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Abstract

On the Mean Curvature Flow of Graphs of Symplectomorphisms of

Kähler-Einstein Manifolds; Application to Complex Projective Spaces

Ivana Medoš

The presented work is a study of the mean curvature flow of graphs of sym-

plectomorphisms of Kähler-Einstein manifolds in general, and of complex

projective spaces in particular. We establish properties of singular values of

symplectic linear maps. Using these observations, we derive, in a general

Kähler-Einstein setting, the evolution equation of the Jacobian of the pro-

jection from the graph of a symplectomorphism onto the domain manifold

under the flow. Finally, we apply this result to the case when the domain

and the image manifolds are complex projective spaces with the Fubini-Study

metric: we formulate a pinching condition for the singular values of the ini-

tial symplectomorphism, sufficient for the flow to exist and converge to the

graph of a biholomorphic isometry.
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Chapter 1

Introduction

On the space of immersed submanifolds of a Riemannian manifold, the area

functional assigns to each immersion the area of its image in the ambient man-

ifold. The gradient vector field of the area functional is the mean curvature

vector field; it is of magnitude equal to the trace of the second fundamental

form, and in the direction of the fastest decrease of the area of the immersed

submanifold. Its associated flow – mean curvature flow – gives rise to an ac-

tive area of study within the field of geometric flows. From the analytic point

of view it represents a solution of a parabolic system of PDE. Its stationary

cases are minimal surfaces.

It has been suggested by Wang [25] to apply mean curvature flow in the

study of structure of the symplectomorphism groups of Kähler-Einstein man-

ifolds. A diffeomorphism between Kähler manifolds is a symplectomorphism

if and only if its graph is a Lagrangian submanifold in the product space of
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the domain and the image manifold. It follows from a result of Smoczyk [17]

that when the domain and image manifolds are Kähler-Einstein, the property

of being Lagrangian is preserved along mean curvature flow. Therefore if the

flow of the graph of a symplectomorphism remains graphical, it necessarily

remains a flow through symplectomorphisms. If it exists for all times and

converges, it represents a symplectic isotopy between the initial symplecto-

morphism and the limit map.

This illustrates the applicability of methods arising from the study of

geometric flows: analytic results about existence of solutions of certain PDE

give rise, in a geometric context, to conclusions about the geometry and

topology of the underlying spaces.

We approach the study of the mean curvature flow of graphs of symplecto-

morphisms of Kähler-Einstein manifolds by exploring conditions under which

it remains graphical. We derive the evolution equations of certain geometric

quantities along the flow, and apply these results to the case when the under-

lying manifolds are complex projective spaces with the Fubini-Study metric.

We formulate a pinching condition for the initial symplectomorphism, under

which the flow exists and remains graphical for all times. We further show

that in that case it also converges to a biholomorphic isometry.

In the first chapter, we define the concepts. In the second one, we state

the main results and discuss previous relevant research. In the third chapter,

we provide the details of the proof. In the fourth chapter, we conclude the

work by discussing possible generalizations of the result as well as certain
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technical details.

1.1 Mean curvature flow

Let F : Σ→M be an immersion — a map of full rank at each point — of a

smooth n-dimensional manifold Σ into a smooth m-dimensional Riemannian

manifold M, where m > n. Let 〈., .〉 denote the metric on M.

Definition 1.1.1 The induced metric on F (Σ) ⊂M is the symmetric positive-

definite (0, 2)-tensor field with coefficients:

(g0)ij =

〈
dF

dxi
,
dF

dxj

〉

with respect to the coordinate basis, where xi, i = 1, . . . , n, are the local coor-

dinates on Σ, and dF
dxi
≡ DF ( ∂

∂xi
).

Definition 1.1.2 The second fundamental form of F (Σ) ⊂M is the quadratic

form on the tangent space TF (Σ), with values in the normal bundle NF (Σ),

defined by:

II(X, Y ) = (∇MX Y )⊥,

for X, Y ∈ TF (Σ).

Definition 1.1.3 The mean curvature vector of F (Σ) in M is the trace of

the second fundamental form of F (Σ):
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H = gij0

(
∇MdF

dxi

dF

dxj

)⊥
,

where gij0 is the inverse matrix of the induced metric (g0)ij on F (Σ).

Remark 1.1.1 H represents a normal vector field to F (Σ) ⊂ M in the

direction of the fastest decrease of the area of F (Σ).

Indeed, the volume of F (Σ) is given by:

V ol(F (Σ)) =

∫
Σ

√
det g0dx

1 ∧ . . . ∧ dxn. (1.1.1)

Consider a family of immersions F : Σ× [0, S)→M, S > 0. Then:

∂

∂s
V ol(F (Σ, s))

=

∫
Σ

√
det g0

2
gij0

(〈
∇M∂F

∂xi

∂F

∂s
,
∂F

∂xj

〉
+

〈
∂F

∂xi
,∇M∂F

∂xj

∂F

∂s

〉)
dx1 ∧ . . . ∧ dxn

=

∫
Σ

√
det g0

2
gij0

(〈
∇M∂F

∂xi

(
∂F

∂s

)>
,
∂F

∂xj

〉
+

〈
∂F

∂xi
,∇M∂F

∂xj

(
∂F

∂s

)>〉)
dx1 ∧ . . . ∧ dxn

+

∫
Σ

√
det g0

2
gij0

(
−

〈(
∂F

∂s

)⊥
,∇M∂F

∂xi

∂F

∂xj

〉
−

〈
∇M∂F

∂xj

∂F

∂xi
,

(
∂F

∂s

)⊥〉)
dx1 ∧ . . . ∧ dxn

=

∫
Σ

√
det g0

2
gij0

(〈
∇Σ

∂F
∂xi

(
∂F

∂s

)>
,
∂F

∂xj

〉
+

〈
∂F

∂xi
,∇Σ

∂F
∂xj

(
∂F

∂s

)>〉)
dx1 ∧ . . . ∧ dxn

−
∫

Σ

√
det g0

2
gij0

〈(
∇M∂F

∂xj

∂F

∂xi

)⊥
+

(
∇M∂F

∂xi

∂F

∂xj

)⊥
,

(
∂F

∂s

)⊥〉
dx1 ∧ . . . ∧ dxn

=

∫
Σ

div

(
∂F

∂s

)>√
det g0dx

1 ∧ . . . ∧ dxn
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−
∫

Σ

√
det g0

〈
gij0

(
∇MdF

dxi

∂F

∂xj

)⊥
,

(
∂F

∂s

)⊥〉
dx1 ∧ . . . ∧ dxn

= −
∫

Σ

〈
H,

(
∂F

∂s

)⊥〉√
det g0dx

1 ∧ . . . ∧ dxn.

Definition 1.1.4 The mean curvature flow of Σ in M is a smooth family

of immersions F : Σ× [0, T )→M, for T > 0, satisfying:

(
∂

∂t
F (x, t)

)⊥
= H(F (x, t)). (1.1.2)

Remark 1.1.2 In view of the discussion above, mean curvature flow is the

gradient flow of the area functional (1.1.1) in the space of immersed subman-

ifolds.

Remark 1.1.3 The system of PDEs that defines mean curvature flow is

equivalent to:

∂

∂t
F (p, t) = H(F (p, t))

up to one-parameter family of diffeomorphisms of Σ [2].

To see why the statement is true, assume that F̃ is the mean curvature

flow of Σ in M, and that φ : Σ× [0, T ) → Σ is a family of diffeomorphisms

such that:

DF̃ (φ(p, t), t)
∂φ

∂t
(p, t) = −

(
∂F̃

∂t
(φ(p, t), t)

)>
.

Notice that, since F̃ is an immersion, DF̃ has a left inverse, so this system

of ODEs reduces to:
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∂φ

∂t
(p, t) = −(DF̃ (φ(p, t), t))−1

(
∂F̃

∂t
(φ(p, t), t)

)>
.

The existence of such φ then follows from the theory of ODEs ([21], [2]).

Define F (p, t) ≡ F̃ (φ(p, t), t). Then:

∂

∂t
F (p, t) = DF̃ (φ(p, t), t)

∂φ

∂t
(p, t) +

∂

∂t
F̃ (φ(p, t), t)

=

(
∂

∂t
F̃ (φ(p, t), t)

)⊥
= H(F̃ (φ(p, t), t)

= H(F (p, t)).

Remark 1.1.4 When F satisfies the mean curvature flow equation (1.1.2),

then:

d

dt
dµt = −|H|2dµt, (1.1.3)

where dµt ≡
√

det gijdx
1 ∧ . . . ∧ dxn is the volume form of Σt ≡ F (Σ, t)

([28]).

This statement follows from the computation of the variation of volume func-

tional above.

From the analytic point of view, mean curvature flow represents a second

order quasilinear parabolic system of PDEs:
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∂F

∂t
= gij

(
∂2FA

∂xi∂xj
+ ΓABC

∂FB

∂xi
∂FC

∂xj
− Γ̃kij

∂FA

∂xk

)
∂

∂yA
,

where xi, i = 1, . . . , n, and yA, A = 1, . . . ,m are local coordinates on Σ and

M respectively, ΓABC are the Christoffel symbols of the metric onM, and Γ̃kij

are those of the induced metric on Σt ([29]).

Short-time existence of a solution of such system of equations follows

from the theory of second order quasilinear parabolic PDE [9]. Whether,

and under what conditions, it exists for all times t > 0, and whether Σt

converge to a submanifold of M as t → ∞, is the focus of research in this

field.

1.2 Lagrangian mean curvature flow

A considerable amount of study has been done on the mean curvature flow

of codimension-one surfaces (m−n = 1), but relatively little is known about

higher codimension cases (m−n > 1). One promising area of research is the

flow of Lagrangian submanifolds. They arise as submanifolds of symplectic

manifolds, of codimension equal to their dimension (i.e. m = 2n).

Definition 1.2.1 Symplectic manifold is a pair (M,ω), where M is a smooth

manifold, and ω is a closed, non-degenerate 2-form on M . ω is called the

symplectic form of M .
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Note: the nondegeneracy of symplectic form implies that the dimension

of a symplectic manifold is always even.

Definition 1.2.2 Isotropic submanifold of a symplectic manifold is a sub-

manifold on which the symplectic form vanishes.

Due to nondegeneracy of ω, an isotropic submanifold can be of dimension

at most half that of the ambient manifold.

Definition 1.2.3 Lagrangian submanifold of a symplectic manifold is an

isotropic submanifold of maximal dimension — half that of the ambient man-

ifold.

Lagrangian submanifolds are interesting because they satisfy the following

important property.

Remark 1.2.1 When the ambient space is Kähler-Einstein, the property of

being Lagrangian is preserved along mean curvature flow [17].

Heuristically, the reasoning is the following: recall that a Kähler manifold

(M, g, J) is Kähler-Einstein if the Ricci curvature form is a multiple of the

symplectic form:

Ric = cω

for some constant c, where ω is the Kähler form of M: ω(., .) = g(., J.).

Now if Σ is a submanifold of M with mean curvature vector H, let

σ = ω(H, .). Then by the Codazzi equation:
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dσ = Ric|Σ.

If Σ is a Lagrangian submanifold of M, then:

dσ = Ric|Σ = cω|Σ = 0.

Thus σ is closed. It follows that for ω′ ≡ F ∗ω:

d

dt
ω′ = d(ω′(H, .)) + (dω′)(H, .) = 0,

(see [17]).

Two prominent classes of Lagrangian submanifolds are:

– graphs of symplectomorphisms

– graphs of one-forms

This work is focused on questions related to the first group. The geomet-

rical setting is the following: if (M,ω) and (M̃, ω̃) are symplectic manifolds,

the product space M × M̃ with the form ω− ω̃ is also a symplectic manifold.

If f : (M,ω) → (M̃, ω̃) is a diffeomorphism, then the graph of f is a

Lagrangian submanifold of (M × M̃, ω − ω̃) if and only if f is a symplecto-

morphism. Indeed, for an arbitrary element (X, df(X)) ∈ TΣ, where Σ is
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the graph of f :

(ω − ω̃)(X, df(X)) = ω(X)− ω̃(df(X)) = ω(X)− f ∗ω̃(X).

Thus:

(ω − ω̃)|Σ = 0⇔ ω = f ∗ω̃.

Then from the discussion above, we can conclude the following.

Remark 1.2.2 If the mean curvature flow Σt of the graph of a symplecto-

morphism f remains graphical, at each t it is necessary a graph of a sym-

plectomorphism.

In that case, the flow represents a symplectic isotopy of the initial sym-

plectomorphism f .

The focus of this work is the mean curvature flow of graphs of symplecto-

morphisms of Kähler-Einstein manifolds. We derive the evolution equation

of the Jacobian of the projection π1 : Σt → M along mean curvature flow.

We then apply it to the case when the underlying manifolds are complex

projective spaces with the Fubini-Study metric, and we formulate an initial

pinching condition that suffices for the flow to exist for all times t > 0 and

remain graphical. Moreover, we combine these results with the evolution

equation of the squared norm of the second fundamental form to show that,

under the initial pinching assumption, the flow converges to a biholomorphic

isometry.
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Chapter 2

The Main Result and Previous

Research

We develop a general method for addressing conditions under which the mean

curvature flow of symplectomorphisms of Kähler-Einstein manifolds remains

graphical, but the applications turn out to be particularly interesting in the

case of complex projective spaces.

2.1 The main result

Recall that CPn is compact and simply connected. The Fubini-Study metric

g makes it a Kähler-Einstein manifold with sectional curvature:

K(X, Y ) =
1
4
||X ∧ Y ||2 + 3

4
〈JX, Y 〉2

|X|2|Y |2 − 〈X, Y 〉2
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([10]), and Ricci curvature:

Rij =
n+ 1

2
gij.

Definition 2.1.1 Let Λ be a constant greater than 1. A symplectomorphism

f of a Riemannian symplectic manifold with metric g is said to be Λ-pinched

if

1

Λ
g ≤ f ∗g ≤ Λg. (2.1.1)

Then the main result is the following.

Theorem 1 There exists a constant Λ0 > 1, which depends only on n, such

that, if f : CPn → CPn is a Λ-pinched symplectomorphism for any Λ ∈

(1,Λ0], then:

1) The mean curvature flow Σt of the graph of f in CPn × CPn exists

smoothly for all t ≥ 0.

2) Σt is the graph of a symplectomorphism ft for each t ≥ 0.

3)ft converges smoothly to a biholomorphic isometry of CPn as t→∞.

Therefore:

Corollary 2.1.1 There exists a constant Λ0 > 1, which depends only on the

dimension n, such that any Λ-pinched symplectomorphism f : CPn → CPn,

for Λ ∈ (1,Λ0], is symplectically isotopic to a biholomorphic isometry.
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2.2 Previous research

The main theorem generalizes a result by Wang ([23], [25]), who showed

that the mean curvature flow of the graph of a symplectomorphism between

compact Riemann surfaces of equal constant curvature exists for all times

and converges to a minimal Lagrangian submanifold.

It also provides an alternative proof of a theorem of Smale [16] that states

that the isometry group SO(3) of S2 ' CP1 is a deformation retract of the

diffeomorphism group of S2.

In the case of CP2, Gromov [4] has shown that its biholomorphic isometry

group is a deformation retract of its symplectomorphism group. Using our

method, we cannot omit the pinching assumption when n = 2. However, our

results also apply to CPn for n > 2, about which little had been previously

known.

2.3 Outline of the proof

In Section 3.1 we make several observations about singular values of linear

symplectic maps that prove important in the proof of the main results. Sec-

tion 3.2 is devoted to deriving the evolution equation of the Jacobian of the

projection π1 : Σt → M along the mean curvature flow. By the Inverse

Function Theorem, in order for the mean curvature flow to remain graphical,

it suffices that this quantity remains positive. It is in this section that we

then focus on the special case when the underlying manifolds are complex
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projective spaces, and establish the existence of a pinching constant that

ensures that the Jacobian of the projection remains positive along the flow.

In section 3.3 we prove, for the case of CPn, that the pinching condition is

preserved along the flow. Long-time existence and convergence then follow

from the standard blow-up analysis and asymptotic convergence results, as

shown in Section 3.4 and 3.5.
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Chapter 3

Proof of the Main Result

3.1 Singular values of symplectic linear maps

between vector spaces

Let (V, g) and (Ṽ , g̃) be 2n-dimensional real inner product spaces, with al-

most complex structures J and J̃ , respectively, compatible with the corre-

sponding inner products. Then ω(., .) = g(J., .), and ω̃ = g̃(J̃ ., .) are sym-

plectic forms on V and Ṽ . Recall that a linear map L : (V, ω) → (Ṽ , ω̃) is

said to be symplectic if ω(u, v) = ω̃(L(u), L(v)) for any u, v ∈ V .

For such L, we define E : V → Ṽ to be the map E = L[L∗L]−
1
2 , where

L∗ : Ṽ → V is the adjoint operator of L in the context of real inner product

spaces.

In terms of adjoint operator, L being symplectic is equivalent to:
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L∗J̃L = J.

Lemma 3.1.1 E is an isometry and it intertwines with J and J̃ , i.e.

J̃E = EJ.

In other words, E is a symplectic isometry.

Proof: E is an isometry since:

g̃(Eu,Ev) = g̃(L[L∗L]−
1
2u, L[L∗L]−

1
2v) = g(L∗L[L∗L]−

1
2u, [L∗L]−

1
2v)

= g([L∗L]
1
2u, [L∗L]−

1
2v)

= g([L∗L]−
1
2 [L∗L]

1
2u, v)

= g(u, v)

for any u, v ∈ V .

Let P = [L∗L]
1
2 , so that E = LP−1. −JP−1J and P are both positive

definite (−JP−1J = J−1P−1J is positive definite since P−1 is and since J is

an orthogonal operator), and, by the symplectic condition L∗J̃L = J , their

squares are equal:

(−JP−1J)2 = −JL−1(L∗)−1J = −L∗J̃ J̃L = P 2.
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It follows that:

−JP−1J = P.

By using the symplectic condition L∗J̃L = J and the fact that P = L∗LP−1,

we obtain the desired result:

−JP−1J = P ⇒ −JP−1J = L∗LP−1 ⇒ −(L∗)−1JP−1J = LP−1

⇒ −J̃LP−1J = LP−1

⇒ −J̃EJ = E.

Finally, the last equality implies E∗J̃E = J , so E is in fact a symplectic

isometry.

2

Let (v1, . . . , v2n) be a basis of V that diagonalizes L∗L. Since L∗L is

positive definite, it has the form:

L∗L =



λ2
1 0 . . . 0

0 λ2
2

...
. . .

...

λ2
2n−1 0

0 . . . 0 λ2
2n


with respect to this basis, for some λi > 0, i = 1, . . . , 2n.

Then, by construction, L(vi) = λiE(vi); in other words:
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L =



λ1 0 . . . 0

0 λ2

...
. . .

...

λ2n−1 0

0 . . . 0 λ2n


with respect to the bases (v1, . . . , v2n) and (E(v1), . . . , E(v2n)), and thus λi

are the singular values of L.

Note: Singular values of a linear map from one vector space to another

are analogue to eigenvalues of a linear operator on a (single) vector space.

Singular-value decomposition holds for any linear map L: there exist or-

thonormal bases of the domain and range of L such that L is diagonalized

with respect to them. The diagonal values are unique.

Lemma 3.1.2 Let λi be the singular values of L and vi be the associated

singular vectors, i.e. L(vi) = λiE(vi). Then:

(λiλj − 1)g(Jvi, vj) = 0.

Proof: By the symplectic condition and Lemma 3.1.1:

g(Jvi, vj) =g̃(J̃L(vi), L(vj)) = λiλj g̃(J̃E(vi), E(vj))

= λiλj g̃(E(Jvi), E(vj))

= λiλjg(Jvi, vj).
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2

Lemma 3.1.3 If α is a singular value of L, then so is 1
α

. Moreover, the

singular values can be split into pairs whose product is 1: if V (α) denotes the

subspace of singular vectors corresponding to a singular value α, then

dimV (α) = dimV

(
1

α

)
,

and J restricts to an isomorphism between V (α) and V
(

1
α

)
.

Proof: The first statement is a consequence of Lemma 3.1.2. Indeed, let

(v1, . . . , v2n) be the basis described in the lemma. Then for each i ∈ {1, . . . , 2n}

there exists some j ∈ {1, . . . , 2n} such that 〈Jvi, vj〉 6= 0 since Jvi is a nonzero

vector. Then, by the lemma, it follows that λiλj = 1.

The second statement is trivial if α = 1. Assume that α 6= 1, and let

dimV (α) = k, dimV
(

1
α

)
= l. Assume that vi1 , . . . , vik span V (α) (so that

λi1 = . . . = λik = α). Then Jvi1 , . . . , Jvik belong to V
(

1
α

)
. Indeed, by

Lemma 3.1.2, λiλj 6= 1 ⇒ 〈Jvi, vj〉 = 0 for all i, j. In other words, Jvi is

orthogonal to each singular vector corresponding to a singular value not equal

to 1
λi

. But V = V (α1) ⊕ . . . ⊕ V (αk), where α1, . . . , αk are distinct singular

values of L, k ≤ 2n, and thus V = V ( 1
λi

) ⊕ V ′ where V ′ is the subspace of

singular vectors not corresponding to singular value 1
λi

. As stated above, Jvi

is orthogonal to V ′; it follows that Jvi ∈ V
(

1
λi

)
.

Moreover, Jvi1 , . . . , Jvik are linearly independent because vi1 , . . . , vik are.

It follows that k ≤ l.
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The same argument applies to V
(

1
α

)
as well: assume that vj1 , . . . , vjl span

it. Then Jvj1 , . . . , Jvjl belong to V (α), and they are linearly independent.

It follows that k ≥ l.

We conclude that k = l, and that J reduces to an isomorphism from V (α)

to V
(

1
α

)
.

2

Remark 3.1.1 The preceding lemma implies that V splits into a direct sum

of singular subspaces of the following form:

V = V (1)k0 ⊕ V (α1)k1 ⊕ V
(

1

α1

)k1

⊕ . . .⊕ V (αs)
ks ⊕ V

(
1

αs

)ks
, (3.1.1)

where s + 1 is the total number of distinct singular values of L, αi are dis-

tinct singular values of L greater than 1, i = 1, . . . , s, and the superscripts

represent dimension, k0 ≥ 0, kj > 0, for j = 1, . . . , s.

Proposition 3.1.1 Let L : (V 2n, ω)→ (Ṽ 2n, ω̃) be a symplectic linear map,

where V and Ṽ are real vector spaces supplied with almost complex structures

J and J̃ and inner products g and g̃ compatible with the complex structures;

and where ω = g(J., .), ω̃ = g̃(J̃ ., .).

Then there exists an orthonormal basis of V with respect to which:
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J =



0 −1 . . . 0

1 0 . . . 0

...
. . .

0 . . . 0 −1

0 . . . 1 0


(3.1.2)

and:

L∗L =



λ2
1 0 . . . 0

0 λ2
2

...
. . .

...

λ2
2n−1 0

0 . . . 0 λ2
2n


, (3.1.3)

where λ2i−1λ2i = 1, for i = 1, . . . , n.

Proof: Lemma 3.1.3 and (3.1.1) imply that it is sufficient to find a basis

satisfying (3.1.2) of the subspaces V (α)⊕V ( 1
α

) for each singular value α 6= 1,

as well as of V (1) if 1 is a singular value of L.

Assume that there is a singular value α 6= 1, and let k = dimV (α). We

choose an arbitrary basis u1, . . . , uk of this space. Then Ju1, . . . , Juk is a

basis of V ( 1
α

). Putting these bases together provides a basis of V (α)⊕ V ( 1
α

)

satisfying (3.1.2). Moreover, since u1, . . . , uk are singular vectors of L with

singular velue α, and Ju1, . . . , Juk are singular values of L with singular

value 1
α

, it follows that (u1, Ju1, u2, Ju2, . . . , uk, Juk) is the desired basis.

If a singular value is equal to 1 (i.e. if k0 > 0 in (3.1.1)), any basis of
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V (1) satisfying (3.1.2) suffices.

2

Since the image of an orthonormal basis under an isometry is also an

orthonormal basis, we obtain the following corollary.

Corollary 3.1.1 Let E : V → Ṽ be the isometry E = L[L∗L]−
1
2 . If

(a1, . . . , a2n) is a basis of V satisfying the properties of Proposition 3.1.1,

and if (ã1, . . . , ã2n) is the orthonormal basis (E(a1), . . . , E(a2n)) of Ṽ , then:

(a)

J̃ =



0 −1 . . . 0

1 0 . . . 0

...
. . .

0 . . . 0 −1

0 . . . 1 0


with respect to (ã1, . . . , ã2n);

and:

(b) L is diagonalized with respect to these bases, with diagonal values ordered

in pairs whose product is 1:

L =



λ1 0 . . . 0

0 λ2

...
. . .

...

λ2n−1 0

0 . . . 0 λ2n
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with λ2i−1λ2i = 1, for i = 1, . . . , n.

Proof: Part (a) follows from the Proposition 3.1.1 and Lemma 3.1.1. Part

(b) follows from the fact that L(ai) = λiE(ai).

2

3.2 Evolution of symplectomorphisms of Kähler-

Einstein manifolds under the mean cur-

vature flow of their graphs

3.2.1 Geometric context

To prove the main theorem, we consider the evolution of the graph of f ,

Σ ⊂M × M̃ , under mean curvature flow. Here M × M̃ is the product space

with product metric G. If J and J̃ are almost complex structures of M

and M̃ , respectively, then J (u, v) = (Ju,−J̃v) defines an almost complex

structure on M×M̃ parallel with respect to G. Let Σt be the mean curvature

flow of Σ in M × M̃ .

Let Ω be the volume form of M extended to M × M̃ naturally (more

precisely, let Ω be the pullback of the volume form of M under the projection

π1 : M × M̃ → M). Denote by ∗Ω the Hodge star of the restriction of Ω to

Σt. At any point q ∈ Σt, ∗Ω(q) = Ω(e1, . . . , e2n) for any oriented orthonormal

basis of TqΣ. ∗Ω is the Jacobian of the projection from Σt onto M . The goal
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of this section is to prove that ∗Ω remains positive along the mean curvature

flow. By the inverse function theorem, this implies that Σt is a graph over

M .

We will apply our result in the following section to choose a basis that

simplifies the evolution equation of ∗Ω.

Suppose q ∈ Σt is of the form q = (p, f(p)) for p ∈ M and f(p) ∈ M̃ ,

and let (a1, . . . , a2n) be the basis of TpM satisfying the properties listed in

Proposition 3.1.1, for L = Dfp : TpM → Tf(p)M̃ , with the inner products

understood to be the metrics g on M at p and g̃ on M̃ at f(p). Define

E : TpM → Tf(p)M̃ to be the isometry E = Dfp[Df
∗
pDfp]

− 1
2 for p ∈M . Let

us also choose a basis of Tf(p)M̃ to be (ã1, . . . , ã2n) = (E(a1), . . . , E(a2n)), as

per Corollary 3.1.1.

Then

ei =
1√

1 + |Dfp(ai)|2
(ai, Dfp(ai)) =

1√
1 + λ2

i

(ai, λiE(ai)) (3.2.1)

and

e2n+i = J(x,f(x))ei =
1√

1 + λ2
i

(Jpai,−J̃f(p)λiE(ai))

=
1√

1 + λ2
i

(Jpai,−λiE(Jpai)),

(3.2.2)

for i = 1, . . . , 2n, form an orthonormal basis of Tq(M×M̃). By construction,

e1, . . . , e2n span TqΣ, and e2n+1, . . . , e4n span NqΣ. In terms of this basis at
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each point q ∈ Σt:

∗Ω = Ω(e1, . . . , e2n) =
1√∏

j

(1 + λ2
j)

.

The second fundamental form of Σt is at each point q ∈ Σt characterized

by coefficients

hijk = G(∇M×M̃
ei

ej,J ek). (3.2.3)

Note that hijk are completely symmetric with respect to i, j, k.

Before we prove the main result, we make a following remark.

Remark 3.2.1 A more general, but weaker result than Thereom 1 holds. Let

M , M̃ and symplectomorphism f satisfy the following property for a given

constant Λ > 1:

∑
k

∑
i 6=k

xi

(1 + x2
k)(xi + x−1

i )
(Rikik − x2

kR̃ikik) ≥ 0 (3.2.4)

whenever 1√
Λ
≤ xi ≤

√
Λ, where Rijkl = R(ai, aj, ak, al) and

R̃ijkl = R̃(E(ai), E(aj), E(ak), E(al)) are the coefficients of curvature tensors

on M and M̃ , respectively, with respect to the bases chosen as above.

Then the following general result holds.

Theorem 2 Let Σ be the graph of a symplectomorphism f : M → M of a

compact Kähler-Einstein manifold M . Then there exists a constant Λ0 > 1,
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depending only on n, such that, when f is Λ-pinched, for Λ ∈ (1,Λ0], and

the property (4.0.1) is satisfied, then:

1) The mean curvature flow Σt of the graph of f in M×M exists smoothly

for all t ≥ 0.

2) Σt is the graph of a symplectomorphism ft for each t ≥ 0.

Unlike Theorem 1, this result does not establish convergence; the proof of

convergence requires more refined curvature properties of CPn.

In the rest of this section, we derive the evolution equation of ∗Ω under

the mean curvature flow.

3.2.2 Evolution of ∗Ω

Proposition 3.2.1 Let Σ be the graph of a symplectomorphism f : (M,ω)→

(M̃, ω̃) between Kähler-Einstein manifolds (M, g) and (M̃, g̃) of real dimen-

sion 2n. At each point q ∈ Σt, ∗Ω satisfies the following equation:

d

dt
∗ Ω =∆ ∗ Ω + ∗Ω{Q(λi, hijk) +

∑
k

∑
i 6=k

λi
(1 + λ2

k)(λi + λi′)
(Rikik − λ2

kR̃ikik)},

where

Q(λi, hijk) =
∑
i,j,k

h2
ijk − 2

∑
k

∑
i odd

(hiikhi′i′k − h2
ii′k)

− 2
∑
k

∑
i<j

(−1)i+jλiλj(hi′ikhj′jk − hi′jkhj′ik),
(3.2.5)
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Rijkl = R(ai, aj, ak, al) and R̃ijkl = R̃(E(ai), E(aj), E(ak), E(al)) are the co-

efficients of the curvature tensors R and R̃ of M and M̃ with respect to the

chosen bases of TpM and Tf(p)M̃ as per Proposition 3.1.1 and Corollary 3.1.1,

respectively, and i′ = i+ (−1)i+1.

Note: We use the following convention in defining Riemannian curvature

tensor:

R(X, Y )Z = −∇X∇YZ +∇Y∇XZ +∇[X,Y ]Z.

Thus the covariant version is:

R(X, Y, Z,W ) = 〈−∇X∇YZ +∇Y∇XZ +∇[X,Y ]Z,W 〉,

and sectional curvature is given by:

K(X, Y ) =
R(X, Y,X, Y )

|X|2|Y |2 − 〈X, Y 〉2
.

Proof: The evolution equation of ∗Ω under mean curvature flow is, by [24]:

d

dt
∗ Ω = ∆ ∗ Ω + ∗Ω(

∑
ı,j,k

h2
ijk)

− 2
∑
p,q,k

∑
i<j

Ω(e1, . . . ,J ep, . . . ,J eq, . . . , e2n)hpikhqjk

−
∑
p,k,i

Ω(e1, . . . ,J ep, . . . , e2n)R(J ep, ek, ek, ei)

= ∆ ∗ Ω +A+ B,
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where

A = ∗Ω(
∑
ı,j,k

h2
ijk)− 2

∑
p,q,k

∑
i<j

Ω(e1, . . . ,J ep, . . . ,J eq, . . . , e2n)hpikhqjk

and

B = −
∑
p,k,i

Ω(e1, . . . ,J ep, . . . , e2n)R(J ep, ek, ek, ei).

Here R is the curvature tensor of M ×M̃ . All summation indices range from

1 to 2n, unless stated otherwise.

Since Ω only picks up the π1 projection part, and

π1(J ep) =
1√

1 + λ2
p

Jap (3.2.6)

by (3.2.1), it follows that:

A = ∗ Ω(
∑
ı,j,k

h2
ijk)

− 2(∗Ω)
∑
p,q,k

∑
i<j

√
(1 + λ2

i )(1 + λ2
j)√

(1 + λ2
p)(1 + λ2

q)
Ω(a1, . . . , Jap, . . . , Jaq, . . . , a2n)hpikhqjk.

Fixing i < j, we compute the term:

Ω(a1, . . . , Jap, . . . , Jaq, . . . , a2n) =
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= Ω(a1, . . . , g(Jap, ai)ai + g(Jap, aj)aj, . . . , g(Jaq, ai)ai + g(Jaq, aj)aj, . . . , a2n)

= (JipJjq − JjpJiq),

where Jrs = g(Jas, ar).

Now if p = q, the summation term in the second sum is 0. Therefore,

A = ∗Ω[
∑
ı,j,k

h2
ijk

− 2
∑
k

∑
p<q

∑
i<j

√
(1 + λ2

i )(1 + λ2
j)√

(1 + λ2
p)(1 + λ2

q)
(JipJjq − JjpJiq)(hpikhqjk − hpjkhqik)].

The only cases when Jrs 6= 0 are when r = s′.

(Note that (s′)′ = s, Jss′ = (−1)s, and λsλs′ = 1.)

Therefore:

A = ∗ Ω[
∑
ı,j,k

h2
ijk

− 2
∑
k

∑
i odd

√
(1 + λ2

i )(1 + λ2
i′)√

(1 + λ2
i )(1 + λ2

i′)
(JiiJi′i′ − Ji′iJii′)(hiikhi′i′k − hii′khi′ik)

− 2
∑
k

∑
i<j

√
(1 + λ2

i )(1 + λ2
j)√

(1 + λ2
i′)(1 + λ2

j′)
(Jii′Jjj′ − Jji′Jij′)(hi′ikhj′jk − hi′jkhj′ik)]

= ∗Ω[
∑
i,j,k

h2
ijk − 2

∑
k

∑
i odd

(hiikhi′i′k − h2
ii′k)

− 2
∑
k

∑
i<j

(−1)i+jλiλj(hi′ikhj′jk − hi′jkhj′ik)].



CHAPTER 3. PROOF OF THE MAIN RESULT 30

On the other hand,

B =
∑
p,k,i

Ω(e1 . . . ,J ep, . . . , e2n)R(J ep, ek, ei, ek)

= ∗Ω
∑
p,k,i

√
1 + λ2

i√
1 + λ2

p

Ω(a1 . . . , Jap, . . . , a2n)R(J ep, ek, ei, ek)

= ∗Ω
∑
p,k,i

√
1 + λ2

i√
1 + λ2

p

g(Jap, ai)R(J ep, ek, ei, ek)

= ∗Ω
∑
k,i

√
1 + λ2

i√
1 + λ2

i′

(−1)iR(J ei′ , ek, ei, ek)

= ∗Ω
∑
k,i

(−1)iλiR(J ei′ , ek, ei, ek)

= ∗Ω
∑
k

∑
i 6=k

(−1)iλiR(J ei′ , ek, ei, ek).

Denote by R and R̃ the curvature tensors of M and M̃ , respectively.

Then:

R(J ei′ , ek, ei, ek)

= R(π1(J ei′), π1(ek), π1(ei), π1(ek)) + R̃(π2(J ei′), π2(ek), π2(ei), π2(ek))

=
1

(1 + λ2
k)
√

(1 + λ2
i )(1 + λ2

i′)
[R(Jai′ , ak, ai, ak)

− λ2
kλiλi′R2(J̃E(ai′), E(ak), E(ai), E(ak))]

=
1

(1 + λ2
k)
√

(1 + λ2
i )(1 + λ2

i′)
[R(Jai′ , ak, ai, ak)

− λ2
kR̃(E(Jai′), E(ak), E(ai), E(ak))]
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=
1

(1 + λ2
k)
√

(1 + λ2
i )(1 + λ2

i′)
[(−1)iR(ai, ak, ai, ak)

− (−1)iλ2
kR̃(E(ai), E(ak), E(ai), E(ak))]

=
(−1)i

(1 + λ2
k)
√

(1 + λ2
i )(1 + λ2

i′)
(Rikik − λ2

kR̃ikik)

=
(−1)i

(1 + λ2
k)(λi + λi′)

(Rikik − λ2
kR̃ikik).

2

The ambient curvature term B can be further simplified when

M ' M̃ ' CPn.

Corollary 3.2.1 If M ' CPn and M̃ ' CPn, and the metric on each man-

ifold is Fubini-Study, then:

d

dt
∗ Ω =∆ ∗ Ω + ∗Ω

[
Q(λi, hijk) +

∑
k odd

(1− λ2
k)

2

(1 + λ2
k)

2

]
.

Proof: On CPn with Fubini-Study metric, the sectional curvature is: K(X, Y ) =
1
4

(||X∧Y ||2+3〈JX,Y 〉2)

|X|2|Y |2−〈X,Y 〉2 ([10]). Therefore, with respect to the chosen orthonormal

bases of TxM and Tf(x)M̃ , the sectional curvatures K and K̃ of M and M̃

are:

K(ai, ai′) = 1 and K(ar, as) = K(as, ar) =
1

4

for all other r, s, and
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K̃(E(ai), E(ai′)) = 1 and K̃(E(ar), E(as)) = K(E(as), E(ar)) =
1

4

for all other r, s.

Therefore:

Rikik = K(ai, ak) =
1

4
(1 + 3δik′),

R̃ikik = K̃(E(ai), E(ak)) =
1

4
(1 + 3δik′)

and:

R(J ei′ , ek, ei, ek) =
(−1)i

4

1− λ2
k

(1 + λ2
k)(λi + λi′)

(1 + 3δik′)

for any i, k. Plugging this into the sum above, we obtain:

B =
∗Ω
4

∑
k

∑
i 6=k

λi(1− λ2
k)

(1 + λ2
k)(λi + λi′)

(1 + 3δik′)

= ∗Ω
∑
k

λk′(1− λ2
k)

(1 + λ2
k)(λk + λk′)

+
∗Ω
4

∑
k

1− λ2
k

1 + λ2
k

∑
i 6=k,k′

λi
λi + λi′

= ∗Ω
∑
k

λk′ − λk
(1 + λ2

k)(λk + λk′)
+
∗Ω
4

∑
k

1− λ2
k

1 + λ2
k

∑
i odd 6=k,k′

λi + λi′

λi + λi′

= ∗Ω
∑
k

λk′ − λk
λk(λk + λk′)2

+ (n− 1)
∗Ω
4

∑
k

λk(λk′ − λk)
λk(λk′ + λk)

= ∗Ω
∑
k odd

(
λk′ − λk

λk(λk + λk′)2
+

λk − λk′
λk′(λk + λk′)2

)
+ (n− 1)

∗Ω
4

∑
k

λk′ − λk
λk′ + λk

= ∗Ω
∑
k odd

λk − λk′
λkλk′(λk + λk′)2

(λk − λk′) + (n− 1)
∗Ω
4

∑
k odd

(
λk′ − λk
λk′ + λk

+
λk − λk′
λk′ + λk

)
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= ∗Ω
∑
k odd

(λk − λk′)2

(λk + λk′)2

= ∗Ω
∑
k odd

(1− λ2
k)

2

(1 + λ2
k)

2
.

2

Note: In this case B ≥ 0, with equality holding if and only if all the

singular values of f are equal (and thus necessarily equal to 1).

Moreover,
(1−λ2

k)2

(1+λ2
k)2 < 1, so B < n(∗Ω) ≤ n

2n
.

We notice that Q(λi, hijk) is a quadratic form in hijk. In the next lemma,

we rewrite it.

Lemma 3.2.1

Q(λi, hijk) =
∑
i,j,k

h2
ijk − 2

∑
k

∑
i odd

(hiikhi′i′k − h2
ii′k)

− 2
∑
k

∑
i odd<j odd

(λi − λi′)(λj − λj′)hi′ikhj′jk

− 2
∑
k

∑
i odd<j odd

[−(λiλj + λi′λj′)hi′jkhj′ik + (λi′λj + λiλj′)hijkhj′i′k].

Lemma 3.2.2 The smallest eigenvalue of Q((1, . . . , 1), hijk) is 3−
√

5.

Proof: When λi = 1 for all i, Q splits into smaller quadratic forms:

Q =
∑
i

(h2
iii + 5h2

ii′i′ − 2hiiihii′i′)

+
∑
i

∑
j odd 6=i,i′

(3h2
ijj + 3h2

ij′j′ + 8h2
i′jj′ − 2hijjhij′j′ + 4hij′j′hi′jj′ − 4hijjhi′jj′)
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+
∑

i odd<j odd<k odd

(6h2
ijk + 6h2

i′j′k + 6h2
i′jk′ + 6h2

ij′k′

− 4hijkhi′j′k − 4hijkhi′jk′ − 4hijkhij′k′ + 4hi′j′khi′jk′ + 4hi′j′khij′k′ + 4hi′jk′hij′k′)

+
∑

i odd<j odd<k odd

(6h2
i′j′k′ + 6h2

ijk′ + 6h2
ij′k + 6h2

i′jk

− 4hi′j′k′hijk′ − 4hi′j′k′hij′k − 4hi′j′k′hi′jk + 4hijk′hij′k + 4hijk′hi′jk + 4hij′khi′jk).

The smallest eigenvalue of the quadratic form within the first sum is 3−
√

5;

of the quadratic form within the second sum (when n ≥ 2) it is 2; and of the

quadratic term in the third, as well as the fourth sum (when n ≥ 3)it is 4.

These quadratic forms do not overlap, so the smallest eigenvalue of Q is

3−
√

5 (for all n).

2

Proposition 3.2.2 Let Q(λi, hjkl) be the quadratic form defined in Propo-

sition 3.2.1. In each dimension n, there exist Λ0 > 1 such that Q(λi, hjkl)

is non-negative whenever 1√
Λ0
≤ λi ≤

√
Λ0 for i = 1, . . . , 2n. Moreover, for

any 1 ≤ Λ1 < Λ0, there exists a δ > 0 such that

Q(λi, hjkl) ≥ δ
∑
i,j,k

h2
ijk

whenever 1√
Λ1
≤ λi ≤

√
Λ1 for i = 1, . . . , 2n.

Proof: By Lemma 3.2.2, Q((1, · · · , 1), hijk) is a positive definite quadratic

form in hijk. Since being a positive definite matrix is an open condition,
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there is an open neighborhood U of (λ1, . . . , λ2n) = (1, · · · , 1) such that

(λ1, . . . , λ2n) ∈ U implies Q(λi, hijk) is positive definite. Let δ~λ be the small-

est eigenvalue of Q at ~λ ≡ (λ1, . . . , λ2n). Note that δ~λ is a continuous function

in ~λ and set

δΛ = min{δ~λ |~λ = (λ1, . . . , λ2n) and
1√
Λ
≤ λi ≤

√
Λ for i = 1, . . . , 2n}.

Thus δ1 = 3−
√

5. Λ0 defined by

Λ0 ≡ sup{Λ |Λ ≥ 1 and δΛ ≥ 0}

has the desired property.

2

Remark 3.2.2 When n = 1: Λ0 =∞.

When n = 2: Λ0 = 2
5

√
10 + 1

5

√
15 (see Chapter 4).

In general, Λ0 is computable.

Corollary 3.2.2 Suppose M and M̃ are both CPn, with Fubini-Study met-

rics, and let |II| denote the norm of the second fundamental form of the

symplectomorphism f . There exist constants Λ0 > 1, depending only on n,

such that for any Λ1, 1 ≤ Λ1 < Λ0 there exists a δ > 0 with

(
d

dt
−∆

)
∗ Ω ≥ δ ∗ Ω|II|2 + ∗Ω

∑
k odd

(1− λ2
k)

2

(1 + λ2
k)

2
, (3.2.7)
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whenever 1√
Λ1
≤ λi ≤

√
Λ1 for every i.

Recall that the norm of the second fundamental form is:

|II| =
√∑

i,j,k,l

GikGjlG(II(wi, wj), II(wk, wl))

=

√ ∑
i,j,k,l,r,s

GikGjlGrsG(∇M×M̃
wi

wj,Jwr)G(∇M×M̃
wk

wl,Jws)

with respect to an arbitrary basis w1, . . . , w2n of TqΣ with Gij = G(wi, wj)

and Gij = (Gij)
−1. By (3.2.3),

|II| =
√∑

i,j,k

h2
ijk

for the chosen basis (3.2.1).

Proof: The result follows from Corollary 3.2.1 and Proposition 3.2.2.

2

3.3 Preservation of the pinching condition un-

der the mean curvature flow

Short-time existence of the mean curvature flow in question is guaranteed

by the theory of parabolic PDE. In order to establish long-time existence

and convergence, we need to show that, when an appropriate pinching holds

initially, f remains Λ0-pinched along the flow, as well as that ∗Ω satisfies
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the differential inequality (3.2.7) along the flow, and that min
Σt
∗Ω is non-

decreasing in time.

To show this, we make several observations:

We consider 1vuut∏
i

(1 + λ2
i )

, for λi > 0, λiλi′ = 1, where i′ = i + (−1)i+1,

i = 1, . . . , 2n (in other words, λ2k−1λ2k = 1 for k = 1, . . . , n). It can be

rewritten as:

1√∏
i

(1 + λ2
i )

=
1∏

i

(λi + λi′)
.

This expression always has an upper bound: λiλi′ = 1 implies that λi+λi′ ≥

2, so

1√∏
i

(1 + λ2
i )
≤ 1

2n
,

with equality if and only if λi = 1 for all i.

If λi are bounded, it also has a positive lower bound.

Lemma 3.3.1 If 1√
Λ
≤ λi ≤

√
Λ for all i, where Λ > 1, then:

1

2n
− ε ≤ 1√∏

i

(1 + λ2
i )
,

where ε = 1
2n
− 1

(
√

Λ+ 1√
Λ

)n
> 0.

Proof: The function x+ 1
x

is decreasing when x > 1. Therefore if
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1√
Λ
≤ λi ≤

√
Λ for all i, where Λ > 1, then:

λi + λi′ ≤
√

Λ +
1√
Λ
.

It follows that:

1

2n
− ε ≤ 1√∏

i

(1 + λ2
i )
≤ 1

2n
,

where ε = 1
2n
− 1

(
√

Λ+ 1√
Λ

)n
.

(This bound is sharp: when λi =
√

Λ for all odd i, and λi = 1√
Λ

for all

even i, 1
2n
− ε = 1vuut∏

i

(1 + λ2
i )

, so no better bound on 1vuut∏
i

(1 + λ2
i )

holds.)

2

Also, a positive lower bound on 1vuut∏
i

(1 + λ2
i )

implies a bound on λi.

Lemma 3.3.2 If 1
2n
− ε ≤ 1vuut∏

i

(1 + λ2
i )

, where 0 < ε < 1
2n

, then:

1√
Λ′
≤ λi ≤

√
Λ′

for all i = 1, . . . , 2n, where Λ′ =

(
1

2n
1

2n
−ε +

√(
1

2n
1

2n
−ε

)2

− 1

)2

> 1.

Proof: If:

1

2n
− ε ≤ 1√∏

i

(1 + λ2
i )

=
1∏

i

(λi + λi′)
,
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then: ∏
i

(λi + λi′) ≤
2n

1− 2nε
,

and thus:

λi + λi′ ≤
2n

(1− 2nε)
∏
j 6=i

(λj + λj′)

for each i.

Since λj + λj′ ≥ 2 for each j, the inequality implies:

λi + λi′ ≤ 2
1

2n

1
2n
− ε

Since λiλi′ = 1, it follows that:

1√
Λ′
≤ λi ≤

√
Λ′,

where Λ′ =

(
1

2n
1

2n
−ε +

√(
1

2n
1

2n
−ε

)2

− 1

)2

.

(This bound is sharp: when 1
2n
− ε = 1vuut∏

i

(1 + λ2
i )

, one possibility is that

λ1 =
√

Λ′, λ2 = 1√
Λ′

, and λ3 = . . . = λ2n = 1, so no better bound on λi

holds.)

2

Proposition 3.3.1 Let Σt be the graph at time t of the mean curvature flow

of the graph Σ of a symplectomorphism f : M → M̃ , where M ' M̃ ' CPn

with Fubini-Study metric. Let ∗Ω be the Jacobian of the projection
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π1 : Σt →M . Let Λ0 be the constants characterized by Proposition 3.2.2.

If ∗Ω has the initial lower bound:

1

2n
− ε ≤ ∗Ω

for ε = 1
2n

(
1− 2√

Λ1+ 1√
Λ1

)
, for some 1 < Λ1 < Λ0, then ∗Ω satisfies:

(
d

dt
−∆

)
∗ Ω ≥ δ ∗ Ω|II|2 + ∗Ω

∑
k odd

(1− λ2
k)

2

(1 + λ2
k)

2

along the mean curvature flow, where δ is given in Proposition 3.2.2. In

particular, min
Σt
∗Ω is nondecreasing as a function in t.

Proof: Assume that the mean curvature flow exists for t ∈ [0, T ), for some

T > 0 (possibly ∞). If initially 1
2n
− ε ≤ ∗Ω for ε = 1

2n

(
1− 2√

Λ1+ 1√
Λ1

)
,

then, by Lemma 3.3.2, f is Λ1-pinched. That in turn implies that ∗Ω initially

satisfies inequality (3.2.7), and thus:

(
d

dt
−∆

)
∗ Ω ≥ 0. (3.3.1)

Let T ′ ∈ [0, T ) be a time such that ∗Ω satisfies (3.3.1) for all times

t ∈ [0, T ′]. Then, by the maximum principle, min
Σt
∗Ω is nondecreasing for

t ∈ [0, T ′]. Therefore the lower bound of ∗Ω is preserved for t ∈ [0, T ′], and

consequently Λ0-pinching as well. It then follows by Corollary 3.2.2 that in

fact ∗Ω satisfies inequality (3.2.7) for all t ∈ [0, T ′].
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In other words, ∗Ω satisfies the statement of this proposition as long as

(3.3.1) is satisfied. Therefore what is left to verify is that (3.3.1) holds along

the mean curvature flow (i.e. that the above is true for all T ′ ∈ [0, T )).

Assume the opposite: that there is a time between 0 and T for which

(3.3.1) does not hold. Let T ′ be the maximum time such that (3.3.1) holds for

all t ∈ [0, T ′]. Then there exists a point (x′, T ′) ∈ ΣT ′ and time T ′′ ∈ (T ′, T )

such that: (
d

dt
−∆

)
∗ Ω ≥ 0

at (x′, T ′), and: (
d

dt
−∆

)
∗ Ω < 0

at (x′, t), for all t ∈ (T ′, T ′′). From the discussion above it follows that

Λ0-pinching holds at (x′, T ′). On the other hand,
(
d
dt
−∆

)
∗ Ω < 0 implies

that Q(λi, hjkl) < −
∑

k odd

(1−λ2
k)2

(1+λ2
k)2 ≤ 0 for all t ∈ (T ′, T ′′) (Corollary 3.2.1).

In other words, max
i
λi ≤

√
Λ1 at (x′, T ′), and max

i
λi ≥

√
Λ0 at (x′, t),

t ∈ (T ′, T ′′). But max
i
λi is a continuous function. Contradiction.

2

Corollary 3.3.1 If the initial symplectomorphism f is Λ1-pinched, for

Λ1 =

[1

2

(√
Λ0 +

1√
Λ0

)] 1
n

+

√[
1

2

(√
Λ0 +

1√
Λ0

)] 2
n

− 1

2

< Λ0,

then it is also Λ0-pinched, and Λ0-pinching is preserved along the mean cur-

vature flow.
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Proof: Note that:

1

2

(√
Λ1 +

1√
Λ1

)
=

(
1

2

(√
Λ0 +

1√
Λ0

)) 1
n

<
1

2

(√
Λ0 +

1√
Λ0

)
.

The last inequality holds since
√

Λ0 + 1√
Λ0
> 2. Since Λ0 > 1 and Λ1 > 1, it

follows that Λ1 < Λ0. Thus the initial Λ1-pinching implies initial Λ0-pinching.

For times t > 0, Λ1-pinching implies, by Lemma 3.3.1, that ∗Ω has initial

lower bound:

1

2n
− ε ≤ ∗Ω

for ε = 1
2n

(
1− 2√

Λ0+ 1√
Λ0

)
. Then, by Proposition 3.3.1, the lower bound is

preserved. Lemma 3.3.2 then implies that Λ0-pinching is preserved along the

flow.

2

3.4 Long-time existence of the mean curva-

ture flow

To prove long-time existence of the flow, we follow the method of Wang [24].

We isometrically embed M × M̃ into RN . The mean curvature flow equation

in terms of the coordinate function F (x, t) ∈ RN is:

d

dt
F (x, t) = H = H̄ + U,
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where H ∈ T (M × M̃)/TΣ is the mean curvature vector of Σt in M , H̄ ∈

TRN/TΣ is the mean curvature vector of Σt in RN , and U = −IIM×M̃(ea, ea).

Indeed:

H = πM×M̃NΣ (∇M×M̃
ea ea) = ∇M×M̃

ea ea −∇Σ
eaea

= ∇RN
ea ea − π

RN
N(M×M̃)

(∇RN
ea ea)−∇

Σ
eaea

= ∇RN
ea ea −∇

Σ
eaea − IIM×M̃(ea, ea)

= πRN
NΣ(∇Σ

eaea)− IIM×M̃(ea, ea)

= H̄ + U,

Note that U is bounded since M and M̃ are assumed to be compact.

Following [24], we assume that there is a singularity at (y0, t0) ∈ Σ ⊂ RN .

Huisken [6] introduced the (2n)−dimensional backward heat kernel ρy0,t0 at

(y0, t0):

ρy0,t0(y, t) =
1

4π(t0 − t)n
exp

(
−|y − y0|2

4(t0 − t)

)
.

Let dµt denote the volume form of Σt. By Huisken’s monotonicity for-

mula, lim
t→t0

∫
ρy0,t0dµt exists.

Lemma 3.4.1 The limit lim
t→t0

∫
(1− ∗Ω)ρy0,t0dµt exists and:

d

dt

∫
(1− ∗Ω)ρy0,t0dµt ≤ C − δ

∫
∗Ω|II|2ρy0,t0dµt
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for some constant C > 0.

Proof: By [26]:

d

dt
ρy0,t0 = −∆ρy0,t0 − ρy0,t0

(
|F⊥|2

4(t0 − t)2
+
F⊥ · H̄
t0 − t

+
F⊥ · U

2(t0 − t)

)
,

where F⊥ ∈ TRN/TΣt is the orthogonal component of F ∈ TRN .

Using Equation (1.1.3):

d

dt
dµt = −|H|2dµt = −H̄ · (H̄ + U)dµt.

Combining these results, we obtain:

d

dt

∫
(1− ∗Ω)ρy0,t0dµt ≤

∫
[∆(1− ∗Ω)− δ ∗ Ω|II|2]ρy0,t0dµt

−
∫

(1− ∗Ω)

[
∆ρy0,t0 + ρy0,t0

(
|F⊥|2

4(t0 − t)2
+
F⊥ · H̄
t0 − t

+
F⊥ · U

2(t0 − t)

)]
−
∫

(1− ∗Ω)[H̄ · (H̄ + U)]ρy0,t0dµt

=

∫
[∆(1− ∗Ω)ρy0,t0 − (1− ∗Ω)∆ρy0,t0 ]dµt − δ

∫
∗Ω|II|2ρy0,t0dµt

−
∫

(1− ∗Ω)ρy0,t0

[(
|F⊥|2

4(t0 − t)2
+
F⊥ · H̄
t0 − t

+
F⊥ · U

2(t0 − t)

)
+ |H̄|2 + H̄ · U

]
dµt

= −δ
∫
∗Ω|II|2ρy0,t0dµt −

∫
(1− ∗Ω)ρy0,t0

∣∣∣∣ F⊥

2(t0 − t)
+ H̄ +

U

2

∣∣∣∣2 dµt
+

∫
(1− ∗Ω)ρy0,t0

∣∣∣∣U2
∣∣∣∣2 dµt.

Since U is bounded, and since
∫

(1 − ∗Ω)ρy0,t0dµt ≤
∫
ρ(y0,t0)dµt < ∞, it
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follows that:

d

dt

∫
(1− ∗Ω)ρy0,t0dµt ≤ C − δ

∫
∗Ω|II|2ρy0,t0dµt

for some constant C. From this it follows that lim
t→t0

∫
(1−∗Ω)ρy0,t0dµt exists.

2

For ν > 1, the parabolic dilation Dν at (y0, t0) is defined by:

Dν : RN × [0, t0)→ RN × [−ν2t0, 0),

(y, t) 7→ (ν(y − y0), ν2(t− t0)).

Let S ⊂ RN × [0, t0) be the total space of the mean curvature flow, and

let Sν ≡ Dν(S) ⊂ RN × [−ν2t0, 0). If s denotes the new time parameter,

then t = t0 + s
ν2 .

Let dµνs be the induced volume form on Σ by F ν
s ≡ νFt0+ s

ν2
.

The image of F ν
s is the s−slice of Sν , denoted Σν

s .

Remark 3.4.1 Note that:

∫
(1− ∗Ω)ρy0,t0dµt =

∫
(1− ∗Ω)ρ0,0dµ

ν
s ,

because ∗Ω and ρy0,t0dµt are invariant under parabolic dilation.
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Lemma 3.4.2 For any τ > 0:

lim
ν→∞

∫ −1

−1−τ

∫
∗Ω|II|2ρ0,0dµ

ν
sds = 0.

Proof: From Remark 3.4.1:

d

ds

∫
(1− ∗Ω)ρ0,0dµ

ν
s =

1

ν2

d

dt

∫
(1− ∗Ω)ρy0,t0dµt.

Then by Lemma 3.4.1:

d

ds

∫
(1− ∗Ω)ρ0,0dµ

ν
s ≤

C

ν2
− δ

ν2

∫
∗Ω|II|2ρy0,t0dµt

for some constant C. But 1
ν2

∫
∗Ω|II|2ρy0,t0dµt =

∫
∗Ω|II|2ρ0,0dµ

ν
s since the

norm of the second fundamental form scales like the inverse of the distance,

so:

d

ds

∫
(1− ∗Ω)ρ0,0dµ

ν
s ≤

C

ν2
− δ

∫
∗Ω|II|2ρ0,0dµ

ν
s .

Integrating this inequality with respect to s from −1−τ to −1, we obtain:

δ

∫ −1

−1−τ

∫
∗Ω|II|2ρ0,0dµ

ν
sds ≤ −

∫
(1−∗Ω)ρ0,0dµ

ν
−1+

∫
(1−∗Ω)ρ0,0dµ

ν
−1−τ+

C

ν2
.

By Remark 3.4.1 and the fact that lim
t→t0

∫
(1−∗Ω)ρy0,t0dµt exists (Lemma 3.4.1),

the right-hand side of the inequality above approaches zero as ν →∞.

2
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We take a sequence νj →∞. Then for a fixed τ :

∫ −1

−1−τ

∫
∗Ω|II|2ρ0,0dµ

νj
s ds ≤ C(j),

where C(j)→ 0.

Choose τj → 0 such that C(j)
τj
→ 0, and sj ∈ [−1− τj,−1] so that:

∫
∗Ω|II|2ρ0,0dµ

νj
sj
≤ C(j)

τj
. (3.4.1)

(Note that such sj always exist.)

Observe that:

ρ0,0(F νj
sj
, sj) =

1

(4π(−sj)2)n
exp

(
−|F νj

sj |2

4(−sj)

)
.

When j is large enough, we may assume that τj ≤ 1, and thus that

sj ∈ [−2,−1]. For a ball centered at 0 of radius R > 0, BR(0) ∈ RN , we

have: ∫
∗Ω|II|2ρ0,0dµ

νj
sj
≥ C ′

∫
Σ
νj
sj
∩BR(0)

∗Ω|II|2dµνjsj

for a constant C ′ > 0, since sj are bounded and since |F νj
sj | ≤ R on Σ

νj
sj ∩

BR(0).

Then by inequality (3.4.1) and the fact that ∗Ω has a positive lower

bound, we conclude the following.
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Lemma 3.4.3 For any compact set K ⊂ RN :

∫
Σ
νj
sj
∩K
|II|2dµνjsj → 0

as j →∞.

Then, as shown in [24], it follows that:

lim
t→t0

∫
ρy0,t0dµt ≤ 1.

White’s theorem [30] then implies that (y0, t0) is a regular point whenever

lim
t→t0

∫
ρy0,t0dµt ≤ 1 + ε,

contradicting the initial assumption that (y0, t0) is a singular point.

3.5 Convergence

In the preceding sections we have shown that the mean curvature flow Σt

of the graph of symplectomorphism f : M → M̃ exists smoothly for all

t > 0, and that Σt is a graph of symplectomorphisms for each t. We con-

clude the proof of Theorem 1 by showing that Σt converge to the graph of a

biholomorphic isometry.
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By Proposition 3.2.1:

(
d

dt
−∆

)
∗ Ω = ∗Ω

[
Q(λi, hjkl) +

∑
k odd

(1− λ2
k)

2

(1 + λ2
k)

2

]

along the mean curvature flow, where Q ≥ 0 when 1
Λ0
≤ λi ≤ Λ0.

We use this result to derive the evolution equation of ln ∗Ω, which we

then apply to show that lim
t→∞
∗Ω =

1

2n
.

Proposition 3.5.1 Let Σ be the graph of a symplectomorphism f : (M,ω)→

(M̃, ω̃) between 2n-dimensional Kähler-Einstein manifolds (M, g) and (M̃, g̃).

At each point q ∈ Σt, ln ∗Ω satisfies the following equation:

d

dt
ln ∗Ω =∆ ln ∗Ω + Q̃(λi, hjkl) +

∑
k

∑
i 6=k

λi
(1 + λ2

k)(λi + λi′)
(Rikik − λ2

kR̃ikik),

where Rijkl and R̃ijkl are the coefficients of the curvature tensors of M and

M̃ with respect to the chosen bases (3.2.1) and (3.2.2), i′ = i+ (−1)i+1, and

Q̃(λi, hjkl) = Q(λi, hjkl) +
∑
k

∑
i odd

(λ2
i + λ2

i′)h
2
ii′k (3.5.1)

with Q(λi, hjkl) given by Proposition 3.2.1 and Lemma 3.2.1.

Proof:

d

dt
ln ∗Ω =

1

∗Ω
d

dt
∗ Ω
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and:

∆(ln ∗Ω) =
∗Ω∆(∗Ω)− |∇ ∗ Ω|2

(∗Ω)2
.

It follows that:

(
d

dt
−∆

)
ln ∗Ω = Q(λi, hjkl)

+
∑
k

∑
i 6=k

λi
(1 + λ2

k)(λi + λi′)
(Rikik − λ2

kR̃ikik) +
|∇ ∗ Ω|2

(∗Ω)2

by Proposition 3.2.1. Now:

(∗Ω)k =
∑
i

Ω(e1, . . . , (∇M×M̃
ek

−∇Σ
ek

)ei, . . . , e2n)

=
∑
i

Ω(e1, . . . , 〈∇M×M̃
ek

ei,J ep〉J ep, . . . , e2n)

=
∑
p,i

Ω(e1, . . . ,J ep, . . . , e2n)hpik

= ∗Ω
∑
p,i

√
1 + λ2

i√
1 + λ2

p

Jiphpik,

and thus:

|∇ ∗ Ω|2

(∗Ω)2
=
∑
k

[
∑
p,i

√
1 + λ2

i√
1 + λ2

p

Jiphpik
∑
q,j

√
1 + λ2

j√
1 + λ2

q

Jjqhqjk]

=
∑
k

∑
p,q

∑
i,j

√
(1 + λ2

i )(1 + λ2
j)√

(1 + λ2
p)(1 + λ2

q)
JipJjqhpikhqjk
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=
∑
k

∑
p,q

∑
i<j

√
(1 + λ2

i )(1 + λ2
j)√

(1 + λ2
p)(1 + λ2

q)
(JipJjqhpikhqjk − JjpJiqhpjkhqik)

+
∑
k

∑
p,q

∑
i

1 + λ2
i√

(1 + λ2
p)(1 + λ2

q)
JipJiqhpikhqik.

In the first line, the summation term is a product of a symmetric and an

anti-symmetric part in p and q, so the terms corresponding to p 6= q cancel

out, while in the case when p = q the term is 0. Therefore:

|∇ ∗ Ω|2

(∗Ω)2
=
∑
k

∑
p,q

∑
i

1 + λ2
i√

(1 + λ2
p)(1 + λ2

q)
JipJiqhpikhqik

= 2
∑
k

∑
p<q

∑
i

1 + λ2
i√

(1 + λ2
p)(1 + λ2

q)
JipJiqhpikhqik +

∑
k

∑
p

∑
i

1 + λ2
i

1 + λ2
p

J2
iph

2
pik.

But once again, with respect to the chosen bases, at least one of Jip and Jiq

is 0, so:

|∇ ∗ Ω|2

(∗Ω)2
=
∑
k

∑
p

∑
i

1 + λ2
i

1 + λ2
p

J2
iph

2
pik =

∑
k

∑
i

λ2
ih

2
ii′k =

∑
k

∑
i odd

(λ2
i+λ

2
i′)h

2
ii′k.

Thus:

(
d

dt
−∆

)
ln ∗Ω = Q̃(λi, hjkl) +

∑
k

∑
i 6=k

λi
(1 + λ2

k)(λi + λi′)
(Rikik − λ2

kR̃ikik),

where Q̃(λi, hjkl) = Q(λi, hjkl)+
∑
k

∑
i odd

(λ2
i +λ2

i′)h
2
ii′k is a new quadratic form

in hijk, with coefficients depending on the singular values of f . 2
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Corollary 3.5.1 If M ' CPn and M̃ ' CPn, and the metric on each man-

ifold is Fubini-Study, then:

d

dt
ln ∗Ω =∆ ln ∗Ω + Q̃(λi, hijk) +

∑
k odd

(1− λ2
k)

2

(1 + λ2
k)

2
.

Proof: This is a direct consequence of Proposition 3.5.1 and Corollary 3.2.1.

2

Remark 3.5.1 Q̃ is a positive definite quadratic form of hijk whenever Q

is, and in fact it allows for an improvement of the pinching constant.

We use the evolution equation of ln ∗Ω to show that lim
t→∞
∗Ω =

1

2n
. Note

that:

(1− λ2
k)

2

(1 + λ2
k)

2
=

(λk − λk′)2

(λk + λk′)2
=
x− 4

x
,

where x = (λk + λk′)
2.

Since λkλk′ = 1, it follows that λk + λk′ ≥ 2, and thus x ≥ 4. Moreover,

the pinching condition implies that x ≤
(√

Λ0 + 1√
Λ0

)2

.

Now:

x− 4

x
≥ c

(
1

2
lnx− ln 2

)
for c = 8

(
√

Λ0+ 1√
Λ0

)2 .

To see this, let f(x) = x−4
x

, g(x) = c
(

1
2

lnx− ln 2
)
. Notice that:

f(4) = g(4) = 0.
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Now:

f ′(x) =
x− x+ 4

x2
=

4

x2

and:

g′(x) =
c

2x
.

Then:

f ′(x)

g′(x)
=

4

x2

2x

c
=

8

cx
≥ 1.

The last inequality follows from the choice of c and the fact that x ≤(√
Λ0 + 1√

Λ0

)2

. Now since f(4) = g(4) and f ′(x) ≥ g′(x) for 4 ≤ x ≤(√
Λ0 + 1√

Λ0

)2

, it follows that f(x) ≥ g(x). Substituting back, we obtain:

(λk − λk′)2

(λk + λk′)2
≥ c (ln(λk + λk′)− ln 2) ,

and thus:

∑
k odd

(1− λ2
k)

2

(1 + λ2
k)

2
=
∑
k odd

(λk − λk′)2

(λk + λk′)2
≥ c

(
− ln

∏
k odd

1

λk + λk′
− n ln 2

)

= −c
(

ln ∗Ω− ln
1

2n

)
.

Therefore under the pinching condition:

(
d

dt
−∆

)(
ln ∗Ω− ln

1

2n

)
≥ −c

(
ln ∗Ω− ln

1

2n

)
.

The pinching condition holds along the mean curvature flow, so this holds
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for all times.

Then by the comparison principle for parabolic equations:

0 ≥ ln ∗Ω− ln
1

2n
≥ K0e

−ct

for K0 = min
Σ0

ln ∗Ω − ln
1

2n
. It follows that lim

t→∞
min

Σt
ln ∗Ω − ln

1

2n
= 0, and

thus lim
t→∞

min
Σt
∗Ω =

1

2n
. That in turn implies, by Lemma 3.3.2, that λi → 1

as t→∞ for all i.

For the rest of the proof, we modify the method from [24] to show that the

second fundamental form is bounded in t. Let ε > 0 and let ηε = ∗Ω− 1
2n

+ ε.

Note that min
Σt

ηε is nondecreasing, and ηε → ε when t → ∞. Let Tε ≥ 0 be

a time such that ηε|Tε > 0 (so that for all t ≥ Tε: ηε > 0).

Now for all p ∈M , and all t > Tε:

d

dt
ηε = ∆ηε + ∗Ω(Q+B)

≥ ∆ηε + δ ∗ Ω|II|2 = ∆ηε +
δ

ηε
ηε ∗ Ω|II|2.

From [24], |II|2 satisfies the following equation along the mean curvature

flow:

d

dt
|II|2 = ∆|II|2 − 2|∇II|2

+ [(∇M
∂k

)R(J ep, ei, ej, ek) + (∇M
∂j
R)(J ep, ek, ei, ek)]hpij−
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− 2R(el, ei, ej, ek)hplkhpij + 4R(J ep,J eq, ej, ek)hqikhpij

− 2R(el, ek, ei, ek)hpljhpij +R(J ep, ek,J eq, ek)hqijhpij

+
∑
p,r,i,m

(
∑
k

hpikhrmk − hpmkhrik)2 +
∑
i,j,m,k

(
∑
p

hpijhpmk)
2.

Since M × M̃ is a symmetric space, the curvature tensor R of M × M̃ is

parallel, and thus |II|2 satisfies:

d

dt
|II|2 ≤ ∆|II|2 − 2|∇II|2 +K1|II|4 +K2|II|2

for positive constants K1 and K2 that depend only on n. Therefore:

d

dt
(η−1
ε |II|2) ≤ −η−2

ε |II|2(∆ηε + δ ∗ Ω|II|2)

+ η−1
ε (∆|II|2 − 2|∇II|2 +K1|II|4 +K2|II|2)

= −η−2
ε ∆ηε|II|2 + η−1

ε ∆|II|2 − 2η−1
ε |∇II|2 + η−2

ε (ηεK1 − δ ∗ Ω)|II|4

+ η−1
ε K2|II|2

= ∆(η−1
ε )|II|2 − 2η−3

ε |∇ηε|2|II|2 + η−1
ε ∆|II|2 − 2η−1

ε |∇II|2

+ η−2
ε (ηεK1 − δ ∗ Ω)|II|4 + η−1

ε K2|A|2

= ∆(η−1
ε )|II|2 − 2ηε|∇(η−1

ε )|2|II|2 + η−1
ε ∆|II|2 − 2η−1

ε |∇II|2

+ η−2
ε (ηεK1 − δ ∗ Ω)|II|4 + η−1

ε K2|II|2

= ∆(η−1
ε |II|2)− 2∇(η−1

ε ) · ∇(|II|2)− 2ηε|∇(η−1
ε )|2|II|2 − 2η−1

ε |∇II|2

+ η−2
ε (ηεK1 − δ ∗ Ω)|II|4 + η−1

ε K2|II|2
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= ∆(η−1
ε |II|2)− ηε∇(η−1

ε )∇(η−1
ε |II|2)−∇(η−1

ε ) · ∇(|II|2)

− ηε|∇(η−1
ε )|2|II|2 − 2η−1

ε |∇II|2 + η−2
ε (ηεK1 − δ ∗ Ω)|II|4 + η−1

ε K2|II|2

≤ ∆(η−1
ε |II|2)− ηε∇(η−1

ε )∇(η−1
ε |II|2) + η−2

ε (ηεK1 − δ ∗ Ω)|II|4

+ η−1
ε K2|II|2.

The last inequality follows from the fact that:

∇(η−1
ε ) · ∇(|II|2) + ηε|∇(η−1

ε )|2|II|2 + 2η−1
ε |∇II|2

=
1

2
|
√

2ηε|II|∇(η−1
ε ) +

1√
2ηε|II|

· ∇(|II|2)|2 − 1

4ηε|II|2
|∇(|II|2)|2

+ 2η−1
ε |∇II|2

=
1

2
|
√

2ηε|II|∇(η−1
ε ) +

1√
2ηε|II|

· ∇(|II|2)|2 − 1

ηε
|∇|II||2

+ 2η−1
ε |∇II|2

=
1

2
|
√

2ηε|II|∇(η−1
ε ) +

1√
2ηε|II|

· ∇(|II|2)|2

+ η−1
ε (2|∇II|2 − |∇|II||2)

≥ 0,

since, by Hölder’s inequality:

|∇|II||2 =
∑
i

(
∑
j,k,l

hjkl
|II|

∂ihjkl)
2

≤
∑
i

(
∑
j,k,l

h2
jkl

|II|2
∑
j,k,l

(∂ihjkl)
2) =

∑
i,j,k,l

(∂ihjkl)
2 = |∇II|2.
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Therefore the function ψ = η−1
ε |II|2 satisfies:

d

dt
ψ ≤ ∆ψ − ηε∇η−1

ε · ∇ψ + (ηεK1 − δ ∗ Ω)ψ2 +K2ψ

≤ ∆ψ − ηε∇η−1
ε · ∇ψ + (εK1 − δC0)ψ2 +K2ψ,

where C0 = min
Σ0

∗Ω, since min
Σt
∗Ω is nondecreasing and ηε ≤ ε.

ε can be chosen small enough so that εK1 − δC0 < 0. Then by the

comparison principle for parabolic PDE:

ψ ≤ y(t)

for all t ≥ Tε, where y(t) is the solution of the ODE:

d

dt
y = −(δC0 − εK1)y2 +K2y

satisfying the initial condition y(Tε) = max
ΣTε

ψ.

Explicitly:

y(t) =


K2

δC0−εK1
, if max

ΣTε
ψ =

K2

δC0 − εK1

K2

δC0−εK1

KeK2t

KeK2t−1
, otherwise

,

where K is a constant satisfying K > 1 if max
ΣTε

ψ >
K2

δC0 − εK1

, and K < 0

if max
ΣTε

ψ <
K2

δC0 − εK1

.
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Thus:

|II|2 ≤ ηεy(t) ≤ εy(t)

for all t ≥ Tε.

Sending t→∞ and ε→ 0, we conclude that max
Σt
|II|2 → 0 as t→∞.

Finally, the induced metric has analytic dependence on F , so by Simon’s

theorem [15] the flow coverges to a unique limit at infinity.

Since λi → 1 for all i as t→∞, the limit map is an isometry. Denote it

by f∞. Being symplectic is a closed property, so f∞ is symplectic.

Then at every p ∈M :

Df∞J = J̃Df∞.

In other words, f∞ is holomorphic.

The same is true for the inverse of f∞, and thus the map f∞ is biholo-

morphic.



59

Chapter 4

Conclusions and Directions

The proof of the preservation of the pinching condition and the long-time

existence of the mean curvature flow (Sections 3.3 and 3.4) never used the

assumption that the underlying manifolds are complex projective spaces.

Thus in fact all the implications of Theorem 1 but the convergence result

hold for general Kähler-Einstein manifolds, as long as the following, rather

technical, property is satisfied.

For Λ ∈ (1,Λ0]:

∑
k

∑
i 6=k

xi

(1 + x2
k)(xi + x−1

i )
(Rikik − x2

kR̃ikik) ≥ 0 (4.0.1)

whenever 1√
Λ
≤ xi ≤

√
Λ, where Rijkl = R(ai, aj, ak, al) and

R̃ijkl = R̃(E(ai), E(aj), E(ak), E(al)) are the coefficients of curvature tensors

on M and M̃ , respectively, with respect to the bases chosen as before.
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Note that whether the condition is satisfies depends both on the un-

derlying manifolds (through curvature tensors) and the symplectomorphism

(through the choice of bases of tangent spaces). At this point it is not very

clear what the geometric implications of such a condition are.

The evolution equation of ∗Ω took particularly nice form in the case of

CPn because the holomorphic sectional curvatureK(X, JX) = R(X,JX,X,JX)
|X|2|JX|2−〈X,JX〉2

(on holomorphic planes) was constant, as was non-holomorphic sectional cur-

vature (on all other planes), so a question arises of whether there are other

compact Kähler-Einstein manifolds of the same or similar property.

A case analogous to complex projective space is that of hyperbolic pro-

jective space with Bergman metric. Its sectional curvature is exactly the

negative of the sectional curvature of CPn. The evolution equation of ∗Ω

then becomes:

d

dt
∗ Ω =∆ ∗ Ω + ∗Ω

[
Q(λi, hijk)−

∑
k odd

(1− λ2
k)

2

(1 + λ2
k)

2

]
.

It can be shown that ∗Ω remains positive as long as the appropriate pinching

condition holds. However, the pinching condition is not necessarily preserved

along the flow: the negative part of the expression on the right-hand side,

arising from negative sectional curvature, may lead to a decrease of min
Σt
∗Ω.

To avoid such difficulty, one may want to focus on manifolds with positive

sectional curvature. It turns out that if an n-dimensional compact Kähler

manifold has constant positive holomorphic sectional curvature, then it is
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biholomorphically isometric to CPn [12]. Under a weaker assumption that the

holomorphic bisectional curvature Kbisec(X, Y ) = R(X,JX,Y,JY )
|X|2|Y |2−〈X,Y 〉2 be positive

(not necessarily constant), a compact connected Kähler-Einstein manifold is

isometric to CPn [3].

However, it is not known whether there exist manifolds of different dif-

feomorphism type with positive holomorphic sectional curvature (but not

necessarily positive holomorphic bisectional curvature). It is also not clear

which other assumptions may be needed for the property (4.0.1) to be sat-

isfied. It would be interesting to see whether in fact our method may shed

light to these questions in an indirect way - by possible implications it would

have if the answers were nontrivial.

For the end, we discuss some properties of the pinching region in the

space of λi.

4.1 The pinching region

We already remarked that when n = 1 no pinching is required, as Q(λi, hjkl)

is always positive definite.

When n > 1, the quadratic form decomposes into smaller forms:

Q =
∑
r

Q1,r +
∑

p<q<r odd

Q2,pqr +
∑

p<q<r odd

Q3,pqr,
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where:

Q1,r = h2
rrr + 5h2

rr′r′ + 3
∑
i 6=r,r′

h2
rii + 8

∑
i odd 6=i,i′

h2
r′ii′ + 2

∑
i odd

hriih1i′i′

− 2
∑

i odd<j odd

(λi − λi′)(λj − λj′)hr′i′ihr′j′j

+ 2
∑

j odd 6=r,r′
(λrλj + λr′λj′)hrj′j′hr′jj′

− 2
∑

j odd 6=r,r′
(λr′λj + λ1λj′)hrjjhr′jj′ ,

Q3,pqr = 6h2
pqr + 6h2

p′q′r + 6h2
pq′r′ + 6h2

p′qr′

+ 2(λpλq + λp′λq′)hp′qr′hpq′r′ + 2(λpλr + λp′λr′)hp′rq′hpr′q′

+ 2(λqλr + λq′λr′)hq′rp′hqr′p′ − 2(λp′λq + λpλq′)hpqrhp′q′r

− 2(λp′λr + λpλr′)hprqhp′r′q − 2(λq′λr + λqλr′)hqrphq′r′p

and:

Q3,pqr =6h2
p′q′r′ + 6h2

p′qr + 6h2
pq′r + 6h2

pqr′

+ 2(λpλq + λp′λq′)hp′qrhpq′r + 2(λpλr + λp′λr′)hp′rqhpr′q

+ 2(λqλr + λq′λr′)hq′rphqr′p − 2(λp′λq + λpλq′)hpqr′hp′q′r′

− 2(λp′λr + λpλr′)hprq′hp′r′q′ − 2(λq′λr + λqλr′)hqrp′hq′r′p′ .
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When n = 2, the quadratic form has the following matrix representation:

Q =



1 −1 0 0 0

−1 5 0 0 x
y

+ y
x
− xy − 1

xy

0 0 3 −1 −x
y
− y

x

0 0 −1 3 xy + 1
xy

0 x
y

+ y
x
− xy − 1

xy
−x
y
− y

x
xy + 1

xy
8


,

where x = λ1, y = λ3. It is positive definite if and only if each diagonal minor

has positive determinant. Since all but the largest ones do have positive

determinant, the value of Λ0 featured in Theorem 1is determined by the

region when the determinant of the whole matrix is positive.

It can be shown that the region is bound by a curve C satisfying the

following:

- if (x, y) ∈ C, then (y, x) ∈ C;

- if (x, y) ∈ C, then ( 1
x
, y) ∈ C.

It can be shown that in this case Λ0 = 2
5

√
10 + 1

5

√
15.

Similar analysis can be done for cases when n > 2.
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