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Abstract

This thesis studies the p-adic nature of the Saito-Kurokawa lifting from

a classic modular form to a Siegel modular form of degree 2, and its ap-

plication on the algebraicity of central values. Applying Stevens’ result

on Λ-adic Shintani lifting, a Λ-adic Saito-Kurokawa lifting is constructed

analogous to the construction of the classic Λ-adic Eisenstein Series. It’s

applied to construct a p-adic L-function on Sp2 × GL2. A conjecture on

the specialization of this p-adic L-function is stated.
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1 Introducation

Suppose G is a reductive group over a number field F . We may define L-functions

attached to automorphic forms on G. In algebraic number theory, the arithmetic

of critical values of L-functions plays a key role in Iwasawa-Greenberg Main Con-

jectures, which connect it to the size of Selmer groups. And the special values

of automorphic L-functions are closely related to Eisenstein series via Rankin’s

method [Ran]. Garrett [Ga1], [Ga2], Böcherer [Bo1], [Bo2] and Heim [Hei] applied

pullback formulae of Siegel Eisenstein series to prove the algebraicity of critical

values of certain automorphic L-functions. More generally, there are conjectures

on the relationship between pullbacks of Siegel cusp forms and central critical

values of L-functions, such as the Gross-Prasad conjecture in [GP1, GP2]. In

this work, we are concerned with a pullback formula of Saito-Kurokawa lifts by

Ichino [Ich], which shows the algebraicity of critical values of certain L-functions

for Sp2 ×GL2. In this work, we will construct a Λ-adic Saito-Kurokawa liftings,

and make a conjecture on a one-variable p-adic L-function interpolating those

algebraic critical values.

Precisely, let us fix a prime number p ≥ 5. Let k be an odd positive integer,

and let N be an odd positive integer prime to p. Let f ∈ S2k(Γ0(N)) be a

normalized Hecke eigenform of weight 2k and level N . Put h ∈ S+
k+1/2(Γ0(4N))

to be a Hecke eigenform associated to f by the Shimura correspondence. Let
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F ∈ Sk+1(Γ
2
0(N)) be the Saito-Kurokawa lift of h. For each normalized Hecke

eigenform g ∈ Sk+1(Γ0(N)), we know that the numbers

A(2k, Sym2(g)⊗ f)

〈g, g〉2Ω+
f

(1)

are algebraic by modified Ichino’s pullback formula on Saito-Kurokawa lifting.

Here Ω+
f is the period of f as in [Sh3], and A(s, Sym2(g) ⊗ f) is the completed

L-function given by

A(s, Sym2(g)⊗ f) = ΓC(s)ΓC(s− k)ΓC(s− 2k + 1)L(s, Sym2(g)⊗ f),

where ΓC(s) = 2(2π)−sΓ(s). Let f and g vary through families of cusp forms,

we collect families of algebraic critical values. We shall construct a one-variable

p-adic L-function to interpolate these algebraic numbers in (1).

Let us fix a fundamental discriminant −D < 0, with −D ≡ 1 mod 8, such

that A(k, f, χ−D) = DkΓC(k)L(k, f, χ−D) 6= 0, where χ−D is the Dirichlet char-

acter associated to Q(
√
−D)/Q. Such a discriminant exists by [BFH, Wal]. Put

K = Q(
√
−D), the quadratic imaginary field. Let π be the irreducible cuspidal

automorphic representation of GL2(AQ) associated to g, and let πK be the base

change of π to K. Let σ be the irreducible cuspidal automorphic representation

of GL2(AQ) associated to f . Let ν(N) denote the number of prime divisors of N .

Ichino proved three seesaw identities in [Ich]. By the local integral representation

of L(s, πK ⊗ σ) and the generalized Kohnen-Zagier formula [KZ, Ko3]:

A(k, f, χ−D) = 21−k−ν(N)D1/2|ch(D)|2 〈f, f〉
〈h, h〉

, (2)
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he got a pullback formula on Saito-Kurokawa lifting for full level cusp forms.

Here’a a modified version of the pullback formula for higher level forms [Li]:

A(2k, Sym2(g)⊗ f) = 2k+1−ν(N)ξN
〈f, f〉
〈h, h〉

|〈F |H×H, g × g〉|2

〈g, g〉2
, (3)

Where, ξN is an alebraic number given by:

ξN = N2
∏
p|N

εp(1 + p)5(1− p)2(εp − p)−2,

and εp = −af (p), ν(N) is the number of prime divisors of N . Hence we may

decompose the algebraic numbers in formula (1) into:

A(2k, Sym2(g)⊗ f)

〈g, g〉2Ω+
f

=
22kξN√
D

·
{
|ch(D)|−2

}
I
·

{
A(k, χ−D, f)

Ω+
f

}
II

·
{
|〈F |H×H, g × g〉|2

〈g, g〉4

}
III

. (4)

Here, ch(D) is the D-th Fourier coefficient of h. Our goal in this work is to study

the p-adic nature of these algebraic numbers.

We now outline our interpolation argument. Let K be a finite extension of

Qp and let OK denote its p-adic integer ring. Put ΛK = OK [[X]] be the Iwasawa

algebra. Let LK be the fractional field of ΛK . Suppose K is a finite extension of

LK and let I denote the integral closure of ΛK in K. Suppose h0(N,OK) is the

universal ordinary p-adic Hecke algebra of level N . Suppose λ : h0(N,OK) → I

is a homomorphism of ΛK-algebras. Let f be the Λ-adic cusp form corresponding

to λ. It’s a Hida family of p-adic cusp forms. Greenberg and Stevens attatch a
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Λ-adic modular symbol Φf to f . And they define a two-variable p-adic L-function

Lp(Φf ) on Spec(I)× Spec(Zp[[Z×p ]]), which interpolates the critical values of the

L-function associated to f and twisted by a character. Our second factor in (4)

is the central value of the L-function.

Next, we consider the first factor in (4), involving the D-th Fourier coefficient

of h. By Stevens [Ste], there exists a Λ-adic half-integral cusp form h = Θ(Φf ),

which is the Λ-adic Shintani lifting of f . Let αD be its D-th Fourier coefficient.

Up to a period scale, we may use the αD to interpolate ch(D).

Before we interpolate the third factor in (4), we construct a Λ-adic Saito-

Kurokawa lifting SK(f), which is a Λ-adic Siegel cusp form interpolating the

Saito-Kurokawa lifting F = SK(f). Skinner and Urban developed a more general

Λ-adic Saito-Kurokawa lifting in [SU]. In this work, our method is different from

theirs. This construction is a generalization of the classical construction of Λ-adic

Eisenstein series.

Put A2 be the semigroup of symmetric, semi-definite positive, half-integral

matrices of size 2. For every T =

 n r/2

r/2 m

 ∈ A2, we denote A(T ) = A(n, r,m)

and we say d|T if d|(n, r,m) for any integer d. Suppose the Saito-Kurokawa lifting

F has a formal q-expansion:

F (Z) =
∑
T∈A2

A(T )qTr(TZ),
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for any Z ∈ H2. Then the coefficients satisfying the following relation:

A(n, r,m) =
∑

0<d|(n,r,m)

dkc(
4nm− r2

d2
),

where c(l) are the coefficients of q-expansion of h. The expression of A(n, r,m)

is similar to that of the coefficient

σk(n) =
∑
0<d|n

dk

of Eisenstein series. Based on this observation and Stevens’ result, we construct

a Λ-adic Saito-Kurokawa lifting.

Put ψ = ωa be an even Dirichlet character, where ω : Z×p → µp−1 is the

Teichmuller character. For each power series Θ =
∑
α(n)qn ∈ I[[q]], we define a

formal power series:

SK(Θ, ψ) :=
∑
T∈A2

(
∑
0<d|T
(d,p)=1

ψ(d)Ad(X)α(
det(2T )

d2
))qT ,

where Ad(X) = d−1(1 +X)s(〈d〉) is an element of Λ = Zp[[X]].

Denote SK(f , ψ) = SK(Θ(Φf ), ψ). Put δp = diag(p, p, 1, 1) ∈ M4(Z). Here’s

the main theorem:

Theorem 1.1 For each arithmetic point P ∈ Spec(I) with signature (2k, id),

satisfying a ≡ k + 1 mod p− 1, we have

SK(f , ψ)(P ) =
ΩP

Ωf−P

(SK(fP )− SK(fP )|δp) ∈ Sk+1(Γ
2
0(Np);OK). (5)
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Here, ΩP is a p-adic period given by Greenberg and Stevens, and Ωf−P
is a complex

period defined by Shimura.

Denote $(SK(f , ωa)) the pullback of SK(f , ωa) on H × H. Let M be a

finite extension of LK defined over K, and J be the integral closure of ΛK in

M. Suppose λ′ : ho(N ;OK) → J is a homomorphism of ΛK-algebras. Let

g be the Λ-adic cusp form corresponding to λ′. Then there’s an isomorphism

ho(N ;OK) ⊗ΛK
M ∼= M⊕ B. Let 1g be the idempotent corresponding to the

first factor of the decomposition. Following Hida, we define a congruence module

C, and fix Hg to be a generator of the annihilator of C.

Let gi ∈ So(N ; ΛK) (i = 0, 1, 2, · · · ,m) be a basis, and suppose g = g0.

Linear forms li : So(N ; ΛK) → ΛK are defined by l(i)(gj) = δi,j. We now define a

linear form

〈$(SK(f), ωa),g × g〉 := l(0) × l(0)($(SK(f), ωa)|Hg · 1gQ
×Hg · 1gQ

). (6)

Suppose the arithmetic point P ′ ∈ Spec(Iδ) lies above P ∈ Spec(I). We

define a p-adic function αD(f , P ) = αD(P ′), then we have

αD(f , P ) =
ΩP

Ω−fP
· ch(D).

Here, ΩP and Ω−fP are periods defined in Theorem 1. Put τN =

 0 −1

N 0

. Now

we define a one-variable p-adic L-function Lp(Sym2(g) ⊗ f) for Sp2 × GL2 on
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Spec(J )× Spec(I) by

Lp(Sym2(g)⊗ f)(Q,P ) := αD(f , P )−1 · αD(f |τN , P )−1 · Lp(Φf )(P )

× 〈ω(SK(f , ωa)),g × g〉(P,Q) · 〈SK(f |τN , ωa),g|τN × g|τN〉(P,Q). (7)

Suppose P and Q have matching weights such that k(P ) + 2 = 2k(Q), εP =

εQ = id. Assume a ≡ k(Q) mod p− 1.

Conjecture 1 The p-adic L-function Lp(Sym2(g) ⊗ f) interpolates the central

values by :

Lp(Sym2(g)⊗ f)(Q,P ) = t ·H(Q)4ΩP
A(2k, Sym2(gQ)⊗ fP )

〈gQ,gQ〉2Ω+
fP

, (8)

where

t =
τ(χ−D)(−1)

k−1
2

22k
√
DξN

·W (gQ)2a(p, fP )−r(1−χ−D(p)a(p, fP )−1pk−1)(1−a(p,gQ)2p−2)2

and W (gQ) is the root number of gQ.

Here’s the outline of the content in this work. In section 2, we give a review of

various types of modular forms needed for Saito-Kurokawa lifting. In section 3 we

recall the correspondences between spaces of modular forms, including Shimura

correspondence and Shintani correspondence between integral weight and half-

integral weight modular forms, the maps from half-integral weight forms to Jacobi

forms, and the maps from Jacobi forms to Siegel modular forms of degree 2. In

section 4, after reviewing Stevens work on Λ-adic Shintani lifting, we construct
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a Λ-adic Saito-Kurokawa lifting. In the last section 5, applying the p-adic L-

function of a Λ-adic form by Greenberg and Stevens, we get a conjecture on the

specialization of the one variable p-adic L-function for Sp2 ×GL2.
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2 Modular Forms

Since we work on various types of modular forms, in this section, we present

basic definitions and facts on modular forms and Hecke algebras if necessary to

understand Saito-Kurokawa lifting. For more details, please refer to standard

textbooks and papers, e.g. [Sh1, Sh2, EZ].

2.1 Integral Weight Modular Forms

2.1.1. Let H = H1 = {z ∈ C; Im(z) > 0} denote the complex upper half plane.

And let GL+
2 (R) be the group of 2 × 2 real matrices with positive determinant.

We let GL+
2 (R) act on H by linear fractional transformation.

Let k be a positive integer. For any function f on H, and for any γ ∈ GL+
2 (R),

we define f |kγ on H1 by

f |kγ(z) = det(γ)k/2f(γ(z))j(γ, z)−k, (9)

where j(γ, z) = cγ ·z+dγ. This gives an action of GL+
2 (R) on functions f : H → C.
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For a positive integer N , we define subgroups of SL2(Z) by

Γ(N) = {

a b

c d

 ∈ SL2(Z); a ≡ d ≡ 1 mod N, b ≡ c ≡ 0 mod N},

Γ0(N) = {

a b

c d

 ∈ SL2(Z); c ≡ 0 mod N},

Γ1(N) = {

a b

c d

 ∈ SL2(Z); a ≡ d ≡ 1 mod N, c ≡ 0 mod N}.

Let Φ be a congruent subgroup of SL2(Z) containing Γ(N). We consider those

holomorphic functions on H satifying f |kγ = f for all γ ∈ Γ(N). Such a function

has Fourier expansion of the form:

∑
n∈Z

a(
n

N
)e(

nz

N
)

where e(z) = e2πiz.

Definion: Let k a positive integer with k ≥ 2, and Φ be a congruence sub-

group of SL2(Z). A holomorphic function f on H is said to be a modular form of

weight k with respect to Φ, if it satisfies:

1. f |kγ = f for all γ ∈ Φ,

2. a( n
N
, f |kα) = 0 if n < 0 for each α ∈ SL2(Z).

We denote by Mk(Φ) the vector space of modular forms of weight k with respect

to Φ.
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Let U be the standard unipotent subgroup of SL2(Z). When the congruence

subgroup Φ equals Γ0(N) (or Γ1(N)), we call f a modular form of level N . Since

Φ contains U, f ∈Mk(Φ) has Fourier expansion of the form:

f(z) =
∞∑
n=0

a(n, f)qn

where q = e(z). It’s called the q-expansion of f , by which we may view Mk(Φ)

as a subspace of C[[q]].

Definition: f ∈ Mk(Φ) is called a cusp form if a(0, f) = 0. We denote by

Sk(Φ) the vector space of cusp forms of weight k and with respect to Φ.

2.1.2. For any Z-subalgebra A of C, we put

Mk(Φ;A) = Mk(Φ) ∩ A[[q]],

Sk(Φ;A) = Sk(Φ) ∩ A[[q]].

Then we have the following isomorphisms [Sh1]:

Mk(Φ;A) = Mk(Φ; Z)⊗ A, Sk(Φ;A) = Sk(Φ; Z)⊗ A. (10)

For any commutative algebra A, we take the above equations as the definitions

of the spaces of integral modular forms and cusp forms with coefficients in A.

When Φ = Γ1(N), we simply write

Mk(N ;A) = Mk(Γ1(N);A), Sk(N ;A) = Sk(Γ1(N);A).

11



For each character χ : Φ → A× of finite order, we put

Mk(Φ, χ;A) = {f ∈Mk(ker(χ);A); f |kγ = χ(γ)f,∀γ ∈ Φ},

Sk(Φ, χ;A) = Mk(Φ, χ;A) ∩ Sk(ker(χ);A).

2.1.3. Let G be a multiplicative group, and Φ be a subgroup of G. We define

the commensurator of Φ in G to be the subgroup:

Φ̃ = {γ ∈ G; γΦγ−1 and Φ are commensurable.}

For any semi-group ∆ such that Φ ⊂ ∆ ⊂ Φ̃, we denote by R(Φ,∆) the Z-module

of all formal finite sums of double cosets [ΦγΦ] with γ ∈ ∆. We introduce a

multiplication on R(Φ,∆) by disjoint coset decomposition [Sh1]. Then R(Φ,∆)

becomes an associative ring, we call it the Hecke ring with respect to Φ and ∆.

Fix a positive integer N prime to p. For any two integers s and r such that

s ≥ 0, r ≥ 1 and s ≤ r, we put

Φs
r = {

a b

c d

 ∈ SL2(Z); a ≡ d ≡ 1( mod Nps), c ≡ 0( mod Npr)},

∆s
r = {

a b

c d

 ∈M2(Z); a ≡ 1( mod Nps), c ≡ 0( mod Npr), ad− bc > 0}.

For each prime `, with ` - Np, we take an element σ` of SL2(Z) satisfying

σ` ≡

∗ ∗

0 `

 ( mod Npr).

12



Let Φ = Φs
r,∆ = ∆s

r, and we put

T (`) = [Φ

1 0

0 `

 Φ], T (`, `) = [Φ(`σ`)Φ].

It’s well-known that R(Φ,∆) is the free Z-module generated by T (`) for all primes

` and T (`, `) for ` - Np.

Note that Φr
r = Γ1(Np

r). The action of R(Φr
r,∆

r
r) on Mk(Np

r) is defined by

f |[Φr
rαΦr

r] = det(α)k/2
∑
i

f |kαi, (11)

where Φr
rαΦr

r = tΦr
rαi. It’s independent of the choice of the representatives

{αi}. The space of modular forms Mk(Np
r) is stable under this action, so do

the subspaces Sk(Np
r), Mk(Φ, χ; C) and Sk(Φ, χ; C). For any R(Φr

r,∆
r
r)-module

L, we define the Hecke algebra h(L) as the image of R(Φr
r,∆

r
r) in EndZ(L). We

denote

Hk(Np
r; Z) = h(Mk(Np

r)), hk(Np
r; Z) = h(Sk(Np

r)),

Hk(Φ
s
r, χ; Z) = h(Mk(Φ

s
r, χ)), hk(Φ

s
r, χ; Z) = h(Sk(Φ

s
r, χ)).

When k ≥ 2, the pairing <,>: Sk(Φ
s
r, χ; Z)× hk(Φ

s
r, χ; Z) → Z defined by

< f, T >7→ a(1, f |T ) (12)

is a perfect pairing.

Mk(Np
r; Z) is also stable under the action of Hecke operators by Hida, [Hi4].

Then the Hecke algebras Hk(Np
r; Z), hk(Np

r; Z) are free of finite rank over Z.

13



For any commutative algebra A, we define

Hk(Np
r;A) = Hk(Np

r; Z)⊗ A, hk(Np
r;A) = hk(Np

r; Z)⊗ A.

2.1.4. Put SL2(Z) = SL2(Z)/ ± I2. Let Φ be the image of Φ in SL2(Z). For

f, g ∈ Sk(Φ), we define the Petersson inner product of f and g by

〈f, g〉 =
1

[SL2(Z) : Φ]

∫
Φ\H

f(z)g(z)yk−2dxdy. (13)

The Hecke operators are self-adjoint with respect to the Petersson product:

〈T (n)f, g〉 = 〈f, T (n)g〉,

where Φ = Γ0(N) and gcd(n,N) = 1.

Suppose f ∈ Sk(Γ0(N)). The L-function associated to f is defined by

L(s, f) =
∞∑
n=1

a(n, f)n−s.

It has analytic continuation to the entire complex plane, and it also satisfies a

functional equation. Suppose f is a newform, then L(s, f) has an Euler product.

Let χ be a Dirichlet character, the twisted L-function is defined by

L(s, f, χ) =
∞∑
n=1

χ(n)a(n, f)n−s.

This L-function also has analytic continuation, functional equation and Euler

product expansion.
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2.2 Half-Integral Weight Modular Forms

2.2.1. In this section, we review the definitions and facts about half-integral

weight modular forms by Shimura [Sh2] and refined by Kohnen [Ko1, Ko2, Ko3].

Let
√
z be the branch of the square root function taking its argument in

(−π
2
, π

2
]. For any positive integer m, put zm/2 = (

√
z)m.

For a positive integer k, and for any γ ∈ GL+
2 (Q), we define a complex-valued

holomorphic function φγ on H by:

|φγ(z)| = det(γ)k/2+1/4|cγz + dγ|k−1/2.

Denote by Gk−1/2 the set of pairs (γ, φ(z)) for γ ∈ GL+
2 (Q). We introduce a

multiplication law on Gk−1/2 by

(γ, φ(z)) · (α, ψ(z)) = (γα, φ(αz)ψ(z)).

Then Gk−1/2 becomes a group. Let πk−1/2 : Gk−1/2 → GL+
2 (Q) be the projection

onto the first factor. The group Gk−1/2 acts on functions g : H → C by

g|(γ, φγ)(z) = φγ(z)
−1g(γz).

We directly copy the definition of the quadratic residue symbol
(
a
b

)
by Shimura

in [Sh2]. For any element γ of Γ0(4), we define a function

j(γ, z) =

(
cγ
dγ

) (
−4

dγ

)−k−3/2

(cγz + dγ)
k−1/2.

15



Now we define an inverse map of πk−1/2. Let Φ ⊂ Γ0(4) be a congruence

subgroup. Put Φ̃ = {γ̃ = (γ, j(γ, z)) : γ ∈ Φ}. The map γ 7→ γ̃ = (γ, j(γ, z))

is a left inverse of the map πk−1/2, so we can define an action of any congruence

subgroup of Γ0(4) on the set of functions g : H → C through the action of Gk−1/2.

Suppose that Φ is a congruence group of level 4N . The action of Φ on functions

g : H → C is given by

g|k−1/2γ(z) = j(γ, z)−1g(γz).

Definition: A complex-valued function g on H is called a modular form of

weight k − 1/2 for Φ if g|k−1/2γ = g for all γ ∈ Φ and that g is holomorphic at

all the cusps. If g vanishes at all the cusps, we say g is a cusp form.

We denote the space of weight k − 1/2 modular forms by Mk−1/2(Φ), and

denote its subspace of cusp forms by Sk−1/2(Φ).

For any commutative algebra A, we put

Mk−1/2(Φ;A) = Mk−1/2(Φ) ∩ A[[q]],

Sk−1/2(Φ;A) = Sk−1/2(Φ) ∩Mk−1/2(Φ;A).

2.2.2. Since we will not make use of the Hecke operators on half-integral weight

modular forms, here we skip its definition. One may consult [Sh2, Ko2] for further

details.

Suppose Φ is a congruence subgroup of Γ0(4).Let f, g ∈ Sk−1/2(Φ), we define
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the Petersson inner product of f and g by:

〈f, g〉 =
1

6[Γ0(4) : Φ]

∫
Φ\H

f(z)g(z)yk−5/2dxdy.

We now recall a subspace of Sk−1/2(Γ0(4N)), called Kohnen’s +-space. Let

S+
k−1/2(Γ0(4N)) denote this subspace consisting of forms with expansion:

h(z) =
∑
n≥1

(−1)k−1n≡0,1( mod 4)

c(n, h)qn.

There’s a Hecke-equivariant isomorphism between the space S+,new
k−1/2(Γ0(4N)) and

the space Snew
2k−2(Γ0(N)).

2.3 Jacobi Forms

2.3.1 In this section, we give a review of Jacobi forms based on the standard

reference [EZ].

Firstly, we introduce the Jacobi group for a congruence subgroup Γ. Let ΓJ

denote the semi-direct product Γ n Z2, its mulitplication laws are given by

(M,X)(M ′, X ′) = (MM ′, XM ′ +X ′) ∈ SL2(Z)× Z2.

Put Γ1 = SL2(Z), and we call ΓJ1 = SL2(Z) n Z2 the full Jacobi Group.

The actions of Γ and Z2 on H× C are given by

γ · (τ, z) = (
aγτ + bγ
j(γ, τ)

,
z

j(γ, τ)
),

(λ, µ) · (τ, z) = (τ, z + λτ + µ).
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It’s easy to check that these actions are compatible with the group structure of

the Jacobi group ΓJ . Thus, it defines an action of ΓJ on H× C.

Let k and m be positive integers. Let φ be a complex-valued function defined

on H× C, we define an action of ΓJ on φ by

φ|k,mγ(τ, z) = j(γ, τ)−kem(− cγz
2

j(γ, τ)
)φ(γ · (τ, z)),

φ|m(λ, µ)(τ, z) = em(λ2τ + 2λz)φ(τ, z + λτ + µ)

for γ ∈ Γ, (λ, µ) ∈ Z2, and em(z) = e2πimz.

Definition: A holomorphic function φ : H × C → C is called a Jacobi form

of weight k and index m on a subgroup Γ ⊂ Γ1 of finite index, if it satisfies:

1. φ|k,mγ = φ for every γ ∈ Γ,

2. φ|m(λ, µ) = φ for every (λ, µ) ∈ Z2,

3. for each γ ∈ SL2(Z), φ|k,mγ has a Fourier expansion of the form

∞∑
n=0

∑
r∈Z

r2≤4mn

cφ(n, r)q
nζr,

where q = e(τ) and ζ = e(z).

If φ satisfies the stronger condition

cφ(n, r) 6= 0 ⇒ r2 < 4mn,

it is called a cusp form. The vector space of all such Jacobi forms (resp. cusp

forms) is denoted Jk,m(Γ) (resp. Jcusp
k,m (Γ)).
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Note that it’s also convenient to write the Fourier expansion of a Jacobi form

in terms of a discriminant D = r2 − 4nm:

φ(τ, z) =
∑

D≤0,r∈Z
D≡r2( mod 4m)

cφ(D, r)e(
r2 −D

4m
τ + rz).

2.3.2. Now we recall the definition of the operator Vn (n > 0) on functions

φ : H× C → C, which is important to understand the Saito-Kurokawa lifting.

For any positive integer n ∈ N, we define a linear operator Vn on Jk,m(Γ0(N))

by

φ|Vn =
∑

D≤0,r∈Z
D≡r2( mod 4mn)

 ∑
d|gcd( r2−D

4mn
,n,r)

dk−1cφ(
D

d2
,
r

d
)

 q
r2−D
4mn ζr. (14)

Theorem 2.1 ([EZ, MR1]) The operator Vn is an index changing operator map-

ping Jk,m(Γ0(N)) to Jk,mn(Γ0(N)).

2.4 Siegel Modular Forms

2.4.1 In this section, we make a review on the definitions of Siegel modular

forms of degree 2.

The Siegel upper half-space of degree 2 is defined as the set

H2 = {Z ∈ M4(C); tZ = Z, Im(Z) > 0}

of complex symmetric n× n matrices with positive definite imaginary part. Let

G = GSp4 be the symplectic similitude group defined by

GSp4 = {M ∈ GL4;
tMJ4M = ν(M)J4, ν(M) ∈ Gm},
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where J4 =

02 −12

12 02

 and ν : GSp4 → Gm the scale map. Let Sp4 = ker(ν)

denote the sympletic group. Let G+(R) be the positive real symplectic group, it

acts transitively on H2 by the rule:A B

C D

 · Z = (AZ +B)(CZ +D)−1.

Let k be a positive integer. For a holomorphic function F : H2 → C, we define

an action of G+(R) on F by:

F |kγ(Z) = det(γ)k det(CγZ +Dγ)
−kF (γ(Z)),

for any γ ∈ G+(R). Let A2 denote the lattice of all half integral symetric matrices

in the vector space of 2 × 2 symetric matrices over R. Let B2 ⊂ A2 denote the

subset of all positive definite matrices. Let Φ ⊂ G+(Q) be a congruence subgroup

commensurable with Sp4(Z).

Definition: A holomorphic function F : H2 → C is called a Siegel modular

form of degree 2 and weight k with respect to Φ if F |kγ = F for all γ ∈ Φ. (Since

the degree is 2, the regularity at cusps is automatically satisfied by Koecher.)

Any Siegel modular form F of degree 2 has a Fourier expansion of the form:

F (Z) =
∑

T∈A2,T≥0

A(T )e(Tr(TZ)).

If A(T ) = 0 unless T ∈ B2, we say F is a Siegel cusp form. The vector space of
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all such Siegel modular forms (resp. Siegel cusp forms) is denoted Ms
k(Φ) (resp.

Ssk(Φ)). We drop the index s for simplicity if there’s no confusion.

For a positive integer N , we define the congruence subgroups Γ2(N),Γ2
0(N)

and Γ2
1(N) of Sp4(Z) as:

Γ2(N) = {

A B

C D

 ∈ Sp4(Z);A ≡ D ≡ 12( mod N), B ≡ C ≡ 02( mod N)},

Γ2
0(N) = {

A B

C D

 ∈ Sp4(Z);C ≡ 02( mod N)},

Γ2
1(N) = {

A B

C D

 ∈ Γ2
0(Z);A ≡ 12( mod N)}

with the convention that the congruences regarding the matrices are with respect

to their entries. If Φ ⊂ Sp4(Z) is a subgroup of finite index that contains Γ2(N)

for some N , we say that Φ is a congruence subgroup of level N .

Let χ be a Dirichlet character. F is called a classical Siegel modular form of

weight k and character χ for Γ2
0(N) if

F (γ(Z)) = χ(det(Dγ)) det(CγZ +Dγ)
kF (Z)

for all γ ∈ Γ2
0(N). The vector space of all such Siegel forms is denoted Ms

k(N,χ).

2.4.2. For any Z =

τ z

z τ ′

 in the Siegel upper half-space H2, we may write it
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as a row vector (τ, z, τ), here τ, τ ′ ∈ H, z ∈ C and Im(z)2 < Im(τ)Im(τ ′). And we

write F (τ, z, τ ′) instead of F (Z). Similarly, we write A(n, r,m) for A(T ), where

T =

 n r/2

r/2 m

 ∈ A2 with n, r,m ∈ Z, n,m ≥ 0 and r2 ≤ 4mn. Thus, the

Fourier expansion of F has the form:

F (τ, z, τ ′) =
∑

n,r,m∈Z
n,m,4mn−r2≥0

A(n, r,m)e(nτ + rz +mτ ′). (15)

Now we introduce a subspace of Ms
k(Φ) called Maass ’Spezialschar’. A Siegel

modular form F ∈Ms
k(Φ) is called a Maass modular form if its Fourier coefficients

satisfy the relation

A(n, r,m) =
∑

d|gcd(n,r,m)

dk−1A(
nm

d2
,
r

d
, 1) (16)

for every n, r,m ∈ Z with n,m, 4nm−r2 ≥ 0. The space of Maass modular forms

(resp. Maass cusp forms) is denoted M∗
k(Φ) (resp. S∗k(Φ) := Ssk(Φ) ∩M∗

k(Φ)).

The relation of Siegel modular forms to Jacobi forms is given by the following

result.

Theorem 2.2 Let F be a Siegel modular form of weight k and degree 2 with

respect to Φ, we write the Fourier expansion of F in the form

F (τ, zτ ′) =
∞∑
m=0

φm(τ, z)e(mτ ′). (17)

Then φm(τ, z) is a Jacobi form of weight k and index m.
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Following Piatetski-Shapiro, we call (14) the Fourier-Jacobi expansion of the

Siegel modular form F . Note that φ(τ, 0) the restriction of a Jacobi form φ on H

is an ordinary modular form of weight k.

Let’s fix an embedding πd : H× H → H2 by

(τ, τ ′) 7→

τ 0

0 τ ′

 .

Then we have the pullback of a Siegel modular form F via the embedding πd,

F |H×H ∈ Sk(Φ)⊗ Sk(Φ). And by Lemma 1.1 in [Ich],

(T (p)⊗ id)F |H×H = (id⊗ T (p))F |H×H

for all primes p. Here T (p) is the Hecke operator on Sk(Φ).

2.4.3. We give a short review of the definitions of the Hecke operators. Put

Σ = G+(Q) ∩M4(Z), and Σn = {γ ∈ Σ; ν(γ) = n}. Note that Sp4(Z) = Σ1. Put

Σ̃ = {

A B

C D

 ;C ≡ 0( mod N), A ∈ GL2(Z/NZ)}.

Let Σ̃n = Σn∩Σ̃. For each positive integer n, define the nth Hecke operator TS(n)

by

TS(n) =
∑
α

Γ2
0(N)αΓ2

0(N)

where the sum is taken over all α ∈ Γ2
0(N) \ Σ̃n/Γ

2
0(N).

As the case of integer weight modular forms, we call F a Heck eigenform, if

there exists λF (n) ∈ C such that TS(n)F = λF (n)F for all n ≥ 1. Suppose F is
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a non-zero Hecke eigenform of weight k and level N with eigenvalues λF (n). We

define the spinor zeta function associated to F by

Lspin(s, F ) = ζ(2s− 2k + 4)
∞∑
n=1

λF (n)n−s. (18)

It has meromorphic continuation, functional equation and Euler product as well

by Andrianov [An1, An3].
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3 Saito-Kurokawa Lifting

Based on numerical evidence, Saito and Kurokawa in 1977 made a conjecture

that for a Hecke eigenform f ∈ S2k(SL2(Z)), there exists a Siegel eigenform F of

degree 2 and weight k + 1 such that

Lspin(s, F ) = ζ(s− k)ζ(s− k + 1)L(s, f).

Most of this conjecture was proved by Maass in his series paper, another part

by Andrianov [An2] and the remaining part by Zagier. In 1993 Manickham,

Ramakrishnan and Vasudevan [MRV] extended this result to odd square-free

level. Later Manickham and Ramakrishnan improved it to all positive levels

[MR1, MR2].

3.1 Shimura Lifting

Shimura in 1973 [Sh2] firstly pointed out the correspondence of integral weight

elliptic modular forms of weight 2k to half-integral weight modular forms of weight

k + 1/2. Kohnen later provided more precise results on determining the level of

half-integral weight modular forms.

Let M be a positive integer. Suppose D is a fundamental discriminant with

(−1)kD > 0. For any g in Kohnen’s +-space S+
k+1/2(Γ0(4M)) with Fourier ex-
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pansion:

g(z) =
∞∑
n=1

c(n; g)qn,

where c(n; g) = 0 whenever (−1)kn ≡ 2, 3(mod 4), The Shimura lifting ζ∗D :

S+
k+1/2(Γ0(4M)) →M2k(Γ0(M)) is given by:

ζ∗Dg(z) =
∞∑
n=1

 ∑
d|n

gcd(d,M)=1

(
D

d

)
dk−1c(

|D|n2

d2
; g)

 qn.

3.2 Shintani Lifting

3.2.1. Fix a positive integer M , and denote by FM the set of all integral

indefinite binary quadratic forms, Q(X, Y ) = aX2 + bXY + cY 2, satisfying the

conditions:

b2 − 4ac > 0; and (a,M) = 1, b ≡ c ≡ 0 mod M. (19)

The action of Γ0(M) on FM is defined as:

(Q|γ)(X, Y ) := Q((X, Y )γ−1),

for Q ∈ FM and γ ∈ Γ0(M).

To each quadratic form Q(X, Y ) in FM , Shintani associated the following

data: the discriminant δQ = b2 − 4ac, the pair (ωQ, ω
′
Q) of points in R ∪ {i∞},

and the oriented geodesic path CQ in the upper half plane. For further details of

the definitions of ωQ, ω′Q and CQ, please refer to [Shi].
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Fix an interger k ≥ 0. Suppose M is odd. For a given Dirichlet character χ

of conductor M , we define a new Dirichlet character χ′ : (Z/4MZ)× → C× by

χ′(d) := χ(d) ·
(

(−1)kM

d

)
, d ∈ (Z/4MZ)×. (20)

For each Q ∈ FM , we put χ(Q) = χ(a). For each f ∈ S2k(Γ0(M), χ2), we define

an integral

Ik,χ(f,Q) := χ(Q) ·
∫
CQ

f(τ)Q(1,−τ)k−1dτ. (21)

For any z ∈ H, we define

ζk,χ(f)(z) :=
∑

Q∈FM/Γ0(M)

Ik,χ(f,Q)qδQ/M . (22)

When χ is trivial, we write ζk instead of ζk,χ.

Theorem 3.1 ([Shi]) For any f ∈ S2k(Γ0(M), χ2), the series ζk,χ(f)(z) is the

q-expansion of a cusp form in Sk+1/2(Γ0(M), χ′). Moreover, the map

ζk,χ : S2k(Γ0(M), χ2) → Sk+1/2(Γ0(4M), χ′)

is a Hecke equivariant linear function. Precisely, for any prime `,

ζk,χ(f |T`) = ζk,χ(f)|T`2 .

3.2.2. As above, let D be a fundamental discriminant with (−1)kD > 0, and

M a positive integer such that gcd(D,M) = 1.

Theorem 3.2 The Shimura lifting ζ∗D and the Shintani lifting ζk give a Hecke-

equivariant isomorphism between S+,new
k+1/2(Γ0(4M)) and Snew

2k (Γ0(M))
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Let Of be the ring generated by the Hecke eigenvalues of f . Suppose an

embedding of Of into C exists. Choose and fix such an embedding. We identify

Of with its image in C via the embedding.

Theorem 3.3 ([Ste]) For any Hecke eigenform f ∈ S2k(Γ0(M), χ2), there is a

non-zero complex number Ω−f ∈ C× such that

1

Ω−f
· ζk,χ(f) ∈ Sk+1/2(Γ0(4M), χ′;Of ).

Fix such a period Ω−f once for all for each Hecke eigenform f ∈ S2k(Γ0(M), χ2)

and define:

θk,χ(f) :=
1

Ω−f
· ζk,χ(f) ∈ Sk+1/2(Γ0(4M), χ′;Of ). (23)

We call θk,χ(f) the algebraic part of ζk,χ(f).

3.3 Half-Integral Weight Forms to Jacobi Forms

The case of full level is presented in [EZ], here we recall the correspondence for

arbitrary levels M by Manickham and Ramakrishnan in [MR1] and [MR2].

For a negative fundamental discriminantD, let P+
D be theD-th Poincare series

in Kohnen’s +-space S+
k+1/2(Γ0(4M)). We put S∗k+1/2(Γ0(4M)) for the subspaces

of cusp forms, where ∗ means + if 2 - M and nothing if 2|M . Let P denote

the subspace of S∗k+1/2(Γ0(4M)) generated by the Poincare series P ∗|D|, with D

running over all discriminants satisfying D ≡ 0, 1(mod 4), (−1)kD > 0.
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Denote by Snew
k+1/2(4M, f) the subspace of cusp forms g ∈ S∗k+1/2(Γ0(4M))

satisfying T (p2)g = a(p; f)g for all primes p - M . Since the index of Jacobi

forms in this section is 1, we drop it from the notations for simplicity. Denote

by J c,nk+1(M, f) the subspace of Jacobi forms φ ∈ Jcusp
k+1 (M) satisfying TJ(p)φ =

a(p; f)φ for all primes p - M . Put

Snew
k+1/2(4M) = P ∩

⊕
f∈Snew

2k (Γ0(M))

Snew
k+1/2(4M, f),

J c,nk+1(M) =
⊕

f∈Snew
2k (Γ0(M))

J c,nk+1(M, f).

We define a map µ : Snew
k+1/2(4M) → J c,nk+1(M) by

∑
N>0

N≡0,3( mod 4)

c(N)qN 7→
∑
n,r∈Z
r2≤n

c(4n− r2)qnζr. (24)

Theorem 3.4 ([MR1]) The map µ : Snew
k+1/2(4M) → J c,nk+1(M) is a cononical

isomorphism compatible with the action of Hecke operators.

For any integer ring O, by (21) we have the following result.

Corollary 3.1 For any g ∈ Snew
k−1/2(4M ;O), the corresponding Jacobi form φ =

µ(g) has Fourier coefficients in O and vice versa.
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3.4 Jacobi Forms to Siegel Forms

Fix positive integers k and M . Introduced in section 2.4, we know that a Siegel

modular form F ∈M∗
k+1(Γ

2
0(M)) has Fourier-Jacobi expansion of the form:

F (τ, z, τ ′) =
∞∑
m=0

φm(τ, z)e(mτ ′).

Here, φ1(τ, z) is a Jacobi form of weight k+1 and index 1 with respect to ΓJ0 (M)

by Theorem 2.2. Assigning φ1 in its Fourier-Jacobi expansion to each Siegel

modular form F , we define a map

ω : M∗
k+1(Γ0(M)) −→ Jk+1,1(Γ0(M)).

F (τ, z, τ ′) 7−→ φ1(τ, z)

Theorem 3.5 ([MR2]) The map ω : M∗
k+1(Γ

2
0(M)) → Jk+1,1(Γ0(M)) is an

isomorphism commuting with the action of Hecke operators.

Let φ(τ, z) be a Jacobi form of weight k+1 and index 1 with Fourier expansion:

φ(τ, z) =
∞∑
n=0

∑
r∈Z

r2≤4n

cφ(n, r)q
nζr.

Recall the index changing operator Vm : Jk+1,n(Γ0(M)) → Jk+1,mn(Γ0(M)), we

define a map on Jk+1,1(Γ0(M)),

V : φ(τ, z) 7→ F (τ, z, τ ′) =
∑
m≥0

(φ|Vm)(τ, z)e(mτ ′). (25)
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Theorem 3.6 ([EZ],[MRV]) V(φ) ∈ M∗
k(Γ

2
0(M)) is a Siegel modular form in

the Maass ’Spezialschar’. And V : Jk+1,1(Γ0(M)) → M∗
k+1(Γ

2
0(M)) is a Hecke

equivariant isomorphism. V is the inverse of ω.

The Fourier coefficients of F (τ, z, τ ′) = V(φ) and the Fourier coefficients of φ

satisfy the relation:

A(n, r,m) =
∑

d|(n,r,m)

dkc(
4nm− r2

d2
), (26)

for (n, r,m) 6= (0, 0, 0).

Corollary 3.2 Suppose M is odd. Let h(τ) =
∑
c(N)qN be a cusp form in

Kohnen’s +-space S+
k+1/2(4M), then A(n, r,m) defined by equation (23) are the

coefficients of a Maass form F ∈ S∗k+1(Γ
2
0(M)). The map h 7→ F is an isomor-

phism between this two spaces.

3.5 A pullback formula of Saito-Kurokawa lifting

Let f ∈ S2k(Γ0(N)) be a normalized Hecke eigenform. Suppose F ∈ Sk+1(Γ
2
0(N))

is the Siegel cusp form corresponding to f by the composition of θk,χ, µ and V

defined by (20), (21) and (22) respectively.

Theorem 3.7 ([MRV]) Assume N is a positive odd square free integer. The

space S∗,new
k+1 (Γ2

0(N)) is 1-1 correspondence with Snew
2k (Γ0(N)). For a Siegel Hecke
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eigenform F and a nomalized Hecke eigenform f , the correspondence is given by:

Lspin(s, F ) = ζ(s− k)ζ(s− k + 1)L(s, f).

Suppose h ∈ S+
k+1/2(Γ0(4N)) is a Hecke eigenform associated to f by Shimura

correspondence. For each normalized eigenform g ∈ Sk+1(Γ0(N)), we consider

the period integral

〈F |H×H, g × g〉

=
1

[SL2(Z) : Γ0(N)]2

∫
Γ0(N)\H

∫
Γ0(N)\H

F


τ1 0

0 τ2


 g(τ1)g(τ2)y

k−1
1 yk−1

2 dτ1dτ2.

Let A(s, Sym2(g)⊗ f) be the complete L-function.

Theorem 3.8 ([Ich, Li]) Assume N is a positive odd square free integer, and

k is odd with k ≥ 3. Then we have

A(2k, Sym2(g)⊗ f) = 2k+1−ν(N)ξN
〈f, f〉
〈h, h〉

|〈F |H×H, g × g〉|2

〈g, g〉2
,

where ξN is an algebraic number given by

ξN = N2
∏
p|N

εp(1 + p)5(1− p)2(εp − p)−2,

and εp = −af (p), ν(N) is the number of prime divisors of N .

Let Ω+
f be the period of f as in [Sh3]. By the generalized Kohnen-Zagier

formula [KZ, Ko3]:

A(k, f, χ−D) = 21−k−v(N)D1/2|ch(D)|2 〈f, f〉
〈h, h〉

,
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we have the following corollary.

Corollary 3.3 The quotients

A(2k, Sym2(g)⊗ f)

〈g, g〉2 · Ω+
f

∈ Q

are algebraic numbers.

4 A Λ-adic Saito-Kurokawa Lifting

We develope a Λ-adic analog of Saito-Kurokawa lifting in this chapter, which is

a generalization of Λ-adic Eisenstein series.

4.1 p-adic Modular Forms

4.1.1. In this section, we recall p-adic theory on classic modular forms by Hida.

We fix a prime p ≥ 5 once for all. Let K0 be a finite extension over Q in Q, and

let K be the topological closure of K0 in Cp. Let OK be the p-adic integer ring

of K. Suppose Φ is a congruence subgroup of SL2(Z), and χ : Φ → K× is a finite

order character. By results in section 2.1, we may put

Mk(Φ;K) = Mk(Φ;K0)⊗K0 K,Mk(Φ, χ;K) = Mk(Φ, χ;K0)⊗K0 K,

Sk(Φ;K) = Sk(Φ;K0)⊗K0 K,Sk(Φ, χ;K) = Sk(Φ, χ;K0)⊗K0 K,

If the congruence group Φ is of level N , we may view these spaces inside the

formal power series ring K[[q]] by using their q-expansions.
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For each positive integer j, we put

M j(Φ;K) =

j⊕
k=0

Mk(Φ;K), Sj(Φ;K) =

j⊕
k=0

Sk(Φ;K).

We take inductive limits inside K[[q]]:

M(Φ;K) = M∞(Φ;K) = lim
−→

j

M j(Φ;K) '
∞⊕
k=0

Mk(Φ;K),

S(Φ;K) = S∞(Φ;K) = lim
−→

j

Sj(Φ;K) '
∞⊕
k=0

Sk(Φ;K).

We define a p-adic norm on these spaces by

|f | = |f |p = sup
n
|a(n, f)|p.

for a power series f =
∑
a(n, f)qn ∈ K[[q]]. We take the p-adic completion of

these space under this norm | · |p inside K[[q]], and denote the completion of

M(Φ;K) (resp. S(Φ;K)) by M(Φ;K) (resp. S(Φ;K)).

We now consider the forms with coefficients in OK . Put

Mk(Φ;OK) = Mk(Φ;K) ∩ OK [[q]], Sk(Φ;OK) = Sk(Φ;K) ∩ OK [[q]],

Mk(Φ;OK) = Mk(Φ;K) ∩ OK [[q]], Sk(Φ;OK) = Sk(Φ;K) ∩ OK [[q]].

The space Mk(Φ;OK) (resp. Sk(Φ;OK)) is the completion of M∞
k (Φ;OK) (resp.

S∞k (Φ;OK)) under the norm | · |p. When Φ = Γ1(N), we write Mk(N ;OK) and

Sk(N ;OK) for Mk(Φ;OK) and Sk(Φ;OK) respectively.
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For A = K,OK or any commutative algebra A ⊂ C, we put

Mk(Np
∞;A) = lim

−→
r

Mk(Γ1(Np
r);A),

Sk(Np
∞;A) = lim

−→
r

Sk(Γ1(Np
r);A).

We have natural inclusions:

Mk(Np
∞;OK) ⊂M(N ;OK), Sk(Np

∞;OK) ⊂ S(N ;OK).

4.1.2. For a subspace V of M(N ;OK), we define the Hecke algebra h(V ) of V as

in section 2.1. We write hk(Φ, χ;OK) for h(Sk(Φ, χ;OK)) and hj(Γ1(Np
r);OK)

for h(Sj(Γ1(Np
r);OK)) with Γ1(Np

r) ⊂ Φ ⊂ Γ1(N). For any pair i > j, the re-

striction of hi(Γ1(Np
r);OK) to the subspace Sj(Γ1(Np

r);OK) of hj(Γ1(Np
r);OK)

gives a surjective OK-algebra homomorphism:

hi(Γ1(Np
r);OK) → hj(Γ1(Np

r);OK).

By taking the projectiv limit, we define

h(N ;OK) = lim
←−

j

hj(Γ1(Np);OK).

We extend the action of h(N ;OK) to S(N ;OK) by uniform continuity.

Denote Γ = 1 + pZp. Let ΛK = OK [[Γ]]. For each positive integer N prime to

p, we put

ZN = lim
←−

(Z/NprZ)× = Z×p × (Z/NZ)×.
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Write (zp, z0) for the projection of an element z ∈ ZN . And we have an isomor-

phism OK [[ZN ]] ∼= ΛK⊗OK
OK [(Z/NpZ)×]. For any f ∈Mk(Np

r;OK), we define

a slash operater by

f |z = zkpf |k[σz],

where σz ∈ SL2(Z) is a matrix defined as in Section 2.1. This operator induces

an endomorphism of S(N ;OK) which belongs to h(N ;OK), hence it induces a

continuous character : ZN → h(N ;OK)×. Then we have an OK-algebra homo-

morphism from OK [[ZN ]] to h(N ;OK). And h(N ;OK) is a ΛK-algebra.

Recall the pairing we define by equation (9), we extend it to

<,>: h(N ;OK)× S(N ;OK) −→ OK

(h, f) 7−→ a(1, f |h). (27)

Theorem 4.1 ([Hi3]) The pairing defined by (23) is perfect. It induces isomor-

phisms:

h(N ;OK) ∼= HomOK
(S(N ;OK),OK), S(N ;OK) ∼= HomOK

(h(N ;OK),OK).

4.1.3. The Hecke algebra h(N ;OK) is a pro-artinian ring, we may write it as

the direct sum of local rings:

h(N ;OK) = ⊕R.

Let m(R) be the unique maximal ideal of R. We call the local component R

ordinary if T (p) /∈ m(R), i.e. T (p) is invertible in R. We define the ordinary part
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of h(N ;OK) by the direct sum of all the ordinary local components. We denote

by ho(N ;OK) the ordinary part, and denote by e the idempotent corresponding

to the ordinary part. Then we have:

ho(Np∞;OK) = eh(Np∞;OK).

For any h(N ;OK)-module M , we define the ordinary part of M by M o = eM .

Similarly, we define the ordinary parts hok(Γ1(Np
r);OK) and hok(Γ0(Np

r), χ;OK)

by the biggest direct factor of the original Hecke algebra on which the image of

T (p) is a unit.

Theorem 4.2 ([Hi3]) ho(N ;OK) is free of finite rank over ΛK.

4.2 p-adic Families of Cusp Forms

4.2.1. Denote Γ = 1+pZp, and Λ = Zp[[Γ]]. For any finite flat Λ-algebra R, we

put X (R) = Homc(R,Cp). The elements of X (R) are called points of R. The

restriction to Λ induces a surjective finite-to-one mapping

π : X (R) → X (Λ). (28)

We identify X (Λ) with the group of continuous characters P : Γ → C×p . For any

P ∈ X (R) unramified over Λ, there exists a natural local section SP of π,

SP : U ⊆ X (Λ) → X (R) (29)
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defined on a neighborhood U of π(P ) ∈ XΛ and SP ◦π(P ) = P . The image of any

local chart SP about an unramified point P is called an analytic neighborhood of

P . A function f : U ⊆ X (R) → Cp defined on an analytic neighborhood U of P

is called analytic if f ◦ SP is analytic.

4.2.2. Choose and fix a topological generator u of 1 + pZp. For each finite

order character ε : Γ → C×p , and for each integer k, the continuous character

u 7→ ukε(u) of Γ induces a Zp-algebra homomorphism Pk,ε : Λ → Cp. Such a

character is called arithmetic. A point P ∈ X (Λ) is said to be arithmetic if the

associated character of Γ is arithmetic. We put

Xalg(Λ) = {Pk,ε; k ≥ 2, ε : Γ → C×p , [Γ : ker(ε)] <∞}.

For a finite flat Λ-algebra R, a point P ∈ X (R) is said to be arithmetic if it lies

over an arithmetic point on X (Λ). We put

Xalg(R) = {P ∈ X (R);P |Λ ∈ Xalg(Λ)}.

A point P ∈ Xalg(R) is called an arithmetic point of type (k, ε), if P |Λ = Pk,ε.

Theorem 4.3 ([Hi3]) For each integer k ≥ 2, and for each finite order charac-

ter ε : Γ → O×K of conductor pr with r ≥ 1, there is an isomorphism:

ho(N ;OK)/Pk,εh
o(N ;OK) ∼= hok(Φ

1
r, ε;OK),

which takes T (n) of ho(N ;OK) to T (n) of the right-hand side.
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4.2.3. Let LK denote the quotient field of ΛK , and let K be a finite extension of

LK . Let I be the integral closure of ΛK in K. Suppose that the algebraic closure

of Qp inside K coincides with K.

For each P ∈ Xalg(I), there are an integer k ≥ 0 and a finite order character ε

on Γ, such that P |ΛK
= Pk,ε. The integer k is called the weight of P , denoted by

k(P ). The character ε is called the character of P , denoted by εP . The exponent

in p of the conductor of εP will be denoted by r(P ). (When εP is trivial, we put

r(P ) = 1.)

Let λ : ho(N ;OK)⊗ΛK
I → I be an I-algebra homomorphism. The OK [[ZN ]]-

algebra structure on ho(N ;OK) induces a character ψ : (Z/NpZ)× → O×K , it’s

called the character of λ. For P ∈ Xalg(I), we consider the reduction of λmod P :

λP : ho(N ;OK)⊗ΛK
(I/PI) −→ I/PI ∼= OK .

If the weight k(P ) ≥ 2, by Theorem 4.3 we have:

ho(N ;OK)⊗ΛK
(I/PI) ∼= hok(P )(Φ

1
r(P ), εP ;OK).

Hence we get an OK-algebra homomorphism:

λP : hok(P )(Φ
1
r(P ), εP ;OK) −→ OK .

By duality theorem, there’s a unique normalized eigenform

fP ∈ Sk(P )(Γ0(Np
r(P ), εPψω

−k(P ))),
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such that fP |T (n) = λP (T (n))fP for all n ≥ 0. We say λ is primitive if it satisfies

one of the following two equivalent conditions:

1. there exists P ∈ Xalg(I) with k(P ) ≥ 2, such that fP is primitive of con-

ductor Npr(P );

2. fP is primitive for every P with k(P ) ≥ 2 such that the p-part of εPψω
−k(P )

is non-trivial.

Theorem 4.4 ([Hi2]) Suppose λ : ho(N ;OK) ⊗ΛK
I → I is a primitive I-

algebra homomorphism. Then λ induces a decomposition of K-algebras:

ho(N ;OK)⊗ΛK
K ∼= K ⊕A (30)

such that the projection of ho(N ;OK)⊗ΛK
I into K coincides with λ.

Let 1K be the idempotent corresponding to the first factor. Let RN and AN

denote the images of ho(N ;OK)⊗ΛK
I in K and A respectively. We may identify

the elements in ho(N ;OK) ⊗ΛK
I and their images in RN . Define a congruence

module C(λ; I) := (RN ⊕AN)/(ho(N ;OK)⊗ΛK
I).

The universal p-stabilized ordinary newform of tame conductor N is defined

to be the formal q-expansion fN :=
∑∞

n=1 αnq
n ∈ RN [[q]], where αn = T (n) ∈

RN . We may regard fN as an analytic function on X (RN) interpolating the

q-expansions of ordinary newforms at arithmetic points.
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4.3 Modular Symbols

LetD be the free abelian group generated by the rational cusps Q∪{i∞} = P1(Q)

of the upper half plane H. Put H0 = H∪ P1(Q). Let D0 be the subgroup of D of

divisors of degree 0. The congruence group Φ ⊂ SL2(Z) acts on D0 by fractional

linear transformations. Suppose A is a right Z[1
6
][Φ]-module. The group of A-

valued modular symbols is defined to be

Symb(Φ;A) := HomΦ(D0, A).

Theorem 4.5 There is a canonical isomorphism between the cohomology group

with compact support and modular symbols H1
c (Φ, A) ∼= Symb(Φ;A).

The matrix ι = diag(1,−1) ∈ SL2(Z) induces natural involutions on the

cohomology groups H1(Φ, A) and H1
c (Φ, A). On modular symbols, this involution

is given by ϕ 7→ ϕ|ι, where ϕ|ι : d 7→ ϕ(ιd)|ι for d ∈ D0. Through this involution,

the cohomology groups can be decomposed into ± eigenspaces: H = H+ ⊕H−.

Each cohomology class ϕ decomposes as ϕ = ϕ+ + ϕ−, where ϕ± := 1
2
(ϕ± ϕ|ι).

Simple computation shows ϕ±|ι = ±ϕ±.

Suppose Φ = Γ0(M) and that A is a commutative ring. For a non-negative

integer n, we put Ln(Z) = Zn+1 and Ln(A) = Ln(Z)⊗A. For

X
Y

 ∈ L1(Z), put

Fn(X, Y ) =

X
Y


n

= t(Xn, Xn−1Y, · · · , Y n) ∈ Ln(Z).
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For each γ ∈ M2(Z), we define an action on Ln(Z) by

(Fn|γ)(X, Y ) = Fn(γ(X, Y )).

This action extends to Ln(A). Let ε be a A-valued Dirichlet character modulo

M . If the action of Φ on the same underlying module is twisted by ε:

(Fn|γ)(X, Y ) = ε(γ) · Fn(γ(X, Y )), (31)

we denote this A[Φ]-module by Ln,ε(A).

Theorem 4.6 (Eichler, Shimura) For either choice of sign ±, there is a Hecke

equivariant isomorphism

E : Sn+2(Γ0(M), ε) → Hpar(Γ0(M), Ln,ε(C))±.

For each f ∈ Sn+2(Γ0(M), ε), we define ψf : D0 → Ln,ε(C) by

ψf ({c2} − {c1}) =

∫ c2

c1

f(z)Fn(z, 1)dz.

The integral is taken over the oriented geodesic path joining c1 to c2 in H.

By Theorem 4.5, we identify ψf as a compactly supported cohomology class in

H1
c (Γ0(M), Ln,ε(C)). And E(f) is the image of ψf in H1

par(Γ0(M), Ln,ε(C)).

Let Of be the ring generated by the Hecke eigenvalues of f . It’s well known

that there are two complex numbers Ω±f ∈ C× such that (Ω±f )−1 · ψ±f is defined

over Of . Put ϕ±f = (Ω±f )−1 · ψ±f , we may refer to it as the algebraic part of ψ±f .
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4.4 A Λ-adic Shintani lifting

4.4.1. We call a pair (a, b) ∈ Z2
p primitive if p - (a, b) as a vector. Let (Z2

p)
′

denote the set of primitive vectors in Z2
p. Let D = Meas((Z2

p)
′; Zp) be the group of

Zp-valued measures on (Z2
p)
′. The scalar action of Z×p on (Z2

p)
′ induces a natural

action of Zp[[Z×p ]] on D. For µ ∈ D, γ ∈ Γ0(N), and f ∈ Cont((Z2
p)
′), we define

an action of Γ0(N) on D by ((µ|γ)f)(x, y) = µ(f |γ)(x, y). Thus we regard D as

a Zp[[Z×p ]][Γ0(N)]-module.

Put Γ = 1 + pZp, and Λ = Zp[[Γ]]. Let K be a finite extension of Qp and let

OK denote its p-adic integer ring. Let ΛK be the iwasawa algebra OK [[Γ]] and

LK be the fractional field of ΛK . Let K be a finite extension of LK and I be the

integral closure of ΛK in K. Define

D := D ⊗Zp[[Z×p ]] I.

Let Γ0(N) act on D through D. Then D is a I[Γ0(N)]-module.

For an arithmetic point P of signature (n, ε) in X (I), we factor ε = εpεN ,

where εN is defined modulo N and εp is defined modulo a power of p. And we

denote OP = I/P . Define a map φP : D → Ln,ε(OP ) by

φP (µ⊗ α) = P (α) ·
∫

Z×p ×Zp

εp(x) · Fn(x, y)dµ(x, y). (32)

It induces a map on cohomologies:

φP,∗ : H1
c (Γ0(N),D) → H1

c (Γ0(Np
r), Ln,ε(OP )). (33)
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Where r is the integer such that εp is defined modulo pr.

Here H1
c (Γ0(N),D) ∼= SymbΓ0(N)(D) is a space Λ-adic modular symbols.

Suppose h0(N,OK) is the universal ordinary p-adic Hecke algebra of level N .

and λ : h0(N,OK) → I is a homomorphism of ΛK-algebras. Let f be the Λ-adic

cusp form corresponding to λ. It’s a Hida family of p-adic cusp forms. For each

arithmatic point P ∈ X (I), the associated cohomology class ϕfP is defined over

OfP .

Theorem 4.7 ([GS]) For each arithmetic point P ∈ X (I), there is a nontrivial

cohomology class Φf ∈ H1
c (Γ0(N),D) and a p-adic period ΩP ∈ OP , such that

Φf (P ) = ΩP · ϕ−fP = ΩP

Ω−fP
· ψ−f .

4.4.2. Let σ : OK [[Γ]] → OK [[Γ]] be the ring homomorphism associated to

the group homomorphism t 7→ t2 on Γ. For each quadratic form Q ∈ FNp, we

put [Q]N := [a]N ∈ ∆N . For each µ ∈ D, we define a Zp-linear map

jQ : D → Meas(Z×p ,Zp) ∼= Zp[[Z×p ]]

µ 7→ jQ(µ)(f) = µ(f ◦Q)

for any continuous function f : Z×p → Zp. For each t ∈ Z×p , by definition we have

jQ([t]N · µ) = [t2]N · jQ(µ).

We extend jQ to JQ : D → ΛK ⊗σ I by :

JQ(µ⊗ α⊗ β) = jQ(µ) · σ(α)⊗σ β.
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Put Iσ = ΛK ⊗σ I. For each Φ ∈ H1
c (Γ0(N),D), we define

J(Φ, Q) := JQ(Φ(∂CQ)) ∈ Iσ.

It’s well defined, since ∂CQ ∈ D0, the subgroup of D consisting of divisors of

degree 0. And J(Φ, Q) only depends on the Γ0(Np)-equivalent class of Q.

The ring homomorphism I → Iσ by α 7→ α ⊗ 1 is not a homomorphism of

ΛK-algebras. If P ′ ∈ X (Iσ) lies over P ∈ X (I), the signature (2k, ε2) of P is

twice the signature (k, ε) of P ′.

We define Θ : H1
c (Γ0(N),D) → Iσ[[q]] by :

Θ(Φ) =
∑

Q∈FNp/Γ0(Np)

J(Φ, Q)qδQ/Np.

Theorem 4.8 ([Ste]) Suppose Θ(Φf ) =
∑

n≥1 αnq
n ∈ Iσ[[q]]. For each arith-

metic point P ′ ∈ Spec(Iσ) with signature (k, ε), we have

Θ(Φf )(P
′) =

∞∑
n=1

αn(P
′)qn ∈ Sk+ 1

2
(Γ0(4Np

r), ε′; Qp).

Moreover, if P is the image of P ′ in Spec(I), then there is a p-adic period ΩP ∈

Qp, such that

Θ(Φf )(P
′)|T r−1

p =
ΩP

Ω−fP
· θk,ε(fP ).

Where r is the smallest positive integer for which ε is defined modulo pr.

By Stevens, Θ(Φ) is called a Λ-adic Shintani lifting of Φ.
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4.5 A Λ-adic Saito-Kurokawa Lifting

4.5.1 Let’s first recall the classical construction of Λ-adic Eisenstein series. For

each integer k > 2, we put

Ek(z) = 2−1ζ(1− k) +
∞∑
n=1

σk−1(n)qn,

where σm(n) =
∑

0<d|n d
m is the sum of m-th powers of divisors of n. We remove

the powers of the divisors divisible by p to get the modified coefficient :

σ′m(n) =
∑

0<d|n,(d,p)=1

dm,

which viewed as a function on the weight m is p-adic continuous.

Fix a topological generator u in Γ. Let log be the p-adic logarithm function.

We define a function s : Γ → Zp by s(z) = log(z)/ log(u). For any element z ∈ Γ,

we may write z = us(z). Let 〈x〉 = ω(x)−1x donte the projection from Z×p to Γ,

where ω : Z×p → µp−1 is the Teichmuller character. For any integer d prime to p,

we define a function by

Ad(X) = d−1(1 +X)s(〈d〉).

Easy to check that Ad(u
k − 1) = d−1〈d〉k = ω(d)−kdk−1. We regard Ad(X) as an

element of Λ by identifying Λ = Zp[[X]].

Suppose ψ = ωa is an even Dirichlet character. There exists a power series

Φψ(X) in Zp[[X]], such that for all integer k > 1,

Φψ(uk − 1) = (1− ψω−k(p)pk−1)L(1− k, ψω−k)
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if ψ 6= id; and

Φid(u
k − 1) = (uk − 1)(1− ω−k(p)pk−1)L(1− k, ω−k).

We put Aψ(0;X) = Φψ(X)/2 if ψ 6= id and Aid = Φid(X)/2X. For every positive

integer n, we define

Aψ(n;X) =
∑

0<d|n,(d,p)=1

ψ(d)Ad(X).

For each even character ψ = ωa, we define the Λ-adic Eisenstein seriesE(ψ)(X) ∈

Λ[[q]] by

E(ψ)(X) =
∞∑
n=0

Aψ(n;X)qn.

Proposition 4.1 For each positive even integer k ≥ 2 with k ≡ amod p− 1, we

have

E(ψ)(uk − 1) = Ek(z)− pk−1Ek(pz) ∈Mk(Γ0(p))

in Q[[q]].

4.5.2 Let A2 be the semigroup of symmetric, semi-definite positive, half-integral

matrices of size 2. Let Λ be the one variable power series ring O[[X]] with

coefficients in O. We fix a character χ = ωa of (Z/pZ)×, where a is some integer

with 0 ≤ a ≤ p − 1, and ω : Z×p → µp−1 is the Teichmuller character. Following

Panchishkin and Kitagawa [Pan], we call a formal power series F of Λ[[qA2 ]]

a Λ-adic Siegel modular form with character χ if F (P ) gives a q-expansion of
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Siegel modular forms in Mk(P )(Γ
2
0(p

r(P )), εPχω
−k(P );O) for all P ∈ Xalg(Λ) with

k(P ) ≥ 5. We denote by Ms(χ; Λ) the Λ-submodule of Λ[[qA2 ]] generated by

Λ-adic Siegel modular forms. A Λ-adic Siegel modular form F is called a Λ-adic

Siegel cusp form if F (P ) is a cusp form for any P ∈ Xalg(Λ) with k(P ) ≥ 5. We

may regard it as a power series in Λ[[qA2 ]].

For every T =

 a b/2

b/2 c

 ∈ A2 with a, b, c ∈ Z, we say d|T if d|(a, b, c) for

any integer d. Suppose ψ = ωa is an even Dirichlet character. For each power

series Θ =
∑

n α(n)qn ∈ Iσ[[q]], and for each T ∈ A2, we define an element

ωψ(Θ, T ) :=
∑
0<d|T
(d,p)=1

ψ(d)Ad(X)α(
det(2T )

d2
) ∈ Iσ.

Now we define a map SK : Iσ[[q]] → Iσ[[qA2 ]] by

SK(Θ, ψ) :=
∑
T∈A2

ωψ(Θ, T )qT . (34)

Let f be the Λ-adic cusp form associated to λ as in section 4.4. Let Θ =

Θ(Φf ) be the Λ-adic Shintani lifting of f . We denote SK(f , ψ) = SK(Θf , ψ), and

put δp = diag(p, p, 1, 1) ∈ M4(Z). For each arithmetic point P ∈ Xalg(I) with

signature (2k, id), suppose P 1 ∈ X (Iσ) and P 2 ∈ X (Iσ⊗Λ Λ) lie over P , then P 1

has signature (k, id) and P 2 has signature (k + 1, id).

Theorem 4.9 Let ψ = ωa be an even Dirichlet character with 0 ≤ a ≤ p − 1.

For each arithmetic point P ∈ X (I) with signature (2k, id), satisfying a ≡ k + 1
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mod p− 1, we have

SK(f , ψ)(P 2) =
ΩP

Ω−fP
(SK(fP )− SK(fP )|δp) ∈ Sk+1(Γ

2
0(Np);OK) (35)

We call SK(f , ψ) a Λ-adic Saito-Kurokawa lifting of f .

Proof. Since Θ(P 1) is a half-integral cusp form in Kohnen’s +-space, we may

write its q-expansion as

Θ(P 1) =
∑

0<n≡0,3 mod 4

c(n)qn ∈ S+
k+1/2(Γ0(4Np

r);OK).

By Theorem 3.4, the power series defined by

φ(τ, z) =
∑
n,r∈Z
r2<4n

c(4n− r2)qnζr

is a Jacobi cusp form in Jk+1,1(Np
r;OK). For each positive integer m, recall the

index changing operator Vm : Jk+1,1 → Jk+1,m defined by equation (11) in scetion

2.3. Applying Theorem 3.6, we have

Fk+1(Z) := Vφ(Z) =
∑
m≥0

(φ|Vm)(τ, z)e(mτ ′)

=
∑
n,r,m

 ∑
d|(n,r,m)

dk−1c(
4mn− r2

d2
)

 e(nτ + rz +mτ ′)

is a Siegel cusp form in Sk+1(Γ0(Np
r);OK).

On the other side, for T =

 n r/2

r/2 m

 ∈ A2, we have

ωψ(Θ, T )(P 1) =
∑
0<d|T
(d,p)=1

dkc(
4mn− r2

d2
).
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Therefore,

SK(f , ψ)(P 2) =
∑
T∈A2

ω(Θ, T )(P 1)qT = Fk+1(Z)− pkFk+1(pZ).

Note that pkFk+1(pZ) = Fk+1|k+1δp(Z). Thus Fk+1(Z) − pkFk+1(pZ) is a Siegel

modular form for

Φ = Γ2
0(Np

r) ∩ δ−1
p Γ2

0(Np
r)δp.

Easy to see that Φ contains Γ2
0(Np

r+1). This completes the proof.

4.5.3 Let π : A2 → N× N be the diagonal projection map:

π :

 n r/2

r/2 m

 7→ (n,m).

Note that for each pair (n,m) ∈ N× N, the fiber π−1(n,m) is a finite set:

{r ∈ Z; r2 ≤ 4mn}.

For each Λ-adic form F =
∑
A(T, F )qT ∈ Λ[[qA2 ]], we define a power series

$(F ) ∈ Λ[[qN×N]] by

∑
n,m∈N

a(n,m,$(F ))qn1 q
m
2 =

∑
n,m∈N

 ∑
r∈π−1(n,m)

A((n, r,m), F )

 qn1 q
m
2 . (36)

Then $ is a Λ-module homomorphism.

Proposition 4.2 If F is an odinary Siegel cusp form, then

$(F ) ∈ So(N ; Λ)⊗ So(N ; Λ).
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Proof. Following Panchishkin’s argument in [Pan], and applying the patching

lemma by Hida and Wiles, we have $(F ) ∈ So(N ; Λ) ⊗ S(N ; Λ). For each

arithmetic point P ∈ X (I),

(T (p)⊗ 1)$(F )(P ) = (1⊗ T (p))$(F )(P ).

Hence $(F ) ∈ So(N ; Λ)⊗ S(N ; Λ) ∼= So(N ; Λ)⊗ So(N ; Λ).
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5 One Variable p-adic L-Functions

In this chapter, we construct p-adic measures attached to modular symbols and

to modular forms, to define a one variable p-adic L-function for Sp2 ×GL2.

5.1 p-adic measures attached to modular symbols

We recall the two-variable p-adic L-function by Greenberg and Stevens in [GS].

Put X0 = Spec(Zp[[Z×p ]]), and µΦ = Φ({0}− {i∞}) ∈ D for any modular symbol

Φ ∈ SymbΓ0(N)(D). It’s called the special value of the L-function by Greenberg

and Stevens.

Define the standard two-variable p-adic L-function Lp(Φ) on X0 ×X0 by

Lp(Φ, P, δ) =

∫
Z×p ×Z×p

P (x)δ(y/x)dµΦ(x, y),

for (P, δ) ∈ X0 ×X0.

Moreover, for fixed δ, there’s a unique Zp[[Z×p ]]-morphism

Lp(·, δ) : SymbΓ0(N)(D) → Zp[[Z×p ]], (37)

such that Lp(Φ, δ)(P ) = Lp(Φ, P, δ) for all P ∈ X0. We extend the map (37) by

I-linearity:

Lp(·, δ) : H1
c (Γ0(N),D) → I. (38)
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Then we associate to each Φ ∈ H1
c (Γ0(N),D) a two-variable p-adic L-function

Lp(Φ) on X (I)×X0 by

Lp(Φ, P, δ) = Lp(Φ, δ)(P ),

for (P, δ) ∈ X (I)×X0.

Let f and Φ = Φf have the same meaning in Chapter 4.

Theorem 5.1 ([GS]) The two-variable p-adic L-function Lp(Φf ) interpolates

critical values of the Λ-adic form f . Suppose δ has signature (s0, ψω
1−s0), and ψ

is an even character. For each arithmetic point P ∈ X (I), there exist a p-adic

period ΩP ∈ Qp and a complex period Ωf+
P
∈ C, such that

Lp(Φf , P, δ) =

ΩP · a(p, fP )−r(1− a(p, fP )ψω1−s0(p)ps0−1)
τ(ψω1−s0)(−1)

s0−1
2

M

A(s0, ψω
1−s0 , fP )

Ωf+
P

,

where M is the conductor of ψω1−s0.

Let’s fix a fundamental discriminant −D < 0, with −D ≡ 1 mod 8, such that

the complete L-function A(k, f, χ−D) 6= 0, where χ−D is the Dirichlet character

associated to Q(
√
−D)/Q. Suppose P ∈ X (I), with signature (2k, id). Put

δ = Pk−1,χ−D
∈ X0. Then δ is totally determined by the weight of P , we denote

δ(P ) = δ. It’s the central value of the L-function. We then define a one-variable

p-adic L-function Lp(f)(P ) = Lp(Φf , P, δ(P )). Here’s the specialization to central
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values :

Lp(Φf )(P ) =ΩP · a(p, fP )−r · (1− χ−D(p)a(p, fP )−1pk−1)

· τ(χ−D)(−1)
k−1
2

D
· A(k, χ−D, fP )

Ω+
fP

. (39)

Here, r is a positive integer such that χ−D is of conductor pr on Z×p , and τ(χ−D)

is the Gauss sum w.r.t χ−D.

5.2 Linear form

Denote LK as the fractional field of ΛK . Let M be a finite extension of LK

defined over K, and J be the integral closure of ΛK in M.

Suppose λ′ : ho(N ;OK) → J is a homomorphism of ΛK-algebras. Let g be

the Λ-adic cusp form corresponding to λ′.

There’s an isomorphism ho(N ;OK) ⊗ΛK
M ∼= M⊕ B. Let 1g be the idem-

potent corresponding to the first factor of the above decomposition.

Put hoJ = ho(N ;OK) ⊗ΛK
J , and denote its image in B as h(B). Then the

congruence module is defined as C = (J ⊕ h(B))/hoJ by Hida. It’s a J -torsion

module. Fix a generator Hg of the annihilator of the congruence module C.

Let gi ∈ So(N ; ΛK) (i = 0, 1, 2, · · · ,m) be a basis, and suppose g = g0.

Define ΛK-adic linear forms li : So(N ; ΛK) → ΛK by

l(i)(gj) = δi,j.
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Suppose SK(f , ωa) is a Λ-adic Saito-Kurokawa lifting of f , where ω is the

Teichmuller character and a is an integer. $(SK(f , ωa)) is its pull back onH×H.

We define a linear form

〈$(SK(f), ωa),g × g〉 := l(0) × l(0)($(SK(f), ωa)|Hg · 1gQ
×Hg · 1gQ

) ∈ I⊗̂J .

For any arithmetic points P ∈ X (I) and Q ∈ X (J ) with matching weights

k(P ) + 2 = 2k(Q), εP = εQ = id, suppose that a ≡ k(Q) mod p − 1, then we

have the specialization expression:

〈$(SK(f), ωa),g × g〉(P,Q)

= H(Q)2 · ΩP

Ω−fP
· 〈$(SK(fP ))−$(SK(fP ))|δp, hQ × hQ〉

〈gQ × gQ, hQ × hQ〉

= H(Q)2 · ΩP

Ω−fP
· (1− p−2a(p,gQ)2) · 〈$(SK(fP )),gQ × gQ〉

〈gQ,gQ〉2
(40)

where hQ = gρQ|τNp, and τNp =

 0 −1

Np 0

.

5.3 One variable p-adic L-functions for Sp2 ×GL2

Suppose Θ(Φf ) is the Λ-adic Shintani lifting of f . Let αD be its D-th Fourier

coefficient. For an arithmetic point P ∈ X (I), suppose h is the algebraic Shintani

lifting of fP . Assume P 1 ∈ X (Iδ) is an arithmetic point lying over P , by Theorem

4.8, we have

αD(P 1) =
ΩP

Ω−fP
· ch(D).
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Fix a Λ-adic form f , we define a p-adic function αD(f , P ) = αD(P 1) on X (I).

Put τN =

 0 −1

N 0

. For a normalized eigenform f ∈ S2k(Γ0(N)), it’s

well-known that a(n, f |τN) is the complex conjugate of a(n, f) for any n ∈ N.

Here a(n, f) and a(n, f |τN) are eigenvalues of the Hecke operator T (n), such that

T (n)f = a(n, f)f and T (n)f |τN = a(n, f |τN).

Suppose h′ is the Shintani lifting of f |τN . It’s not clear that ch′(n) is the

complex conjugate of ch(n) for any n ∈ N.

Combining the p-adic L-function of a Λ-adic form f by Greenberg and Stevens,

and the linear form in Section 5.2, we now define a one-variable p-adic L-function

Lp(Sym2(g)⊗ f) for Sp2 ×GL2 on Spec(J )× Spec(I) by

Lp(Sym2(g)⊗ f)(Q,P ) := αD(f , P )−1 · αD(f |τN , P )−1 · Lp(f)(P )

〈SK(f),g × g〉(P,Q) · 〈SK(f |τN),g|τN × g|τN〉(P,Q).

Conjecture 2 For any arithmetic point P ∈ X (I) and Q ∈ X (J ) with matching

weights k(P ) + 2 = 2k(Q), εP = εQ = id, suppose that a ≡ k(Q) mod p− 1, then

we have the specialization of the p-adic L-function to central values:

Lp(Sym2(g)⊗ f)(Q,P ) = t ·H(Q)4ΩP
A(2k, Sym2(gQ)⊗ fP )

〈gQ,gQ〉2Ω+
fP

,

where

t =
τ(χ−D)(−1)

k−1
2

22k
√
DξN

·W (gQ)2a(p, fP )−r(1−χ−D(p)a(p, fP )−1pk−1)(1−a(p,gQ)2p−2)2,

and W (gQ) is the root number of gQ.
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The last piece for the proof of this conjecture is to show that the Fourier

coefficients of h′, the Shintani lifting of f |τN , are complex conjugates of the

Fourier coefficients of h, the Shintani lifting of f .
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