)

the inequality

d(v0, v2)(d
2(v1, s)− d

2(v0, s)) + d(v0, v1)(d
2(v2, s)− d

2(v0, s)) ≥ C > 0 (5.1)

holds, where C = C(v0, v1, v2) = d(v0, v2)d(v0, v1)(d(v0, v1) + d(v0, v2)).

Proof. Denote the left hand side of (5.1) by g(s). There are 3 cases to consider.

Case 1. Assume that s does not belong to the components of v1 and v2. Then

d2(v1, s) = [d(v1, v0) + d(v0, s)]
2 = d2(v1, v0) + 2d(v1, v0)d(v0, s) + d2(v0, s). With this

in mind, we get

d(v0, v2)
(

d2(v1, s)− d
2(v0, s)

)

+ d(v0, v1)
(

d2(v2, s)− d
2(v0, s)

)

= d(v0, v2)d(v0, v1)(2d(v0, s) + d(v0, v1)) + d(v0, v1)d(v0, v2)(2d(v0, s) + d(v0, v2))

= d(v0, v2)d(v0, v1)(4d(v0, s) + d(v0, v1) + d(v0, v2))

≥ d(v0, v2)d(v0, v1)(d(v0, v1) + d(v0, v2))

and hence (5.1) holds.

Case 2. Assume that s belongs to the component of v1. Define

x := x(s) = d(v1, s) and y := y(s) = d(v0, s).

In this notation we get

d2(v2, s) = [y + d(v0, v2)]
2 = y2 + 2yd(v0, v2) + d2(v0, v2),

and

g(s) = g(x, y) = d(v0, v2)
(

x2 − y2
)

+ d(v0, v1)
(

d2(v2, s)− y
2)
)

=
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= d(v0, v2)
(

x2 − y2
)

+ d(v0, v1)
(

2yd(v0, v2) + d2(v0, v2)
)

.

Dividing by a positive value d(v0, v2), we get

g(s) > 0 if and only if
g(x, y)

d(v0, v2)
= x2 − y2 + d(v0, v1)(2y + d(v0, v2)) > 0.

Now, observe that the numbers x, y, and d(v0, v1) satisfy triangle inequalities



















x+ y ≥ d(v0, v1);

x+ d(v0, v1) ≥ y;

y + d(v0, v1) ≥ x;

which bound the area visualized in Figure 5.3. The function of two variables g(x,y)
d(v0,v2)

O x

y

d(v0,v1)

d(v0,v1)

Figure 5.3: Area of possible triangle side lengths.

attains the minimal value d2(v0, v1)+d(v0, v1)d(v0, v2) on the boundary of the specified

area. Hence the inequality

g(s) ≥ d(v0, v2)d(v0, v1)(d(v0, v1) + d(v0, v2))

holds for any s in the component of v1.

Case 3. If s belongs to the component of v2 then using same arguments as for

the previous case one shows that (5.1) holds.
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Corollary 5.3. Let Γ be a connected graph, v0 a cut-point in Γ, and v1, v2 belong to

distinct components of Γ− {v0}. Then the inequality

d(v0, v2)(M(v1)−M(v0)) + d(v0, v1)(M(v2)−M(v0)) ≥ C > 0

holds, where C = C(v0, v1, v2) = d(v0, v2)d(v0, v1)(d(v0, v1) + d(v0, v2)).

Proof. Indeed,

d(v0, v2)(M(v1)−M(v0)) + d(v0, v1)(M(v2)−M(v0))

=
∑

s∈V (Γ)

(

d(v0, v2)
(

d2(v1, s)− d
2(v0, s)

)

+ d(v0, v1)
(

d2(v2, s)− d
2(v0, s)

)

)

µ(s)

≥
∑

s∈V (Γ)

Cµ(s) = C = d(v0, v2)d(v0, v1)(d(v0, v1) + d(v0, v2))

by Lemma 5.2

The following result is very important for future developments concerning local

properties of our weight function M .

Corollary 5.4. (Cut Point Lemma) Let Γ be a connected graph, v0 a cut-point

in Γ. If v1 and v2 belong to distinct connected components of Γ − {v0}, then the

inequalities M(v0) ≥M(v1) and M(v0) ≥M(v2) cannot hold simultaneously.

Proof. Assume to the contrary that M(v0) ≥M(v1) and M(v0) ≥M(v2) hold simul-

taneously which is equivalent to

M(v1)−M(v0) ≤ 0 and M(v2)−M(v0) ≤ 0.

Then, multiplying by positive constants and adding the inequalities above, we get

d(v0, v2)(M(v1)−M(v0)) + d(v0, v1)(M(v2)−M(v0)) ≤ 0

which is impossible by Corollary 5.3. This contradiction finishes the proof.
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The following series of corollaries together with Proposition 5.8 are featuring some

theoretical applications of our theory to trees, free groups, and a free product of

finitely generated groups.

Corollary 5.5. (Mean-set in a graph with a cut-point) Let v0 be a cut-point in

a graph Γ and Γ − {v0} a disjoint union of connected components Γ1, . . . ,Γk. Then

for any distribution µ on Γ there exists a unique i = 1, . . . , k such that E(µ) ⊆

V (Γi) ∪ {v0}.

Corollary 5.6. (Mean-set in a graph with several cut-points) Let v1, . . . , vn be

cut-points in a graph Γ and Γ−{v1, . . . , vn} a disjoint union of connected components

Γ1, . . . ,Γk. Then for any distribution µ on Γ there exists a unique i = 1, . . . , k such

that E(µ) ⊆ V (Γi) ∪ {v1, . . . , vn}.

Corollary 5.7. Let G1 and G2 be finitely generated groups and G = G1 ∗ G2 a free

product of G1 and G2. Then for any distribution µ on G the set E(µ) is a subset of

elements of the forms gG1 or gG2 for some element g ∈ G.

Note: every point in a Cayley graph of G = G1 ∗G2 is a cut point.

Proposition 5.8. Let Γ be a tree and µ a probability measure on V (Γ). Then |Eµ| ≤

2. Moreover, if E(µ) = {u, v} then u and v are adjacent in Γ.

Proof. Observe that any points v1, v0, v2 such that v0 is connected to v1 and v2 satisfy

the assumptions of Cut Point Lemma (Corollary 5.4). Assume that v0 ∈ E(µ). At

most one of the the neighbors of v0 can belong to E(µ), otherwise we would have 3

connected vertices with equal M values which contradicts Cut Point Lemma.

Corollary 5.9. Let µ be a probability distribution on a free group F . Then |Eµ| ≤ 2.

Remark 5.10. (On interpretation and benefits of Cut Point Lemma.) Let

us make a brief and informal remark on how the Cut Point Lemma (Corollary 5.4),
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proved above, is useful. When we are dealing with any graph Γ satisfying conditions

of Cut Point Lemma in general, and with any tree, in particular, we can see that

existence of proper local minima of the weight function M in such Γ is impossible

since M cannot have a jump of values around cut points. As we shall see in the

Section 5.2, it makes the computation of mean-sets for trees manageable – we can

easily find the global minimum without taking risks of being “lost” in the vicinity of

just a local one.

In general, the number of central points is unlimited. To see this, consider the

complete graph Kn on n vertices and let µ be a uniform probability distribution

on V (Kn). Clearly E(µ) = V (Kn). Another example of the same type is a cyclic

graph Cn on n vertices with a uniform probability distribution µ on V (Cn). Clearly

E(µ) = V (Cn).

In all previous examples, the centers in a graph formed a connected subgraph. This

is not always the case. See for instance the graph in Figure 5.4. In this figure, each

vertex marked by black has probability 0.1, others have probability 0. Gray vertices

are centers. One can construct similar graphs with as many centers as required and

Figure 5.4: Another example of configuration of centers (gray vertices)

property that distances between centers are very large (as large as one wishes).
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5.2 Computation of mean-sets

In this section we discuss computational issues that we face in practice. Let G be

a group and {ξ}ni=1 a sequence of random i.i.d. elements taking values in G such

that the weight function is totally defined. One of the technical difficulties is that,

unlike the average value Sn/n for real-valued random variables, the sample mean-set

Sn ≡ S(ξ1, . . . , ξn) is hard to compute. In other words, our sample mean-set might not

be efficiently computable in general. Several problems arise when trying to compute

Sn:

• Straightforward computation of the set {M(g) | g ∈ G} requires O(|G|2) steps.

This is computationally infeasible for large groups G, and simply impossible for

infinite groups. Hence we might want to reduce the search of a minimum to

some small part of G.

• There exist infinite groups in which the distance function | · | is very difficult to

compute. The braid group B∞ is one of such groups. The computation of the

distance function for B∞ is an NP-hard problem, see (31). Such groups require

special treatment.

Moreover, there exist infinite groups for which the distance function | · | is not

computable. We omit consideration of such groups.

To deal with the first problem, we can devise a heuristic procedure. As we show below,

if the function M satisfies certain local monotonicity properties, then our procedure

achieves good results. The following algorithm is a simple direct descent heuristic

which can be used to compute the minimum of a function f .

Algorithm 5.11. (Direct Descend Heuristic)

Input: A graph Γ and a function f : V (Γ)→ R.

Output: A vertex v that locally minimizes f on Γ.

Computations:
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A. Choose a random v ∈ V (Γ).

B. If v has no adjacent vertex with smaller value of f , then output current v.

C. Otherwise put v ← u where u is any adjacent vertex such that f(u) < f(v). Go

to step B.

Note: As any other direct descend heuristic method, Algorithm 5.11 might not work

if the function f has local minima.

In the Lemma 5.12 below, we prove that if a function f satisfies certain local

properties, then we achieve good results; namely, the proposed algorithm finds the

vertex that minimizes f on Γ exactly. Furthermore, we demonstrate that our weight

function M(·) meets the required properties and prove that the Direct Descend al-

gorithm finds a central point for trees, and, hence, for free groups. These tasks are

carried out in the rest of this section, in Lemma 5.13 and Theorem 5.14 below.

We say that a function f : V (Γ) → R is locally decreasing if at any vertex

v ∈ V (Γ), such that f does not have minimum at v, there exists an adjacent vertex

u such that f(u) < f(v). We say that a function f is locally finite if for any a, b ∈ R

the set f(V (Γ)) ∩ [a, b] is finite.

Lemma 5.12. Let Γ be a graph and f : V (Γ)→ R a real-valued function that attains

its minimum on Γ. If f is locally decreasing and locally finite, then Algorithm 5.11

for Γ and f finds the vertex that minimizes f on Γ.

Proof. Let v ∈ V (Γ) be a random vertex chosen by Algorithm 5.11 at Step A. If v

is a minimum of f , then the algorithm stops with the correct answer v. Otherwise,

the algorithm, at Step C, chooses any vertex u adjacent to v such that f(u) < f(v).

Such a vertex u exists, since the function f is locally decreasing by assumption. Next,

Algorithm 5.11 performs the same steps for u. Essentially, it produces a succession

of vertices v0, v1, v2, . . . such that v0 = v and, for every i = 0, 1, 2, . . ., the vertices

vi, vi+1 are adjacent in Γ with the property f(vi) > f(vi+1).
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We claim that the constructed succession cannot be infinite. Assume, to the

contrary, that the chain v0, v1, v2, . . . is infinite. Let m be the minimal value of f

on Γ. Then f(V (Γ)) ∩ [m, f(v)] is infinite, and, therefore, f cannot be locally finite.

Contradiction. Hence the sequence is finite, and the last vertex minimizes f on V (Γ).

Lemma 5.13. Let µ be a distribution on a locally finite graph Γ such that a weight

function M(·) is defined. Then the function M is locally finite on Γ.

Proof. Since the functionM(·) is non-negative, it suffices to prove that for any b ∈ R+

the set M(V (Γ)) ∩ [0, b] is finite. Let v ∈ E(ξ), i.e., v minimizes the value of M(·),

and choose r ∈ N such that

0 <
1

2
M(v) ≤

∑

i∈Bv(r)

d2(v, i)µ(i),

as in the proof of Lemma 3.5. Choose an arbitrary value b ∈ R+ and put α =

max{2, b/M(v)}. Let u ∈ Γ\Bv((α+2)r). If i ∈ Bv(r), we have d(u, i) ≥ (α+2)r−r =

(α + 1)r. Then

M(u) =
∑

i∈V (Γ)

d2(u, i)µ(i) =
∑

i∈Bv(r)

d2(u, i)µ(i) +
∑

i6∈Bv(r)

d2(u, i)µ(i) ≥

≥
∑

i∈Bv(r)

[(α + 1)r]2µ(i) ≥ (α + 1)2
∑

i∈Bv(r)

d2(v, i)µ(i) ≥ (α + 1)21

2
M(v) >

>
(α + 1)2

α + 1
M(v) = (α+ 1)M(v).

In the last inequality we used the fact that 1
2
M(v) ≥ 1

α
M(v) > M(v)

α+1
, by the choice of

α. Thus,

M(u) > (α+ 1)M(v) > αM(v) > b,

by the choice of α again. It means that for vertices u outside of the ball Bv((α+2)r),

we have M(u) > b. Therefore, M(V (Γ)) ∩ [0, b] ⊂ M(Bv((α + 2)r)), and the set

Bv((α + 2)r) is finite.
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Theorem 5.14. Let µ be a distribution on a locally finite tree T such that a function

M is totally defined. Then Algorithm 5.11 for T and M finds a central point (mean-

set) of µ on T .

Proof. Follows from Lemmata 5.12, 5.4, 5.13, and 3.5. More precisely, to prove the

theorem, we need to show that the assumptions of Lemma 5.12 are met for the weight

functionM(·). Indeed, M(·) attains its minimum by Lemma 3.5, and it is locally finite

by Lemma 5.13. Finally, it is locally decreasing by the Cut Point Lemma 5.4, because

the Cut Point Lemma implies the non-existence of local minimum of M(·) for trees,

as discussed in the Remark 5.10.

Unfortunately, the function M is not always locally decreasing, as shown in Fig-

ure 5.5, and a local minimum, computed by Algorithm 5.11, is not always a global

minimum. In Figure 5.5, each vertex marked by black has probability 0.5, others have

probability 0. The gray vertex v1 is the center of (Γ, µ) and M(v3) = M(v5) = 5,

M(v4) = 4. Hence the vertex v4 is a local minimum of this graph, but is not a center

(global minimum).

v1
v2v3

v4

v5 v6

Figure 5.5: Graph with local minimum of M , which is not a center (global minimum)

5.3 Experiments

In this section we demonstrate how the technique of computing mean-sets, employing

the Direct Descend Algorithm 5.11 described in section 5.2, works in practice and

produces results supporting our SLLN for graphs and groups. More precisely, we

arrange series of experiments in which we compute the sample center-sets of randomly
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generated samples of n random elements and observe a universal phenomenon: the

greater the sample size n, the closer the sample mean gets to the actual mean of a

given distribution. In particular, we experiment with two classes of groups, free and

free abelian, in which the length function is computable. All experiments were done

using the CRAG software package, see (9).

5.3.1 Free group results

One of the most frequently used distributions on the free groups is a uniform distri-

bution µL on a sphere of radius L defined as

SL := {w ∈ F (X) | |w| = L}.

For example, Figure 2.1 in Section 2.3 illustrates a sphere of radius 2, i.e., S2 in F2.

Clearly, SL is finite. Therefore, we can easily define a uniform distribution µL on it

as follows

µL(w) =







1
|SL|

if |w| = L;

0 otherwise.

The reader interested in the question of defining probabilities on groups can find

several approaches to this issue in (7). One of the properties of µL is that its center-

set is just the trivial element of F (X), which is usually denoted by ε. Observe also

that the distance of any element of F (X) to the center-set is just the length of this

element (or length of the corresponding word, basically).

Tables 5.1, 5.2, and 5.3 below contain the results of experiments for the distribu-

tions µ5, µ10, µ20, µ50 on the groups F2, F4, and F6.

The main parameters in our experiments are

the rank r of the free group, the length L, and the sample size n.

For every particular triple of parameter values (r, L, n), we perform series of 1000

experiments to which we refer (in what follows), somewhat loosely, as series (r, L, n).
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Each cell in the tables below corresponds to a certain series of experiments with

parameters (r, L, n). In each experiment from the series (r, L, n), we randomly gener-

ate n words w1, . . . , wn, according to distribution µL, compute the sample mean-set

Sn = Sn(w1, . . . , wn) for this sample, and compute the displacement of the actual cen-

ter ε of µL from Sn. The set Sn is computed using Algorithm 5.11 which, according

to Theorem 5.14, always produces correct answers for free groups. Every cell in the

tables below contains a pair of numbers (d,N); it means that in N experiments out

of 1000 the displacement from the real mean was d.

One can clearly see from the tables that the bigger the sample size n is, the closer

we get to the actual mean value, i.e., we get an obvious convergence of the empirical

(sample) mean to the theoretical (population) mean-set. Another interesting obser-

vation that one can extract from the tables is that as the rank of the free group grows,

we get better and faster convergence. As we can see, for F2, sample size of n = 20

gives us a pretty good result. For F4, the convergence is much better though, since

starting with a sample size of n = 18, we have a perfect agreement of the sample

mean-set with the actual one. For F6, only n = 14 is enough. Intuitively, one may

think about this outcome as follows: the greater the rank is, the more branching in

the corresponding Cayley graph we have, which means that more elements are con-

centrated in a ball, and the bigger growth (in that sense) causes the better and faster

convergence.

At the end, the important conclusion is that these experimental results support

the strong law of large numbers for graphs and groups proved in Chapter 3, Section

3.1, and we can say that the law actually works on practice.

5.3.2 Free abelian group results

In this section we describe our experiments with free abelian groups An. As we

mentioned in Chapter 2, Section 2.4, any free abelian group of rank n is isomorphic

to a direct power of the infinite cyclic group Z. Let L be a positive integer. We
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L\n 4 6 8 10 12 14 16 18 20

µ5 (0,792) (0,854) (0,891) (0,927) (0,950) (0,962) (0,970) (0,968) (0,992)

(1,183) (1,138) (1,109) (1,73) (1,50) (1,38) (1,30) (1,32) (1,8)

(2,25) (2,8)

µ10 (0,771) (0,834) (0,902) (0,932) (0,941) (0,956) (0,966) (0,987) (0,987)

(1,197) (1,158) (1,97) (1,68) (1,59) (1,44) (1,34) (1,13) (1,13)

(2,28) (2,8) (2,1)

(3,4)

µ20 (0,789) (0,859) (0,871) (0,917) (0,936) (0,961) (0,963) (0,977) (0,984)

(1,185) (1,132) (1,127) (1,82) (1,64) (1,39) (1,37) (1,23) (1,16)

(2,21) (2,9) (2,2) (2,1)

(3,5)

µ50 (0,790) (0,854) (0,906) (0,921) (0,951) (0,963) (0,965) (0,981) (0,979)

(1,180) (1,140) (1,93) (1,79) (1,49) (1,37) (1,35) (1,19) (1,21)

(2,27) (2,6) (2,1)

(3,3)

Table 5.1: The results of experiment for F2.

define a system of probability measures on An as follows. Let µL to be the uniform

distribution on a finite set [−L,L]n. An important property of µL is that its center

is a singleton set containing the trivial element only.

Tables 5.4, 5.5, and 5.6 below contain the results of experiments for the distributions

µ5, µ10, µ20 on the group A2 and A4.

The main parameters in our experiments are

the rank r of the free group, the length L, and the sample size n.

For every particular triple of parameter values (r, L, n), we perform series of 1000

experiments to which we refer as series (r, L, n), as in the case of free groups. Again,

each cell in the tables below corresponds to a certain series of experiments with pa-

rameters (r, L, n). In each experiment from the series (r, L, n), we randomly generate
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L\n 4 6 8 10 12 14 16 18 20

µ5 (0,943) (0,978) (0,988) (0,999) (0,998) (0,1000) (0,999) (0,1000) (0,1000)

(1,55) (1,22) (1,12) (1,1) (1,2) (1,1)

(2,2)

µ10 (0,930) (0,976) (0,993) (0,994) (0,999) (0,1000) (0,1000) (0,1000) (0,1000)

(1,69) (1,24) (1,7) (1,6) (1,1)

(2,1)

µ20 (0,940) (0,975) (0,985) (0,991) (0,1000) (0,999) (0,999) (0,1000) (0,1000)

(1,58) (1,25) (1,15) (1,9) (1,1) (1,1)

(2,2)

µ50 (0,928) (0,984) (0,991) (0,998) (0,997) (0,998) (0,999) (0,1000) (0,1000)

(1,71) (1,16) (1,9) (1,2) (1,3) (1,2) (1,1)

(2,1)

Table 5.2: The results of experiment for F4.

n words w1, . . . , wn, according to distribution µL, compute the sample mean-set Sn

for this sample, and compute the displacement of the actual center ε of µL from Sn.

Every cell in the tables below contains a pair of numbers (d,N), meaning that in

N experiments out of 1000 the displacement from the real mean was d. The set Sn

is computed using Algorithm 5.11. We observe, from the results of the experiments,

that this algorithm does not guarantee us the optimal solution for the case of abelian

groups. Nevertheless, we can still observe the convergence, though at a much slower

rate. The reason is that in the abelian case the elements are more connected; we have

more geodesics and less growth (number of elements in a ball) and, as a result, slower

convergence.
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L\n 2 4 6 8 10 12 14 16 18

µ5 (0,932) (0,978) (0,991) (0,998) (0,999) (0,1000) (0,1000) (0,1000) (0,1000)

(1,63) (1,22) (1,9) (1,2) (1,1)

(2,5)

µ10 (0,903) (0,971) (0,996) (0,999) (0,999) (0,1000) (0,1000) (0,1000) (0,1000)

(1,87) (1,29) (1,4) (1,1) (1,1)

(2,9)

(3,1)

µ20 (0,915) (0,972) (0,991) (0,1000) (0,1000) (0,1000) (0,1000) (0,1000) (0,1000)

(1,76) (1,27) (1,9)

(2,8) (2,1)

(3,1)

µ50 (0,894) (0,980) (0,990) (0,997) (0,1000) (0,1000) (0,1000) (0,1000) (0,1000)

(1,95) (1,20) (1,10) (1,3)

(2,9)

(3,2)

Table 5.3: The results of experiment for F6.
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L\n 10 30 50 100 200

µ5 (0,104) (0,273) (0,390) (0,640) (0,848)

(1,280) (1,438) (1,470) (1,308) (1,151)

(2,306) (2,266) (2,138) (2,52) (2,1)

(3,212) (3,20) (3,2)

(4,76) (4,3)

(5,20)

(6,1)

(7,1)

µ10 (0,42) (0,77) (0,127) (0,250) (0,433)

(1,105) (1,240) (1,317) (1,471) (1,445)

(2,155) (2,325) (2,350) (2,244) (2,121)

(3,174) (3,227) (3,164) (3,33) (3,1)

(4,180) (4,82) (4,36) (4,2)

(5,138) (5,39) (5,6)

(6,96) (6,9)

(7,58) (8,1)

(8,26)

(9,18)

(10,4)

(11,3)

(12,1)

µ20 (0,7) (0,23) (0,35) (0,84) (0,144)

(1,25) (1,95) (1,122) (1,231) (1,351)

(2,47) (2,140) (2,195) (2,313) (2,321)

(3,74) (3,173) (3,233) (3,207) (3,145)

(4,100) (4,166) (4,170) (4,109) (4,36)

(5,94) (5,147) (5,126) (5,39) (5,1)

(6,106) (6,95) (6,56) (6,16) (6,2)

(7,91) (7,64) (7,45) (7,1)

(8,83) (8,55) (8,12)

(9,100) (9,20) (9,5)

(10,67) (10,12) (11,1)

(11,61) (11,5)

Table 5.4: The results of experiment for A2 - cut to fit.
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L\n 10 30 50 100 200

µ5 (0,4) (0,43) (0,107) (0,280) (0,609)

(1,34) (1,166) (1,268) (1,409) (1,320)

(2,107) (2,309) (2,373) (2,230) (2,68)

(3,190) (3,285) (3,198) (3,73) (3,3)

(4,209) (4,138) (4,49) (4,8)

(5,201) (5,55) (5,4)

(6,128) (6,2) (6,1)

(7,66) (7,2)

(8,39)

(9,15)

(10,4)

(11,2)

(12,1)

µ10 (0,1) (0,2) (0,10) (0,31) (0,112)

(1,3) (1,25) (1,48) (1,154) (1,317)

(2,10) (2,71) (2,155) (2,299) (2,361)

(3,26) (3,147) (3,212) (3,269) (3,171)

(4,38) (4,188) (4,261) (4,179) (4,37)

(5,92) (5,209) (5,163) (5,53) (5,2)

(6,106) (6,165) (6,98) (6,14)

(7,106) (7,107) (7,39) (7,1)

(8,124) (8,43) (8,11)

(9,121) (9,23) (9,3)

(10,97) (10,15)

(11,83) (11,3)

(12,69) (12,1)

(13,31) (13,1)

(14,38)

(15,20)

(16,15)

(17,9)

(18,10)

Table 5.5: The results of experiment for A4.
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L\n 10 30 50 100 200

µ20 (2,1) (1,3) (0,1) (0,1) (0,14)

(3,1) (2,6) (1,6) (1,20) (1,70)

(4,4) (3,14) (2,20) (2,59) (2,154)

(5,5) (4,39) (3,43) (3,126) (3,223)

(6,17) (5,55) (4,77) (4,168) (4,245)

(7,19) (6,67) (5,110) (5,173) (5,151)

(8,26) (7,115) (6,131) (6,160) (6,83)

(9,28) (8,107) (7,148) (7,124) (7,47)

(10,45) (9,100) (8,137) (8,73) (8,9)

(11,22) (10,113) (9,97) (9,59) (9,4)

(12,54) (11,77) (10,63) (10,18)

(13,58) (12,89) (11,67) (11,11)

(14,84) (13,64) (12,50) (12,5)

(15,65) (14,51) (13,20) (13,1)

(16,62) (15,26) (14,16) (14,1)

(17,67) (16,27) (15,6) (15,1)

(18,52) (17,23) (16,5)

(19,61) (18,12) (18,1)

(20,55) (19,3) (19,2)

(21,36) (20,4)

(22,37) (22,3)

(23,38) (24,2)

(24,33)

(25,30)

(26,24)

(27,15)

(28,23)

(29,13)

(30,5)

(31,7)

Table 5.6: The results of experiment for A4 - continue. Cut to fit.
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Chapter 6

Refinements. Central order on

V (Γ).

6.1 Medians as mean-sets of class one

As indicated in Chapter 3, Section 3.1.2, it is possible to consider center-sets of class

c for graph-valued random elements by defining

E(c)(ξ) := {v ∈ V (Γ) |M (c)(v) ≤M (c)(u), ∀u ∈ V (Γ)}.

Even though the weight function M (c) and the mean-set E(c) of class one do not

suit our purposes in working with centers of groups and graphs (see Section 3.1.2 for

more details), it turns out that M (1) and E(1) find their own interpretation related

to another useful measure of central tendency in classical probability theory and

statistics, namely, the median, as we shall see below.

The goal of this section is to define a notion of median set for graphs and to bring

forth its connection with M (1) and E(1). Recall that, according to classical theory, a

median of a probability distribution µ on the real line R is a point M satisfying

µ((−∞,M]) ≥ 1/2 and µ([M,∞)) ≥ 1/2,
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i.e., M can be viewed as a midpoint of µ. Note that according to this definition, µ

may not have a unique median. We denote the set of medians by M. Observe also

that the set M is connected, i.e., it is always an interval.

Proposition 6.1 (Connection of M and E(1)(·))). Let ξ : Ω→ Z be an integer-valued

random variable with the classical median set M. Assume that M (1)(·) is defined on

Z. Then we have E(1)(ξ) = M ∩ Z.

Proof. We can naturally continue the function M (1)(·) from Z to R by putting

M (1)(v) =
∑

n∈Z
|v − n|µ(n) for every v ∈ R. The resulting function M (1) : R →

[0,∞) is piecewise linear with corners at {(n,M (1)(n)) | n ∈ Z}. Furthermore, for

every v ∈ Z,

M (1)(v + 1)−M (1)(v) =
∑

n≤v

µ(n)−
∑

n≥v+1

µ(n).

Therefore, M (1)(v + 1)−M (1)(v) changes sign at the same point where
∑

n≤v µ(n)−
∑

n≥v+1 µ(n) changes sign and

v ∈ E(1)(ξ)⇔ µ((−∞, v − 1])− µ([v,∞)) ≤ 0 and µ((−∞, v])− µ([v + 1,∞)) ≥ 0.

The later is clearly equivalent to conditions that µ((−∞, v]) ≥ 1/2 and µ([v,∞)) ≥

1/2. Therefore, it follows from definitions of E(1)(ξ) and median-set M that E(1)(ξ) =

M ∩ Z, which is not empty.

Observe that classical median M is defined for any distribution µ on R, but the

function M (1)(·) is not always defined. We need to fix this inconsistency in order to

continue conveniently work with medians further. The following lemma helps us to

tackle this problem.

Lemma 6.2. For any u, v ∈ V (Γ) the limit

lim
n→∞

n
∑

i=1

(d(u, vi)− d(v, vi))µ(vi)

exists. Moreover, such limit does not depend on the order of vertices vi.
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Proof. Let d = d(u, v). Then by the triangle inequality, for any vi ∈ Γ, both d(u, vi)−

d(v, vi) ≤ d and d(v, vi) − d(u, vi) ≤ d hold, and, therefore, |d(u, vi) − d(v, vi)| ≤

d. Thus,
∑∞

i=1 |d(u, vi) − d(v, vi)|µ(vi) ≤ d < ∞, and the sum
∑∞

i=1(d(u, vi) −

d(v, vi))µ(vi) converges absolutely. Hence the result.

Definition 6.3. Define a function ρ(1) : Γ × Γ → N to be equal to
∑

s∈Γ(d(u, s) −

d(v, s))µ(s), for u, v ∈ Γ.

Lemma 6.4. Let ξ : Ω → Z be an integer-valued random variable such that M (1)(·)

is defined on Z. Then for every u, v ∈ Z, ρ(1)(u, v) = M (1)(u)−M (1)(v).

Proof. Obvious.

It follows from Lemma 6.2 that for any u, v ∈ Γ the value

ρ(1)(u, v) =
∑

s∈Γ

(

d(u, s)− d(v, s)
)

µ(s)

is correctly defined. Moreover, we can rewrite it in the following, more insightful in

some sense, way

ρ(1)(u, v) =

d(u,v)
∑

δ=−d(u,v)

δ · µ
(

s ∈ V (Γ) | d(u, s)− d(v, s) = δ
)

.

The function ρ(1) allows us to introduce a notion of order on the vertices of the graph

Γ that will eliminate the problem of dependence of medians on finiteness of M (1).

Definition 6.5. We define a binary relation <(1) on the vertices of Γ by

u <(1) v ⇔ ρ(1)(u, v) < 0.

It is easy to check that the above relation defines a certain partial order on Γ;

this is not a partial order in classical sense since it is not anti-symmetric (for more

on binary relations see (14)).

Proposition 6.6. Let µ be a distribution on a locally finite graph Γ. The binary

relation <(1) is
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• (anti-reflexive), i.e., for no v ∈ V (Γ), v <(1) v;

• (neither anti-symmetric nor symmetric), i.e., for no u, v ∈ V (Γ), v <(1) u and

u <(1) v;

• (transitive), i.e., for every u, v, w ∈ V (Γ), if u <(1) v and v <(1) w then u <(1) w.

Proof. Indeed, for every v ∈ Γ, v 6<(1) v since ρ(1)(v, v) = 0. For every u, v, inequalities

ρ(1)(u, v) < 0 and ρ(1)(u, v) > 0 cannot hold simultaneously and hence at most one of

v <(1) u and u <(1) v are true.

Finally, assume that for some u, v, w ∈ Γ, u <(1) v and v <(1) w. This means that

ρ(1)(u, v) < 0 and ρ(1)(v, w) < 0. Notice that for every s ∈ Γ, d(u, vi) − d(w, vi) =

[d(u, vi)−d(v, vi)]+[d(v, vi)−d(w, vi)] and hence ρ(1)(u, w) = ρ(1)(u, v)+ρ(1)(v, w) < 0,

therefore u <(1) w.

Now, we can see the mean-set E(1)(µ) of class one in a totally new light employing

the binary relation above and define a median-set in graph Γ.

Definition 6.7. Let E(1)(µ) = {v ∈ Γ | u 6<(1) v, ∀u ∈ Γ}. The set E(1)(µ) is called

the median-set in Γ relative to µ.

It turns out that the set E(1)(µ) is always defined, i.e., it is finite and non-empty

(see Proposition 6.8 below). It is important to note that the median-set E(1)µ is

defined even if the function M (1)(·) takes infinite values, in contrast with our mean-

sets on graphs which depend totally on the finiteness of M (2)(·).

Proposition 6.8. Let µ be a probability measure on a locally finite graph Γ. Then

the set E(1)(µ) is finite and non-empty.

Proof. Fix any vertex v ∈ Γ and choose r such that µ(Bv(r)) ≥ 0.99. Consider a

vertex u ∈ Γ \Bv(3r) and put

α := d(v, u)/r.
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Then

ρ(1)(v, u) =
∑

s∈Γ

(

d(v, s)− d(u, s)
)

µ(s)

=
∑

s∈Bv(r)

(

d(v, s)− d(u, s)
)

µ(s) +
∑

s∈Γ\Bv(r)

(

d(v, s)− d(u, s)
)

µ(s) ≤

which, using the observation that, for s ∈ Bv(r), d(v, s) − d(u, s) ≤ r − (αr − r) =

−r(α−2) for the first sum, and employing the triangle inequality for the second sum,

can be bounded by

≤ −(α − 2)rµ(Bv(r)) + αrµ(Γ \Bv(r)) ≤ −(α− 2)r · 0.99 + αr · 0.01

= (1.98− 0.98α)r,

and the last bound is negative since α ≥ 3. Hence, for every u ∈ Γ \Bv(3r), we have

v <(1) u. Thus, E(1)(µ) ⊆ Bv(3r). Since the set Bv(3r) is finite, it contains finitely

many least elements.

Remark 6.9 (An Optimality Property). Recall that in classical probability theory,

the median possesses an optimality property asserting that the median is a central

point minimizing the average of the absolute deviations; namely, we call median of

the distribution of the real-valued random variable X a value c that minimizes the

classical expectation E(|X − c|). Clearly, this is in agreement with our definition,

since our generalized median set minimizes M (1)(v) =
∑

u∈Γ d(v, u)µ(u). In the sense

of Lp-spaces, our median sets correspond to L1 settings, as well as the classical ones.

6.2 Expectation when M (1) is defined

Recall that our Definition 3.1 of the mean-set E for locally finite graphs, given in

Chapter 3, Section 3.1, is closely related to the classical definition of expectation on

the real line R (see Proposition 3.9 for details). It turns out, though, that Definition

3.1 of a mean-set generalized to graphs and groups is weaker when applied to R, in
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the sense that the classical expectation E may be finite, while the generalized one

may not be defined, see Lemma 6.10 below. The goals of this section is to fix this

flaw and consider a possibility of even more general definition for mean-sets on graphs

and groups.

6.2.1 Central order on Γ and general E(ξ)

We know that the classical mean of a distribution on R coincides with its first moment.

On the other hand, if we look at R as a graph and apply Definition 3.1 of a mean-

set for graphs, we see that the existence of the second moment is necessary for the

mean-set to be defined, as the following lemma shows.

Lemma 6.10. Let Γ be a graph with vertices corresponding to integer points on the

real line R and µ a probability measure on Γ. Then E(µ) ≡ E(2)(µ) is defined if and

only if the second classical moment for µ is finite.

Proof. Recall that E ≡ E(2) is defined if and only if the function M ≡ M (2) is finite

for every vertex in the graph Γ, and M(·), as defined in (3.2), is exactly the second

classical moment of µ.

This means, in particular, that when applied to R, the classical mean E may be

finite, while the generalized one may not be defined. We eradicate this problem by

introducing a binary relation that gives us a way to compare elements (vertices) of

Γ. This method may be employed in a more general definition of E(c) on graphs,

independently of whether a weight function M (c) is finite or not.

Let µ be a probability measure on a locally finite connected graph Γ, and u, v two

elements of V (Γ). The values M (c)(u) and M (c)(v) can be infinite, but it is possible,

sometimes, to compare these values in the following sense.
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Definition 6.11. Let µ be a probability measure on a locally finite connected graph

Γ, and u, v ∈ V (Γ). Let

ρ(c)(v, u) =
∑

s∈V (Γ)

(

dc(v, s)− dc(u, s)
)

µ(s), (6.1)

which can be a finite or an infinite value, or it can be undefined. We say that v is more

c-central than u if the above sum equals to a finite negative value, i.e., ρ(c)(v, u) < 0,

or properly diverges to negative infinity, i.e., ρ(c)(v, u) = −∞.

In this case, we write v <(c) u and call this binary relation the central order.

Proposition 6.12. The relation <(c) is:

• anti-reflexive, i.e., there is no v ∈ V (Γ) such that v <(c) v;

• transitive, i.e., for any t, u, v ∈ V (Γ),

t <(c) u, u <(c) v ⇒ t <(c) v;

• neither anti-symmetric nor symmetric, i.e., there is no pair u, v ∈ V (Γ) such

that u <(c) v and v <(c) u;

Moreover, ρ(c)(·, ·) has the following property

ρ(c)(u, v) = ρ(c)(u, w) + ρ(c)(w, v), ∀ u, w, v ∈ V (Γ).

Proof. Straightforward verification.

For more insights about binary relations and their properties see (14). We would

like to emphasize that our central order represents a partial order relation on V (Γ)

(not classical one, because it is not anti-symmetric). The advantage of this new

development is that it allows us to weaken the assumptions in the major theorems

in the sequel; for instance, instead of having M ≡ M (2) < ∞, we can assume just

M (1) <∞ in the Strong Law of Large Numbers for graphs (groups). Next proposition

is the first step in this direction.
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Proposition 6.13. Let µ be a probability measure on a locally finite connected graph

Γ. Then for every c ∈ N the following are equivalent:

• M (c−1)(·) is defined;

• ρc : V (Γ)× V (Γ)→ R is well-defined, i.e., |ρc(u, v)| <∞ for any u, v ∈ Γ.

Proof. Assume that M (c−1) is defined on V (Γ). Let v1, v2 ∈ V (Γ) and d = d(v1, v2).

For every i = −d, . . . , d, define a set

Si = {s ∈ V (Γ) | d(v1, s)− d(v2, s) = i}

and note that V (Γ) = S−d ⊔ . . . ⊔ Sd, i.e., we have a partition of V (Γ). Using this

partition and an elementary formula

ac − bc = (a− b)
c−1
∑

j=0

ac−j−1bj , (6.2)

we can write

ρ(c)(v1, v2) =
∑

s∈V (Γ)

(

dc(v1, s)− d
c(v2, s)

)

µ(s)

=
d
∑

i=−d

(

i
∑

s∈Si

( c−1
∑

j=0

dj(v1, s)d
c−j−1(v2, s)µ(s)

)

)

=
−1
∑

i=−d

(

i
∑

s∈Si

( c−1
∑

j=0

dj(v1, s)d
c−j−1(v2, s)µ(s)

)

)

+
d
∑

i=1

(

i
∑

s∈Si

( c−1
∑

j=0

dj(v1, s)d
c−j−1(v2, s)µ(s)

)

)

,

and observe that, depending on the sign of i,

i
∑

s∈Si

( c−1
∑

j=0

dj(v1, s)d
c−j−1(v2, s)µ(s)

)

≤ ic
∑

s∈Si

dc−1(v2, s)µ(s), if i < 0

i
∑

s∈Si

( c−1
∑

j=0

dj(v1, s)d
c−j−1(v2, s)µ(s)

)

≤ ic
∑

s∈Si

dc−1(v1, s)µ(s), if i > 0.

When doing the above estimate, we just observed that, when i < 0, we have d(v1, s) <

d(v2, s), and, when i > 0, we have d(v1, s) > d(v2, s), which is clear from the definition

of the sets Si, i = −d, . . . , d. Now, since M (c−1) is defined for v1 and v2, it follows
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that the sum
∑

s∈Si
dc−1(v2, s)µ(s), as well as the sum

∑

s∈Si
dc−1(v1, s)µ(s), above is

finite. Thus, the original infinite sum was broken into the finite sum of convergent

sums. Therefore, the whole series converges to some real value.

Conversely, assume that ρc is a well defined function from V (Γ)×V (Γ) to R. Let

v be an arbitrary, but fixed, vertex in Γ and {v1, . . . , vn} the set of vertices adjacent

to v in Γ. For every vertex vi, i = 1, . . . , n, define a set Ti = {s ∈ V (Γ) | d(vi, s) =

d(v, s)− 1}. Since for every i, the value ρ(c)(v, vi) is finite, it follows that

∞ >
∑

s∈Ti

(dc(v, s)− dc(vi, s))µ(s) =
∑

s∈Ti

( c−1
∑

j=0

dj(vi, s)d
c−j−1(v, s)µ(s)

)

≥
∑

s∈Ti

dc−1(v, s)µ(s),

where we leave only the term corresponding to j = 0 and ignore the rest in the

estimate above. Thus,
∑

s∈Ti
dc−1(v, s)µ(s) converges. Now, we notice that V (Γ) \

{v} = T1 ∪ . . . ∪ Tn and

M (c−1)(v) =
∑

s∈V (Γ)

dc−1(v, s)µ(s) =
∑

s∈V (Γ)\{v}

dc−1(v, s)µ(s)

≤
n
∑

i=1

(

∑

s∈Ti

dc−1(v, s)µ(s)

)

<∞,

since the last sum is a finite sum of absolutely converging series. Hence M (c−1) is

defined at v, and, therefore, on the whole V (Γ) (this can be seen easily, similar to the

Lemma 3.3, which was proved for the case c = 2).

Definition 6.14. Let (Ω,F ,P) be a probability space and ξ : Ω → V (Γ) a random

element. We define E(c)(ξ) to be the set of vertices in Γ which are minimal relative

to <(c), i.e.,

E(c)(ξ) = {v ∈ Γ |6 ∃u s.t. u <(c) v} = {v ∈ Γ |6 ∃u s.t. ρ(c)(u, v) < 0}.

We call this set the general mean-set of ξ of class c relative to the central order (or

simply mean-set relative to <(c), or just ρ-mean-set, for short).
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Note: If c = 2, then we do not specify the class of the mean-set: our expectation for

a graph- (group-)valued random element is denoted by E ≡ E(2) then.

Observe that this definition makes sense even if the weight functionM (c) is infinite.

If M (c) is finite, then this definition agrees with what we had before, namely, the

Definition 3.8 (as we shall see below in Corollary 6.18). If M (c) is infinite, we have to

show that our general mean-set relevant to the central order is finite and non-empty

under some conditions. This is the subject of the next theorem.

Theorem 6.15. Let µ be a distribution on a locally finite graph Γ. If M (c−1) is

defined on Γ then 1 ≤ |E(c)(µ)| <∞.

Proof. Assume that M (c−1)(·) is defined on Γ. By Proposition 6.13, this implies that

the function ρ(c)(·, ·) is well defined on V (Γ)×V (Γ). Fix an arbitrary v0 ∈ V (Γ) such

that µ(v0) > 0. Define a region S+
v0,v to be a set of vertices that are closer to v than

to v0, i.e.,

S+
v0,v = {s ∈ V (Γ) | d(v0, s) > d(v, s)}.

Then, for every v ∈ V (Γ), if d = d(v0, v), we have

ρ(c)(v0, v) =
∑

s∈V (Γ)

(dc(v0, s)− d
c(v, s))µ(s)

≤ −dcµ(v0) +
∑

s∈S+
v0,v

(dc(v0, s)− d
c(v, s))µ(s)

where we just disregarded the negative part of the sum, corresponding to the comple-

ment of S+
v0,v, and, continuing, with the help of formula (6.2) and triangle inequality,

≤ −dcµ(v0) + d
∑

s∈S+
v0,v

( c−1
∑

j=0

dj(v0, s)d
c−j−1(v, s)

)

µ(s)

≤ −dcµ(v0) + dc
∑

s∈S+
v0,u

dc−1(v0, s)µ(s),
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employing the definition of the set S+
v0,v in the last inequality. Observe that since

M (c−1)(v0) <∞ and S+
v0,v ⊆ V (Γ) \Bv0

(d/2), it follows that

∑

s∈S+
v0,v

dc−1(v0, s)µ(s) ≤
∑

s∈V (Γ)\Bv0
(d/2)

dc−1(v0, s)µ(s)→ 0 as d→∞.

In particular, we can choose d ∈ N such that

∑

s∈V (Γ)\Bv0
(d/2)

dc−1(v0, s)µ(s) < dc−1c−1µ(v0)

or

dc
∑

s∈V (Γ)\Bv0
(d/2)

dc−1(v0, s)µ(s) < dcµ(v0)

Hence, for any v such that v ∈ V (Γ)\Bv0
(d), with d chosen above, we have ρ(c)(v0, v) <

0 and, therefore, v0 <(c) v. This means that E(c)(µ) ⊆ Bv0
(d) and |E(c)µ| < ∞.

Moreover, any order has a minimal element in a finite set and 1 ≤ |E(c)µ|.

Now we can state the following theorem without assumption of finiteness of M(·).

Proposition 6.16. (Equivalence of the general mean-set to the classical

mean) Let µ be a probability distribution on Z such that the classical expectation

m =
∑

i∈Z

iµ(i)

is finite. Then the mean-set E(µ) ≡ E(2)(µ), relative to the central order, is finite,

and for any v ∈ E(µ) we have |m− v| ≤ 1/2.

Proof. Note that the function ρ(2) can be naturally extended from Z× Z to R ×R.

For any v ∈ R we have

ρ(2)(v,m) =
∑

s∈Z

(d2(v, s)− d2(m, s))µ(s) =
∑

s∈Z

((v − s)2 − (m− s)2)µ(s)

= v2 −m
2 + 2(m− v)

∑

s∈Z

sµ(s) = v2 −m
2 + 2m2 − 2vm = (v −m)2.

Hence E(µ) contains integer values v that minimize the function (v−m)2. There are

2 cases possible:
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• If m = k + 1/2, where k ∈ Z, then E(µ) = {k, k + 1} and |m− k| = 1/2.

• If m is not of the form k+1/2 for any k ∈ Z, then |m−k| < 1/2 for some k ∈ Z

and E(µ) = {k}.

In both cases we see that the statement of the proposition holds.

Having proved the proposition above, we see that classical mean on the real line

and the generale mean-set relative to central order on Γ (applied to R), are either

both finite or both infinite.

Proposition 6.17. If M (c)(·) is totally defined on (Γ, µ), then for any v, u ∈ Γ,

ρ(c)(u, v) = M (c)(u)−M (c)(v)

and

u <(c) v ⇔ M (c)(u) < M (c)(v).

Proof. If M (c)(·) is defined on Γ for a given µ , then the series

∑

s∈V (Γ)

dc(v, s)µ(vi) and
∑

s∈V (Γ)

dc(u, s)µ(vi)

converge to M (c)(v) and M (c)(u) respectively. Therefore

ρ(c)(u, v) =
∑

s∈V (Γ)

(dc(u, s)− dc(v, s))µ(vi) = M (c)(u)−M (c)(v)

and u <(c) v if and only if ρ(c)(u, v) < 0 if and only if M (c)(u) < M (c)(v).

Corollary 6.18. If the weight function M (c) of class c is totally defined, then the

definitions 3.8 and 6.14 coincide.
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6.2.2 SLLN and other results for central order

Now we prove some of the main theorems for ρ-centers E(ξ) under the weaker as-

sumption of M (1) being finite instead of M ≡ M (2) <∞. Our first result corresponds

to Lemma 3.15.

Lemma 6.19. (Inclusion Lemma for the central order) Let Γ be a locally-

finite connected graph, {ξi}
∞
i=1, ξi : Ω → V (Γ), a sequence of i.i.d. Γ-valued random

elements defined on a given probability space (Ω,F ,P) and µ the probability measure

on Γ induced by ξ1. Suppose that the weight function of class one M (1) is totally

defined. Then

P

(

lim sup
n→∞

S(ξ1, . . . , ξn) ⊆ E(ξ1)

)

= 1.

Proof. The proof is basically the same as the proof of Lemma 3.15. We just note

that, corresponding to the sampling distribution µn of (3.1) and the sample weight

function Mn(·), we can define a sample central order function ρ
(2)
n (·, ·) with sample

central order at v, u ∈ V (Γ) as

ρ(2)
n (v, u) =

1

n

n
∑

i=1

(

d2(v, ξi)− d
2(u, ξi)

)

,

or, equivalently,

ρ(2)
n (v, u) =

∑

s∈V (Γ)

(

d2(v, s)− d2(u, s)
)

µn(s) = Mn(v)−Mn(u).

In addition, using the central order notation, we can rewrite the definition of the

sample mean-set; namely,

Sn = S(ξ1, . . . , ξn) =
{

v ∈ Γ | u 6<(c,µn) v, ∀ u ∈ Γ
}

,

where <(c,µn) indicates that we deal with sample central order in the binary relation

of central order.

Now we can supply the outline of the proof:

• The function ρ(2)(u, v) is the expectation of the function d2(u, ξ)− d2(v, ξ).
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• Hence, for every u, v ∈ V (Γ), P
(

ρ
(2)
n (u, v)→ ρ(2)(u, v)

)

= 1.

• Hence, P
(

ρ
(2)
n (u, v)→ ρ(2)(u, v), ∀u, v ∈ V (Γ)

)

= 1.

• Hence, if v /∈ E(ξ1), i.e., u <(2) v (ρ(2)(u, v) < 0) for some u, then, with prob-

ability 1, u <(2,µn) v in samples, i.e., ρ
(2)
n (u, v) < 0 eventually, and, therefore,

v 6∈ lim supn→∞ Sn.

Next is the analogue of Theorem 3.16 (SLLN), but with the assumption that M (1) <

∞, as opposed to the original requirement of the finiteness of M ≡M (2).

Theorem 6.20 (SLLN for graph-valued random elements with a singleton mean-set).

Let Γ be a locally-finite connected graph and {ξi}
∞
i=1 a sequence of i.i.d. Γ-valued

random elements ξi : Ω → V (Γ) such that M (1) is totally defined. If the general

mean-set relative to central order E(ξ1) = {v} for some v ∈ V (Γ), i.e., if E(ξ1) is a

singleton, then the following holds almost surely:

S(ξ1, . . . , ξn)−→E(ξ1) as n→∞.

Proof. We prove that for some vertex v0 ∈ V (Γ) there exists a sufficiently large

number m > 0 such that v ∈ Bv0
(m) and the following inequalities hold:

P(∃N s.t. ∀n > N ∀u ∈ Bv0
(m) \ {v}, ρ(2)

n (v, u) < 0) = 1. (6.3)

P(∃N s.t. ∀n > N ∀u ∈ V (Γ) \Bv0
(m), ρ(2)

n (v, u) < 0) = 1, (6.4)

The first equality obviously holds for any v0 ∈ V (Γ) and m because Bv0
(m) is a

finite set of points and using the strong law of large numbers applied to the se-

quence of i.i.d. random variables d2(u, ξi) − d
2(v, ξi), i = 1, 2, . . ., with ρ(2)(u, v) =

E
(

d2(u, ξ1)− d
2(v, ξ1)

)

, finitely many times we get the result.

To prove the second inequality, we fix any v0 ∈ V (Γ) such that µ(v0) 6= 0 and define

S+
v0,u = {s ∈ V (Γ) | d(v0, s) > d(u, s)}.
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With this in mind, for every u ∈ V (Γ), we have

ρ(2)(v0, u) =
∑

s∈V (Γ)

(

d2(v0, s)− d
2(u, s)

)

µ(s)

=
∑

s∈V (Γ)

(

d(v0, s)− d(u, s)
)(

d(v0, s) + d(u, s)
)

µ(s)

≤ −d2(v0, u)µ(v0) +
∑

s∈S+
v0,u

d(v0, u)
(

d(v0, s) + d(u, s)
)

µ(s),

≤ −d2(v0, u)µ(v0) + 2d(v0, u)
∑

s∈S+
v0,u

d(v0, s)µ(s),

where we used the triangle inequality and the definition of S+
v0,u to make our estimates.

Hence, for any u ∈ V (Γ) \ {v0}, we can make the following implication

∑

s∈S+
v0,u

d(v0, s)µ(s) <
1

2
d(v0, u)µ(v0) ⇒ ρ(2)(v0, u) < 0. (6.5)

Note that S+
v0,u ∩ Bv0

(d(v0, u)/2) = ∅ and, hence, S+
v0,u ⊆ V (Γ) \ Bv0

(d(v0, u)/2). It

implies that
∑

s∈S+
v0,u

d(v0, s)µ(s) ≤
∑

s∈V (Γ)\Bv0
(d(v0,u)/2)

d(v0, s)µ(s).

The sum
∑

s∈V (Γ)\Bv0
(d(v0,u)/2) d(v0, s)µn(s) is a part of the sum for M (1)(v0) that

converges by our assumption. Since M (1)(v0) is finite, it follows that for every δ > 0

there exists a number m such that for every u with d(u, v0) > m, the inequality

∑

s∈V (Γ)\Bv0
(m/2)

d(v0, s)µ(s) < δ (6.6)

holds (summation over the complements of the balls converges to zero, as in the proof

of Theorem 6.15). Choose m for δ := 1
8
µ(v0). It follows from (6.5) that for every

u ∈ V (Γ) \Bv0
(m), ρ(2)(v0, u) < 0.

Next, if we prove that

P



∃N s.t. ∀n > N ∀u ∈ V (Γ) \Bv0
(m),

∑

s∈S+
v0,u

d(v0, s)µn(s) <
1

2
mµn(v0)



 = 1,

(6.7)
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then, from (6.5), with µn instead of µ, we immediately get

P
(

∃N s.t. ∀n > N ∀u ∈ V (Γ) \Bv0
(m), ρ(2)

n (v0, u) < 0
)

= 1,

which implies (6.4) (using the fact that v is the singleton center-set and, hence,

ρ(2)(v, v0) ≤ 0 together with Proposition 6.12 and remembering that ρn → ρ almost

surely as n→∞).

Fix ε := 1
8
µ(v0). Since M (1)(v0) is an expectation of a real valued random variable

d(v0, ξ1), we know from the strong law of large numbers that for any ε

P(∃N ∀n > N, |M (1)
n (v0)−M

(1)(v0)| < ε) = 1. (6.8)

Moreover, it follows from the strong law of large numbers for relative frequencies that

P

(

∃N ∀n > N ∀s ∈ Bv0
(m), |µn(s)− µ(s)| <

ε

m|Bv0
(m)|

)

= 1. (6.9)

and, hence,

P



∃N ∀n > N,

∣

∣

∣

∣

∣

∣

∑

s∈Bv0
(m)

d(v0, s)µn(s)−
∑

s∈Bv0
(m)

d(v0, s)µ(s)

∣

∣

∣

∣

∣

∣

< ε



 = 1. (6.10)

Now, observe that

∑

s∈S+
v0,u

d(v0, s)µn(s) ≤M (1)
n (v0)−

∑

s∈Bv0
(m/2)

d(v0, s)µn(s)

=
(

M (1)
n (v0)−M

(1)(v0)
)

+



M (1)(v0)−
∑

s∈Bv0
(m/2)

d(v0, s)µ(s)



+

+





∑

s∈Bv0
(m/2)

d(v0, s)µ(s)−
∑

s∈Bv0
(m/2)

d(v0, s)µn(s)



 ≤ ε+ ε+ ε = 3ε,

where we used (6.8), (6.10), and observed that

M (1)(v0)−
∑

s∈Bv0
(m/2)

d(v0, s)µ(s) =
∑

s∈V (Γ)\Bv0
(m/2)

d(v0, s)µ(s) < δ =
1

8
µ(v0) = ε.



CHAPTER 6. REFINEMENTS. CENTRAL ORDER ON V (Γ). 104

It follows from (6.8), (6.6) and (6.10) that

P



∃N s.t. ∀n > N ∀u ∈ V (Γ) \Bv0
(m),

∑

s∈S+
v0,u

d(v0, s)µn(s) < 3ε



 = 1.

Now, as in (6.9) we have

P
(

∃N s.t. ∀n > N, |µn(v0)− µ(v0)| < ε
)

= 1.

Combining two previous equalities we get

P



∃N s.t. ∀n > N ∀u ∈ V (Γ) \Bv0
(m),

∑

s∈S+
v0,u

d(v0, s)µn(s) <
3

8
µ(v0) <

1

2
µn(v0)



 = 1.

Keeping in mind that m ≥ 1, we conclude that (6.7) and, hence, (6.4) hold.

Finally, we observe that all the statements from Chapter 5 concerning cut points

and configurations of mean-set hold for the central order framework. We restate them

below, using ρ(2)(·, ·) for the convenience of the reader.

Theorem 6.21 (Cut point inequality). Let µ be a probability distribution on a con-

nected graph Γ such that M (1) is defined. Let v0 be a cut-point in Γ, and v1, v2 belong

to distinct components of Γ− {v0}. Then the inequality

d(v0, v2)ρ
(2)(v1, v0) + d(v0, v1)ρ

(2)(v2, v0) ≥ C > 0

holds, where C = C(v0, v1, v2) = d(v0, v2)d(v0, v1)(d(v0, v1) + d(v0, v2)).

Corollary 6.22 (Cut Point Lemma). Let Γ be a connected graph, v0 a cut-point in Γ.

If v1 and v2 belong to distinct connected components of Γ−{v0}, then the inequalities

ρ(2)(v1, v0) ≤ 0 and ρ(2)(v2, v0) ≤ 0 cannot hold simultaneously.

Corollary 6.23 (Mean-set in a graph with a cut-point). Let v0 be a cut-point in a

graph Γ and Γ− {v0} a disjoint union of connected components Γ1, . . . ,Γk. Then for

any distribution µ on Γ there exists a unique i = 1, . . . , k such that Eµ ⊆ V (Γi)∪{v0}.
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Corollary 6.24 (Mean-set in a graph with several cut-points). Let v1, . . . , vn be cut-

points in a graph Γ and Γ − {v1, . . . , vn} a disjoint union of connected components

Γ1, . . . ,Γk. Then for any distribution µ on Γ there exists a unique i = 1, . . . , k such

that Eµ ⊆ V (Γi) ∪ {v1, . . . , vn}.

Corollary 6.25. Let G1 and G2 be finitely generated groups and G = G1 ∗G2 a free

product of G1 and G2. Then for any distribution µ on G the set Eµ is a subset of

elements of the forms gG1 or gG2 for some element g ∈ G.

Proposition 6.26. Let Γ be a tree and µ a probability measure on V (Γ). Then

|Eµ| ≤ 2. Moreover, if Eµ = {u, v} then u and v are connected in Γ.

Corollary 6.27. Let µ be a probability distribution on a free group F . Then |Eµ| ≤ 2.

Also, observe that all results of Chapter 5, Section 5.2, hold when used with the

order defined by ρ(2).

6.2.3 Mean sets and Lc-spaces

Fix an order of the vertices (v1, v2 . . .) in Γ. Relative to the fixed order on V (Γ) one

can associate to a vertex v ∈ V (Γ) the vector

dv := (d(v, v1)
c
√

µ(v1), d(v, v2)
c
√

µ(v2), . . .)

in the infinite-dimensional space R∞. The subspace of vectors d = (d1, d2, . . .) in R∞

with

‖d‖c := c

√

∑

i

dc
i <∞

is called the Lc space and the function ‖ · ‖c satisfies all the properties of a norm in

that space. Hence, if M (c) is defined on V (Γ) then the set {dv | v ∈ V (Γ)} is a subset

of an Lc space. Furthermore, if M (c) is totally defined, then by Proposition 6.17 the

inequality u <(c) v holds if and only if ‖du‖c < ‖dv‖c. In other words, in that case the

set E(c) is the set of vertices in V (Γ) with the shortest corresponding vectors dv. The
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situation is more complicated when ‖dv‖c is not finite. The next proposition shows

that we cannot use Lc-norm point of view in Definition 6.11 of central order in that

case. The reason for this impossibility is that Lc-norms cannot distinguish vertices

if M (c) = ∞, i.e., square roots of weight functions do not separate the vertices of Γ,

but, to the contrary, collapse them all to just one point.

Proposition 6.28. For any c ∈ N, locally finite graph Γ, distribution µ on Γ, and

vertices u, v ∈ Γ,

γ = lim
n→∞





c

√

√

√

√

n
∑

i=1

dc(v, vi)µ(vi)−
c

√

√

√

√

n
∑

i=1

dc(u, vi)µ(vi)





exists for any ordering of the vertices. In particular, γ ≡ 0 if M (c) =∞.

Proof. If M (c) is finite, then γ = c
√

M (c)(v)− c
√

M (c)(u) and the proposition is proved.

Also, the case when c = 1 is proved in Section 6.1. Assume that c ≥ 2 and M (c) =∞,

i.e., for any v ∈ V (Γ),

n
∑

i=1

dc(v, vi)µ(vi)→∞ as n→∞. (6.11)

We claim that in the case under consideration γ is identically 0. Our main tool in

the proof of this claim is the following inequality

∣

∣

∣

c
√

(ac + bc)− b
∣

∣

∣
<

ac

cbc−1

which holds for any a, b ∈ R+. The inequality can be deduced by applying the

Binomial theorem to

(

b+
ac

cbc−1

)c

.

Fix a sequence {v1, v2, . . . , } and a number ε > 0. Our goal is to show that there

exists a constant N∗ such that for any n > N∗

∣

∣

∣

∣

∣

∣

c

√

√

√

√

n
∑

i=1

dc(v, vi)µ(vi)−
c

√

√

√

√

n
∑

i=1

dc(u, vi)µ(vi)

∣

∣

∣

∣

∣

∣

< ε.

For every i define

δ(i) = d(v, vi)− d(u, vi).
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It follows from the triangle inequality that the function δ is bounded by d = d(v, u).

Since µ is a probability measure, we can choose a number N such that

µ(vN , vN+1, . . .) < ε/3d.

It is convenient to define the numbers

α1 := c

√

√

√

√

N−1
∑

i=1

dc(v, vi)µ(vi) and α2 := c

√

√

√

√

N−1
∑

i=1

dc(u, vi)µ(vi)

and for every M > N define

β1,M := c

√

√

√

√

M
∑

i=N

dc(v, vi)µ(vi) and β2,M = c

√

√

√

√

M
∑

i=N

dc(u, vi)µ(vi).

The inequalities below follow from triangle inequality for the norm ‖ · ‖c

|α1 − α2| ≤ d and |β1,M − β2,M | < ε/3

for every M > N . It follows from (6.11) that we can choose a number N∗ > N such

that
αc

1

cβc−1
1,N∗

< ε/3 and
αc

2

cβc−1
2,N∗

< ε/3.

Moreover, since βi,n is non-decreasing in n, it follows that for every n > N∗ the

inequalities
αc

1

cβc−1

1,n

< ε/3 and
αc

2

cβc−1

2,n

< ε/3 hold. Therefore, we get for every n > N∗

∣

∣

∣

∣

∣

∣

c

√

√

√

√

n
∑

i=1

dc(v, vi)µ(vi)−
c

√

√

√

√

n
∑

i=1

dc(u, vi)µ(vi)

∣

∣

∣

∣

∣

∣

=
∣

∣

∣

c

√

αc
1 + βc

1,n −
c

√

αc
2 + βc

2,n

∣

∣

∣

≤
∣

∣

∣

c

√

αc
1 + βc

1,n − β1,n

∣

∣

∣
+ |β1,n − β2,n|+

∣

∣

∣
β2,n − c

√

αc
2 + βc

2,n

∣

∣

∣

< ε/3 + ε/3 + ε/3 = ε,

and the proposition is proved.
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6.2.4 Examples of central order

Let us conclude the theme of ordering of the vertices of Γ by giving several examples

of central order, illuminating the idea of comparability of vertices, in general, and,

hopefully, facilitating a better perception of the reader, in particular. The example

below demonstrates the case when E ≡ E(2) contains all the vertices of an infinite

graph, i.e., when |E(·)| =∞.

Example 6.29. Consider Z with the probability measure µ given by

µ(n) =



















c/n2 n > 0;

0 n = 0;

c/n2 n < 0;

where c is a constant normalizing the measure on Z. The classical expectation is not

defined for such (Γ, µ) because the series
∑

i

i ·
c

i2
diverges. For such µ the order <(2)

is defined for no pair of elements, meaning that all the vertices are not comparable

under the central order.

Indeed, let u < v be elements of Z. Then ρ(2)(u, v) =
∑

n∈Z\{0}(d
2(u, n) −

d2(v, n))µ(n) =
∑

n∈Z\{0}((u
2 − v2) + 2n(v − u)) c

n2 which diverges whenever v 6= u.

Similarly, ρ(2)(v, u) is undefined as well. Hence, the relation <(2) for the distribution

µ under consideration is empty. Therefore, E(2) = Z in this case.

Next example shows that order relation can be non-trivial (not empty), and, at

the same time we can have infinitely many points in the center-set.

Example 6.30. Consider a probability measure on Z2 defined as follows

µ((n, i)) =



















c/n2 n > 0 and i = 0;

0 n = 0 or i 6= 0;

c/n2 n < 0 and i = 0.
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It is easy to check that (x1, y1) <
(2) (x2, y2) if and only if the conditions |y1| < |y2| and

|x2 − x1| ≤ |y2| − |y1|. This condition is visualized for a particular point v = (3, 2) in

Figure 6.1. In that Figure, vertices marked with black are less than v = (3, 2) relative

to <(2).

v

O x

y

Figure 6.1: Example of central order relation <(2) in Z2.

It is not hard to see that E(µ) = Z × {0} in this example. Indeed, let v1 =

(x1, y1) ∈ Z2, v2 = (x2, y2) ∈ Z2. We have

ρ(2)(v1, v2) =

∞
∑

i=−∞

(

(|y1|+ |x1 − i|)
2 − (|y2|+ |x2 − i|)

2
) c

i2

It is easy to see that ρ(2)((x1, y1), (x2, y2)) = ρ(2)((x1, y1), (x2,−y2)) = ρ(2)((x1,−y1), (x2,−y2)).

Hence we assume that y1 ≥ 0 and y2 ≥ 0. Now we have ρ(2)(v1, v2) =

=

min{x1,x2}
∑

i=−∞

(

(y1 + |x1 − i|)
2 − (y2 + |x2 − i|)

2
) c

i2

+

max{x1,x2}−1
∑

i=min{x1,x2}+1

(

(y1 + |x1 − i|)
2 − (y2 + |x2 − i|)

2
) c

i2

+
∞
∑

i=max{x1,x2}

(

(y1 + |x1 − i|)
2 − (y2 + |x2 − i|)

2
) c

i2
.

The summand in the middle is a constant. The first summand equals to

min{x1,x2}
∑

i=−∞

(

x2
1 + y2

1 − x
2
2 − y

2
2 + 2x1y1 − 2x2y2 + 2i(x2 + y2 − x1 − y1)

) c

i2
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which converges if and only if x2 + y2 − x1 − y1 = 0, diverges to −∞ if and only if

x2 + y2 − x1 − y1 < 0, and diverges to ∞ if and only if x2 + y2 − x1 − y1 > 0. The

third summand equals to

∞
∑

i=max{x1,x2}

(

x2
1 + y2

1 − x
2
2 − y

2
2 − 2x1y1 + 2x2y2 + 2i(x2 − y2 − x1 + y1)

) c

i2
.

Summing everything up we see that for v1 = (x1, y1) and v2 = (x2, y2), ρ
(2)(v1, v2) < 0

if and only if

x2 + y2 ≤ x1 + y1 and x2 − y2 < x1 − y1

or

x2 + y2 < x1 + y1 and x2 − y2 ≤ x1 − y1.

Taking into account negative values for y1 and y2 we encode these conditions into

|y1| < |y2| and |x2 − x1| ≤ |y2| − |y1|.

The next example demonstrates the case when E(2) = ∅ for some infinite graph.

Example 6.31. Consider Z with the probability measure µ given by

µ(n) =







c/n2, n > 0;

0, n ≤ 0.

where c is a constant normalizing the measure on Z. The classical expectation is not

defined for such (Γ, µ) because the series
∞
∑

i=1

i ·
c

i2
diverges. We claim that for so

defined µ and for any pair of integers u, v the inequality u <(2) v holds if and only if

u > v (intuitively: the farther the element is to infinity, the smaller the element is; it

means that the center is empty).

Indeed, ρ(2)(u, v) =
∑

n∈N
((u2 − v2) + 2n(v − u)) c

n2 which properly diverges to

−∞ if v < u and properly diverges to ∞ if v > u. In other words, we have . . . 4 <(2)

3 <(2) 2 <(2) 1. Therefore the center set E2 is empty.

We may interpret this as follows: ”ray determines an element on the boundary“,

i.e., the farther to ∞, the smaller the element is, with respect to the comparison
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relation <(c). It means that the center E2 is empty. It is natural to say that, in

this case, the center belongs to the ”boundary“ of Z, but this notion requires further

research.
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Chapter 7

Practical applications to

cryptanalysis

7.1 Introduction

The group-based cryptography attracted a lot attention after the invention of the

Anshel-Anshel-Goldfeld (1) and Ko-Lee et al. (8) key-exchange protocols. Since than

many new cryptographic protocols based on infinite groups were invented and an-

alyzed. In particular, public-key authentication protocols such as the Sibert et al.

protocol in (34) (see also (10)) already mentioned in Chapter 1, Section 1.1.4, were

proposed. As the name itself suggests, authentication schemes (protocols), also called

identification protocols, are basically systems designed for the purpose of authentica-

tion (identification).

In this chapter we use the technique of mean-sets to design a heuristic attack on

this particular cryptographic primitive. We describe and analyze the scheme, proving

that it does not meet the security compliances claimed in (34). In addition, we test

the protocol, conducting some actual experiments, which show in practice that the

secret information can be revealed.

It is claimed in (34), as well as in the later survey (10), that the security of
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this scheme relies on the difficulty of the famous algebraic conjugacy search problem

problem for the platform group G. For an element w ∈ G, we define its conjugate

by s ∈ G to be an element t = s−1ws. This is a slight notational modification of

conjugation used in Sibert’s article (34), namely, sws−1. Nevertheless, since this is

only about the notational convention, the change does not affect the protocol at all.

Recall that the conjugacy search problem is stated as follows:

If w, t ∈ G and t is a conjugate of w, find s ∈ G (sometimes called a

witness), such that t = s−1ws, provided that such s exists.

The use of algebraic methods that rely on certain algebraic problems being algo-

rithmically difficult, is traditional in group-based cryptography. In particular, cryp-

tographic schemes usually have security features that depend on the complexity of

such problems. Naturally, different attacks on these systems are designed, trying to

break them, again using algebraic approaches.

In this chapter we explain the practical use of our probability theory on graphs and

groups in detail. We look at the algebraic problem from the probabilistic angle and

attack the security of the protocol from a totally unexpected side – it has nothing to do

with the originally claimed security assumptions and at no point uses the conjugacy

operation. We obtain the secret information using our strong law of large numbers,

the ”shift“ property, and an algorithm solving an underlying computational problem

of Sn. In other words, if the platform group G has efficiently computable length

function, we can show that the scheme is insecure using our probabilistic approach.

It turns out that even “reasonable” approximation of the length function does the

job. We provide experimental evidence that our algorithm works even for groups with

no efficiently computable length function such as braid groups.
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7.2 Zero-Knowledge (security-preservation) prop-

erty. Some ideas.

Zero-knowledge property is considered to be a very desirable property of interactive

(randomized) proofs of identity used in modern cryptography. Recall that modern

cryptography is concerned with the construction of efficient schemes for which it is

infeasible to violate the security feature (schemes that are computationally easy to

operate, but hard to foil).

7.2.1 Intuition

As we mentioned in Chapter 1, one of the various cryptographic problems is the

authentication (identification) problem: the Prover wishes to prove his/her identity

to the Verifier via some private key without enabling an intruder watching the com-

munication to deduce anything about the secret key. Many existing authentication

schemes (protocols) use the so-called zero-knowledge (”security-preserving“) proofs

((12), (17)) as a major tool in verifying that the secret-based actions of the Prover

are correct, without revealing these secrets. The ”baby-example“ of such ”security-

preserving“ proof (protocol) was given in Chapter 1, Section 1.1.4, so that the reader

could easily gain some insight into what it is about.

Let us just add some more ideas to this intuition. Recall that static (non-

interactive) proof) is a fixed sequence of statements that are either axioms or are

derived from previous statements (see (16)). As opposed to that, interactive (dy-

namic, randomized) proof is a (multi-round) randomized protocol for two parties,

called the Verifier and the Prover, in which the Prover wishes to convince the Verifier

of the validity of a given assertion. The reader can find more information on that topic

in (10) and (17). Loosely speaking, we can think of interactive proof as of a game

between the Verifier and the Prover consisting of questions asked by the Verifier, to

which the Prover must reply ”convincingly“. As the reader can see in many sources,
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the interactive proof of knowledge should satisfy completeness and soundness proper-

ties ((12), (17)). It means that if the statement is true, it should be accepted by the

Verifier with high probability. In addition, if the assertion is false then the Verifier

must reject with high probability, i.e., so-called soundness error should be small. We

can say that interactive proofs are probabilistic proofs by their nature, because there

is some small probability, the soundness error, that a cheating Prover will be able to

convince the Verifier of a false statement. However, the soundness error can usually

be decreased to negligibly small values by repetitions of steps.

It happens that completeness and soundness properties are not enough to make

an interactive proof secure. The Verifier can be a potential adversary (cheating ver-

ifier, intruder, eavesdropper) that tries to gain knowledge (secret) from the Prover.

This means that we need another property of the randomized proof (identification

protocol, in particular) to ensure that security is preserved. The property needed

is exactly the zero-knowledge property; it assures the user (the Prover) that he/she

does not compromise the privacy of his/her secrets in the process of providing the

proof (of identity, for instance). In other words, one can think of zero-knowledge as

of preservation of security on the intuitive level.

7.2.2 More precise realization

The interested reader can find in (10) that the precise realization of zero-knowledge

property is as follows: using public key data only, one can construct a probabilistic

Turing machine able to simulate the instances of the communication between the

Prover and the Verifier in a way that cannot be distinguished from the real commu-

nication – if this can be done, no information about the secret data can be extracted

from the exchanges performed in the scheme.

Let us not dwell on this definition for too long though; this is not of a paramount

importance for the present exposition. Precise realization is much less illuminating

for an uninitiated reader than the intuitive notion given above. For readers who wish
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to go deeper in these matters, we can suggest the surveys (10) and (17) which provide

a lot of additional information and sources for this material.

A useful comment can be made in connection with the precise notion of zero-

knowledge property. Observe that the definition above involves the notion of indis-

tinguishability (or, more loosely, ”similarity“), which is open to interpretations. In

fact, there are three interpretation, yielding three different notions of zero-knowledge

that have been commonly used in the literature:

(PZ) Perfect Zero-Knowledge requires two communications to be indistinguishable.

(SZ) Statistical Zero-Knowledge requires two communications be statistically close in

a sense of the variation distance.

(CZ) Computational Zero-Knowledge requires two communications be computation-

ally indistinguishable.

We all live in the real world, in which ”perfect“ is almost the same as impossible.

Indeed, (PZ) is the most strict definition of zero-knowledge that is very rarely used in

practice. In practice, we want to be able to compute, and we can analyze only what

we can, in fact, actually compute. Thus, the last notion (CZ) of the zero-knowledge is

the most practical and liberal notion that is used more frequently than the others, and

this is exactly the property we can analyze for authentication protocols in practice.

7.3 The protocol

The Sibert et al. protocol is an iterated two-party three-pass identification protocol, in

which one of the parties (called Prover) wants to prove his identity to the other party

(called Verifier) via some secret private key. A general version of the protocol uses

the conjugation operation over some (infinite, non-commutative) group G for which

the conjugacy search problem is presumably hard (Braid group, in particular). The
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authors of (34) claim that the scheme described below is ”zero-knowledge interactive

proof of knowledge“, at least computationally, in practice.

7.3.1 Set up and description

The set up for the protocol is as follows. Let the Prover’s private key be an element

s ∈ G and his public key a pair (w, t), where w is an arbitrary element of the group G,

called the base element, and t = s−1ws. The authentication protocol goes as follows:

1. The Prover chooses a random element r ∈ G and sends the element x = r−1tr,

called the commitment, to the Verifier. Now the Verifier knows (w, t, x).

2. The Verifier chooses a random bit c, called the challenge, and sends it to the

Prover.

• If c = 0, then the Prover sends y = r to the Verifier and the Verifier checks

if the equality x = y−1ty is satisfied.

• If c = 1, then the Prover sends y = sr to the Verifier and the Verifier

checks if the equality x = y−1wy is satisfied.

The authors of the protocol say the the scheme should be repeated k times to achieve

k bits of security, i.e., to guarantee the probability of 2−k of foiling the scheme, which

is negligible.

Note that if an intruder (called the Eavesdropper) can efficiently compute an

element s′ ∈ G such that t = s′−1ws′, i.e., if the Eavesdropper can solve the conjugacy

search problem for G, then he/she can authenticate as the Prover (s′ can be used in

place of s, and the identification will go through). Therefore, as indicated in (34), the

security of this protocol is based on the complexity of the conjugacy search problem,

and only this problem, thus, avoiding the attacks and making the scheme seemingly

unbreakable.
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Originally it was proposed to use braid groups Bn as platform groups (in this

and many other protocols) because there was no feasible solution of the conjugacy

search problem for Bn known. This motivated a lot of research about braid groups.

As a result of very recent developments (in 2007, 2008), there is an opinion that

the conjugacy search problem for Bn can be solved in polynomial time. The reader

can find more information on this issue in (4), (6), (5), where J. Birman and her

co-authors express this opinion and provide experimental evidence to support it. If

that is true in fact, then the authentication protocol under consideration is insecure

for Bn because the underlying algebraic problem can be efficiently solved.

We show in the present chapter that it is not necessary to solve the conjugacy

search problem for G to break the scheme, i.e., that the algebraic approach to the

problem is not the only one possible. Instead, we analyze zero-knowledge property of

the protocol by employing ideas from probability theory and show that the protocol

is often insecure under a mild assumption of existence of an efficiently computable

length function for the platform group G.

7.3.2 Analysis

Now, let us do the analysis. It is trivial to check that a correct answer of the Prover

at the second step leads to acceptance by the Verifier. Indeed, if c = 0, then y−1ty =

r−1tr = x, and if c = 1, then y−1wy = r−1s−1wsr = r−1tr = x. Hence the Verifier

accepts a correct answer at each repetition, so he accepts the Prover’s proof of identity

with probability one.

It is somewhat less obvious why such an arrangement (with a random bit) is

needed; it may seem that the Prover could just reveal y = sr: this does not reveal

the secret s, and yet allows the Verifier to verify the equality x = y−1wy. The

point is that in this case, the adversary (eavesdropper), called Eve for the moment,

who wants to impersonate the Prover can just take an arbitrary element u and send

x = u−1wu to the Verifier as a commitment. Then this u would play the same role
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as y = sr for verification purposes. Similarly, if Eve knew for sure that the Prover

would send y = r for verification purposes, she would use an arbitrary element u in

place of r at the commitment step. These considerations also show that the above

authentication protocol should be run several times for better reliability because with

a single run, Eve can successfully impersonate Prover with probability 1
2
. After k runs,

this probability goes down to 1
2k , which is considered to be negligible. The scheme is

reliable (complete) with a negligible soundness error (see (34) for details). In addition,

the authors claim that the protocol is secure in practice and ensures the confidentiality

of the private key; namely, it is computationally zero-knowledge (see (34) again for

explanations why the scheme does not possess the perfect zero-knowledge property

(PZ)).

Now, let us see how we may develop this analysis further, having our new theoret-

ical tools at our disposal. Observe that the Prover sends to the Verifier a sequence of

random elements of 2 types: r and sr, where r is a randomly generated element and s

is a secretly chosen fixed element. We can make a table where each row corresponds

to a single round of the protocol:

Round Challenge Response # 1 Response # 2

1 c = 1 – sr1

2 c = 0 r2 –

3 c = 0 r3 –

4 c = 1 – sr4

5 c = 0 r5 –

. . . . . . . . . . . .

n c = 0 rn –

After the Prover’s authentication, the intruder, named Eve, possesses 2 sets of ele-

ments corresponding to c = 0 and c = 1 respectively:

R0 = {ri1, . . . , rik}
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and

R1 = {srj1, . . . , srjn−k
}.

Eve’s goal is to recover the element s based on the intercepted sets above. We observe

that the Prover cannot guess the Verifier’s request c, he chooses r before he gets c

from the Verifier and hence we make the following important assumption:

The random elements ri1, . . . , rik and rj1, . . . , rjn−k
have the same distribu-

tion, i.e., all these elements are generated by the same random generator.

The theory developed in this work allows us to show that eventually, after sufficiently

many iterations, Eve is able to recover the secret element s. The “shift” property (1.5)

of the expectation (mean-set) of the group-valued random element, together with the

strong law of large numbers for groups, allow us to define the following simple attack.

Eve, for the collected sets of elements R0 = {ri1, . . . , rik} and R1 = {srj1, . . . , srjn−k
},

computes the set

S(srj1, . . . , srjn−k
) · [S(ri1 , . . . , rik)]

−1.

When n is sufficiently large, this set contains the private key s, or rather, a very good

guess of what s is. We conclude that the proposed zero-knowledge authentication

(security-preserving) protocol is not secure in practice, namely, it does not ensure the

confidentiality of the private key.

This is a completely different approach to cryptanalysis of such protocols - it

does not rely on the solvability of hard algebraic problems, but, instead, attacks the

protocol from the probabilistic angle of view.

7.4 Effective computation of a mean-set

Clearly, in order to apply our results in practice, we have to be able to compute Sn

efficiently (see the discussion in Chapter 5). In Section 5.2, we outlined several prob-

lems arising when trying to compute Sn. One of them is concerned with minimizing
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the sample weight function over G, and the other problem has to do with computation

of the distance function d(·, ·), which is very difficult for braid groups.

To avoid the first problem we devise a heuristic procedure for this task, namely,

we propose a Direct Descent Heuristic Algorithm 5.11 that finds a local minimum

for a given function f . As proved in Section 5.2, if the function f satisfies certain

local monotonicity properties, then our procedure achieves the desired result. In the

same section we prove that our weight function, in fact, satisfies the desired local

monotonicity and local finiteness properties for free groups.

Let us repeat the algorithm here, but this time instead of using a generic function

f on a graph Γ, we shall use the sample weight function Mn(·) that comes from a

sample of group random elements {g1, . . . , gn} on a finitely-generated group G.

Algorithm 7.1 ((Direct Descent Heuristic for Mn)).

Input: A group G with a finite set of generators X ⊆ G and a sequence of elements

{g1, . . . , gn} in G.

Output: An element g ∈ G that locally minimizes Mn(·).

Computations:

A. Choose a random g ∈ G according to some probability measure ν on G.

B. If for every x ∈ X±1, Mn(g) ≤Mn(gx), then output g.

C. Otherwise put g ← gx, where x ∈ X±1 is any generator such that Mn(g) >

Mn(gx) and goto step B.

7.4.1 Length function for braids

The second problem of computing Sn concerns practical computations of length func-

tion in G. It turns out that we need a relatively mild assumption to deal with it – the

existence of an efficiently computable distance function dX(·, ·); even a “reasonable”

approximation of the length function does the job.
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There are two length functions for braids that were used in cryptanalysis of braid

based systems (see (11)):

• the length defined as the geodesic length | · | relative to the set of generators

{σ1, . . . , σn−1}, i.e. the length of the shortest path in the corresponding Cayley

graph of a group Bn;

• the canonical length of the Garside normal form | · |∆.

Unfortunately both of them are not practically useful because of the following

reasons.

The geodesic length of a braid denoted by | · | seems to be the best candidate.

However, there is no known efficient algorithm for computing | · |. Moreover, it is

proved in (31) that the set of geodesic braids in B∞ is co-NP complete.

The canonical length of the Garside normal form | · |∆ is efficiently computable

but very crude, in a sense that many braids consisting of many crossings have very

small lengths (see (11)).

In this work we use the method to approximate geodesic length proposed in (27).

Even though it does not guarantee the optimal result, it proved to be practically

useful in a series of attacks, see (18; 15; 29; 30).

7.5 The Mean-Set Attack

In this section we explain how we can actually attack the Sibert’s protocol in practice.

Let ξ1, ξ2, . . . be a sequence of session keys (this is what we saw above as rik and srjk
,

but written as one sequence in order of their generation). Let R0 and R1 be sequences

of two types of responses of the Prover in the protocol corresponding to the challenge

bits ci = 0 and ci = 1 respectively, i = 1, 2, . . .. In other words,

R0 =
(

ξi | ci = 0, i = 1, . . . , n
)

R1 =
(

ξi | ci = 1, i = 1, . . . , n
)
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We may find this notation useful when we want to be very specific about these sets.

By Theorem 4.2, there exists a constant C such that

P
(

S(R0) 6⊂ Eξ
)

≤ C/|R0| and P
(

S(R1) 6⊂ sEξ
)

≤ C/|R1|.

In other words, the probability that the sample mean-sets contain an undesired (not

central) element decreases linearly with the number of rounds. In particular, if E(ξ) =

{g} for some g ∈ G then the probability that S(R0) 6= {g} and S(R1) 6= {sg} decrease

as C/|R0| and C/|R1| respectively. Therefore, in a case of a singleton mean-set E(ξ)

a general strategy for Eve is clearly based on the above analysis. She computes the

sets A = S(R0), B = S(R1), and then the set B · A−1. As the number of rounds n

increases the probability that B · A−1 6= {s} decreases as C/|R0| + C/|R1|. This is

the idea of the Mean-set attack principe that we formulate below as a theorem.

Theorem 7.2 (Mean-set attack principle). Let G be a group, X a finite generating

set for G, s ∈ G a secret fixed element, and ξ1, ξ2, . . . a sequence of randomly generated

i.i.d. group elements, ξ1 : Ω → G, such that Eξ1 = {g0}. If ξ1, . . . , ξn is a sample of

random elements of G generated by the Prover, c1, . . . , cn a succession of random bits

(challenges) generated by the Verifier, and

yi =











ri if ci = 0;

sri if ci = 1

random elements representing responses of the Prover, then there exists a constant D

such that

P

(

s 6∈ S
(

{yi | ci = 1, i = 1, . . . , n}
)

· S
(

{yi | ci = 0, i = 1, . . . , n}
)−1
)

≤
D

n
.

Proof. It follows from Theorem 4.2 that there exists a constant C such that

P(S({ξi | ci = 0, i = 1, . . . , n}) 6= {g}) ≤
C

∣

∣

∣
{i | ci = 0, i = 1, . . . , n}

∣

∣

∣

. (7.1)
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Now, our challenges ci are just Bernoulli random variables with parameter 1
2
, i.e., for

each i = 1, . . . , n, we have

ci =







1, with probability p = 1/2;

0, with probability p = 1/2

with E(ci) = 1
2

and σ2
ci

= 1
4
. Then, using Chebyshev’s inequality (4.2), we obtain

P
(∣

∣

∣
{i | ci = 0, i = 1, . . . , n}

∣

∣

∣
<
n

4

)

<
4

n
. (7.2)

Indeed, if number of zero’s in our sample of challenges is less than n
4
, then the number

of one’s is greater or equal to 3n
4

, and we have

P
(∣

∣

∣
{i | ci = 0, i = 1, . . . , n}

∣

∣

∣
<
n

4

)

< P

(∣

∣

∣

∣

∣

n
∑

i=1

ci −
n

2

∣

∣

∣

∣

∣

≥
n

4

)

from the inclusion of the corresponding events. Note that
∣

∣

∣

∣

∣

n
∑

i=1

ci −
n

2

∣

∣

∣

∣

∣

≥
n

4
⇔

∣

∣

∣

∣

∑n
i=1 ci
n

−
1

2

∣

∣

∣

∣

≥
1

4

and

P

(∣

∣

∣

∣

∑n
i=1 ci
n

−
1

2

∣

∣

∣

∣

≥
1

4

)

≤
4

n

from (4.2) for ε = 1/4. Thus, we have (7.2), as claimed.

Denoting A =
{∣

∣

∣
{i | ci = 0, i = 1, . . . , n}

∣

∣

∣
< n

4

}

, we get

P
(

S({ξi | ci = 0}) 6= {g}
)

= P
({

S({ξi | ci = 0}) 6= {g}
}

⋂

A
)

+

+P
({

S({ξi | ci = 0}) 6= {g}
}

⋂

Ac
)

≤

≤ P(A) + P
({

S({ξi | ci = 0}) 6= {g}
}

| Ac
)

P(Ac).

≤
4

n
+

4C

n
≤

4 + 4C

n
,

where, on the event Ac, we estimate the right-hand side of (7.1) by 4C
n
.

Similarly we prove that P
(

S({sξi | ci = 1, i = 1, . . . , n}) 6= {sg}
)

≤ 4+4C
n
. Hence

P
(

s 6∈ S({sξi | ci = 1, i = 1, . . . , n}) · S({ξi | ci = 0, i = 1, . . . , n})−1
)

≤
8 + 8C

n
.
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We compute Sn using the Algorithm 7.1 in the following heuristic attack.

Algorithm 7.3. (The attack)

Input: The Prover’s public element (t,w). Sequences R0 and R1 as in the protocol.

Output: The secret element s ∈ Bn used in generation of R1, or Failure.

Computations:

A. Apply Algorithm 7.1 to R0 and obtain g0.

B. Apply Algorithm 7.1 to R1 and obtain g1.

C. Check if z = g1g
−1
0 satisfies t = z−1wz and if so output z. Otherwise output

Failure.

Observe that in the last step of the algorithm we perform the check for the secret

element s (see the description of the protocol in Section 7.3.1).

7.6 Experimental results

7.6.1 Platform group and parameters

The scheme was suggested to be used with the braid group Bn which has the following

(Artin’s) presentation

Bn =

〈

σ1, . . . , σn−1

∣

∣

∣

∣

σiσjσi = σjσiσj if |i− j| = 1

σiσj = σjσi if |i− j| > 1

〉

,

with some additional requirements.

The length function relative to the Artin generators {σ1, . . . , σn−1} is NP -hard

(see (11)). In this work we use the method to approximate geodesic length proposed in

(27). Even though it does not guarantee the optimal result, it proved to be practically

useful in a series of successful attacks, see (18; 15; 29; 30). We want to point out

that we compute the sample weight values in Algorithm 7.1 (which a subroutine in

Algorithm 7.3) using the approximated distance function values in Bn.



CHAPTER 7. PRACTICAL APPLICATIONS TO CRYPTANALYSIS 126

7.6.2 Experiments

To demonstrate the practical use of our attack we performed a system of experiments.

In each experiment we randomly generated an instance of the authentication protocol

and tried to break it, i.e., find the private key, using the technique developed in this

paper. Recall that each authentication is a series of k 3-pass commitment-challenge-

response rounds. Therefore, an instance of authentication is k triples (xi, ci, yi) ob-

tained as described in Section 7.3.1.

A random bit ci is chosen randomly and uniformly from the set {0, 1}. In our

experiments we make an assumption that exactly half of ci’s are 0 and half are 1.

This allows us to have a pair of equinumerous sets R0 = {r1, . . . , rk/2} ⊂ Bn and

R1 = {sr′1, . . . , sr
′
k/2} ⊂ Bn corresponding to an instance of the protocol.

The main parameters for the system are the rank n of the braid group, the number

of rounds in the protocol k, and the length of secret keys L. We generate a single

instance of the problem with parameters (n, k, L) as follows:

• A braid s is chosen randomly and uniformly as a word of length L over a group

alphabet {σ1, . . . , σn−1}. This braid is a secret element which is used only to

generate further data and to compare the final element to.

• A sequence R0 = {r1, . . . , rk/2} of braid words chosen randomly and uniformly

as words of length L over a group alphabet {σ1, . . . , σn−1}.

• A sequence R1 = {sr′1, . . . , sr
′
k/2} of braid words, where r′i are chosen randomly

and uniformly as words of length L over a group alphabet {σ1, . . . , σn−1}.

For every parameter set (n, k, L) we generate 1000 random instances of the protocol

and run Algorithm 7.3 which attempts to find the secret key s used in the generation

of R1.

Below we present the results of actual experiments done for groups B5, B10, and

B20. Horizontally we have increasing sample sizes k (number of rounds) from 10 to
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320 and vertically we have increasing length L from 10 to 100. Each cell in the tables

below contains a success rate of finding secret s.

L\k 10 20 40 80 160 320

10 13% 54% 93% 99% 100% 100%

50 0% 0% 2% 21% 65% 83%

100 0% 0% 0% 0% 0% 4%

Table 7.1: Experiments in B5.

L\k 10 20 40 80 160 320

10 12% 71% 97% 100% 100% 100%

50 0% 8% 53% 92% 99% 99%

100 0% 0% 0% 0% 17% 48%

Table 7.2: Experiments in B10.

L\k 10 20 40 80 160 320

10 17% 85% 100% 100% 100% 100%

50 0% 16% 78% 99% 99% 100%

100 0% 1% 38% 87% 98% 99%

Table 7.3: Experiments in B20.

We immediately observe from the data above that:

• the success rate increases as sample size increases;

• the success rate decreases as the length of the key increases;

• the success rate increases as the rank of the group increases.

The first observation is the most interesting since the number of rounds is one of the

main parameters in the protocol (see Section 7.3.1). According to Sibert, one has to
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increase the number of rounds for higher reliability of the protocol. But, in fact, we

observe previously unforeseen (by the authors of the protocol) behavior – security of

the scheme decreases as k increases. The second observation can be interpreted as

follows – the longer the braids the more difficult it is to compute the approximation

of their lengths. So, here we face the problem of computing the length function.

The third observation is easy to explain. The bigger the index of Bn the more braid

generators commute and the simpler random braids are.

7.7 Defending against the Mean-Set Attack

In this section we describe some principles on how to defend against the mean-set

attack presented above or make it computationally infeasible. Defending can be done

through a special choice of the platform group G or a special choice of a distribution

µ on G.

7.7.1 Large mean-set

To foil the attack one can use a distribution µ on G such that the set E(µ) is huge.

Recall that Algorithm 7.3 can find up to one element of G minimizing the weight

function. For that it uses Algorithm 7.1 which randomly (according to some measure

ν) chooses an element g ∈ G and then gradually changes it so that to minimize

its M value. This way the distribution ν on the initial choices g ∈ G defines a

distribution ν∗µ on the set of local minima of M on G. More precisely, for g′ ∈ G,

ν∗µ(g′) = µ{g ∈ G | Algorithm 7.1 stops with the answer g′ on input g}.

Now, denote by µs the shifted probability measure on G by an element s defined by

µs(g) = µ(s−1g). If S ⊆ G is the set of local minima of the weight function M relative

to µ then the set sS is the set of local minima relative to µs. But the distribution ν∗µs

does not have to be induced from ν∗µ by the shift s, i.e., the equality ν∗µs
(g) = ν∗µ(s−1g)

does not have to hold. In fact, the distributions ν∗µ and ν∗µs
can “favor” unrelated
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subsets of S and sS respectively. That would definitely foil the attack presented in

this paper. On the other hand if ν∗µ and ν∗µs
are related then our attack can work.

Finally we would like to point out again that probability measures on groups

were not extensively studied and there are no good probability measures on general

groups and no general methods to construct measures satisfying the desired properties

((7)). In addition, the problem of making distributions with large mean sets is very

complicated because not every subset of a group G can be realized as a mean set (see

Section 5.1).

7.7.2 Undefined mean-set

Another way to foil the attack is to define a distribution µ on G so that E(µ) is not

defined, i.e., the weight function M(·) ≡M (2)(·) is not finite. In that case we do not

have theoretical means for the attack. The sample weights tend to∞ with probability

1. Nevertheless, we still can compare the sample weight values using the theory of

central order presented in Chapter 6, where we show that the assumption M (2) <∞

can be relaxed to M (1) <∞. If M (1) is not defined then the lengths of commitments

are too large and are impractical.

7.7.3 Groups with no efficiently computable length functions

One of the main tools in our technique is an efficiently computable function dX on

G. To prevent the intruder from employing our attack, one can use a platform group

G with a hardly computable (or approximated) length function dX relative to any

“reasonable” finite generating set X. By ”reasonable“ generating set we mean a set

small relative to the main security parameters. Examples of such groups exist. On

the other hand, it is hard to work with such groups in practice.
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Chapter 8

Further ideas. Problems and

questions.

In this chapter we collect some ideas for further developments of our theory. In

addition, we state several problems that appear to be interesting from our point of

view.

8.1 Centers and group geometry

8.1.1 Expectation and boundary of the graph

It would be very interesting, especially for applications in geometric group theory, to

intertwine the geometry of a graph and our probability theory on it. It is already

proved in in Chapter 5 that the size of the center set on a free group Fn is a set

containing up to 2 elements. The next goal is to look into further connections.

Recall that we defined the generalized mean-set E relative to central order in

Chapter 6. Next step is to extend the definition of the generalized mean-set E to

the boundary elements of the graph. When we are on the real line R, the boundary

consists of only two points, namely, ±∞, and, perhaps, is not of any particular
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interest. Nevertheless, for instance, we may say that Eµ = ±∞ when
∑

x∈Z
xµ(x) =

±∞, thinking of extended image (phase) space R = [−∞,+∞]. Moreover, the

generalized law of large numbers holds for certain sequences of random variables

without expectation (see (13, pages 235–236)). These considerations, together with

understanding that the geometry of the graph is more complicated than the geometry

of the real line, would serve as a good motivation to embark upon considering mean-

sets E from the geometric point of view and extend them to the boundary of the

graph in future developments of our theory.

Finite graphs are not interesting for us because for such graphs, for any c, the set

E(c) is always finite. Consider an infinite graph. There are three principal cases that

we distinguish:

• The set E(c) is finite. This corresponds to the case when classical expectation

is defined.

• The set E(c) is empty. This corresponds to the case when classical expectation

is not defined.

• The set E(c) is infinite. This corresponds to the case when classical expectation

is not defined.

In example 6.31, we have already considered a special case for a generalized E ≡

E(2) – the case when the set E(2) is empty. In that example, intuitively, it is natural

to say that center points belong to a boundary of the graph Γ.

There are several different ways to define a boundary of a graph. One of them

uses the so-called end-compactification. The reader can consult (41) for the definition

of this type of boundary.

Meanwhile, we can only say that the question of extension of the notion of the ex-

pectation of random graph/group element to the boundary requires further research.
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8.1.2 Some small problems about mean-sets and group ge-

ometry

Problem 8.1. Let ϕ : G → H be a group homomorphism. Is it true that if the

measure on H is induced by the measure on G then E(ϕ(ξ)) = ϕ(E(ξ)).

Proof. This property is not true in general. Here is a counterexample.

Consider free abelian groups Z and Z2 of rank 1 and 2. Let ϕ : Z2 → Z be a

group epimorphism which maps a pair (a, b) to the first coordinate a. Assume that

µ is a distribution on Z2 such that µ(0, 100) = µ(0,−100) = µ(10, 0) = 1/3. The

center for such distribution is (0, 0). Now, the epimorphism ϕ induces a probability

distribution µ′ on Z such that µ′(0) = 2/3 and µ′(10) = 1/3. The corresponding center

is 3. Hence, the property E(ϕ(ξ)) = ϕ(E(ξ)) does not hold and the reason is that

group homomorphisms can dramatically change distances between the points.

Problem 8.2. Let ξ1 be a random element in a graph Γ1 and ξ2 a random element

in a graph Γ2. Suppose that Eξ1 and Eξ2 are defined. Is it true that

E(ξ1 × ξ2) = Eξ1 × Eξ2?

Proof. The answer is ”no“. Here is the example. Consider the probability measure µ

on Z such that µ(0) = 2/3 and µ(15) = 1/3. Then Eµ = 5 and Eµ× Eµ = (5, 5).

On the other hand µ×µ is a probability measure on Z×Z defined by µ(0, 0) = 4/9,

µ(15, 0) = 2/9, µ(0, 15) = 2/9, µ(15, 15) = 1/9. To compute a central point v = (x, y)

we solve the following optimization problem:

M(v) = (x+ y)2µ(0, 0) + ((15− x) + y)2µ(15, 0)+

+(x+ (15− y))2µ(0, 15) + ((15− x) + (15− y))2µ(15, 15)→ min .

which equals to

x2 +
2

9
xy + y2 −

20

3
x−

20

3
y + 200→ min .
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The solution is (3, 3). Hence

E(µ× µ) = (3, 3) 6= (5, 5) = Eµ× Eµ.

Below, we state several problems without solutions.

Problem 8.3. Changing the generating set for a group changes the distance function.

How does a change of the generating set affect centers for a given distribution?

Problem 8.4. Let ϕ : G → H be a quasi-isometry between 2 groups. Let µ be a

distribution on G and µ′ be a distribution on H induced by ϕ. Is there any relation

between ϕ(Eµ) and Eµ′?

(Probably not much, but it would be interesting to find actual examples when some-

thing strange happens).

Problem 8.5. Assume that G ≤ H and µ is a probability measure on G. What is

the relation between Eµ in H and in G.

Remark 8.6. It would be interesting to continue this line of research, trying to find

connections of our centers and group geometry, and see how the geometry of the

Cayley graph of a group affects the structure of a mean-set.

8.2 Other goals.

One of the future goals of this research is formulating and proving an analogue of the

central limit theorem (another fundamental result of probability theory) for distribu-

tion on graphs and groups, as well as generalization of other classical results.

Another endeavor would be to attempt to generalize the theory of mean-sets to

general metric spaces.
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8.3 Conclusion

We stop at this point. We proved a generalization of the Strong Law of Large Numbers

for graphs and groups and discussed its possible applications. We enhanced our novel

theory with other theoretical tools, such as an analogue of Chebyshev inequality for

graphs and the notion of central order on graphs. We discussed technical difficulties

of computations and some practical ways of dealing with this issue. Moreover, we

provided results of actual experiments supporting many of our conclusions. At the

end, we indicated possible directions of the future research and developments and

stated some problems.

What really important is that this work helps us to see that generalization of

probabilistic results to combinatorial objects can lead to unanticipated applications

in practice and to interconnections with other areas of mathematics. Indeed, Joseph

Fourier was right when he said that mathematics compares the most diverse phenom-

ena and discovers the secret analogies that unite them.



Chapter 8 135

Bibliography

[1] I. Anshel, M. Anshel, and D. Goldfeld, An algebraic method for public-key cryp-

tography, Math. Res. Lett. 6 (1999), pp. 287–291.

[2] R. Bellman, Limit theorems for non-commutative operations, Duke Math. J. 21

(1954), pp. 491–500.

[3] P. Billingsley, Probability and Measure. Wiley-Interscience, 1995.

[4] J. S. Birman, V. Gebhardt, and J. Gonzalez-Meneses, Conjugacy in Garside

groups I: Cyclings, powers, and rigidity, Groups, Geometry, and Dynamics 1

(2007), pp. 221–279.

[5] , Conjugacy in Garside Groups III: Periodic braids, J. Algebra 316 (2007),

pp. 746–776.

[6] , Conjugacy in Garside groups II: Structure of the ultra summit set,

Groups, Geometry, and Dynamics 2 (2008), pp. 13–61.

[7] A. Borovik, A. Myasnikov, and V. Shpilrain, Measuring sets in infinite groups.

Computational and Statistical Group Theory, Contemporary Mathematics 298,

pp. 21–42. American Mathematical Society, 2002.

[8] J. C. Cha, K. H. Ko, S. J. Lee, J. W. Han, and J. H. Cheon, An Efficient

Implementation of Braid Groups. Advances in Cryptology – ASIACRYPT 2001,

Lecture Notes in Computer Science 2248, pp. 144–156. Springer, Berlin, 2001.

[9] CRyptography And Groups (CRAG) C++ Library, Available at http://www.

acc.stevens.edu/downloads.php.

[10] P. Dehornoy, Braid-based cryptography. Group theory, statistics, and cryptogra-

phy, Contemporary Mathematics 360, pp. 5–33. American Mathematical Society,

2004.



BIBLIOGRAPHY 136

[11] D. B. A. Epstein, J. W. Cannon, D. F. Holt, S. V. F. Levy, M. S. Paterson, and

W. P. Thurston, Word processing in groups. Jones and Bartlett Publishers, 1992.

[12] U. Feige, A. Fiat, and A. Shamir, Zero knowledge proofs of identity, STOC ’87:

Proceedings of the nineteenth annual ACM Conference on Theory of Computing

(1987), pp. 210–217.

[13] W. Feller, An Introduction to Probability Theory and Its Applications: Volume

2. John Wiley & Sons, New York, 1971.

[14] F. Folland, Real Analysis: Modern Techniques and Their Applications. Wiley-

Interscience, 1999.

[15] D. Garber, S. Kaplan, M. Teicher, B. Tsaban, and U. Vishne, Length-based

conjugacy search in the Braid group. Algebraic Methods in Cryptography, Con-

temporary Mathematics 418, pp. 75–88. American Mathematical Society, 2006.

[16] O. Goldreich, Foundations of Cryptography. Cambridge University Press, 2001.

[17] , Zero-Knowledge twenty years after its invention, preprint, available at

http://citeseer.ist.psu.edu/556429.html, 2002.

[18] J. Hughes and A. Tannenbaum, Length-based attacks for certain group based

encryption rewriting systems, preprint. Available at http://front.math.

ucdavis.edu/0306.6032.

[19] K. Itô and H. P. McKean, Jr., Potentials and the random walk, Illinois J. Math.

4 (1960), pp. 119–132.

[20] L. Kantorovich and G. Akilov, Functional Analysis. Elsevier, 1982.

[21] L. Kantorovich and G. Rubinshtein, On a certain function space and some ex-

tremal problems, Dokl. Akad. Nauk SSSR 115 (1957), pp. 1058–1061.

[22] , On some space of countably additive functions, Univ. Mat. Mekh. As-

tronom. 7 (1958), pp. 52–59.

[23] A. Karlsson and F. Ledrappier, On Laws of Large Numbers for Random Walks,

Ann. Probab. 34 (2006), pp. 1693–1706.

[24] H. Kesten, Symmetric random walks on groups, T. Am. Math. Soc. 92 (1959),

pp. 336–354.



BIBLIOGRAPHY 137

[25] K. H. Ko, S. J. Lee, J. H. Cheon, J. W. Han, J. Kang, and C. Park, New public-

key cryptosystem using braid groups. Advances in Cryptology – CRYPTO 2000,

Lecture Notes in Computer Science 1880, pp. 166–183. Springer, Berlin, 2000.

[26] A. Kurosh, Theory of Groups. Chelsea Publishing Corp., 1979.

[27] A. G. Miasnikov, V. Shpilrain, and A. Ushakov, Random Subgroups of Braid

Groups: An Approach to Cryptanalysis of a Braid Group Based Cryptographic

Protocol. Advances in Cryptology – PKC 2006, Lecture Notes in Computer Sci-

ence 3958, pp. 302•–314. Springer, Berlin, 2006.

[28] , Group-based Cryptography, Advanced Courses in Mathematics - CRM

Barcelona. Birkhäuser Basel, 2008.
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