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Abstract

Finite atomic lattices and their relationship to resolutions of monomial

ideals

Sonja Mapes

This thesis studies monomial ideals and their resolutions by using combi-

natorial methods. In the study of cellular resolutions of monomial ideals it

is often useful to consider the LCM lattice of the given monomial ideal. It

has been shown that all finite atomic lattices can realized as the LCM lat-

tice of some monomial ideal, and that the parameter space of these lattices,

L(n), is itself a finite atomic lattice. This thesis focuses on exploring this

notion that finite atomic lattices are abstract monomial ideals and aims to

use the structure of L(n) as a tool to provide new insights into concepts such

as deformation of exponents. The main results of this thesis fall into three

categories: structural results about L(n), results relating to deformation of

exponents, and results relating these constructions to those found in recent

work by Fløystad.

I also include two appendices describing computer packages written to

aid in my research. One is an implementation in Haskell which uses reverse

search to enumerate L(n), and the other is a package for Macaulay2 which

introduces posets as a new data type.
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Chapter 1

Introduction

The study of commutative algebra, in particular free resolutions of modules

has become inextricably linked to combinatorics. There are many classes of

algebraic objects that have been shown to possess nice combinatorial struc-

tures; examples include monomial ideals, and toric or lattice ideals. This

thesis focuses in particular on the combinatorial structure of free resolutions

of monomial ideals.

Finding the free resolution of a module is an important step in the com-

putation of many interesting algebraic and geometric invariants. This is

because free resolutions play a central role in computations of sheaf or local

cohomology. Thus, finding general descriptions of minimal resolutions for

classes of modules is a very active area of research in commutative algebra.

The problem of finding minimal resolutions entails finding both the Betti

numbers of a module as well as a description of the maps in the resolution.
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2

For monomial ideals, finding the multigraded Betti numbers is well under-

stood. There are a number of different formulas computing Betti numbers,

most of which use the homology of certain simplicial complexes, all of which

can be found in [MS05]. However, finding a closed form description of the

maps in a minimal resolution remains an open problem. The theory of cellu-

lar resolutions, first introduced by Bayer and Sturmfels in [BS98], provides

a framework for computing both the multigraded Betti numbers as well as a

description of the possible maps in such a resolution. In particular it relates

resolutions of monomial ideals to chain complexes of regular cell complexes.

The issue is that cellular resolutions do not always yield minimal resolutions,

thus a description of the maps remains open.

In an attempt to further understand these resolutions, Gasharov, Peeva

and Welker proved in [GPW99] that the combinatorial type of the minimal

resolution of a monomial ideal is determined by its LCM lattice. This in-

troduction of the LCM lattice prompted Phan to prove in [Pha06] that all

finite atomic lattices can be realized as LCM lattices, thus establishing the

notion that finite atomic lattices are abstract monomial ideals. An appro-

priate analogy here is that just as one studies both abstract and embedded

varieties in algebraic geometry, one should also consider abstract monomial

ideals in the study of free resolutions of monomial ideals. Phan also proves

that the space of all finite atomic lattices on n atoms is itself a finite atomic

lattice. Thus much in the same way that one seeks to understand families of

schemes and how they relate to each other by studying the Hilbert scheme, I

aim to understand resolutions of monomial ideals by studying this parameter

space of lattices.
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In chapter 2, I give all of the necessary background information to un-

derstand the main ideas in this thesis. It should be noted that the sections

in both this chapter and the next covering the material in [Pha06] either

include a sketch of his original proof or a more general statement is proven

in chapter 3. The presentation of this material is meant to stand alone since

Phan’s thesis has not been published.

In chapter 3, I first demonstrate how to recover the coordinatization of a

finite atomic lattice given a specific monomial ideal. This allows me to give a

generalization of the main construction in [Pha06] to describe all monomial

ideals with a given LCM lattice. This allows more freedom when coordina-

tizing finite atomic lattices, and will be of use in other sections.

The fact that the set of finite atomic lattices on n atoms, denoted L(n),

is itself a finite atomic lattice motivates the question: what is the relationship

between the minimal resolutions of coordinatizations of lattices in L(n)? The

answer, due to a result in [GPW99], is that the total Betti numbers are weakly

monotonic along chains in L(n). This is the motivation for understanding the

structure of L(n), as it gives greater insight into understanding concepts such

as deformation of exponents introduced in [BPS98] which will be discussed

in chapter 5.

In chapter 4, I provide an alternate proof that the Betti numbers increase

as the lattices increase. Many points in this proof are used in chapter 5,

and they motivate the two main ways I will represent lattices in L(n) as

explained in the rest of chapter 4. These two methods of representing allow

me to prove some structural results about L(n). The first method is used

to give a description of the meet-irreducible elements of L(n). The second
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method is used to give a description of the covering relations in L(n). It is

also used in the reverse search algorithm which computes all of the elements

of L(n) explained in appendix A. Moreover, this description of the covering

relations leads to the main structural result in this thesis which states that

L(n) is a graded lattice of rank 2n − n− 2.

The increasing nature of Betti numbers in L(n) nicely mirrors the upper-

semicontinuity of Betti numbers which is known for deformation of expo-

nents. In chapter 5, I show that for some coordinatization every two lattices

comparable in L(n) can be related via a deformation of exponents. This im-

plies that for each lattice, there exists a coordinatization such that its entire

filter in L(n) corresponds to all possible deformations of exponents of that

coordinatization.

Notice, if one fixes total Betti numbers then L(n) breaks up into strata

of lattices with the same Betti number. Deformation of exponents does not

guarantee that it will yield a monomial ideal in the same stratum as the

original ideal. In particular, if the minimal resolution of a given ideal cannot

be supported on a simplicial complex, then a total deformation of exponents

always yields an ideal in a higher stratum. This follows from the fact that

the intention of such a deformation is to move to an ideal that is resolved

by a simplicial complex. The rest of chapter 5 focuses on first understanding

the concepts involved with deformation of exponents for monomial ideals

whose minimal resolution is supported on a simplicial complex. Here I build

upon the known fact that all acyclic simplicial complexes can be realized as

the Scarf complex supporting a minimal resolution of some ideal [Pha06]. I

show that in fact all lattices greater than the augmented face lattice of such
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a complex yet in the same Betti strata are minimally resolved by the same

complex. I also show that monomial ideals whose LCM lattice is graded of

maximal rank are strongly generic. This means that their minimal resolution

is known to be the Scarf complex, and implies that deformation of exponents

is likely to increase Betti numbers. The rest of chapter 5 focuses on trying

to generalize these ideas to monomial ideals whose minimal resolution is

supported on a regular CW-complex. Generalizing the result from [Pha06], I

show that for appropriately chosen regular cell complexes one can always find

a monomial ideal whose minimal resolution is supported on that cell complex.

Moreover, for certain lattices which cover the augmented face lattice of these

complexes I can show that their minimal resolution is supported on the same

complex.

The point of view introduced by Phan and continued in this thesis rests

on the idea of associating monomial ideals with certain properties to finite

atomic lattices. It should be noted however, that there is other work which

associates monomial ideals to certain cell complexes which support their

resolutions. One goal this thesis is to demonstrate that all such constructions

can be rephrased in terms of the constructions in this thesis introduced by

Phan. Unfortunately, it is not actually true that all constructions associating

monomial ideals to cell complexes which support their resolution can be

phrased this way, see the constructions in [NPS02]. For others though, this

can be done: see the references to [Vel08], [PV] in chapter 3.

Chapter 6 focuses on one such construction associating monomial ideals

to cell complexes found in [Flø09]. Fløystad defines the notion of a “maxi-

mal” Cohen-Macaulay monomial ideal. Moreover, for certain simplicial and
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polyhederal cell complexes he gives constructions for how to find such an ideal

whose resolution is supported on the given complex. I show that Fløystad’s

description of these maximal ideals easily translates into conditions on a co-

ordinatization of a finite atomic lattice. Additionally, I show that in the case

where the simplicial complex is a tree that for an appropriate choice of lattice

his construction is equivalent to Phan’s original squarefree construction.



Chapter 2

Preliminaries

2.1 Posets and Finite Atomic Lattices

A poset (P,<) is a set P with an order relation < which is transitive and

antisymmetric. If P has a maximum element it is denoted 1̂, and likewise

minimum elements are denoted as 0̂. The join of two elements a and b in

P is denoted as a ∨ b and is the least upper bound of the two elements.

Similarly the meet of a and b is denoted as a ∧ b and is the greatest lower

bound of the two elements. Note that if a join or a meet exists, it is unique.

Then P is a lattice if every pair of elements has a meet and a join. Moreover,

P is a meet-semilattice if every pair of elements has a meet, and equivalently

a join-semilattice if every pair has a join. The following proposition from

[Sta97] describes when either of these is actually a lattice.

Proposition 2.1.1. If P is a meet-semilattice with a unique maximal el-

7
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ement then P is a lattice. Equivalently, if P is a join-semilattice with a

unique minimal element then P is a lattice.

If P is a lattice, then we define elements x ∈ P to be meet-irreducible if

x 6= a ∧ b for some a > x, b > x . Equivalently, the join-irreducible elements

are the elements x 6= a ∨ b for some a < x, b < x . Given an element x ∈ P ,

the order ideal of x is defined to be the set bxc = {a ∈ P |a 6 x} . Similarly,

we define the filter of x to be dxe = {a ∈ P |x 6 a} . We can also speak of

intervals in P which will be defined as

(a, b) = {x ∈ P |a < x and x < b}

or

[a, b] = {x ∈ P |a 6 x and x 6 b}.

Moreover, we define the following posets

P6a = [0̂, a] = bac

and

P<a = [0̂, a).

Define a covering relation in a poset P as follows, a covers b if a > b and

there is no element c such that a > c > b . We define an atom of a lattice

P to be an element x ∈ P such that x covers 0̂ . We will denote the set of

atoms as atoms(P ). If every element in P − {0̂} is the join of atoms, then
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P is an atomic lattice. Furthermore, if P is finite, then it is a finite atomic

lattice. One of the main objects of study in this thesis will be finite atomic

lattices.

Often it will be useful for us to consider certain simplicial complexes which

can be associated to a poset. Define ∆(P ) to be the order complex of a poset

P , where the vertices are the elements of P and the facets correspond to

maximal chains of P . In the special case where P is a finite atomic poset

we can define a special case of the cross cut complex Γ(P ) where the atoms

correspond to vertices and faces correspond to subsets of atoms which have

a join or meet in P . It is known that ∆(P ) is homotopy equivalent to Γ(P )

[Bjö95]. Moreover, it should be noted that when P is a finite atomic lattice

on n atoms that Γ(P ) will be the n− 1-simplex.

If P and Q are two atomic lattices then f : P → Q is a join-preserving

map if f(a ∨ b) = f(a) ∨ f(b). We will need the following proposition from

[Pha06] so I will state the relevant portions here.

Proposition 2.1.2. Let P and Q be finite atomic lattices. Let f : P → Q

and g : Q→ P be maps of sets which are bijections on the atoms of P and

Q defined as

f(p) =
∨

supp(p)

ai and g(q) =
∨

supp(q)

ai

where supp(p) = {ai | ai 6 p} . Then the following are equivalent:

1. f preserves joins

2. g preserves meets
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If either of these conditions hold then f is an isomorphism if and only if it

is bijective.

Finally, posets can be represented by a Hasse diagram defined to be a

graph where the vertices are the elements of P and the edges are the covering

relations in P .

2.2 Regular CW-complexes and reduced ho-

mology

Let Bn , Un , and Sn−1 denote the closed unit ball, the open unit ball and

the unit sphere in Rn , respectively.

A a (finite) CW-complex is a topological space X is constructed in the

following way (using finitely many steps):

1. X0 is a finite discrete set.

2. For n > 0 and any finite collection of continuous maps φα : Sn−1 →

X(n−1) , X(n) = X(n−1) tα Bn
α/ ∼ where x ∼ φα(x) for all x ∈ Sn−1

α .

Endow this space with the quotient topology.

3. X = ∪nX(n) with the weak topology.

Every map φα can naturally be extended to a characteristic map, denoted

Φα : Bn
α → X(n) which is a homeomorphism between Un

α and its image F n
α .

Call F n
α an n-cell. A CW- complex is a (finite) regular cell complex if all of

its characteristic maps are homeomorphisms.
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A cell F ′ is a face of the cell F if they are not equal and if F ′ ⊂ F̄ . Also

we denote X d as the set of all d-dimensional cells in X . A consequence of

the above conditions is that for any F ∈ X d and F ′ ∈ X d−2 such that F ′ is

a face of F then there exist exactly two cells E1, E2 ∈ X d−1 such that F ′ is

a face of Ei and Ei is a face of F . Another fundamental property of regular

cell complexes is that for any n-cell F , F̄ − F is the union of the closures

of (n − 1)-cells. Moreover, two regular cell complexes with isomorphic face

posets are homeomorphic.

A good description CW-complexes can be found in [Hat02] and [Mas78],

the later also gives a good treatment of regular cell complexes. Examples

of regular cell complexes include simplicial complexes and polyhederal com-

plexes.

While cellular homology can be defined for any CW-complex, in the case

where X is regular the description of the homology can be described combi-

natorially. The function “sign” is an incidence function on X if it satisfies

the following properties:

1. to each pair (F,G) such that F ∈ X d and G ∈ X d−1 for some d > 0,

sign assigns a number from {0,±1} to the pair.

2. sign(F,G) 6= 0 if and only if G is a face of F

3. sign(F, ∅) = 1 for all F ∈ X 0

4. if F ∈ X d and G ∈ X d−2 is a face of F then sign(F,E1) sign(E1, G) +

sign(F,E2) sign(E2, G) = 0 where E1 and E2 are as above.

Note that any two incidence functions on X differ only by a a function
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δ : X → {±1} where δ(∅) and δ(F ) where F is a 0-cell are all equal to 1.

Using this incidence function, we can define the maps in the augmented

chain complex of X . The chain complex is

CX : 0→ Cd−1
∂d−1−→ · · · ∂3−→ C2

∂2−→ C1
∂1−→ C0

∂0→ C−1 → 0

where

Ci =
⊕
F∈X i

kF and,

∂i(F ) =
∑

G∈X i−1

sign(F,G)G for F ∈ X i.

Then the reduced homology of X is defined as H̃i(X, k) = ker ∂i/ im ∂i+1

2.3 Free Resolutions of Modules

Let R = C[x0, . . . , xn] , and let I be an ideal of R . Then the free resolution

of R/I is an exact sequence of maps between free R -modules:

F : 0→ Ft
dt−→ · · · d3−→ F2

d2−→ F1
d1−→ F → R/I → 0

We call Fi the i-th syzygy module of R/I . We say that F is a minimal

resolution if each module Fi is generated by minimal syzygies, and if each

map di has no entries which are units. If F is minimal we say Fi = Rβi ,

and we call βi the i-th Betti number.

Note also that if we want the R -graded maps in F to be degree 0 then
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we let

Fi =
⊕
d

R(−d)βi,d

where R(−d)e = Re−d and βi,d is called a graded Betti number. Moreover,

if the ring R is graded by Zd for some d (i.e. a mulitgrading) then one can

also define multigraded Betti numbers. We will see instances of this in the

next section since monomial ideals are multigraded.

2.4 Cellular Resolutions of Monomial Ideals

In the special case where I is a monomial ideal, there are combinatorial

descriptions of resolutions of I or S/I . The construction explained below

was first done for regular cell complexes in [BS98] and later extended to cover

CW-complexes in [BW02].

Let X be a cell complex whose vertices are labeled by the generators of

a monomial ideal I and whose faces σ are labeled by the lcms, mσ , of the

verticies contained in the face. Then define

FX : 0→ Ft
dt→ · · · d2→ F1

d0→ F0

using the reduced chain complex of X . It will be a complex of free R -modules

where

Fi =
⊕

dimσ=i−1

R(−mσ)
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and the maps are defined as

di(F ) =
∑

γ facet of σ

sign(γ, σ)
mσ

mγ

.

For b ∈ Nn , define the complex X6b = {σ ∈ X|xb divides mσ} , and

X6b is acyclic if it is either empty or has no reduced homology. We state

the result of Bayer and Sturmfels which gives the condition for the com-

plex FX associated to a monomial ideal to be exact [BS98]. It should be

noted that the results of Bayer and Sturmfels in [BS98] builds upon previous

methods which associated resolutions of monomial ideals to certain simplicial

complexes such as the Taylor complex introduced in [Tay60] and the Scarf

complex introduced in [BPS98].

Theorem 2.4.1. FX is a resolution of R/I if and only if X6b is acyclic

over k for all degrees b ∈ Nn .

Example 2.4.2. The following figure depicts two possible cell complexes

that may support the monomial ideal M = (de, bef, cf, acd) ⊂ k[a, b, c, d, e, f ]

with the vertices labeled.

:Y: X

acd cf

befde

abcdef

acd cf

befde

Notice that X6dcef consists of two vertices whereas Y6dcef is the same

two vertices with the diagonal edge between them. This shows that X does
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not support a resolution of M . By checking the other degrees it is easy to

see that Y does support the following resolution of M .

FY : 0→
R(−bcdef)

⊕R(−acdef)

0BBBBBBBBBBBBBBBBBB@

c 0

−d 0

0 e

−b a

0 −f

1CCCCCCCCCCCCCCCCCCA
−−−−−−−→

R(−bdef)

⊕R(−bcef)

⊕R(−acdf)

⊕R(−dcef)

⊕R(−acde)

0BBBBBBBBBBBBB@

−bf 0 0 −cf −ac

d c 0 0 0

0 −be −ad de 0

0 0 f 0 e

1CCCCCCCCCCCCCA
−−−−−−−−−−−−−−−−−−−−−→

R(−de)

⊕R(−bef)

⊕R(−cf)

⊕R(−acd)

0@de bef cf acd

1A
−−−−−−−−−−−−−−−→ R→ R/M → 0

One can easily see here that since no entries in the any of the maps are

units, that this resolution is minimal.

Note that the theory of cellular resolutions provides a criterion for when a

complex is a resolution, but it does not provide an algorithm for finding min-

imal resolutions. For some classes of ideals though, the minimal resolution

is known. I include a discussion of those results here.
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Before discussing when the minimal resolution is known, I will first explain

what that resolution is.

Definition 2.4.3. Given a monomial ideal M , let {m1, . . . ,mt} be a mini-

mal generating set. Then the Scarf complex, as introduced in [BPS98], is the

simplicial complex whose faces are all subsets σ ⊂ {1, . . . , t} such that the

lcm{mi | i ∈ σ} is unique in the set of all possible lcms. We will denote it

here as scarf(M).

The complex Fscarf(M) is usually not a resolution (i.e. it does not satisfy

2.4.1), but if it is a resolution it is guaranteed to be minimal[BPS98]. More-

over, it is known that in the following cases scarf(M) satisfies the conditions

of 2.4.1.

In [BPS98], the authors define the notion of a generic monomial ideal as

follows:

Definition 2.4.4. A monomial ideal M is strongly generic 1 if no variable

appears with the same exponent in any of the generators.

In [MSY00], the authors loosen the definition of generic monomial ideal

appearing in [BPS98] to the current standard definition as follows:

Definition 2.4.5. A monomial ideal M is generic if whenever two distinct

monomial generators mi and mj have the same positive (nonzero) degree in

some variable, a third generator mk divides lcm(mi,mj)/xl for all xl .

And they give the following characterization:

1In [MS05] the adverb “strongly” is added to distinguish it from the definition 2.4.5
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Theorem 2.4.6. A monomial ideal M is generic if and only if the following

two conditions hold:

1. Fscarf(M) equals the minimal free resolution of R/M .

2. No variable xt appears with the same non-zero exponent in mi and mj

for any edge {i, j} of the Scarf complex.

The interest in studying generic monomial ideals is that their minimal

resolutions are always given by the Scarf complex. Neither of these charac-

terizations though cover all monomial ideals whose minimal resolution is the

Scarf resolution as we will see in 5.1.1.

The final idea that I need to introduce from [BPS98] is the notion of

“deformation of exponents.” Naively, this is just a process by which one

deforms the exponent vectors of the monomial generators in a small neigh-

borhood with the intention of obtaining a monomial ideal whose minimal

resolution is known.

Definition 2.4.7. A deformation of a monomial ideal M = (m1, . . . ,mt) is

a choice of vectors {ε1, . . . , εt} where each εi ∈ Rn (where n is the number

of variables) and the following condition is satisfied:

mis < mjs implies mis + εis < mjs + εjs, and

mis = 0 implies εis = 0.

Where by abuse of notation, mis is the exponent on xs in the monomial mi .
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Then we can form the monomial ideal (in a polynomial ring with real

exponents) Mε with generators mi ∗ xεi .

Note the need to work with real exponents in this definition. In actuality,

we are only interested in the combinatorics of the deformation which amounts

to looking only at the coordinatewise order on the resulting exponent vectors.

For any set of εi vectors, there is a choice of vectors with integer values which

yields a deformation of exponents with the same combinatorics.

The main result concerning deformation of exponents appears in [BPS98]

and says the following:

Theorem 2.4.8. If F is a minimal free resolution of R/Mε , then it is a

((not necessarily minimal) resolution of R/M .

The idea then is that if one can obtain a generic monomial ideal via de-

formation of exponents (i.e. a generic deformation) and if the Betti numbers

do not increase under this deformation then the minimal resolution of the

original ideal is known. Note however, that since this minimal resolution will

be the Scarf complex of the deformed ideal, that it will be simplicial. Thus,

any monomial ideal whose minimal resolution is not simplicial will necessar-

ily be in the situation where under any generic deformation Betti numbers

increase.



19

2.5 LCM lattices and their relation to reso-

lutions of monomial ideals

A useful tool in the study of cellular resolutions of monomial ideals is the

LCM lattice associated to the generators (or a generating set) of the ideal.

This link between resolutions of ideals and LCM lattices was explored by

Gasharov, Peeva, and Welker in [GPW99].

Definition 2.5.1. The LCM lattice, LCM(I), of a monomial ideal I is

the set of least common multiples of the minimal generators of I , partially

ordered by divisibility.

Example 2.5.2. For the monomial ideal M = (de, bef, cf, acd) ⊂ k[a, b, c, d, e, f ]

the Hasse diagram of the LCM lattice of M is shown in the following figure

(note the minimal element of the lattice has been left off, as will often be the

case).

abcdef

dcef

de bef cf acd

bdef bcef acdf acde

acdefbcdef

One conclusion of their work is that for monomial ideals the minimal

resolution is completely dependent on the information in the LCM lattice.

Specifically, one can compute multigraded Betti numbers using the LCM
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lattice LCM(I) and all ideals with a given LCM lattice have isomorphic

minimal free resolutions. We state those results here without proof.

Theorem 2.5.3. For i > 1 and m ∈ LCM(I) = P we have

bi,m(R/I) = dim H̃i−2(∆(0̂,m); k),

and

bi(R/I) =
∑
m∈P

dim H̃i−2(∆(0̂,m); k)

Note that because of the homotopy equivalence between the order com-

plex of a poset and the cross-cut complex that the above theorem can be

rephrased entirely in terms of Γ(0̂,m). The next theorem states that the

combinatorial type of a resolution depends only on its LCM lattice.

Theorem 2.5.4. If I and I ′ are both monomial ideals in polynomial rings

R and R′ respectively. Let PI = LCM(I) and let f : PI → PI′ be a map

which is a bijection on the atoms and preserves joins. Denote by FI the

minimal free resolution of R/I . Then f(FI) is defined as in [GPW99] and

is a free resolution of R′/I ′ . If f is an isomorphism of lattices then f(FI)

is the minimal free resolution of R′/I ′ .
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2.6 Associating monomial ideals to finite ato-

mic lattices: Minimal Monomial Ideals

The point of view of this thesis relies heavily on the ideas presented in Phan’s

thesis [Pha06] . In summary the main idea of Phan’s thesis influencing this

work is that all finite atomic lattices P can be realized as the LCM lattice

of some monomial ideal M . He gives a construction which is motivated

by the observation that for any coordinatization of an atomic lattice as a

monomial ideal the set of lattice elements for which a given variable has a

given degree bound is an order ideal. Essentially, he identifies which order

ideals are necessary and labels them with variables.

Phan’s construction of a square free monomial ideal is as follows.

1. Denote mi(P ) as the set of meet-irreducible elements in P − {0̂, 1̂} .

Let R(P ) = k[x1, ..xN ] where N = |mi(P )| .

2. To each atom in P assign the following monomial:

x(a) =
∏

l∈(mi(P )−dae)

xl.

3. MP is the monomial ideal generated by {x(a)|a ∈ atoms(P )} .

This is a specific monomial ideal whose LCM lattice is P which in [Pha06]

is called the “minimal squarefree monomial ideal associated to P .” It is called

minimal because its generators have the smallest possible degree (i.e. if any

one of the generators had smaller degree the ideal could not have the correct
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LCM lattice). Phan also explains how to construct non-squarefree monomial

ideals whose generators are of the same degree, in other words depolarizations

of the square-free minimal monomial ideal constructed above. I will forego

that discussion and replace it instead with a construction of how to obtain

any monomial ideal with a given LCM lattice P in section 3.

2.7 Paramatrization of finite atomic lattices

on n atoms

Consider the set L(n) of finite atomic lattices on n atoms. It is shown in

Phan’s thesis [Pha06] that one can partially order L(n) as follows, Q 6 P if

and only if there exists a join-preserving map which is a bijection on atoms

from P to Q (note that such a map will also be surjective). Most surprising

is the following nice result.

Theorem 2.7.1. With the partial order 6 , L(n) is a finite atomic lattice

with 2n − n− 2 atoms.

Roughly this theorem is proved by showing that this poset is a meet-

semilattice. Then by proposition 2.1.1 because the boolean lattice Bn is

the unique maximal element, we can conclude that L(n) is a finite atomic

lattice. To show that it is a meet-semilattice Phan shows that the meet of

any two lattices is given by embedding them into Bn and then taking the

intersection of their images.

Figure 2.1 shows all of L(3). It is important to note that in general L(n)
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Figure 2.1: L(3)

will not be Bn . For n = 4, there are 545 elements thus the picture cannot

be shown here.
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Chapter 3

Characterizing all monomial

ideals with a given LCM lattice

The goal of this chapter is to give a description of how to find all monomial

ideals with a given finite atomic lattice P . Rather than just providing the

answer, I will include the ideas which motivate proposition 3.2.1. Moreover,

proposition 3.2.1 includes the depolarizations discussed in [Pha06] and so

this chapter serves to cover the details left out in section 2.6.

3.1 Deficit labelings

We begin by examining an example shown in figure 3.1. Let P be the fol-

lowing finite atomic lattice with monomial ideal MP = (def, ade, abe, abcd).

25
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abcdef

abdef abcde

abdeadef

abcdabeadedefa ed

f

b

c

Figure 3.1: A lattice P shown with two labelings

Here P is shown twice, in one case labeled with the variables that correspond

to each meet-irreducible element and in the other labeled with the lcms at

each node. The purpose of looking at this example is to illustrate that in

Phan’s construction, the product of the variables corresponding to the meet-

irreducibles in a principal filter of the lattice P is the monomial that does

not divide the lcm at the generator of that filter. This observation motivates

the following.

I want to introduce the notion of a deficit labeling. Given a monomial ideal

M we can construct its LCM lattice PM . For each element in a poset there

are several ways that we can refer to it, so we will fix some notation here that

will hopefully alleviate confusion. Let P be a finite atomic lattice (whose

elements are just atoms and joins of atoms) where the map ψ : PM → P

defined by ψ(q̃) = q is an isomorphism. (i.e. we’ve just dropped the lcm

labeling of each element in PM ). Henceforth when we refer to Q we will

always be referring to ψ−1(q) = q̃ for the appropriate q ∈ P where q̃ is the

lcm of the atoms of which it is the join.

A deficit labeling of P can be obtained as follows, first each element
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q ∈ P can be labeled with the monomial dq = (ψ−1(1̂)/q̃). Then the deficit

label at q is the monomial Dq = dq/(lcm{dt|t ∈ dqe, t 6= q}). Note that if we

are thinking of finite atomic lattices as abstract or non-embedded monomial

ideals then a deficit labeling is the embedding data of a given monomial ideal.

Proposition 3.1.1. Any deficit labeling of an LCM lattice PM will label

each element of mi(P ) with a nontrivial monomial.

Proof. All we need to prove is that if q is a meet irreducible, then Dq 6= 1.

It is obvious that dq 6= 1 since q is not the maximal element in P . So

we just need to show that lcm{dt|t ∈ dqe, t 6= q} 6= dq .

First note that

lcm{dt|t ∈ dqe, t 6= q} = ψ−1(1̂)/ gcd{t̃|t ∈ dqe, t 6= q}.

Since q is meet irreducible, this means that every element t ∈ dqe can be

written as q ∨ ai ∨ b where ai is the atom that specifically gives the only

element that covers q . This means that

gcd{t̃|t ∈ dqe, t 6= q} = q̃ ∗ ãi ∗ gcd
aj∈∪ supp(b)

ãj.

It follows both that lcm{dt|t ∈ dqe, t 6= q} 6= dq (as needed), and that

Dq = gcd{t̃|t ∈ dqe, t 6= q}/q̃ (note q need not be meet irreducible for this

formula to hold). Since q̃ divides the gcd that this also proves that Dq is a

monomial with non-negative exponents.
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Proposition 3.1.2. If gcd{Dq1 , .., Dqr} 6= 1 for a subset of elements {q1, ..., qr}

in P then {q1, ..., qr} must lie in a chain in P .

Proof. In order to prove this, first we must note that that if two elements q

and q′ do not lie in a chain then lcm{q̃, q̃′} = ψ−1(1̂). In particular what

we must show here is that every pair of elements {qi, qj} is comparable, i.e.

that lcm{q̃i, q̃j} 6= ψ−1(1̂) for all i 6= j between 1 and r .

Since gcd{Dq1 , .., Dqr} 6= 1, we can say gcd{Dq1 , .., Dqr} = C for some

monomial C . Then there exists monomials Bi such that C ∗ Bi = Dqi , so

we can rewrite q̃i = gcd{t ∈ dqie, t 6= qi}/CBi . We are interested in showing

that

lcm{gcd{t ∈ dqie, t 6= qi}
CBi

,
gcd{t ∈ dqje, t 6= qj}

CBj

} 6= ψ−1(1̂).

It is easy to see that even in a best case scenario where gcd{t ∈ dqje, t 6= qj}

or gcd{t ∈ dqie, t 6= qi} equal ψ−1(1̂) they are both being divided by C .

Thus for any xi that divides C , its exponent in the lcm will be less than

that for the same variable in ψ−1(1̂). Thus all pairs of qi are comparable

which means they must lie in a chain.

3.2 Labelings and Coordinatizations

The conditions that the deficit labelings satisfy motivate the following def-

initions and proposition which characterize which monomial ideals can be

associated to a given lattice.

I define a labeling of P , to be any assignment of monomials M =

{mp1 , ...,mpt} to some set of elements pi ∈ P . Then a labeling is a co-
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ordinatization if the monomial ideal MP,M which is generated by monomials

x(a) =
∏
p∈daec

mp

for each a ∈ atoms(P ) has LCM lattice isomorphic to P .

The above description of deficit labelings motivates the following charac-

terization of possible coordinatizations given a lattice P .

Proposition 3.2.1. Any labeling M of elements in a finite atomic lattice

P by monomials satisfying the following two conditions will yield a coordi-

natization of the lattice P .

• If p ∈ mi(P ) then mp 6= 1 . (i.e. all meet-irreducibles are labeled)

• If gcd(mp,mq) 6= 1 for some p, q ∈ P then p and q must be compara-

ble. (i.e. each variable only appears in monomials along one chain in

P .)

Note: This proof is an adaptation of Phan’s original proof in his thesis

that his specific labeling yielded a coordinatization of the lattice P

Proof. Let P ′ be the LCM lattice of MP,M . We just need to show that P ′

is isomorphic to P . Let f : P → P ′ by 2.1.2 it is only necessary to show

that f is either join-preserving or meet-preserving and is a bijection.

For b ∈ P define f to be the map such that

f(b) =
∏
l∈dbec

mp.
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So obviously f is a bijection on atoms. Note also, that

dbec =
⋃

ai∈supp(b)

daiec.

In order to show that f is join-preserving and a surjection, we need to

show that, f(b) = lcm{f(ai)|ai ∈ supp(b)} . By the two remarks above, we

know that

f(b) =
∏

mp

where mp ∈ daiec for at least one ai ∈ supp(b). Since,

lcm{f(ai)|ai ∈ supp(b)} =
∏

xi
ni

for ni = maxj nij where nij is the exponent on xi in f(aj), we just need to

show that xni
i |f(b) and that no higher powers of xi divide f(b).

This follows from the fact that the xi only divides monomials that label

elements in a chain of P . This ensures that xni
i appears as the highest power

of xi for a unique product of monomials mp because if p ∈ daiec then all p′

such that p′ 6 p are also elements of daiec . Moreover, this unique product

of monomials appears in the product of monomials forming f(b). Thus, xni
i

divides f(b). Moreover, no higher powers of xi divide f(b) since we chose

ni to be the maxj nij .

It follows that f(a ∨ b) = lcm(f(a), f(b)) = f(a) ∨ f(b) so, f is join

preserving and surjective. It remains to show that f is injective.

Clearly, if a 6 b then daec ⊂ dbec so f(a) 6 f(b). It remains to show
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that f(a) 6 f(b) implies that a 6 b . We know that every a ∈ P equals the

meet of those c ∈ mi(P ) such that a 6 c . This implies that a 6 b if and only

if mi(P )∩dbe ⊂ mi(P )∩dae if and only if mi(P )−dae ⊂ mi(P )−dbe . Since

we required that all of the meet-irreducibles be assigned a monomial, then

the product over these sets are contained in daec , and dbec (respectively).

Thus, f(a) 6 f(b) implies that a 6 b and so f is injective.

In [Pha06], he shows that if one labels meet-irreducibles along chains with

the same variable that this will yield a depolarized version of the “minimal

monomial ideal” associated to P . This clearly satisfies the conditions of

proposition 3.2.1, thus this proves that result as well. Coordinatizations

of lattices have appeared in several other places as instances of associating

monomial ideals to cell complexes. A nice example of this are the “nearly

Scarf” ideals introduced by Peeva and Velasco in [PV], [Vel08] can easily be

seen as a coordinatization of augmented face lattices of simplicial complexes.

Their construction associates to every face of a simplicial complex a variable,

and defines a monomial at vertex to be the product of all the variables on

faces not touching that vertex. This corresponds to labeling every element of

the augmented face lattice of the simplicial complex with a different variable,

clearly this satisfies the conditions of proposition 3.2.1. Other examples will

be addressed in chapter 6.

Note that it possible for a labeling which does not satisfy the second

condition can be a coordinatization. For example in figure 3.2 one sees that

both labelings yield the monomial ideal M = (y3z2, xy2z, x2y, x3z) which has

the correct LCM lattice thus these are both coordinatizations. However, the

one on the right is the only one of the two which satisfies all of the conditions
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yz

y

yzx

x

xy

yz

y

z

x

x

x

Figure 3.2: A lattice P shown with two equivalent labelings

of proposition 3.2.1.

Although, using the following “moves” one can always rearrange such a

labeling to one that does satisfy the conditions of 3.2.1. In particular the

“move” is that if gcd(mp,mq) = m then label both p ∨ q and p ∧ q with m

and relabel p, q with mp/m,mq/m respectively. This relabeling will satisfy

condition two of 3.2.1 and will also yield the same monomial ideal as is shown

in figure 3.2.

3.3 Specific coordinatizations

It will be useful for us to discuss several specific coordinatizations of lattices

L in the subsequent sections of this thesis. I will give a description of them

here.

1. Minimal Squarefree The description of this is given above in 2.6.

This obviously satisfies the conditions of 3.2.1 since only meet-irreducibles

are labeled and each variable is used only once. An example is shown

below, the monomial ideal given by this coordinatization is M =

(cdf, def, bef, abce).
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fe

dcb

a

2. Minimal Depolarized Label every meet irreducible, using the same

variable along chains when possible. This obviously satisfies the condi-

tions of 3.2.1. In the example below, we see that this is a depolarization

of the minimal squarefree example above. The monomial ideal here is

M = (cd2, ad2, a2d, a3c). Note that since there will be multiple ways of

using a variable along a chain, that this coordinatization is in no way

unique.

da

a dc

a

3. Greedy Let {c1, . . . , ct} be the set of all maximal chains in P . Then

for variables in the ring R = k[x1, . . . xt] define the following labeling,

M = {mp =
∏

i:
p∈ci

xi|p ∈ P}.

Every meet-irreducible is covered since every element of P is covered

and each variable appears only along one chain by definition, so the
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conditions of 3.2.1 are satisfied. The example below shows such a co-

ordinatization, the monomial ideal is

M = (bc2d2e2f 2, ade2f 2, a2b2cf, a3b3c3d3e).

fdebc

efcd

a

ab

abcd



Chapter 4

Structure of L(n)

As discussed in section 2.5 we can compute the Betti numbers of a monomial

ideal using its LCM lattice P , so from now on we will denote βi(R/I) =

βi(P ). For any given finite atomic lattice P ∈ L(n), we define bP =

(β0, β1, ..., βn−2) as the Betti vector associated to P . We then can define

a map

φ : L(n)→ β(n) ∼= Nn−1

which takes P to bP and we will call β(n) the space of Betti vectors. Fol-

lowing theorem 2.5.4 one can observe that if P > Q ∈ L(n) then the minimal

resolution of P is a resolution of Q . In other words, φ(P ) is coordinatewise

greater than or equal to φ(Q) .

We can define an equivalence relation on L(n) by saying P ≡ Q if

φ(P ) = φ(Q). This breaks L(n) up into strata where total Betti numbers

are constant in each strata. Most of the main ideas in this thesis focus on

35
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my larger goal of understanding the boundaries of these strata and how they

fit together.

A challenge to doing this is that other than Phan’s theorem 2.7.1, little

is known about the structure of L(n) and as n increases |L(n)| increases

rapidly. For instance, |L(3)| = 8, |L(4)| = 545, |L(5)| = 702,525, and

|L(6)| = 66,960,965,307.1 In the original proof that L(n) is a lattice meets

are defined via embedding each lattice into Bn and then intersecting the

images. There is however, no “nice” description of joins or covering relations.

This weakly monotonic nature of Betti numbers is the central idea guiding

the work in this thesis. What follows is an alternate proof of this fact which

explicitly shows how the multigraded Betti numbers change as one moves

around in L(n) rather than using theorem 2.5.4. This may seem out of

place, but the methods used in this alternate proof provide motivation for

the content of the subsequent sections. In particular the key observation

is that as one moves around in L(n) it is important to keep track of how

relations between joins of atoms vary.

4.1 Motivation: Alternate proof of increasing

Betti numbers

As alluded to above, when we are discussing elements in a given finite atomic

lattice P there is a constant point of ambiguity concerning the “names” of

elements in P . The problem is any given element can usually be described

1The computations for n = 5, 6 were made using a program given in Appendix A.
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by several different joins of atoms. To allow ourselves to have all equivalent

“names” of a given element m ∈ P at our disposal, we define the following

set

equivP (m) =

{
σi ⊆ atoms(P )|

∨
ai∈σi

ai = m

}
= f−1(m),

where f : Bn → P is the join preserving map which is a bijection on atoms.

Note that one of these σi will always be equal to

supp(m) = {ai ∈ atoms(P )|ai 6 m},

and all the rest will satisfy σi ⊂ supp(m).

The following is a technical lemma that allows us to see precisely which

subcomplexes of Γ(P ) are candidates for having homology thus indicating

that a syzygy exists.

Lemma 4.1.1. If h̃i(Γ(P<m); k) = t then there exists a subset E in equivP (m)

such that |E| > t . Moreover, h̃i(Γ(P<m)|σj
); k) = 1 for all σj ∈ E .

Proof. First, note that since P6m is a lattice, it is acyclic. So

H̃i(Γ(P6m); k) =
ker ∂i : Ci → Ci−1

im ∂i+1 : Ci+1 → Ci
= 0.

Thus, ker ∂i = im ∂i+1 . Now we want to consider

H̃i(Γ(P<m); k) =
ker ∂′i : C ′i → C ′i−1

im ∂′i+1 : C ′i+1 → C ′i
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where ∂′i is just the restriction of ∂i and a basis for C ′i is I ⊂ supp(m) such

that |I| = i+ 1. Note that ker ∂′i ⊆ ker ∂i and im ∂′i+1 ⊆ ∂i+1 .

Since h̃i(Γ(P<m); k) = t , we can find a basis {[γ1], ..., [γk]} for H̃i(Γ(P<m); k).

Consider, γj which is an element of ker ∂′i . Since ker ∂′i ⊆ ker ∂i = im ∂i+1

we know that there exists some c ∈ Ci+1 such that ∂i+1(c) = γj for all j .

However, γj 6∈ im ∂′i+1 meaning that γj is the boundary of some (i+ 1)-cell

c which is not in C ′i+1 . Let σj be the vertex set of this missing (i + 1)-cell

c . Clearly then, if we restrict Γ(P<m) to the vertex set described by σj then

h̃i(Γ(P<m)|σj
); k) = 1.

We can define a partial order on Betti vectors as follows BP > BQ if

βi(P ) > βi(Q)

for all i , and obviously if βi(P ) = βi(Q) for all i we say BP = BQ .

Recall that if P > Q in L(n) there exists a join preserving map ψ : P →

Q . Observe that if one takes q ∈ Q and looks at the pre-image ψ−1(q) ⊂ P

then because ψ is join-preserving we see:

equivQ(q) =
⋃

p∈ψ−1(q)

equivP (p),

and that equivP (p) ∩ equivP (p′) for any two p, p′ ∈ ψ−1(q).

Observe that for p ∈ ψ−1(q) if supp(p) = supp(q), that faces in Γ(P<p)

are by definition are subsets J ⊂ supp(p) = supp(q) such that J 6∈ equivP (p)
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which implies that J 6∈ equivQ(q). So faces of Γ(P<p) correspond to elements

in equivQ(q) − equivP (p). So the concern as one moves up chains in L(n)

is that by adding faces into Γ(P<p) that one could kill homology that con-

tributes to the Betti numbers of a resolution. Never fear though, due to the

fact that there will be other elements p ∈ ψ−1(q) where supp(p) 6= supp(q)

we will always be able to find the elements which contributed homology to

Betti numbers in lower lattices in higher lattices.

Remark 4.1.2. A restatement of theorem 2.5.4 in this language is: If P > Q

in L(n) then BP > BQ

I provide the following proof for 4.1.2 which follows from the ideas intro-

duced throughout this section.

Proof. Recall that

βi+2(P ) =
∑
p∈P

h̃i−2(Γ(P<p); k).

Since, ψ : P → Q is a surjective map we can rewrite this sum as follows

∑
q∈Q

∑
p∈ψ−1(q)

h̃i−2(Γ(P<p); k).

So it is enough to prove that for any point q ∈ Q ,

h̃i−2(Γ(Q<q); k) 6
∑

p∈ψ−1(q)

h̃i−2(Γ(P<p); k).

We begin by looking at ψ−1(q) = {p1, ..., ps} ⊂ P for some q ∈ Q . By
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lemma 4.1.1 if h̃i−2(Γ(Q<q); k) = t then we can find {σ1, ..., σt} ⊆ equivQ(q)

such that h̃i−2(Γ(Q<q|σj
); k) = 1 for all 1 6 j 6 t .

By the discussion above, σj ∈ equivP (p) for some p ∈ ψ−1(q). Moreover,

we know that all subsets of σj are not in equivQ(q) because σj corresponds

to a basis element in the H̃i−2(Γ(Q<q); k). (i.e. enough subsets of σj need

to be less than q because the boundary of the missing cell corresponding

to σj needs to be present.) Thus since both Γ(P<p)|σj
and Γ(Q<q)|σj

have

σj as their vertex set and faces which correspond to J ⊂ σj such that

J 6∈ equivP (p) or equivQ(q) respectively. We see that Γ(P<p)|σj
= Γ(Q<q)|σj

,

thus h̃i−2(Γ(P<p)|σj
; k) = 1 for all j .

The advantage of this proof, is that one can actually trace the homology

classes which correspond to multigraded Betti numbers as one moves up

chains in L(n).

4.2 Representing Finite Atomic Lattices

The proof provided above of the upper semi-continuity of Betti numbers in

L(n) addresses the main difficulty of understanding the structure of L(n).

The difficulty lies in the fact that it is nontrivial to see how the sets equivP

change as P changes.

In other words, changing one set equivP (m) potentially changes all of the

other sets equivP (m′). There are two main methods that I use for keeping

track of this information. One identifies a set of cones over each vertex of

the n − 1-simplex with each P ∈ L(n) which allows one to see the effects
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of subtly changing equivP (m). The other looks at the maximal elements in

each set equivP (m).

4.2.1 Cone Complexes

Define the following cone complex associated to a lattice P ∈ L(n) a follows:

• Define

Ii = {σ|(
∨
j∈σ

aj) ∨ ai = (
∨
j∈σ

aj) and i 6∈ σ}

for each atom ai .

• Define Ci = {σc|σ ∈ Ii} where σc is the complement of σ in the set

{1, . . . , n} .

Example 4.2.1. In figure 4.1 we see a lattice P and its associated cone

complex CP . Note that here the labels on P such as abc is shorthand for

a ∨ b ∨ c where a, b, c ∈ atoms(P ). In this example we have the following

sets which consist of the cone complex:

Ia = {bcd, cde, bcde} ⇒ Ca = {ae, ab, a}

Ib = {cde, acde} ⇒ Cb = {ab, b}

Ic = {ab, abd, abe, abde} ⇒ Cc = {cde, ce, cd, c}

Id = ∅ ⇒ Cd = ∅

Ie = ∅ ⇒ Ce = ∅
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abcde
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Figure 4.1: A lattice P and its cone complex CP

We will prove that each Ci is a cone over the vertex i , and the collection

of the Ci ’s gives a description of the relations in P . It is important to note

though that the faces appearing in Ci have maximum dimension n− 3 due

to the fact that faces of higher dimension would correspond to either 0̂ , or

atoms appearing in the set Ii which cannot happen as this P is an atomic

lattice on n atoms.

Proposition 4.2.2. Given a set C of n sets Ci = {F |F ⊂ [n], i ∈ F} , then

C corresponds to a lattice P ∈ L(n) if and only if the following conditions

are satisfied

1. |F | 6 n− 2 for all F ∈ Ci for all i .

2. For all F ∈ Ci if G ⊂ F and i ∈ G then G ∈ Ci .

3. Let F ∈ Ci and let G = F − {i} . If G ∈ Cj then F ∈ Cj .

Proof. Given P ∈ L(n) construct the sets in CP as above. Now we must
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show that these are cones over a vertex in the (n− 1)-simplex and that they

satisfy the 3 conditions.

That |F | 6 n− 2 for all F ∈ Ci is obvious as no atoms show up in any

Ii .

To show condition (2), note that since F ∈ Ci this means that

(
∨
j∈F c

aj) ∨ ai =
∨
j∈F c

aj.

Since G ⊂ F , we know that F c ⊂ Gc so if we want to check if

(
∨
j∈Gc

aj) ∨ ai =
∨
j∈Gc

aj

we can start with:

(
∨
j∈Gc

aj) = (
∨
j∈Gc

aj)

and decompose to

(
∨
j∈F c

aj) ∨ (
∨

j∈Gc−F c

aj) = (
∨
j∈F c

aj) ∨ (
∨

j∈Gc−F c

aj)

and then substituting we get

(
∨
j∈F c

aj) ∨ (
∨

j∈Gc−F c

aj) ∨ ai = (
∨
j∈F c

aj) ∨ (
∨

j∈Gc−F c

aj).

which proves the desired equality.
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Note that this condition (2) is precisely the one that implies that each

Ci is a cone over the vertex i .

Now, to show condition (3), our goal is to show

(
∨
k∈F c

ak) ∨ aj =
∨
k∈F c

ak.

If F ∈ Ci then:

(
∨
k∈F c

ak) ∨ ai =
∨
k∈F c

ak (4.2.1)

so wedging equation 4.2.1 with aj on both sides yields

(
∨
k∈F c

ak) ∨ ai ∨ aj =
∨
k∈F c

ak ∨ aj. (4.2.2)

And because G ∈ Cj :

(
∨
k∈Gc

ak) ∨ aj =
∨
k∈Gc

ak (4.2.3)

so because Gc = F c ∪ i equation 4.2.3 becomes

(
∨
k∈F c

ak) ∨ ai ∨ aj =
∨
k∈F c

ak ∨ ai. (4.2.4)
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Combining equations 4.2.2 and 4.2.4, we get that

(
∨
k∈F c

ak) ∨ aj =
∨
k∈F c

ak ∨ ai =
∨
k∈F c

ak.

So F ∈ Cj as needed.

So, we have shown that given P we can construct sets Ci which satisfy

the necessary conditions. It remains to show that given such a collection of

Ci ’s that one can always construct a finite atomic lattice P .

Given C = {C1, . . . Cn} satisfying the three conditions above, we con-

struct P as follows. First take each Ci and complement each F ∈ Ci in

the set {1, . . . , n} , call this set of complements Ii . Let I =
⋃
Ii for all

1 6 i 6 n , then define P to be the set

{p ∈ Bn|p 6=
∨
j∈σ

aj for all σ ∈ I}.

In other words, P is the complement of I in Bn . It remains to show that P

with the induced ordering of Bn is a finite atomic lattice. Since F satisfies

condition (1), we see that |F c| > 2 for all F ∈ Ci , so every atom of Bn is in

P as well as 0̂ . Also, since no F = ∅ in any of the Ci , 1̂ is contained in P .

So by theorem 2.1.1 it remains to show that P is either a meet-semilattice

or a join-semilattice.

I will show that every two elements in P has a join. Let p, q ∈ P the the

join of these two elements will have support containing supp(p)∪ supp(q). If

supp(p)∪supp(q) is not in I then this is supp(p∨q). If supp(p)∪supp(q) ∈ I
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then there needs to be a unique smallest subset not in I containing it. If

supp(p) ∪ supp(q) ∈ I then define supp(p ∨ q) to be the set

supp(p) ∪ supp(q) ∪ {i | supp(p) ∪ supp(q) ∈ Ii}.

This is not in I since for each i if σ ∈ Ii then σ ∪ {i} 6∈ Ii . Moreover, this

is clearly the unique smallest set satisfying this property.

Note that for small n one can easily count all of the possible cone com-

plexes thus giving a nice way to enumerate all of the elements of L(n). The

following table shows this enumeration for n = 4 where by summing over

the last column one sees that |L(4)| = 545.

vertices incident edges Total

0 0 1

1 3 4*8 = 32

2 5 6*32 = 192

3 6 4*64 = 256

4 6 64

If the definition of CP reminds the reader of the process by which one

finds the Alexander dual to a simplicial complex they are not mistaken as

will be seen in the following proposition. I will call a cone complex closed if
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for every F ∈ Ci then if j ∈ F then F ∈ Cj as well. In other words, the

union of all the cones is in fact a simplicial complex.

Proposition 4.2.3. If the cone complex for P is closed then the cone com-

plex is the Alexander dual to the Scarf complex associated to P .

Proof. The Alexander dual to the Scarf complex is obtained by taking the

complement (in the set of verticies) of each of the missing faces. So if we

can show that for closed cone complexes, that the sets Ii consist of all of the

missing faces of the Scarf complex containing the vertex i then we are done.

If C is cone complex of P and C is closed then

(
∨
k∈F c

ak) ∨ aj =
∨
k∈F c

ak

for all F and all j such that F ∈ Cj . So, F c is in Ii for all i 6∈ F c and, every

set containing F c but not containing i is also in Ii . These are precisely the

faces whose multidegrees are equal and so each Ii contains all of the faces

missing from the Scarf complex which touch the vertex i .

It is important to understand how the order relation on L(n) is under-

stood in terms of these cone complexes. The next lemma addresses this.

Lemma 4.2.4. P > Q in L(n) implies that CP,i ⊂ CQ,i for all i ∈

{1, . . . , n} where CP,i ∈ CP and CQ,i ∈ CQ .

Proof. First note that CP,i ⊂ CQ,i is equivalent to saying that IP,i ⊂ IQ,i .

So we will show that the later is true. If P > Q then there exists a join
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preserving map f : P → Q which is a bijection on atoms. Choose an

element σ ∈ IP,i then since

(
∨
j∈σ

aj) ∨ ai =
∨
j∈σ

aj

we see that

f(
∨
j∈σ

aj) = f((
∨
j∈σ

aj) ∨ ai)

= f(
∨
j∈σ

aj) ∨ f(ai)

=
∨
j∈σ

f(aj) ∨ ai.

Thus, σ ∈ IQ,i as needed.

The join operation can be seen in this next lemma to be equivalent to

appropriate intersections of the cone complexes. This is particularly nice

because from Phan’s thesis we understand meets of atomic lattices to be the

intersections of their images in Bn . Joins however, cannot be understood as

unions because the union operation is not closed as demonstrated in figure

4.2 since clearly P ∪Q is not a lattice.

Lemma 4.2.5. In L(n) the join of two elements, P ∨Q corresponds to the

cone complex {CP,i ∩ CQ,i| for all 1 6 i 6 n} .

Proof. Clearly CP,i ∩CQ,i is the largest set contained in both CP,i and CQ,i
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Q_ P==
 Q[ P

Q

P

Figure 4.2: P ∪Q is not the join of P and Q

thus by 4.2.4 the lattice T corresponding to that cone complex will be greater

than both P and Q and there will be no lattice T ′ such that T > T ′ and

T ′ > P and T ′ > Q .

4.2.2 Description as sets closed under intersection

Alternatively, we can view each lattice as a set with certain properties. Let S

be a set of subsets of {1, ..., n} with no duplicates, closed under intersections,

and containing the entire set, the empty set, and the sets {i} for all 1 6 i 6

n . Then S corresponds to an element of L(n).

To see this consider an element P ∈ L(n) we define SP to be the set of

supp(p) for all p ∈ P . Since P is a lattice both the empty set and the entire

set are in SP . It remains to show that SP is closed under intersections. If
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supp(p) ∩ supp(p′) 6∈ SP then

∨
j∈supp(p)∩supp(p′)

aj

does not exist which cannot happen as P is a lattice.

Alternatively, given such as set S order the sets in S by inclusion, then

we need to show that this is a finite atomic lattice. It obviously has a minimal

element, a maximal element, and n atoms, so by proposition 2.1.1 we need

to show it is either a meet-semilattice or a join-semilattice. Here the meet of

two elements would be defined to be their intersection and since S is closed

under intersections this is a meet-semilattice.

Lemma 4.2.6. P > Q in L(n) if and only if SQ ⊂ SP .

Proof. If P > Q then there exists a join preserving map f : P → Q which

is a bijection on atoms. Clearly this means that f is surjective since if there

were a q ∈ Q such that q 6∈ im f then this would imply that there were

some subset of atoms in P which did not have a join. Since f is surjective

we can consider the preimage of each element q ∈ Q . For all p ∈ f−1(q),

supp(p) ⊆ supp(q) since

f(
∨

i∈supp(p)

ai) =
∨

i∈supp(p)

f(ai) =
∨

i∈supp(p)

ai = q.

(Note: Since supp gives us subsets of the atoms, even though p and q live

in different lattices, it makes sense to compare these sets.) Moreover, for the

maximal element of f−1(q) there will be equality. Thus for every q ∈ Q ,
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supp(q) is element of SP .

If SQ ⊂ SP then define the following map f : P → Q to be the following

map: let s ∈ SQ be the smallest set containing supp(p) then

f(p) =
∨
i∈s

ai.

Note that this set s will be unique since if there were two sets s and s′ such

that neither set was contained in the other and both contained supp(p) then

because SQ is closed under intersections s ∩ s′ will either be supp(p) or a

unique smallest set containing it. This map is obviously join preserving.

This next lemma is equivalent to the method used to originally prove

theorem 2.7.1 in [Pha06].

Lemma 4.2.7. In L(n) the meet of two elements, P ∧Q corresponds to the

set SP ∩ SQ .

Proof. Clearly SP ∩SQ is the largest set contained in both SQ and SP thus

by 4.2.6 the lattice T corresponding to SP ∩ SQ will be less than both P

and Q and there will be no lattice T ′ such that T ′ > T ′ and P > T ′ and

Q > T ′ .

4.3 Structural properties of L(n)

Using these two different ways of representing elements in L(n) we can begin

to prove some structural results about the lattice. Having a clear sense of



52

the structure of this space is of use when considering questions relating to

how the Betti numbers are changing along chains.

Up until this point, I have provided several ways of seeing that a lattice

P is greater or equal to a lattice Q , but I have not provided a “nice” charac-

terization that P minimally covers Q . The following proposition addresses

this.

Proposition 4.3.1. If P > Q in L(n) then P covers Q if and only if

|P | = |Q|+ 1 .

Proof. We know that P > Q which implies that SQ ⊂ SP . Since every set

in S corresponds to an element in the associated lattice, this implies that

|P | > |Q| . It remains to show that they differ by one element when P covers

Q .

Suppose they differ by 2 elements, then SP = SQ∪{σ, β} where σ and β

are subsets of {1, . . . , n} satisfying the conditions that σ∩β , σ∩s , and β∩s

are either in SQ or {σ, β} for all s ∈ SQ . The argument is that in this case

P cannot cover Q as there exists a lattice T 6= P satisfying P > T > Q .

Let ST be one of the following

1. SQ ∪ {σ ∩ β} if σ ∩ β 6∈ SQ

2. ST = SQ ∪ {σ} if σ ⊂ β

3. ST = SQ ∪ {β} if β ⊂ σ

4. ST = SQ ∪ {σ} or ST = SQ ∪ {β} if σ and β are not subsets of each

other.
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In any of these cases, T > Q and |T | = |Q|+ 1.

The upshot of proposition 4.3.1 is the next nice result. It is easy to see

that L(3) = B3 , wheras L(4) 6= B4 (and the later is true for all n > 4 by

proposition 4.3.3). However, one can ask, what if any are the nice properties

of Bn that are retained by L(n). One answer is the following theorem.

Theorem 4.3.2. L(n) is a graded lattice of rank 2n − n− 2

Proof. The maximal element of L(n) is the lattice Bn and |Bn| = 2n . The

minimal element of L(n) is the unique lattice on n atoms where the atoms

are also the coatoms, it has n + 2 elements. Then by 4.3.1 every chain in

L(n) has length 2n − (n+ 2) and so it is graded of rank 2n − n− 2.

It follows from theorem 4.3.2 that if L(n) is co-atomic then it will be

isomorphic to Bn . With the following description of the meet-irreducibles it

is easy to see that the only case where this happens is for n = 3.

Proposition 4.3.3. The number of meet irreducibles in L(n) is

n(2n−1 − n).

Proof. The meet-irreducibles in L(n) can be described best in of their cone

complexes. A cone complex C is meet-irreducible in L(n) if Ci = ∅ for all

i 6= j and Cj consists of a only one face F and any faces G ⊂ F (i.e. a
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“simplex”). For each Cj there are

1 +
n−2∑
i=2

(
n

i

)

possible faces. Thus, the set of all such C is precisely

n−2∑
i=1

i

(
n

i

)
. (4.3.1)

To see that equation 4.3.1 equals the desired quantity, consider this spe-

cific instance of the binomial theorem

(1 + t)n =
n∑
i=0

(
n

i

)
ti.

Taking derivatives we see the following

n(1 + t)n−1 =
n∑
i=1

i

(
n

i

)
ti−1

= n

(
n

n

)
tn−1 + (n− 1)

(
n

n− 1

)
tn−2 +

n−2∑
i=1

i

(
n

i

)
ti−1.

Thus rearranging we see that

n(1 + t)n−1 −
(
n

n

)
tn−1 − (n− 1)

(
n

n− 1

)
tn−2 =

n−2∑
i=1

i

(
n

i

)
ti−1,
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and so evaluating at t = 1 we get that

n2n−1 − n− n(n− 1) = n(2n−1 − n) =
n−2∑
i=1

i

(
n

i

)
.

It remains to show that complexes C described above are in fact the

meet-irreducibles. Let C be a cone complex satisfying the conditions above,

and then let C ′ and C ′′ be two cone complexes greater than C , i.e. contained

in C . Then either, C ′ and C ′′ lie in a chain or are uncomparable. If they

lie in a chain, there is nothing to show. If they are uncomparable we must

show that C is not their meet (or equivalently the greatest lower bound). We

know that all C ′i and C ′′i are empty except for when i = j , that C ′j ⊂ Cj ,

C ′′j ⊂ Cj and there exists F ∈ C ′j, 6∈ C ′′j and a G ∈ C ′′j 6∈ C ′j . Since, Cj is

a “simplex” we know that C ′j and C ′′j must differ by faces F and G that

are contained in the maximal face of Cj . Note this implies that the maximal

face is missing from both C ′j and C ′′j . If this is the case then the largest cone

complex containing C ′j and C ′′j is the union of these which is still missing

the maximal face of Cj . Thus, the meet of C ′ and C ′′ is not C and this is

true for all cone complexes greater than C so it is a meet-irreducible.

Note that this proof gives a concrete description of the meet-irreducibles

of L(n). It should be noted then that using this one can easily figure out the

minimal monomial coordinatization of L(n) which in theory could be used

to enumerate all of the elements of L(n) by computing the LCM lattice of

that monomial ideal.
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Chapter 5

Deformation of exponents and

Generic Monomial Ideals

Recall from section 2.4 that Mε is the monomial ideal obtained by a defor-

mation of the exponents of the generators of M by {ε1, . . . , εn} . It is noted,

in [GPW99] that there is a join preserving map between the LCM lattices

from Mε to M for any monomial ideal M . In fact, for abstract monomial

ideals we can realize all paths in L(n) as a deformation of exponents for

some coordinatization, as seen in the following proposition.

Theorem 5.0.4. If P > Q in L(n) then there exists a coordinatization of

Q such that via deformation of exponents one can obtain a coordinatization

of P .

Note that this proof makes use of the fact that we can represent any

57
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deformation of exponents using integer vectors rather than working with real

exponents.

Proof. First, label P with the greedy labeling from above. Then construct

a labeling of Q as follows. Since P > Q then there is a join preserving map

f : P → Q . To each element q ∈ Q assign the monomial

∏
j∈I

xj,

where I = {j |xj divides mp for all p ∈ f−1(q)}

It remains to show that there exists εi for each of the n atoms, such

that the monomial ideal obtained for P is a deformation of exponents for

the monomial ideal obtained for Q (with these coordinatizations). We do

this by considering chains in both P and Q and their relation to each other

under the map f .

Let cj be the chain in P which is labeled by the variable xj under the

greedy labeling. Note that we can write the monomial associated to an atom

ai as follows ∏
j

∏
p∈daiecP∩cj

xj,

where the subscript P indicates that both the order ideal and the comple-

ment are in P . Similarly with the coordinatization of Q given above we can

think of the monomials for the lattice Q as

∏
j

∏
q ∈daiecQ∩f(cj)

xj.
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Given these descriptions of the monomials generators for each lattice makes

it clear that for εi we want to define

εij = |daiecP ∩ cj| − |daiecQ ∩ f(cj)|.

Clearly, this give the desired deformation of exponents.

Remark 5.0.5. This provides yet another proof that total Betti numbers

increase as one moves up chains in L(n), since it is known that Betti numbers

are upper-semi continuous under deformation of exponents.

Corollary 5.0.6. Given a lattice Q ∈ L(n) there exists a coordinatization

for which every element in dQe is the LCM lattice of a deformation of expo-

nents of that coordinatization.

Proof. Apply the coordinatization used to prove theorem 5.0.4 where Q is

your given lattice and P = Bn . Use the same coordinatization given in the

proof for every element P ′ ∈ dQe . Now it remains to show that with these

coordinatizations of P ′ and of Q that we can find a εi for each of the n

atoms giving a deformation of exponents for the monomial ideal obtained for

Q . Again for a variable xj which appears only along one chain cj we want

to define εij to be |daiecP ′ ∩ cj| − |daiecQ ∩ f(cj)| .

This realization of the filter of Q as the “space of all deformations of ex-

ponents of Q” is of interest as it will hopefully give insight into the geometric

model of deformation of exponents. By geometric model, I mean that given

a monomial ideal in t variables with n generators one can view each possible
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deformation as a vector in Rnt . However, there are finitely many possible

deformations each corresponding to any vector in a open convex polyhedral

cone. Examples show that the correspondence between these cones and el-

ements in the eQd is not one-to-one which suggests that L(n) is a better

model for studying deformation of exponents. Understanding the structure

of these fan consisting of these cones and how it relates to this filter will be

the subject of further work.

Another goal, which will be addressed here, is to understand how to

“minimally deform” exponents so that one does not increase Betti numbers.

Specifically, recall the map

φ : L(n)→ β(n)

which takes a lattice L to the vector consisting of its total betti numbers.

Given a lattice P in φ−1(b) for some b ∈ β(n), I want to understand under

what circumstances will a deformation of exponents force me to move to a

lattice outside of φ−1(b).

My approach is based on first understanding a coordinate free description

of Scarf complexes and generic monomial ideals. Since deformation of expo-

nents first appeared with the aim of deforming to generic monomial ideals

where the resolution was known, this coordinate free description indicates

where some “stopping” points are along chains in L(n). Then I intend to

generalize some of these notions to account for ideals whose minimal resolu-

tion is not simplicial.
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5.1 Simplicial cellular resolutions

Since the case where a monomial ideal has a minimal resolution supported

by a simplicial complex is fairly well understood, I begin here by providing

descriptions of what is known purely in terms of lattices.

Just as in chapter 4 I will continue to refer to the Betti numbers of a finite

atomic lattice as opposed to the Betti numbers of a monomial ideal. Notice

that since all monomial ideals with the same LCM lattice have isomorphic

minimal resolutions this means that if a cell complex supports the minimal

resolution of one ideal then it will support the minimal resolution for all

possible coordinatizations of the LCM lattice of that ideal. Moreover, we

can think of the multidegrees showing up in the resolution as simply the

elements of the lattice P . With this idea, it is easy to define the Scarf

complex of a monomial ideal MP in terms of the lattice P ,

scarf(P ) = Γ({p ∈ P | | equivP (p)| = 1}) ⊂ Γ(P ).

Note that in this language, Γ(P ) is the Taylor Complex associated to P .

Recall from section 2.4 that if a given monomial ideal is generic or strongly

generic then its minimal resolution is the Scarf complex. Note however, that

there may be monomial ideals whose minimal resolution is the Scarf complex,

yet the ideal is not generic. An obvious example of this phenomenon is

if one takes a generic monomial ideal and polarizes to obtain a squarefree

monomial ideal. It will have the same Scarf complex which supports the

minimal resolution since LCM lattices are preserved under polarization. It is
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Figure 5.1: Lattice resolved by Scarf complex which has no generic coordi-
natization

rare however, for squarefree monomial ideals to be generic since all variables

always appear with the same exponent.

Nontrivial examples exist though of monomial ideals whose minimal reso-

lution is supported by the Scarf complex, but they are not generic or strongly

generic. The following example of an abstract monomial ideal illustrates well

an example of a monomial ideal whose minimal resolution is Scarf, but where

there is no coordinatization which satisfies condition 2 of theorem 2.4.6.

Example 5.1.1. The lattice P in figure 5.1 is the augmented face lattice

of a simplicial complex consisting of 4 vertices and 3 edges. Every point

in P except for the minimal and maximal elements represents a multidegree

that has a nonzero betti number. This is easy to see since for all of the

atoms h̃−1(Γ(P<ai
), k) = 1 and for each element p covering an atom Γ(P<p)

consists of two vertices thus h̃0 = 1. Thus, P will always be resolved by its

Scarf complex.

I will demonstrate however, that every possible coordinatization of P fails

condition 2 of theorem 2.4.6. In other words, that for every coordinatization

a variable appears with the same non-zero exponent in either m1 and m2 ,

m2 and m3 , or in m3 and m4 . Since the meet-irreducibles of P are precisely
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p12 = a1 ∨ a2 , p23 = a2 ∨ a3 , p34 = a3 ∨ a4 , a1 , and a4 any coordinatization

must cover these. I will focus on just showing that for all coordinatizations

there is a variable appearing with the same non-zero exponent for the pair m1

and m2 . Note that the monomial m1 is determined by the labelings found

on {p23, p34, a2, a3, a4} and m2 is determined by {p34, a1, a3, a4} . Moreover,

p34 and a4 must be labeled and if a3 happens to be non-trivially labeled it

also appears in both of these sets. Any variable appearing in the label on

p34, a3, and a4 cannot appear anywhere else, thus it must appear with the

same exponent in both m1 and m2 . So condition 2 can never be satisfied.

Observe that in the above example P is the face lattice of P together

with a maximal element, I will refer to this as the augmented face lattice of P .

An argument similar to the one in the example is used to prove proposition

5.14 in [Pha06]. I will restate this proposition here.

Proposition 5.1.2. Every simplicial complex X not equal to the boundary

of a simplex is the Scarf complex of some squarefree monomial ideal. If X

is acyclic then X supports the minimal resolution of that ideal.

The intention of the next proposition is to demonstrate that each of these

strata have entire regions of lattices whose minimal resolution is the sup-

ported by the appropriate Scarf complex. This proof uses the ideas first

presented in the proof of 4.1.2.

Proposition 5.1.3. If P is minimally resolved by its Scarf complex, then

every Q > P in φ−1(bP ) ⊂ L(n) is also resolved by its Scarf complex which

will equal the Scarf complex of P .
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Proof. If P is minimally resolved by its Scarf complex, then βi,p 6= 0 implies

that βi,p = h̃i−2(Γ(P<p, k)) = 1 and | equivP (p)| = 1. So, we need to show

the same is true for the appropriate elements q ∈ Q . Since Q > P so there

is a join preserving map ψ : Q→ P and recall that

equivP (p) =
⋃

q∈ψ−1(p)

equivQ(q).

Since any p ∈ P contributing to a Betti number satisfies | equivP (p)| = 1 we

see that there must be only one q ∈ ψ−1(p). It remains to show that for this

q = ψ−1(p) that h̃i−2(Γ(Q<q, k)) = 1.

To see this last fact, consider the fact that since P is resolved by its Scarf

complex we can inductively apply the above argument to every single face of

Γ(P<p) to see that Γ(Q<q) is precisely the same simplicial complex. Thus it

has the same reduced homology.

Clearly no other elements of Q have nonzero Betti numbers since Q

is assumed to be in the same strata of total Betti numbers as P. Thus,

scarf(P ) = scarf(Q) and both are minimally resolved by their Scarf com-

plexes.

Note that in the example 5.1.1, there is a lattice Q (figure 5.1) greater

than the given lattice which has an isomorphic minimal resolution but that

admits a generic coordinatization. The following theorem characterizes pre-

cisely when strongly generic coordinatizations exist.

Theorem 5.1.4. If P ∈ L(n) is a graded finite atomic lattice whose chains
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have rank n , then P admits a strongly generic coordinatization.

Proof. Coordinatize P using the greedy coordinatization. Now, we just need

to show that the resulting monomial ideal is strongly generic. In other words

we need to show that for any variable xj , if it appears in any two monomials

mai
and mak

that it has a different exponent. By the definition of the

monomials mai
and mak

this amounts to showing that the intersections of

the complements of the filters daie and dake with the chain corresponding

to xj are different.

Let cj = {0̂, a1j
, a1j
∨a2j

, . . . , a1j
∨a2j

∨· · ·∨anj
= 1̂} be the chain which

is entirely labeled by the variable xj . Since P is graded of rank n we know

that there are n+ 1 elements in cj and that the i-th element in the chain is

the join of i− 1 atoms of P . Every set daie intersects cj at a different spot

along the chain, so it is likewise with the complements of these filters. This

guarantees that each variable xj appears with a different exponent in each

monomial generator.

Note that having a LCM which is graded of rank n is a necessary con-

dition. One can see this by looking at the deficit labeling for any strongly

generic monomial ideal. All variables need to be labeled along a maximal

chain and all meet-irreducibles must be covered so every meet irreducible

needs to lie on a maximal chain. This demonstrates that if a given monomial

ideal is not strongly generic, but its LCM lattice is graded of rank n , then

depolarization rather than deformation of exponents is a better approach for

finding the minimal resolution.
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5.2 Nonsimplicial cellular resolutions

For monomial ideals whose minimal resolution is not supported on a sim-

plicial complex less is known about how to “nicely” describe their minimal

resolution. In this section, I try to generalize the results of the previous

section to account for these types of ideals. Then the following propositions

provide a generalization of Phan’s proposition 5.1.2 and proposition 5.1.3.

Proposition 5.2.1. Let X be a regular cell complex such that X is acyclic,

and the augmented face poset of X , PX is a finite atomic lattice on |X0| = n

atoms. Then the minimal resolution of any coordinatization of P is supported

on X .

Proof. Observe that if PX is the face lattice of X then labeling X with

the monomials in any coordinatization of PX as prescribed in section 2.4

simply puts the monomial at a point p ∈ PX on its corresponding face in

X . Moreover, each face in X has a distinct multidegree labeling it. To show

that the resolution of any coordinatization is supported on X we simply need

to show that X6p is acyclic. This is true by construction though since X6p

corresponds to the d-cell that p represents and its boundary.

Note also that ∆(PX<p) is the barycentric subdivision of X<p . In par-

ticular, we can also easily see that h̃i(∆(PX<p, k) = 1 for i = d− 1 where p

corresponds to a d-cell in X since X<p is the boundary of that d-cell. Thus

βd+1,p = 1 for a d-cell Fp in X .

If P is the augmented face lattice of X (i.e. if the 1̂ element actually

needs to be added in) then the above description applies to all p ∈ P − 1̂ .

For p = 1̂, we have by construction that X6p = X and since X was assumed
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to be acyclic X still supports the resolution.

Moreover, only the multidegrees corresponding to each p ∈ P can possi-

bly have βi,p nonzero so since we’ve considered all such p ’s X supports the

resolution of P . This resolution is minimal since βi,p = 1 for only one i , i.e.

no map has an integer as an entry of the matrix.

Observe that when X is not acyclic all hope is not lost. If X itself has

homology, then that will correspond to Γ(PX<1̂) having the same homology.

In particular if X is a triangulation of some CW-complex with homology

[Vel08] gives a construction for how to find a minimal resolution of an ideal

which is a coordinatization of its augmented face lattice.

Proposition 5.2.2. Let PX be as in proposition 5.2.1, then if Q in φ−1(bPX
) ⊂

L(n) satisfies the following two conditions:

1. Q covers PX

2. βi,q = 1 for q = max(ψ−1(p)) for any p ∈ PX where ψ is the join-

preserving map from Q to PX , and βi,q = 0 otherwise.

Then Q has a minimal resolution supported on X .

Proof. Since Q ∈ φ−1(bPX
) we know that the total Betti numbers of the

minimal resolution of Q are the same as those of PX . So, all that needs to

be shown is that X supports a resolution of Q , and then since that resolution

has the right total Betti numbers it must be minimal. Thus, I just need to

show that X6q is acyclic for all q ∈ Q .
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First recall from the proof of 4.1.2 that

equivPX
(p) =

⋃
q∈ψ−1(p)

equivQ(q).

Moreover, supp(p) is the maximal element in equivPX
(p) when it is ordered

by inclusion which implies supp(p) is the maximal element in
⋃
q∈ψ−1(p) equivQ(q).

So we can observe that there are two types of elements q ∈ Q : one being

where

q =
∨

i∈supp(p)

ai

for some p ∈ PX where the join is in Q ; and the second being the q ∈ Q that

are not of the first type. Clearly the elements of type one are maximal in the

appropriate φ−1(p). Note also that since Q covers PX there is precisely one

element of type two in Q due to proposition 4.3.1.

Now we need to label X with the appropriate multidegrees. Notice that

each face of X corresponding to p ∈ PX will be labeled with the appropriate

q ∈ Q of type one which is the maximal element in φ−1(p). Moreover, no

elements in Q of type two label any faces in X . Thus when we examine the

complexes X6q for q of type one they will all be acyclic for the same reasons

as in the proof of proposition 5.2.1.

It remains to show that for the one element q ∈ Q of type two that X6q is

acyclic. We know that since βi,q = 0 for this element that ∆(Q<q) is acyclic.

Moreover, since q is the only element in Q which does not correspond to a

face in X , then Q<q is equal to the face lattice of X<q . This shows that

X<q is acyclic since ∆(Q<q) is homotopy equivalent to X<q by barycentric
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subdivision. Finally, since q does not label a face of X , it is clear that

X<q = X6q thus concluding the proof.

In general, when a lattice Q > PX but still in the same Betti strata what

happens can be quite subtle. The above proposition is a prototype for the

type of theorem that I hope to prove in future work. I believe that both of

the conditions which Q must satisfy can be relaxed. The goal of this is to

give nice closed form descriptions of the maps in the minimal resolution for

a larger class of ideals than those resolved by their Scarf complex.
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Chapter 6

Connection to Maximal CM

ideals

In [Flø09], Fløystad defines the category of monomial ideals whose quotients

are Cohen-Macaulay and defines maximal elements in this category. He then

gives constructions which associate to certain regular cell complexes (trees,

and some polytopes) maximal elements in this category whose minimal reso-

lutions are supported on these cell complexes. This work is can be related to

the work of Phan and the results found in this thesis since both are concerned

with constructing monomial ideals with a specific cellular resolution.

Specifically, in [Flø09] the setup is as follows. Fløystad defines the set

CM(n, c) to be ordered sets of n monomials generating a monomial ideal

M such that the quotient ring is Cohen-Macaulay of codimension c . In

actuality this is a category but we need not concern ourselves with this added
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structure here. The set CM∗(n, c) is the subset (subcategory) of CM(n, c)

consisting of monomial ideals which are squarefree and such that the sets

Vt = {i |xt divides mi} ⊆ [n] are distinct.

Fløystad initially defines what it means for a monomial ideal to be max-

imal using the maps in his category CM(n, c). The maps in this category

though are heavily dependent on what coordinatization one has for a mono-

mial ideal. Thus, I prefer to ignore this definition and rather use his char-

acterization of the objects in these categories which identifies families F

consisting of subsets of [n] to objects in CM(n, c). Essentially these sets

F are meant to be the set of Vt ’s described above, but given a regular cell

complex X one can construct sets F without having to start with an ac-

tual monomial ideal. This should remind the reader of the coordinatizations

appearing in [Pha06] and chapter 3.

The following are actually propositions 1.7 and 1.10 in [Flø09]. Since

they are “if and only if” statements I will state them as definitions here to

simplify language.

Definition 6.0.3. A family of subsets of [n] F , as described above, is max-

imal if it is reduced and is maximal among reduced associated families for

the refinement order. A family F is reduced if it corresponds to an object in

CM∗(n, c) and consists of elements which are not the disjoint union of other

elements in F . The refinement order states that for two families of subsets

F > G if and only if F consists of refinements of elements of G together

with additional subsets of [n] .

Definition 6.0.4. If X is a regular cell complex of dimension d . Define

CM∗(X) to be the subset of CM∗(n, c) whose minimal resolution is sup-



73

ported on X .1 Then a family F is an object in CM∗(X) if the following

conditions hold

1. No d of the subsets in F cover [n] .

2. Let W be a union of subsets F . Then the restriction of X to W c is

acyclic.

3. For every pair F  G of faces of X , there is an S in F such that

S ∩ F is empty but S ∩G is not empty.

In some sense we can think of this last definition as the analog of propo-

sition 3.2.1 in chapter 3. It tells us how to “label” a regular cell complex

X so that we can construct an appropriate monomial ideal whose resolution

is supported on X . In particular condition 1 shows that the corresponding

ideal has codimension > d + 1, condition 2 guarantees that X supports a

cellular resolution and condition 3 says that this resolution is minimal.

If a family F satisfies the above definition then the following lemma from

[Flø09] characterizes when it is maximal.

Lemma 6.0.5. If a family of subsets F of [n] corresponds to a maximal

object in CM∗(X) , then for every S ∈ F the restriction of X to S is

connected.

1Note that for these more general statements about CM∗(X) in [Flø09] X is never
assumed to be anything more than a regular cell complex. It should be noted, however,
that without the assumption that X is acyclic or that the augmented face poset of X is
a lattice this set CM∗(X) will often times be empty. Consider the example of the regular
cell complex consisting of 2 vertices, 2 one-cells, and a single 2 cell. This is a regular cell
complex, but since its augmented face poset is not a lattice it cannot support the minimal
resolution of any monomial ideal. The fact that these sets could in fact be empty should
explain any discrepancy between these constructions and the hypotheses in proposition
5.2.1
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My observation is that Fløystad’s families F which are used to describe

ideals whose resolutions are supported on cell complexes X can be viewed

as subsets of the LCM lattices of these monomial ideals. What follows is a

description of the connections between the constructions appearing in [Flø09]

and in [Pha06].

6.1 Dictionary between labeling regular cell

complexes and coordinatizing lattices

I begin by considering Fløystad’s families F and what they correspond to in

terms of the LCM lattice associated to the ideal that they represent. First

I will disscuss the sets Vt = {i |xt divides mi} . Let M be the squarefree

monomial ideal in CM(n, c) corresponding to a family F = {V1, .., Vs} .

Then for a variable xt if we consider the deficit labeling of P = LCM(M)

then there is a point p ∈ P such that p is labeled with the variable xt .

In this case it is easy to see that Vt = bpcc ∩ atomsP , since under Phan’s

construction those atoms correspond to precisely the monomials that xt will

divide.

Lemma 6.1.1. If M is a labeling of P which gives a squarefree coordinati-

zation of P such that none of the monomials in V have degree greater than

1 then the corresponding F is in CM∗(n, c) .

Proof. Since the ideal associated to to M is squarefree we need only show

that the corresponding sets Vt are distinct.
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Since the sets Vt correspond to points p ∈ P and the sets bpcc∩ atomsP

we can easily see that if there exists a q ∈ P such that bpcc ∩ atomsP =

bqcc ∩ atomsP then p = q since P is an atomic lattice. Thus, in order to

have distinct Vt ’s associated to each p ∈ P each monomial that labels a

point p ∈ P must have degree equal to 1.

Next, I want to consider the condition in [Flø09] for a set F to be reduced

since that is a step towards understanding how maximal monomial ideals in

Fløystad’s sense correspond to maximal lattices in the strata of L(n).

Lemma 6.1.2. If M is a coordinatization of P as in lemma 6.1.1 then

M yields a monomial ideal whose associated family in CM∗(n, c) is reduced

if q, r ∈ P and labeled such that Vq and Vr are two subsets in F that are

disjoint then their meet is not labeled in P .

Proof. First, consider what it means for two subsets in F to be disjoint. In

other words, suppose there are elements q, r ∈ P such that

(brcc ∩ atomsP ) ∩ (bqcc ∩ atomsP ) = ∅.

If this is true, then we can think of

q = (
∨

i∈brcc∩atomsP

ai) ∨ s

and,

r = (
∨

i∈bqcc∩atomsP

ai) ∨ s.



76

So, the condition that no element of F is the disjoint union of two other

elements in F is equivalent to saying that their meet s is not labeled in any

coordinatization of P .

To see why s must not be labeled, recall that we want to avoid the

situation where there exists a labeled p ∈ P such that

bpcc ∩ atomsP = (bqcc ∩ atomsP ) ∪ (brcc ∩ atomsP ).

This is equivalent to saying

bpcc ∩ atomsP = (bqcc ∪ brcc) ∩ atomsP

and then by undoing the complements we see that the situation we want to

avoid is

bpc ∩ atomsP = (bqc ∩ brc) ∩ atomsP,

which is precisely the s described above.

It remains to consider what being maximal in the refinement order means

in this context. In essence this means that we want F to consist of as many

subsets as possible while still satisfying the conditions of definition 6.0.4,

lemma 6.0.5, and lemma 6.1.2. An algorithm for doing this is roughly as

follows:

1. Label all of the meet-irreducibles, and compute their Vp = bpcc ∩
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atomsP .

2. Look at all of the pairs of the Vp ’s which are not disjoint. The meets

of all of these pairs are candidates to be labeled. Compute their Vp ’s.

3. Check all of these candidates against definition 6.0.4, lemma 6.0.5, and

lemma 6.1.2 and add them in if none of these conditions are violated.

Note however, that this algorithm neglects to address the issue of choosing

the right P to coordinateize. In the case where X is a tree, I do have

a description of the lattice P which is the LCM lattice of a maximal CM

monomial ideal.

6.2 Codimension 2 Cohen-Macaulay mono-

mial ideals

For Cohen-Macaulay monomial ideals of codimension two one can easily

see using the Auslander-Buchsbaum formula that their projective dimen-

sion must be 2. In terms of cellular resolutions, this implies their resolutions

are supported on trees. For this special case, Fløystad gives a very specific

construction which associates to all trees T a maximal monomial ideal in

CM(T ) given orientations of the edges of T .

His construction is as follows, assign to every edge ei in T two variables

xi and yi . Deleting the edge ei produces two connected components of T

call them Ti,1 and Ti,2 . Then the monomial associated to any vertex v ∈ T



78

4e3e

2e

1e 5v4v3v

2v

1v

Figure 6.1: A tree T

is the following,

mv = (
∏

{i | v∈Ti,1}

xi)(
∏

{i | v∈Ti,2}

yi).

Then the squarefree monomial ideal MT = (mv1 , . . . ,mvn+1) is maximal

Cohen-Macaulay and its minimal resolution is supported on T .

Example 6.2.1. To the tree in figure 6.1 we would associate the follow-

ing monomial ideal using Fløystad’s construction. For each edge ei the

connected component Ti,1 will be the component with the smaller vertex

indices and the component Ti,2 will be the one with the larger vertex in-

dices. Then MT = (x1y2x3x4, y1x2x3x4, y1y2x3x4, y1y2y3x4, y1y2y3y4) in the

ring k[x1, x2, x3, x4, y1, y2, y3, y4] .

I intend to demonstrate that for an appropriate choice of finite atomic

lattice P that this construction coincides with Phan’s minimal squarefree

coordinatization. Given a tree T with n edges and n + 1 vertices then

define PT to be the set of all subtrees of T ordered by inclusion (note that

by subtrees I am including the vertices and the empty set).

Lemma 6.2.2. A poset PT defined as above is an element of L(n+ 1) .
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Proof. Per usual, I will show that PT is a meet-semilattice with a maximal

element and then by theorem 2.1.1 it will be a finite lattice. To show that

PT is a meet-semilattice, I need to show that every pair of elements a, b ∈ PT
that there exists a meet or least upper bound. Since a and b are subtrees

of T , define a∧ b to be the intersection of a and b . Since ∅ ∈ PT and since

a ∩ b will also be a subtree of T then clearly PT is a meet-semilattice.

It remains to show that PT is atomic with n + 1 atoms. This follows

from the fact that T has n+ 1 vertices and every subtree can be realized as

an induced graph on a subset of the vertices.

The following proposition demonstrates that any coordinatization of the

lattice PT defined above will yield a monomial ideal in Mon(T ), which is

the set of monomial ideals whose resolution is supported on T .

Proposition 6.2.3. The minimal resolution of PT is supported on T .

Proof. Here, we just need to show that PT6p is acyclic for p ∈ PT by theorem

2.4.1. Clearly since PT is the lattice where p corresponds to a subtree of

PT ordered by inclusion then PT6p is simply the subtree corresponding to

p . All of the subtrees are acyclic by virtue of being a tree. One needs only

to check acyclicity for each p ∈ PT so T supports the minimal resolution of

any coordinatization of PT .

Finally we see that Phan’s minimal squarefree coordinatization of PT

always agrees with the ideals that Fløystad constructs.

Theorem 6.2.4. Let M be the minimal squarefree coordinatization of PT ,

then MPT ,M
∼= MT
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Proof. Recall that in the construction of MT we assigned a variable to each

subtree Ti,1, Ti,2 of T obtained by deleting an edge ei of T . Then each

component is assigned a variable and a vertex v is assigned a monomial which

is the product of the variables corresponding to the trees Ti,j containing v .

So first I need to show that the trees Ti,j obtained by deleting edges

are precisely the meet-irreducibles of PT . Then I need to explain how to

coordinateize PT to obtain MT .

Clearly the meet-irreducibles of PT will be the subtrees of T ′ ⊂ T that

have only one subtree T ′′ ⊂ T containing them which satisfy that the

|{ei ∈ T ′}|+ 1 = |{ei ∈ T ′′}| (6.2.1)

where ei are the edges of a tree.

If T ′ is obtained as above by deleting an edge ei , (i.e. T ′ = Ti,1 ) then

the only subtree T ′′ satisfying equation 6.2.1 is T ′′ = T ′ ∪ ei (i.e. T ′′ is

obtained by adding edge ei to T ′ ). Since the only other edges one could add

in are in the other Ti,2 (or Ti,1 if we had started with Ti,2 ) then in order

to add in one of those edges we would be forced to add in ei as well thus

violating equation 6.2.1. So the meet-irreducibles are precisely the subtrees

Ti,j obtained by deleting edges ei .

As stated above, I want to use a minimal squarefree coordinatization of PT

but if I place my variables carefully it will be easy to see that MPT ,M
∼= MT .

Recall that for MT the variables xi were assigned to the trees Ti,1 and

yi ’s were assigned to the trees Ti,2 . Moreover, note that if v ∈ Ti,1 it is

necessarily not in Ti,2 and vice versa. So in essence these trees Ti,1, Ti,2
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are partitioning the vertices into two sets. Then the monomial label for

the construction of MT assigns to each vertex the product of the variables

corresponding to the subtrees containing v . In lattice language the subtrees

containing v will be in dave where av is the atom corresponding to the vertex

v . For our coordinatization construction this is in some sense the opposite

of what we want since we take the product over the complement of the filter.

However since the complement of the filter consists precisely of the subtrees

not containing v we make the following coordinatization.

Let M label PT as follows. If p ∈ PT which is a meet-irreducible thus

corresponding to a Ti,1 denote it as pi1 and label it with yi , similarly if p

corresponds to a Ti,2 denote it as pi2 label it with an xi . Then it is easy to

see that:

x(av) =
∏

p∈davec
mp

= (
∏

pi1∈davec
yi)(

∏
pi2∈davec

xi)

= (
∏

{i | v∈Ti,2}

yi)(
∏

{i | v∈Ti,1}

xi)

= mv

It is easy to see that these lattices PT are graded of rank n since every

vertex will be contained in some subtree of T containing i edges where i

ranges from 0 to n . This indicates that Fløystad’s maximal ideals correspond
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to “maximal” elements in the appropriate strata of of L(n + 1) as is stated

in the following conjecture.

Conjecture 1. If X is a regular cell complex, then the LCM lattice P of a

maximal monomial ideal M ∈ CM∗(X) satisfies the property that if Q > P

in L(n) then the minimal resolution of Q has total Betti numbers greater

than that of P .



Appendix A

Reverse Search and

enumeration of L(n) in Haskell

In [BT] Bayer and Taylor use the method of reverse search introduced in

[AF96] and further explained in [NDM99] to search for multidegrees with

high likelihood of having nonzero multigraded Betti numbers for a given

monomial ideal.

In general reverse search works as follows. Let S = (V,E) be a state

space consisting of objects V to be enumerated with a directed edge set E ,

then following three conditions found in [NDM99] enable reverse search to

enumerate S :

1. There is an adjacency operator or “oracle” A : S → 2S which assigns to

a state s an ordered set A(s) = [s1, . . . , sk] of its neighbors. Adjacency

need not be symmetric, i.e. s′ ∈ A(s) does not imply s ∈ A(s′). The
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pairs (s, s′) with s′ ∈ A(s) define the set E of directed edges of S .

2. There is a gradient function g : S → S∪{nil} , where nil is a fictitious

state not in S . A state s with g(s) = nil is called a “sink” of g . To any

state s , g assigns a unique successor g(s) subject to two conditions:

(a) For any state s that is not a sink, the pair (g(s), s) ∈ E , i.e.

s ∈ A(g(s)).

(b) The function g defines no cycles, i.e. g(g(. . . g(s) . . . )) = s is

impossible for all s .

3. It is possible to enumerate all of the sinks of g before exploring all of

S .

In layman’s terms we want to think of A as a “going-up rule” and g as a

“going-down rule” or vice versa. Moreover we want one direction, i.e. going

up, to have many options whereas we want the other direction, i.e. going

down, to have only one direction. This plus the lack of cycles guaranteed by

condition 2 allows us to form a directed tree consisting of paths that allow

us to visit each element of V once and then make record of the visit.

In the case where we want to enumerate L(n) we want to use the pre-

sentation of each individual lattice in L(n) as a set of sets as discussed in

section 4.2.2. First we fix an order on all subsets of {1, . . . , n} . Then our A

operator will assign to each lattice P ∈ L(n) all of the lattices above it that

can be obtained by adding in one extra element σ and the intersection of σ

with all of the existing subsets in P . Our rule g deletes the maximal set in

the above ordering from P − 1̂ . The only sink of g is the minimal element
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of L(n) so it is possible to efficiently enumerate it before exploring all of S .

Clearly, P ∈ A(g(P ) so it remains to check that g does not define a cycle.

Since g always deletes an element, it impossible that g(g(. . . g(P ) . . . )) = P

because at no point are we adding the deleted elements back in.

Working with Dave Bayer, we have implemented this algorithm using

Haskell. While we were completely motivated by the idea reverse search, our

implementation could perhaps be best described as “implicit” reverse search.

We say “implicit” is because we actually improved our operator A so that

we did not need to check the values of g at each step. This reduces the

problem to an ordinary tree search. The code shown below just focuses on

the enumeration of L(5) but this code can easily be adapted to enumerate

L(n) for other values of n . We have also written other functions which check

conditions at each step of the enumeration. For instance we have verified

proposition 4.3.3 for up to n = 6.

module Main (main) where

import Data.Bits (Bits, (.|.), (.&.), bit, shiftR, testBit)
import Data.List ((\\), transpose, tails, foldl’)
import Data.Int (Int64)
import Data.Word (Word32)
import Control.Parallel (par)

-- choose bitfield size

type Core = Word32

oneN, twoN :: Int
oneN = 5
twoN = 2^oneN

oneNs, twoNs :: [Int]
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oneNs = [0 .. (oneN-1)]
twoNs = [0 .. (2^oneN-1)]

-- convert bits to boolean list, low bits first, with specified tail

bits_boolsT :: Bits a => [Bool] -> a -> [Bool]
bits_boolsT xt 0 = xt
bits_boolsT xt w = testBit w 0 : bits_boolsT xt (shiftR w 1)

-- convert bits to minimal boolean list

bits_bools :: Bits a => a -> [Bool]
bits_bools = bits_boolsT []

-- convert bits to length n boolean list

bits_boolsN :: Bits a => Int -> a -> [Bool]
bits_boolsN n = take n . bits_boolsT (repeat False)

-- combine list using bitwise or

bitOr :: Bits a => [a] -> a
bitOr = foldl’ (.|.) 0

-- filter list using boolean list

boolFilter :: [Bool] -> [a] -> [a]
boolFilter xs = map snd . filter fst . zip xs

-- filter list using binary bits

bitFilter :: Bits a => a -> [b] -> [b]
bitFilter = boolFilter . bits_bools

-- convert boolean list to bits, low bits first

bools_bits :: Bits a => [Bool] -> a
bools_bits xs = bitOr $ boolFilter xs $ map bit [0 .. ]

-- Seed type: lattice, list of subsets that can be added by reverse search
-- Mask type: data needed to delete an element from each subset

type Seed = (Core, [Subset])
type Mask = (Int, Core)
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-- Subset type: bit for subset, Mask to intersect with subset complement

data Subset = S { core :: Core, mask :: [Mask] }

-- masks for deleting elements from subsets

shiftMasks :: [Mask]
shiftMasks = zip (iterate (*2) 1) (map bools_bits masks)
where bools = map (bits_boolsN oneN) twoNs

masks = map (map not) $ transpose bools

-- treat Int as bitfield specifying subset in binary, return Subset

subset :: Int -> Subset
subset n = S (bit n) $
boolFilter [ not $ elem m (bitFilter n oneNs) | m <- oneNs ] shiftMasks

-- base is a Core representing the minimal element of L(oneN)

baseInts :: [Int]
baseInts = [0, twoN-1] ++ map (2^) oneNs

base :: Core
base = foldr1 (.|.) [ bit n | n <- baseInts ]

-- list of atom (not base) subsets

atomSubsets :: [Subset]
atomSubsets = map subset $ twoNs \\ baseInts

-- shift and mask, to delete n from every subset

poke :: Mask -> Core -> Core
poke (r,m) w = (shiftR w r .|. w) .&. m

-- iterate poke to delete a list of elements from every subset

pokes :: [Mask] -> Core -> Core
pokes ms w = foldr ($) w $ map poke ms

-- test if Core is closed under intersection by Subset

closed :: (Seed, Subset) -> Bool
closed ((w,_),x) = w == w .|. pokes (mask x) w
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-- find covering lattices using reverse search

covers :: Seed -> [Seed]
covers (w,xs) = map fst $ filter closed
[ ((w .|. core x, xt), x) | (x:xt) <- tails xs ]

-- FG f g : apply f to sublists, combine results using g

data FG a b = FG ([a] -> b) ([b] -> b)

-- iterate par on a list

pars :: [a] -> b -> b
pars [] y = y
pars (x:xs) y = x ‘par‘ pars xs y

-- start with base, grows all of L(oneN)
-- argument is stack of lists of lattices that need to find covers

search :: [[Seed]] -> [Core]
search [] = []
search ([]:yt) = search yt
search ((x@(w,_):xt):yt) = w : (search $ covers x : xt : yt)

-- parallel search, using FG to combine results

parSearch :: Int -> FG Core b -> b
parSearch n (FG f g) = bins ‘pars‘ g bins
where (lower, upper) = splitAt n atomSubsets

bins = [ f $ search [[(x,upper)]] | x <- search [[(base,lower)]] ]

-- length64 is 64-bit length function

length64 :: [a] -> Int64
length64 = len 0
where len n [] = n

len n (_:xt) = len (n+1) xt

-- count elements of L(oneN)

countFG :: FG Core Int64
countFG = FG length64 sum

-- main
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main :: IO ()
main = do print $ parSearch 10 countFG

To run the above code in parallel one would use the following command:

% ghc --make -Wall -Werror -threaded -O2 -o Lattices Lattices.hs
% time ./Lattices +RTS -N2

Which yields the following output:

702525

real 0m0.106s
user 0m0.189s
sys 0m0.009s
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Appendix B

Posets package for Macaulay2

With Joesphine Yu and Gwyn Whieldon I began working on a package for

Macaulay2 [GS] that introduces Posets as a data type. To define a poset

one needs to input the set of elements of the poset and at least the minimal

covering data of the relation. There is a function which computes from the

minimal covering data a full matrix of all of the relations between elements.

Additionally, this new package has a number of functions that allow the user

to compute things of interest such as order ideals, filters, meets, joins, lcm

lattices. It also can check if a given poset satisfies certain properties such

as being a lattice. The interest in implementing this in Macaulay2 is due to

the fact that it is then easier to move back and forth from the combinatorial

data of a poset to algebraic objects such as ideals.

I include here the code of the first version of this package.

91
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newPackage(
"Posets",
Version => "0.1",
Date => "April 2, 2009",
Authors =>
{Name => "Sonja Mapes",
Email => "mapes@math.columbia.edu",
HomePage => "http://www.math.columbia.edu/~mapes/"},
{Name => "Gwyn Whieldon",
Email => "whieldon@math.cornell.edu",
HomePage =>
"http://www.math.cornell.edu/People/Grads/whieldon.html"},

{Name => "Josephine Yu",
Email => "jyu@math.mit.edu",
HomePage => "http://www-math.mit.edu/~jyu/"}},

Headline => "Package for processing posets and order complexes",
DebuggingMode => true)

export {
Poset,
poset,
DirectedGraph,
directedGraph,
allPairsShortestPath,
transitiveClosure,
RelationMatrix,
compare,
indexElement,
OrderIdeal,
Filter,
Relations,
GroundSet,
Edges,
PosetMeet,
MeetExists,
PosetJoin,
JoinExists,
isLattice,
lcm,
lcmLattice}

Poset = new Type of HashTable

poset = method()
poset(List,List) := (I,C) ->
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new Poset from {
symbol GroundSet => I,
symbol Relations => C,

symbol RelationMatrix =>
transitiveClosure(I,C),

symbol cache => CacheTable}

-- in case you actually have M to begin with
poset(List,List,Matrix) := (I,C,M) ->

new Poset from {
symbol GroundSet => I,
symbol Relations => C,
symbol RelationMatrix => M,
symbol cache => CacheTable}

DirectedGraph = new Type of HashTable

directedGraph = method()
directedGraph(List, List) := (I,C) ->

new DirectedGraph from {
symbol GroundSet => I,
symbol Edges => C,

symbol cache => CacheTable}

--------------

--inputs: (I,C), I is a List (ground set) and
-- C is a List of pairs of elements in I
-- OR DirectedGraph OR Poset
--output: a matrix whose rows and columns
--are indexed by I, where (i,j)
--entry is infinity (i.e. 1/0.)
--if (i,j) is not in C and 1 otherwise
--(i.e. tropicalization of the "usual"
--adjacency matrix)
--caveat: diagonal entries are 0
-- uses: transitive closure

adjacencyMatrix = method()
adjacencyMatrix(List,List) := Matrix => (I, C) -> (

M := mutableMatrix table(#I, #I, (i,j)->1/0.);
ind := hashTable(

apply(I, i-> i=> position(I,j-> j==i)));
scan(C, e -> M_(ind#(e#0), ind#(e#1))= 1);
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scan(numrows M, i-> M_(i,i) = 0);
matrix M)

adjacencyMatrix(DirectedGraph) := Matrix => (G) ->
adjacencyMatrix(G.GroundSet,G.Edges)

adjacencyMatrix(Poset) := Matrix => (P) ->
adjacencyMatrix(P.GroundSet,P.Relations)

--input: adjacency matrix of a directed graph
--output: a matrix whose (i,j) entry is the length of the
-- shortest path from i to j
--algorithm: FloydWarshall algorithm for all pairs
-- shortest path

allPairsShortestPath = method()
allPairsShortestPath(Matrix) := Matrix => (A) -> (

D := mutableMatrix(A);
n := numrows D;
scan(n, k->
table(n,n,(i,j)-> D_(i,j) =
min(D_(i,j), D_(i,k)+D_(k,j))));

matrix D)
allPairsShortestPath(DirectedGraph) := Matrix =>
(G)-> allPairsShortestPath(adjacencyMatrix(G))

-- input: a poset, and an element A from I
-- output: the index of A in the ground set of P
-- usage: compare, OrderIdeal
indexElement := (P,A) -> (

sum apply(#P.GroundSet, i->
if P.GroundSet#i == A then i else 0))

-- input: a list, potentially with nulls
-- output: a list w/out nulls
-- usage: OrderIdeal, Filter
nonnull :=(L) -> (

select(L, i-> i =!= null))

--------------------------------------------------
--Transitive Closure and Element Inclusion
--------------------------------------------------
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--input: (I,C). I=List, ground set. C=List, pairs
--output: matrix where 1 in (i,j) position
-- where i <= j, 0 otherwise
--uses: poset

transitiveClosure = method()
transitiveClosure(List,List) := List => (I,C)-> (

A := adjacencyMatrix(I,C);
D := mutableMatrix allPairsShortestPath(A);
scan(numrows D, i-> D_(i,i) = 0);
table(numrows D, numrows D, (i,j)->(

if D_(i,j) ==1/0. then D_(i,j) = 0
else D_(i,j) = 1;));

matrix D)

-- input: A poset, and two elements A and B from I
-- output: true if A<= B, false else
compare:= (P,A,B) -> (

Aindex:=indexElement(P,A);
Bindex:=indexElement(P,B);

if P.RelationMatrix_Bindex_Aindex==0
then false
else true)

--------------------------------------------------
--Covering Relations
--------------------------------------------------

testcover=(P,A,B) -> (
L:=poset(P.GroundSet,fullPosetRelation(P));
k:=#L.GroundSet-2;
if sum(nonnull(apply(k, i->

if compare(L,A,(toList(set(L.GroundSet)-{A,B}))_i)
==true and
compare(L,(toList(set(L.GroundSet)-{A,B}))_i,B)
==true
then 1)))=!=0

then C=C+set{(A,B)};
C)

--input: A poset with any type of relation C
-- (minimal, maximal, etc.)
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--output: The minimal relations defining our poset

coveringRelations:=(P) -> (
C=set{};
apply(#P.CRelations,i->
testcover(P,P.CRelations#i#0,P.CRelations#i#1));

toList(set(P.CRelations)-C))

--input: A poset with any type of relation C
-- (minimal, maximal, etc.)
--output: A new poset P with the minimal relations

coveringRelationsPoset:=(P) -> (
L=poset(P.GroundSet,coveringRelations(P)))

--------------------------------------------------
--Minimal Element Construction
--------------------------------------------------

minimalElementIndex:=(P)-> (
M:=P.RelationMatrix;
nonnull(apply(numcols(M), k->

if (apply(numcols(M), j->
(sum((apply(numrows(M),i->
(transpose(M))_i))))_j))#k==1 then k)))

minimalElements:=(P) -> (
L:=minimalElementIndex(P);
apply(#L,i-> P.GroundSet#(L#i)))

PosetMinusMins:=(P)-> (
L:=minimalElements(P);
K:=fullPoset(P);
N:=set{};
S:=apply(#L, j->

apply(#K.CRelations,i->
(K.CRelations#i)#0===L#j));

E:=sum set nonnull(apply(#K.CRelations,l->
if member(true,set apply(#L,k->S#k#l))
then N=N+set{K.CRelations#l}));

C:=toList (set(K.CRelations)-N);
I:=toList (set(K.GroundSet)-set(L));
poset(I,C))
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--------------------------------------------------
--Order and Filter Ideals
--------------------------------------------------

-- input: a poset, and an element from I
-- output: the order ideal of a, i.e. all elements in
-- the poset that are >= a

OrderIdeal= method()
OrderIdeal(Poset, Thing) := (P, a) -> (

M:=P.RelationMatrix;
aindex := indexElement (P,a);
GreaterThana:= entries((transpose(M))_aindex);
nonnull(apply(#GreaterThana, i->

if GreaterThana_i == 1 then P.GroundSet#i)))

-- input: a poset, and an element from I
-- output: the filter of a, i.e. all elements in
-- the poset that are <= a

Filter = method()
Filter(Poset, Thing) := (P,a) -> (

M:=P.RelationMatrix;
aindex := indexElement (P,a);
LessThana:= entries M_aindex;
nonnull(apply(#LessThana, i->

if LessThana_i == 1 then P.GroundSet#i)))

----------------------------------------------------
--Joins, Meets, Lattices and Atoms
----------------------------------------------------
-- inputs: P, poset, and two elements of P.GroundSet
-- outputs: the element of P.GroundSet that is the
-- join of these or error
-- usage: JoinExists used in isLattice

PosetJoin = method()
PosetJoin(Poset,Thing,Thing) := (P,a,b) -> (

OIa := OrderIdeal(P,a);
OIb := OrderIdeal(P,b);
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upperBounds := toList (set(OIa)*set(OIb));
if upperBounds == {}
then (error "your elements do not share any upper bounds")
else (M := P.RelationMatrix;

heightUpperBounds :=
flatten apply(upperBounds, element->

sum entries M_{indexElement(P,element)});
if #(select(heightUpperBounds, i->

i== min heightUpperBounds)) > 1
then error "join does not exist, least upper bound not unique"
else(upperBounds_{position

(heightUpperBounds, l ->
l == min heightUpperBounds)})))

JoinExists = method()
JoinExists(Poset,Thing,Thing) := (P,a,b) -> (

OIa := OrderIdeal(P,a);
OIb := OrderIdeal(P,b);
upperBounds := toList (set(OIa)*set(OIb));
if upperBounds == {} then false
else (M := P.RelationMatrix;

heightUpperBounds :=
flatten apply(upperBounds, element->

sum entries M_{indexElement(P,element)});
if #(select(heightUpperBounds, i->

i== min heightUpperBounds)) > 1
then false else true))

--inputs: P a poset, and 2 elements of P.GroundSet
--outputs: the element in P.GroundSet that is the

meet of these, or error
-- usage: MeetExits used in isLattice
PosetMeet = method()
PosetMeet(Poset,Thing,Thing) := (P,a,b) ->(

Fa:= Filter(P,a);
Fb:= Filter(P,b);
lowerBounds:= toList (set(Fa)*set(Fb));
if lowerBounds == {}
then error "your elements do not share any lower bounds"
else (M := P.RelationMatrix;

heightLowerBounds :=
flatten apply(lowerBounds, element->
sum entries M_{indexElement(P,element)});
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if #(select(heightLowerBounds, i->
i== max heightLowerBounds)) > 1

then error "meet does not exist, greatest lower bound not unique"
else(lowerBounds_{position

(heightLowerBounds, l ->
l == max heightLowerBounds)})))

MeetExists = method()
MeetExists(Poset, Thing, Thing) := (P,a,b) -> (

Fa:= Filter(P,a);
Fb:= Filter(P,b);
lowerBounds:= toList (set(Fa)*set(Fb));
if lowerBounds == {} then false else (

M := P.RelationMatrix;
heightLowerBounds :=
flatten apply(lowerBounds, element->

sum entries M_{indexElement(P,element)});
if #(select(heightLowerBounds, i->

i== max heightLowerBounds)) > 1
then false else true ))

--inputs: a poset P
--output: boolean value for whether or
-- not it is a lattice

isLattice = method()
isLattice(Poset) := (P) -> (

checkJoins := unique flatten flatten
apply(P.GroundSet, elt ->
apply (P.GroundSet, elt2->
JoinExists(P,elt, elt2)));

checkMeets := unique flatten flatten
apply(P.GroundSet, elt ->
apply (P.GroundSet, elt2->
MeetExists(P,elt, elt2) ));

if member(false,
set (flatten{checkJoins,checkMeets}) === true)

then false else true )

-----------------------------------------------
-- LCM lattices
-----------------------------------------------
--input: a set of monomials
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-- output: the lcm of those monomials
lcm = (L) -> (

flatten entries gens intersect apply(L, i-> ideal (i)))

-- input: generators of a monomial ideal
-- output: lcm lattice of that monomial ideal,
-- without the minimal element
-- potential problem: subsets dies when a
-- set is too big (> 18)

lcmLattice = method()
lcmLattice(Ideal) := Poset => (I) -> (

L := flatten entries gens I;
subsetsL := flatten

apply(#L, i-> subsets (L,i+1));
Ground := unique flatten

apply (subsetsL, r-> lcm(r));
Rels := nonnull unique flatten

apply (Ground, r->
apply(Ground, s->

if s%r == 0 then (r,s)));
RelsMatrix := matrix

apply (Ground, r->
apply(Ground, s->

if s%r == 0 then 1 else 0));
P = poset (Ground, Rels, RelsMatrix);
P)

beginDocumentation()

document { Key => Poset,
}

---------------------------------
--Tests
---------------------------------

-- a lattice, B_3
TEST ///
I ={a,b,c,d,e,f,g,h};
C ={(a,b),(a,c),(a,d),(b,e),(b,f),(c,e),
(c,g),(d,f),(d,g),(e,h),(f,h),(g,h)};
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P=poset(I,C);
M = matrix {{1,1,1,1,1,1,1,1},

{0,1,0,0,1,1,0,1},
{0,0,1,0,1,0,1,1},
{0,0,0,1,0,1,1,1},
{0,0,0,0,1,0,0,1},
{0,0,0,0,0,1,0,1},
{0,0,0,0,0,0,1,1},
{0,0,0,0,0,0,0,1}};

assert (entries P.RelationMatrix == entries M)
--G=directedGraph(I,C)
--A=adjacencyMatrix(I,C) -- not exported
--allPairsShortestPath(A) -- not exported
--adjacencyMatrix(G) -- not exported
--adjacencyMatrix(P) -- not exported
--transitiveClosure(I,C)
assert (PosetJoin(P,a,b) == {b})
assert (PosetJoin(P,b,d) == {f})
assert (PosetMeet(P,a,b) == {a})
assert (PosetMeet(P,f,g) == {d})
assert (OrderIdeal(P,a) == {a,b,c,d,e,f,g,h})
assert (OrderIdeal(P,b) == {b,e,f,h})
assert (Filter(P,a) == {a})
assert (Filter(P,g) == {a,c,d,g})
assert (isLattice(P))
///

-- two equivllaent non lattices with
-- different initial data
TEST ///
I1={a,b,c,d,e,f};
C1={(a,c),(a,d),(b,c),(b,d),(c,e),
(d,e),(e,f)};

P1=poset(I1,C1);
--G1 = directedGraph(I1,C1)

-- Poset P1 with additional relations (a,e)
-- and (a,f) added
I2={a,b,c,d,e,f};
C2={(a,c),(a,d),(b,c),(b,d),(c,e),
(d,e),(a,e),(a,f),(e,f)};

P2=poset(I2,C2);



102

assert (P1.RelationMatrix == P2.RelationMatrix)
assert (Filter(P1,b) == {b})
assert (Filter(P1,c) == {a,b,c})
assert (OrderIdeal (P1,b) == {b,c,d,e,f})
assert (isLattice (P1) == false)
///
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