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Abstract

Convex Duality in Singular Control – Optimal Consumption Choice with

Intertemporal Substitution and Optimal Investment in Incomplete Markets

Helena Kauppila

In this thesis we study the problem of optimal consumption choice with invest-

ment in incomplete markets. The agent’s preferences are modeled using non

time-additive utilities of the type proposed by Hindy, Huang and Kreps. For

such preferences the period utilities depend on the entire path of consumption

up to date.

We show that a dual relationship exists between the utility optimization problem

and a carefully chosen dual minimization problem. Time-inhomogeneity of the

preferences and the dependence on past consumption leads to utility gradients

that, in a deterministic setting, have the structure of inhomogeneously convex

functions. A stochastic representation theorem is used to extend this concept

to apply in the random setting. We find that the appropriate dual variables are

not necessarily adapted, but that they do have adapted densities.

We illustrate the techniques by finding explicit solutions in a Wiener driven

market with multiple assets. For the explicit solutions we pass to the infinite

time-horizon, and show how to use the duality framework as a verification the-

orem. The optimal solution is to consume whenever the supremum of a certain

Brownian motion with drift increases. Thus optimal consumption is singular:

there is no period of time in which the agent consumes continuously.
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1 Introduction

The optimal behavior of agents in financial markets is an important area of

research in finance and economics; in this thesis we study the question of simul-

taneous optimal consumption and investment. The agent, endowed with certain

initial capital, is faced with the problem of choosing, at each point in time, a

portion of his wealth to consume and to invest the remainder in the market. In

our model, preferences are based on cumulative consumption, or, more generally,

on the level of satisfaction derived from consumption up to date. In contrast

to standard time-additive utilities, ours does not depend directly on the rate of

consumption. Consequently, consumption can occur in a very general way: for

example in gulps or in a singular way. Such preferences also satisfy important

economic robustness properties.

We show here how convex duality techniques can be used to characterize the op-

timal consumption plan in an incomplete, possibly non-Markovian, semimartin-

gale market. It is well known that for standard time-additive von Neumann-

Morgenstern preferences, those based on the rate of consumption, the dynamic

control problem that arises can be solved via the classical Hamilton-Jacobi-

Bellman approach. The general duality result is also known: it has been solved

by Karatzas and Žitković [34]. In order to handle the singular control problem,

arising for the optimal consumption problem for non time-additive preferences,

an exploration of different notions of convexity, both in the time and state vari-

able, will be required. In this thesis we show how to carry out this program.

The final result is a theorem that relates the solution of the utility optimization

problem with that of a dual minimization problem.
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1.1 Economic Motivation

The single-agent optimal consumption/investment problem was first considered

in continuous time by Merton [39], [40] (see also Samuelson [45] for a treatment

of the multi-period, discrete time case.) In his work, Merton used dynamic

programming techniques to show that the optimal strategy for investors, with

constant relative risk aversion, is to invest a constant proportion of wealth in the

risky asset. He also showed that the rate of consumption should be proportional

to current wealth. In his model the risky asset was driven by a Brownian motion.

In the same year, Merton and Samuelson joined forces to prove, using utility

optimization, a new pricing rule for options [41]. Under their pricing measure,

obtained from utility maximizing considerations, the discounted stock process

is a martingale. Their analysis pre-dates the famous Black and Scholes formula

for option pricing, published in 1973.

Merton modeled the agent’s preferences using time-additive von Neumann-

Morgenstern utilities. These utilities are based on the rate of consumption

and take the form EU(C) = E
∫ T

0
u(t, Ċt)dt, where Ct represents the cumulative

consumption at time t. Such utilities are defined on the space of absolutely

continuous consumption plans. By now, such preferences have become a stan-

dard starting point in the literature, while much important research has been

conducted to address some of the limitations of Merton’s model. For example,

Constantinides [15] added a habit formation index; his goal was to find a model

of utility that would resolve the equity premium puzzle. Applications to habit

formation has also been studied by Detemple and Zapatero [23], and, more re-

cently, Englezos and Karatzas [25], for example. Some of the other extensions
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include consideration of transaction costs (for instance Shreve and Soner [48])

and the introduction of convex portfolio constraints (for instance Cvitanic and

Karatzas [17], Shreve and Xu [47], and Cuoco and Liu [16].)

In our model we use non-time-additive preferences: preferences that are based

on the whole path of consumption up to date (c.f. Section 7.1 for the most

general formulation). Such models of utility were introduced by Hindy, Huang,

and Kreps [29] as a more economically appropriate alternative to the standard

time-additive models. Their most important criticism focused on the concept

of local substitution: consumption at near-by dates and at slightly varying

rates should be close substitutes. They show that preferences continuous in the

Prohorov topology exhibit this desired property and proceed to describe a class

of preferences that are continuous in this topology.

For an intuitive understanding of local substitution, we can think about the

act of making a large purchase such as obtaining a car. From the perspective

of utility, it should not matter too much whether the car is purchased today

or tomorrow. Similarly, companies making a large capital investment should

not be too sensitive to the timing. Continuous consumption at slightly varying

rates, but with the same overall total, should also be close. Examples to think

about here are the purchasing of food items with no storage cost, or that of a

company investing in preventative maintenance of infrastructure.

The intuition from these examples is valid barring any anticipated price shocks.

Thought another way, however, local substitution is exactly what is needed for

continuity of prices. Or rather, in the presence of randomness, we want prices

to not jump at predictable times. This property comes about if there are agents
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in the economy who are willing to withhold consumption or to store goods in

preparation of making a profit at the time of the price shock. The relationship

of local subsititution and equilibrium pricing is discussed further in Hindy and

Huang [27].

The early work of Hindy and Huang [28], establishing solutions in a basic Black-

Scholes market model, offers interesting insights on the qualitative differences

between the behavior of agents who exhibit local substitution and those whose

preferences are modeled as in the classical Merton model. Key characteristics

of the optimal Merton solution are that consumption occurs continuously, the

rate of consumption equals a constant fraction of the current wealth, and that

the agent invests a constant proportion of his wealth in the risky asset. In

contrast, agents who exhibit local substitution follow what Hindy and Huang

call a ratio barrier policy: the optimizing agent invests a constant proportion of

wealth in the risky asset, and consumes just enough the keep the ratio of current

wealth to the current level of satisfaction below a pre-determined level almost

surely. Consequently, in a Black-Scholes market the optimizing agent consumes

in a manner singular with respect to the Lebesgue measure on the time axis. In

addition, it is observed that an agent with intertemporal preferences, preferences

that exhibit local substitution, is less risk averse. One possible interpretation of

this behavior is that with intertemporal preferences the discounted utility from

past consumption allows for higher risk tolerance of future gains.

Following the work of Hindy, Huang, and Kreps [29], and Hindy and Huang

[28], various authors have worked on the problem of utility optimization with

intertemporal preferences. A static approach to the optimization problem, using

an infinite-dimensional analogue of the Kuhn-Tucker conditions, was introduced
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by Bank and Riedel for a deterministic setting in [7] and for stochastic (com-

plete) markets in [9]. For example, these authors find that if the asset prices

follow geometric Brownian motion, then the agent consumes whenever the sup-

premum of a Brownian motion with drift (W (t) + µt) increases. Thus there is

no open interval in which the agent optimally consumes all of the time; con-

sumption is singular. A viscosity solution approach to the problem, one that

can handle more general markets, was introduced by Alvarez [2]. Further so-

lutions in the viscosity solution framework were obtained by Benth, Karlsen

and Reikvam [12] and [11]. A few extensions of the model for preferences have

also been explored in the literature. For example, Hindy, Huang, and Zhu [30]

extend the model to include habit formation.

In this thesis we discuss how duality techniques can be applied to the problem

of optimization with intertemporal preferences. Along the lines of Kramkov and

Schachermayer [36], who provide a general solution to the problem of optimiz-

ing utility from terminal wealth, we show that the solution of the primal utility

optimization problem is related to the solution of a dual minimization problem.

In this way we obtain a general framework for treating the optimal consump-

tion/investment problem in incomplete semimartingale markets. In order to

extend the duality framework to processes, we use the process bipolar theorem

developed by Žitković [51]. Karatzas and Žitković have used this bipolar the-

orem to apply duality methods to the case of time-additive utilities in [34]. In

this thesis we show how the stochastic representation theorem due to Bank [3]

can be used to extend the duality framework to non-time additive utilities. For

a historical development of duality methods see, for example, [36], [32], and [34]

and the references therein.
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1.2 Mathematical Results

The thesis is organized as follows. We first describe the model for the financial

market and the preferences used. In this section, Section 2, we also introduce

the standing assumptions for the paper and the notation used.

In Sections 3–5. we cover the important analytic constructions in preparation

for the proof of the main duality theorem in Section 6. Section 3 is about the

space of consumption plans. We start by discussing the topology on the space

of optional random measures on [0, T ], the most general class of consumption

strategies. For this set of processes we discuss why the Prohorov metric cap-

tures the economically meaningful notion of local substitution. More details

on topologies on the space of consumption plans and the relevant economic

properties are provided in the article [29] by Hindy, Huang, and Kreps.

Our goal is to apply a minimax theorem and for this we will need certain

continuity and compactness properties. To this end, the concept of convex

compactness is introduced (see also Žitković [52]). We prove that the bounded

subsets of the consumption space are convexly compact, in this sense we show

that the topology has enough “compact” sets. In addition, we prove that the

utility function is continuous on reasonable subsets of the consumption space,

and that the natural pairing (see identity (8)) between the consumption space

and our chosen dual variables is lower-semicontinious.

We then proceed to define an appropriate dual problem and a set of dual vari-

ables (processes). First, in Section 4, we discuss the deterministic preliminaries.

In particular, we look at the Legendre-Fenchel transform of the utility func-



7

tional U(·) and use this to define the appropriate conjugate (or dual) functional

V . The gradients of the utility functional are established and these are shown

to have the structure of inhomogeneously convex functions. This generalized

notion of convexity is described in detail in Section 4.1. Once we have es-

tablished the definitions, we show how to evaluate the dual functional on the

space of inhomogeneously convex functions, and prove lower-semicontinuity of

the dual functional. The section serves as a reference for notation on the utility

functional, its dual, and the respective super and subgradients.

In the following section we extend the discussion to random processes. We

show that the delicate question here is the ability (or inability) to exchange the

expectation and the supremum in the definition of the conjugate functional V .

Thus a careful choice of dual variables is required. Sections 5.1 and 5.2 describe

the reasons behind this choice; identity (37) gives the definition of the set of

dual processes. The choice begins with a second look at the budget constraint:

this leads to a consideration of a larger class of processes, or deflators, than

just the set of equivalent (local)martingale measures. Because the consumption

plans are optional processes, it turns out that we can work interchangeably with

a process and its optional projection. This fact gives us much freedom to find

processes that also behave well with respect to the definition of the conjugate

functional. The final step in this program is to use a stochastic representation

theorem (see [3] and [4]) to establish a notion of an inhomogeneously convex

envelope that can be used in the random setting (it is not the pathwise envelope,

we need to go through an auxiliary process first).

This new set of dual variables that we define consists of possibly non-adapted

processes and there are various important properties that we must check are
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true. In the final part of Section 5 we discuss these properties. Most importantly

we show that the set is convex. Due to the time-inhomogeneity of the utility

functional, it is not clear that the set of gradients (of utility) should be convex.

In fact, we make some additional assumptions on the form of the preferences in

order for this to hold. Lastly we show that the set is (Fatou) closed.

Section 6 contains the main theorem in the paper. Theorem 6.3 establishes a

relationship between the primal and dual optimization problems and gives an

explicit description of how these solutions are related. We also show how the

theorem simplifies for a complete market, this is Theorem 6.5.

In the final part, Section 7, we discuss some examples and extensions. In partic-

ular, we show that our duality framework can also be applied to utilities based

on the level of satisfaction (discounting of past consumption is accounted for)

and calculate an explicit solution for time-homegeneous Wiener driven models.

The examples are calculated for an infinite time-horizon where it is possible to

solve the stochastic representation problem (Section 7.2). In this case we use

the fact that the duality set-up can also be used as a verification theorem (and

as a way to arrive at a good guess). The verification theorem is stated in Section

7.3. We are currently working on extending these calculations to more general

Lévy process markets.



9

2 The Model

We consider an agent endowed with an initial wealth x and presented with

the task of choosing an optimal consumption and investment strategy over a

specified time period [0, T ]. For simplicity, we assume that T is finite unless

otherwise specified. The investor has preferences represented by an expected

utility functional, to be specified later. The optimization problem then is to

find a consumption plan C∗ that solves

u(x) , sup
C∈C(x)

EU(C). (1)

In this section we shall explain: what is the model for the financial market,

what are financiable consumption plans C(x), and what does the utility function

U(·) look like. This discussion is intended to further motivate the optimal

consumption problem, as well as to serve as a reference for terminology and

assumptions.

The financial market consists of a bond S0 and n assets S1, S2, ..., Sn whose

dynamics are modeled by RCLL, locally bounded semimartingales. All of these

instruments are modeled on a probability space (Ω,F ,P) endowed with a filtra-

tion F = (Ft)t∈[0,T ] that satisfies the usual conditions; it is right-continuous and

complete. We assume that the bond is constant S0 ≡ 1. Observe, however, that

the general setting can be recovered via a change of numéraire and appropriate

discounting of consumption. In general, such markets are incomplete. In order

to guarantee absence of arbitrage, we assume that there exists a measure Q ∼ P

such that S is a local martingale under Q, i.e. we assume the existence of an

equivalent local martingale measure. The equivalence of no arbitrage (no free
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lunch with vanishing risk) and the existence of an equivalent local martingale

measure was proved by Delbaen and Schachermayer [19]. In the examples sec-

tion we will consider the case T =∞, and such that the market is possibly only

arbitrage free for every finite (deterministic) time-horizon. In general, markets

with an infinite time-horizon are not arbitrage free.

In this market, we first look at pure investment strategies. Such strategies are

defined by a pair (x,H). Here the constant x is the initial wealth of the investor,

and H = (H i)i≤d is a predictable, S-integrable process. The interpretation is

that the components H i are the numbers of shares held of each asset Si. The

value process X = (Xt)t∈[0,T ] associated to such a strategy is given by the

stochastic integral

Xt = x+

∫ t

0

Hu dSu, 0 ≤ t ≤ T. (2)

For any x ∈ R+, let X (x) denote the set of value processes with initial value

X0 = x and with non-negative capital at any instant:

X (x) , {X is given by equation (2) and such that Xt ≥ 0 ∀t ∈ [0, T ]} . (3)

A pure investment strategy (x,H) is admissible if the associate wealth process

is an element of X (x).

On the other hand, a combined consumption and investment strategy is a

triple (x,H,C). Here x and H are as before and the cumulative consump-

tion C = (Ct)t∈[0,t] is a right-continuous, increasing, and adapted process. Thus

we interpret Ct as the cumulative consumption up to time t, with C0 > 0 im-

plying a gulp of consumption at t = 0. We denote the set of all consumption
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plans by

C , {C : Ω× [0, T ] 7→ R+ | C is increasing,

right-continuous, and adapted.}
(4)

Observe that this description of a consumption plan is very general. For in-

stance, we have not assumed that consumption plans are absolutely continuous;

consumption in gulps and in a singular way is also allowed.

Lastly, we wish to find which consumption plans can be financed with the initial

wealth x available to the investor and the ability to invest in the market. In other

words, we want to characterize the consumption plans C for which there exists

a predictable, S-integrable process H such that the value process V = (Vt)t∈[0,T ]

Vt = x+

∫ t

0

Hu dSu − Ct, 0 ≤ t ≤ T (5)

is nonnegative. Triples (x,H,C) whose associated value process is non-negative

are considered admissible and the associated consumption plans are financiable

with initial wealth x.

The optional decomposition theorem (see the papers by Föllmer and Kramkov

[26], Kramkov [35], and El Karoui and Quenez [24]) allows us to give a dual

description of this set. The important ingredient is an appropriate subset of the

set of equivalent probability measures. If we restrict to positive pure investment

strategies, then it turns out that the appropriate subset is the set of equivalent

local martingale measures (Example 2.2 in [26] and Theorem 2.1 in [35].)

M , {Q ∼ P | the underlying assets S are local martingales under Q} (6)

The essential statement of the theorem is that a process V = (Vt)t∈[0,T ] is the

value process of an admissible triple (x, H̄, C̄) if and only if V is a supermartin-
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gale with respect to all Q ∈M. Furthermore, it can be shown (Proposition 4.3

[35]) for any Ft-measurable random variable Z ≥ 0, the process

Vt = ess sup
Q∈M

EQ[Z |Ft]

is a supermartingale for all Q ∈ M. In particular, if we let Z = CT then these

results show that there exist an admissible strategy (V0, H) such that∫ t

0

Hu dSu + V0 − Ct ≥ EQ [CT |Ft]− Ct ≥ 0.

Here we may take any representative Q ∈ M. The essential result is that C is

financiable with initial wealth V0, where

V0 = sup
Q∈M

EQ[CT ].

In order to prepare for the dual approach to the optimization problem (1), we

note that this budget constraint can also be expressed in terms of the density

processes Y Q of the equivalent local martingale measures Q ∈ M, namely, the

set

YM ,

{
Y Q s.t. Y Q

t = E
[
dQ
dP

∣∣∣∣Ft] , 0 ≤ t ≤ T, Q ∈M
}
. (7)

By assumption M 6= ∅. For the conditional expectation we take the right

continuous version, so that our processes Y Q are RCLL. There is a natural

bilinear pairing between positive processes Y , including the set YM, and the

consumption plans C ∈ C:

E〈C, Y 〉 , E
∫ T

0

Yt dCt. (8)

Note that the integral includes the endpoints – the same will be true of all

integrals in this paper unless specifically stated otherwise. Thus C0 > 0 cor-

responds to a gulp in consumption at time zero, i.e., a point mass at zero.
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Furthermore, because all consumption plans are optional processes, Theorem

1.33 in [31] implies that

EQ[CT ] = E
[∫ T

0

Y Q
t dCt

]
= E〈C, Y Q〉.

In other words, the set C(x) of consumption plans financiable with initial wealth

x can be defined as

C(x) , {C ∈ C | E〈C, Y Q〉 ≤ x, ∀Y Q ∈ YM}. (9)

A class of utilities that makes sense for such general consumption plans was

introduced by Hindy, Huang, and Kreps [29]. These authors also discuss impor-

tant economic considerations and continuity properties satisfied by such utilities

and we return to this discussion in the next section. There we will also discuss

the choice of topology on the consumption space. For now, however, we focus on

the definitions. In particular, the total utility U(C) derived from a consumption

plan C ∈ C is given by

U(C) ,
∫ T

0

F (t, Ct) dt. (10)

Of course, our optimization problem deals with expected total utilities EU(C).

In this formulation, F is called the felicity function. In the remainder of this

section we list the assumptions regarding F that we will assume throughout.

We also give reasons for each assumption and references in the literature where

these assumptions appear also.

The first assumption describes the appropriate concavity and boundary condi-

tions. The second part of it is what are called the Inada conditions.

Assumption 2.1 The felicity function F (t, x) is jointly continuous in (t, x)

and strictly concave, increasing in its second argument, and bounded from below.
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In addition, we assume that for each time t the derivative with respect to the

second argument F ′(t, x) = ∂F (t,x)
∂x

exists, is continuous, and satisfies the Inada

conditions:

F ′(t, 0) , lim
x→0

F ′(t, x) =∞, (11)

F ′(t,∞) , lim
x→∞

F ′(t, x) = 0 (12)

The second assumption is required to show existence in the dual problem. Sim-

ilar conditions have been imposed by Kramkov and Schachermayer [36], and

Karatzas and Žitković [34], for example.

Assumption 2.2 For each time t the asymptotic elasticity AE of the felicity

function is strictly less than one:

AE F (t, ·) , lim sup
x→∞

F ′(t, x)x

F (t, x)
< 1.

This is the condition of reasonable asymptotic elasticity. The economic intu-

ition behind this condition is that F ′(t, x)x/F (t, x) is the ratio (at time t) of

the marginal utility F ′(t, x) and the average utility F (t, x)/x. Intuition about

risk aversion would suggest that the marginal utility be much smaller than the

average utility if x is large. It is related to, and in general weaker than, similar

conditions imposed by Karatzas, Lehoczky, Shreve, and Xu [32]. The relation-

ship between these conditions is described in [46].

Lastly, we need an assumption to guarantee the convexity of the set of dual

variables. This assumption arises from the time-inhomogeneity of the utility

function U and it guarantees that the set of utility gradients is convex.
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Assumption 2.3 The spatial derivative Fx = ∂F (t,x)
∂x

of the felicity function is

C1 and Ftx = ∂Fx(t,x)
∂t

is concave relative to Fx, i.e. Ftx ◦ F−1
x is concave, in the

second variable and for all t ∈ [0, T ], on the image Fx(t,R+).

For instance, if the felicity function is separable, F (t, x) = θ(t)κ(x), then Ftx is

trivially concave relative to Fx.
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3 Description of the Consumption Space

In their fundamental work, Hindy, Huang and Kreps [29] and Hindy and Huang

[27], consider various topologies on the space of consumption plans C and their

economic implications. In particular, they identify the Prohorov metric as a

metric that captures the property of local substitution.

In the first part of this section we recall the definition of the Prohorov metric

and illustrate the concept of local substitution with an example (Figure 1). We

then show that the appropriate extension to the case of uncertainty has good

analytic properties. Most importantly, we use the notion of convex compactness

introduced by Žitković [52] and show that bounded subsets of the consumption

space are convexly compact. This fact will allow us to later prove a certain dual-

ity result using a new version of the minimax theorem, proved in the appendix,

for convexly compact spaces. In this section, we also show that the pairing

E〈C, Y 〉 of consumption plans and dual processes is lower-semicontinuous in C

for all Y for which there exists a lower-semicontinuous process Ỹ such that their

optional projections agree, ◦Ỹ = ◦Y .

In the second part, we show that our preferences, defined in (10), are continuous

in the chosen topology. This fact is important for several reasons. For one,

it means that the utility from optimal consumption can be approximated by

approximating the optimal plan itself. Hindy, Huang and Kreps [29] show that

preferences based on the rate of consumption are in general not continuous in

this topology.

This section discusses the topological and analytic properties of the space of
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consumption plans, independent of the financial market. We let the terminal

time T to be possibly infinite for completeness. Also, here the finite time hori-

zon case is actually the more complicated one because of the need to impose

conditions on the convergence of consumption plans at the terminal time.

3.1 Definition of the Metric and Analytic Properties

The important economic consideration in the choice of topology is local sub-

stitution: plans differing by small shifts in the time of consumption should be

close. Without uncertainty, a topology that satisfies this economic robustness

is that induced by the Prohorov metric

d(C,C ′) , inf{ε > 0 | |C(T )− C ′(T )| < ε if T <∞, and

C(t− ε)− ε ≤ C ′(t) ≤ C((t+ ε) ∧ T ) + ε ∀t ∈ [0, T )}.
(13)

Figure 1 illustrates the ε−neighborhood of a particular consumption plan. In

particular, we see that discontinuities can mean that |C(t)− C ′(t)| is large for

t < T even for plans that are close in the Prohorov metric. Behavior at the

terminal time T , however, is more controlled. One consequence of requiring

the total mass of consumption plans (considered as measures on [0, T ]) to be

close is that convergence in this metric is equivalent to convergence in the weak

topology (see for example [29]). We will use this fact repeatedly.

In the case of uncertainty, we extend this metric as follows,

dC(C,C
′) , E [d(C,C ′) ∧ 1] . (14)
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C(t)

C((t+ ε) ∧ T ) + ε C(t− ε)− ε

Figure 1: The ε-neighborhood of a consumption plan C is depicted above as the

region bounded by the dotted and dashed lines. For t < T this neighborhood is

described by C((t+ε)∧T )+ε and C(t−ε)−ε. For example, behavior at t̃ illustrates

how the neighborhood behaves at points of discontinuity prior to T . The requirement

that the cumulative consumption at the terminal time be close to C(T ) is indicated

by the jump discontinuity of the dotted line at t = T .

We can think of convergence in this metric as equivalent to weak convergence

in probability, and we will make this notion more precise in the proofs.

The topology induced by the metric dC is equivalent to the family of norm

topologies considered by Hindy and Huang [27] when restricted to the consump-

tion set C (Hindy and Huang consider topologies on the commondity space, the

linear span of C.) In this topology, consumption of a known quantity at nearby

predictable times are close substitutes (Proposition 2 in [27]). This topology is

thus consistent with the stochastic analogue of local substitution.

In the rest of this subsection, we show that this topology also has good analytic

properties. Eventually, we wish to use a minimax argument (Theorem 6.2) to

prove that a desired dual relationship holds. In order to apply this theorem,
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however, we need enough convexly compact sets, lower-semicontinuity of the

pairing E〈·, ·〉, and (upper-semi)continuity of preferences. We treat the first two

properties first, and deal with the continuity of preferences in Section 3.2.

The idea for convex compactness, a generalized notion of compactness, is due to

Žitković. In [52] he shows that convex compactness can be a useful substitute

for regular compactness in many problems of optimization and mathematical

economics. We will show in Theorem 3.3 that sets of consumption plans that

are bounded in probability are also convexly compact. Before proceeding with

the proof, we mention the key concepts from Žitković [52].

Definition 3.1 (Definition 2.1 in [52]) A convex subset E of a topological

vector space X is convexly compact if for any non-empty set A and any

family (Fα)α∈A of closed and convex subsets of E for which⋂
α∈D

Fα 6= ∅ for any finite D ⊂ A, D 6= ∅

we also have that ⋂
α∈A

Fα 6= ∅

In the following we let Fin(A) denote the set of finite subsets of the set A.

By analogy with the usual notion of compactness, convex compactness can

equivalently be defined in terms of the convergence of nets.

Proposition 3.2 (Proposition 2.4 in [52]) A subset E of a topological vec-

tor space is convexly compact if and only if for every net (xα)α∈A in the set E

there exists a subnet (yβ)β∈B of convex combinations of (xα)α∈A and a y ∈ E

such that yβ → y.
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A net (yβ)β∈B is called a subnet of convex combinations of (xα)α∈A if there

exists a mapping D of B into the set of finite subsets of A, i.e. D : B → Fin(A),

such that

1. yβ ∈ conv{xα |α ∈ D(β)} for each β ∈ B

2. For each α ∈ A there exists β ∈ B such that α′ � α for each α′ ∈⋃
β′�βD(β′)

Remark: It is well known that in a metric space, sequential compactness is

equivalent to compactness. However, we were unable to prove a similar state-

ment for convex compactness. This is because for a general metric there is no

relationship between the distance of points and distance between convex com-

binations of points. In particular, ε-neighborhoods are not necessarily convex.

Thus in the following we will use the notion of a subnet of convex combinations,

despite working over a metric space.

Theorem 3.3 (Convex compactness) Let E be a convex subset of the con-

sumption space C that is closed in the topology generated by the metric dC. Then

E is convexly compact if and only if the set ET := {CT s.t. C ∈ E} is bounded

in probability. If T =∞ then we let CT := limt→T Ct.

Recall that a set A ⊂ L0
+ is bounded in probability if for all ε > 0 there exists

a constant M such that P(f > M) < ε for all f ∈ A.

Remark: We divide the proof into two parts. First we show that sets bounded

in probability are convexly compact. An important idea for this step is to use a

(generic) strictly concave functional on the space of consumption plans in order



21

to establish convergence of a net of convex combinations. We have adapted

this technique from the papers of Delbaen and Schachermayer (Lemma A1.1 in

[19], ) and Žitković (Theorem 3.1 in [52].) The proof of the second part, that

convexly compact sets are bounded in probability, is only a slight modification

of what appears in [52].

Proof : (⇐) Let {Fα}α∈A be a collection of closed, convex subsets of E

having the finite intersection property. The finite subsets D ∈ Fin(A) form a

directed set with the order

D1 � D2 if and only if D1 ⊇ D2.

With this directed set we associate a collection of chosen elements from the sets

Fα. More specifically, for each D ∈ Fin(A), fix some arbitrary XD ∈
⋂
α∈D Fα

(if D = ∅, then let XD ∈ E). Observe that if CD ∈ conv(XD′ |D′ � D) ,

then, because each set Fα is convex, CD ∈
⋂
α∈D Fα. We will show that we

can pick these convex combinations CD so that the resulting net converges to a

consumption plan C ∈
⋂
α∈A Fα.

The first step is to consider, for any D ∈ Fin(A) the supremum

sD , sup

{
E
∫ T

0

φ(Ct) dµ(t)

∣∣∣∣ C ∈ conv(XD′ |D′ � D)

}
,

where φ is the strictly concave, bounded function φ(x) := 1 − e−x, and µ is a

probability measure with full support on the interval [0, T ] and with a point mass

at T if T <∞. These choices ensure that the supremum is uniformly bounded

by some constant W ∈ R+. In particular, because sD1 ≥ sD2 if D2 � D1,

the net (sD)D∈Fin(A) is bounded, monotone decreasing, and hence convergent to

some s∞ ∈ [0,W ].
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In order to construct the appropriate net of consumption plans, we pick, for

each D ∈ Fin(A), some CD ∈ conv(XD′ |D′ � D) such that

E
∫ T

0

φ(CD) dt ≥ sD −
1

#D

holds.

At this point we also make a further comment about the function φ: for any

given constant K > 0, there exists a constant ε > 0 such that

φ

(
x1 + x2

2

)
≥ 1

2
φ(x1) +

1

2
φ(x2) + ε

holds for all x1, x2 such that min(x1, x2) ≤ K and |x1 − x2| > 1/K. Indeed, for

such x1 < x2

φ

(
x1 + x2

2

)
− 1

2
[φ(x1) + φ(x2)] =

1

2
e−x1

[(
1− e−

x2−x1
2

)
−e−

x2−x1
2

(
1− e−x2−x12

)]
≥ 1

2
e−x1

(
1− e−

x2−x1
2

)(
1− e−

x2−x1
2

)
≥ 1

2
e−K

(
1− e−

1
2K

)2

.

We can integrate this result with respect to the product measure P̄ := P⊗ µ in

order to obtain the estimate

E
∫ T

0

φ

(
CD1(t) + CD2(t)

2

)
dµ(t) ≥ 1

2
E
∫ T

0

φ(CD1) dµ(t) +
1

2
E
∫ T

0

φ(CD2) dµ(t)

+ εP̄ [|CD1 − CD2| > 1/K,min(CD1 , CD2) ≤ K]

Observe that because 1
2
(CD1 +CD2) ∈ conv(XD′ |D′ � D1 ∩D2) we can obtain

an estimate for the probability

εP̄ [ |CD1 − CD2| > 1/K,min(CD1 , CD2) ≤ K ] ≤sD1∩D2 −
1

2
(sD1 + sD2)

+
1

2

(
1

#D1

+
1

#D2

)
.
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Furthermore, because the net (sD)D∈Fin(A) is convergent, for any given κ > 0

there exists a set D(κ) ∈ Fin(A) such that

s∞ + κ ≥ sD ≥ s∞ ∀D � D(κ).

If we choose D1 and D2 such that Di � D(κ) for i = 1, 2 and such that

#D1,#D2 ≥ κ−1 then we have that,

sD1∩D2 −
1

2
(sD1 + sD2) +

1

2

(
1

#D1

+
1

#D2

)
≤ 2κ.

In addition, because the set ET is bounded in probability, for any given κ > 0

there exists a constant M such that P(CT ≥ M) < κ for all C ∈ E. Because

consumption plans are increasing, this implies that

P̄ [min(CD1 , CD2) ≥M ] < κ.

If we choose K > M , these two estimates together show that

P̄ [|CD1 − CD2| > 1/K] ≤ P̄ [|CD1 − CD2| > 1/K,min(CD1 , CD2) ≤ K]

+ P̄ [min(CD1 , CD2) ≥ K]

≤3κ

In particular, our sequence is Cauchy in probability:

P̄ [|CD1 − CD2| > λ]→ 0 ∀λ > 0

The next step is to show that convergence in (product) probability implies

convergence in the topology generated by the metric: dC(·, ·) = E(1 ∧ d(·, ·)).
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The first step is to calculate,

E[1 ∧ d(CD1 , CD2)] =

∫
{d(CD1

,CD2
)>λ}

1 ∧ d(CD1 , CD2) dP

+

∫
{d(CD1

,CD2
)≤λ}

1 ∧ d(CD1 , CD2) dP

≤P[d(CD1 , CD2) > λ] + λ

We want to show that the probability on the right hand side converges to zero

with respect to the net indexed by D ∈ Fin(A). This fact will show that

(CD)D∈Fin(A) is a Cauchy net with respect to dC.

For a finite time horizon, we need to consider two possible sources of non-

convergence: failure to converge at the terminal time T in probability, and

failure to converge for some t ∈ [0, T ) with respect to the metric dC.

Convergence at terminal time points is a direct consequence of convergence in

the product topology. In fact, for a finite time-horizon (this case can be ignored

for T =∞) the measure µ has a point mass at t = T , thus

P [|CD1(T )− CD2(T )| > λ]→ 0 ∀λ > 0.

In particular, for all ε > 0 there exists a set D such that if D1 ⊇ D and D2 ⊇ D

then P[|CD1(T )− CD2(T )| > λ] < ε.

For t ∈ [0, T ) we proceed by contradiction. To simplify notation, we assume for

the remainder, without loss of generality, that |CD1(T ) − CD2(T )| ≤ λ. Thus,

if we assume, to reach a contradiction, that for a fixed λ > 0 and ω ∈ Ω the

estimate d(CD1(ω), CD2(ω)) > 2λ is true, then there exists t ∈ [0, T ) such that
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at least one of the following holds:

CD1(t) > CD2((t+ 2λ) ∧ T ) + 2λ,

or

CD1(t) < CD2((t− 2λ) ∨ 0)− 2λ.

Without loss of generality, we may assume that the first statement holds. In par-

ticular, because consumption plans are increasing, we have the stronger state-

ment:

CD1(t) > CD2((t+ ε) ∧ T ) + 2λ ∀ ε ∈ (0, 2λ).

Combined with the fact that CD1 is right-continuous, we deduce from the tri-

angle inequality that there exists a δ(ω) > 0 such that

if s ∈ [t, t+ δ(ω)] then |CD1(s)(ω)− CD2(s)(ω)| > λ.

In particular, ∫ T

0

1{|CD1
(ω)−CD2

(ω)|>λ} dµ(t) ≥ µ([t, t+ δ(ω)]) > 0.

The Fubini-Tonelli theorems imply that

P̄[|CD1 − CD2| > λ] > E[µ([t, t+ δ])].

Taking limits on the left hand side (there is not limit to take on the right),

shows that E[µ([t, t + δ]] = 0. In particular, the result µ[t, t + δ(ω)] > 0 holds

only on a set of P-measure 0. In particular,

P(d(CD1 , CD2) > 2λ)→ 0 ∀ 2λ > 0.

Consequently, there exists D(λ) ∈ Fin(A) such that ,

E(1 ∧ d(CD1 , CD2)) ≤ 2λ ∀D1, D2 � D(λ).
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We thus have that (CD)D∈Fin(A) is a Cauchy net in the space of consumption

plans C endowed with the metric dC. In addition, we have that the space C

is complete. To show this, first observe that for a fixed ω ∈ Ω the space

C(ω) = {C(ω) |C ∈ C} is complete with respect to the Prohorov metric d(·, ·).

In addition, we can use the techniques in the proof of continuity of preferences

(Lemma 3.5) to show that if Cn is a Cauchy sequence of consumption plans,

then there exists a subsequence Cnk such that Cnk(ω) are Cauchy for almost all

ω ∈ Ω. Lastly we note that to show completeness, it is sufficient to consider

sequences because C is a metric space.

In particular, there exists a consumption plan C∞ ∈ E such that CD −→ C∞

in the metric dC. Furthermore, since

CD′ ∈
⋂
α∈D

Fα ∀D′ ⊇ D

and because each set Fα is closed, we must have that the limit C∞ ∈
⋂
α∈D Fα

for all D ∈Fin(A). In fact, C∞ ∈
⋂
α∈A Fα and so this intersection is not empty.

(⇒) It remains to show that if the set E is convexly compact, then the end

values ET are necessarily bounded in probability. Suppose that ET ⊂ L0
+ is

not bounded in probability. Then there exists an ε ∈ (0, 1) and a sequence

{Cn}n∈N ⊂ E such that

P(Cn
T ≥ n) > ε ∀n ∈ N.

Because the set E is convexly compact, there exists a subnet {Cβ}β∈B of convex

combinations of {Cn}n∈N that converges to some C ∈ E. In particular,

∀n ∈ N ∃βn s.t. Cβ′ ∈ conv(Cm, m ≥ n) ∀ β′ � βn.
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Lemma 9.8.6 (p. 205) in [20] allows to construct an estimate for these convex

combinations. In particular, we may write Cβ
T =

∑m
j=n λjC

j
T where

P
(
λjC

j
T ≥ λjn

)
> ε

based on the construction of the sequence (Cn
T )n∈N. The lemma then shows that

for any 0 < η < 1, P
(
Cβ
T ≥ nηε

)
≥ ε(1−η)

1−ηε . Letting η = 1/2 we obtain,

P
(
Cβ
T ≥

nε

2

)
≥ ε

2
.

Because convergence in the topology generated by the metric dC(·, ·) implies

convergence of the terminal values, then for large enough β

P
(
|CT − Cβ

T | >
nε

4

)
≤ ε

4
.

Combining these two estimates, we can show that

P
(
CT ≥

nε

4

)
≥ P

(
Cβ
T ≥

nε

4

)
− P

(
|CT − Cβ

T | >
nε

4

)
≥ ε

4
.

In particular, P(CT = +∞) > 0 and C /∈ E, a contradiction. 2

We also have the following regularity result.

Lemma 3.4 Let Y be a non-negative and (pathwise) lower-semicontinuous stochas-

tic process. Then the mapping

C 7→ E〈C, Y 〉

is lower-semicontinuous with respect to dC. In fact, it is enough to assume that

there exists a process (not necessarily adapted) Ỹ ≥ 0 with lower-semicontinuous

paths such that the optional projections agree: ◦Y = ◦Ỹ . The result also holds

for all non-negative supermartingales Y .
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Proof : The proof has three main parts. In the first we show that the mapping

is continuous if the paths of Y are continuous. We then extend the result for

lower-semicontinuous Y using an approximating family of functions. In the

second part we prove that if Y is a nonnegative, RCLL, supermartingale of class

(D) then it can be written as the optional projection of a lower-semicontinuous

process. In the third part we use a localization procedure to extend the result

for all nonnegative supermartingales Y .

(i) Because C is a metric space, it suffices to show that if (Cn)n∈N is a sequence

of consumption plans converging to some C ∈ C, then

E
∫ T

0

Yt dC(t) ≤ lim inf
n→∞

E
∫ T

0

Yt dCn(t). (15)

The first step in the proof is to pass to the subsequence (C ′n)n∈N that achieves

this limit inferior. In other words, such that

lim inf
n→∞

E
∫ T

0

Yt dCn(t) = lim
n→∞

E
∫ T

0

Yt dC
′
n(t)

holds.

Because this subsequence is also convergent to C in the topology induced by

the metric dC, we can use the arguments in Lemma 3.5 to extract a subsequence

(C ′nk)k∈N such that C ′nk converges to C in the weak topology on [0, T ], almost

surely. If Y is pathwise continuous, then Fatou’s lemma and the definition of

weak convergence imply

lim
n→∞

E
∫ T

0

Yt dC
′
n(t) = lim

k→∞
E
∫ T

0

Yt dC
′
nk

(t)

≥ E lim inf
k→∞

∫ T

0

Yt dC
′
nk

(t)

= E
∫ T

0

Yt dC(t).
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Thus the result is true for pathwise continuous processes Y . For the more

general case, we first make the remark that, because each consumption plan Cn

is optional,

E
∫ T

0

Yt dCn(t) = E
∫ T

0

◦Yt dCn(t).

The assumptions of the lemma imply that it is sufficient to prove relation (15)

for pathwise lower-semicontinuous processes. Lower-semicountinuous functions

that are bounded from below, however, can be written as pointwise limits of in-

creasing families of Lipschitz continuous functions (for example theorem 3.13 in

[1]). For each ω ∈ Ω denote this approximating sequence by (Yα(ω))α∈N. Alter-

natively, we may consider (Yα)α∈N as a family of Lipschitz continuous processes,

converging pointwise to the process Y . These processes Yα are FT ⊗ B[0, T ]-

measurable, but not necessarily adapted.

We make some observations about this approximating family. First, because

Yα ≤ Y ,

E
∫ T

0

Yα(t) dCn(t) ≤ E
∫ T

0

Y (t) dCn(t) ∀n ∈ N.

Also, because each Yα is continuous,

E
∫ T

0

Yα(t)dC(t) ≤ lim inf
n→∞

E
∫ T

0

Yα(t)dCn(t).

Furthermore, monotone convergence implies that

lim
α→∞

E
∫ T

0

Yα(t) dC(t) = E
∫ T

0

Y (t)dC(t).

Combining these observations finishes the proof:

E
∫ T

0

Y (t) dC(t) = lim
α→∞

E
∫ T

0

Yα(t) dC(t) ≤ lim
α→∞

lim inf
n→∞

E
∫ T

0

Yα(t) dCn(t)

≤ lim inf
n→∞

E
∫ T

0

Y (t) dCn(t).
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Because the pairing is stable with respect to optional projections, E〈C, Y 〉 =

E〈C, ◦Y 〉, we only need to require that Y is the optional projection of something

lower-semicontinuous in order for the conclusion of the lemma to hold.

(ii) Next we show that if Z is a nonnegative RCLL supermartingale of class

(D), then there exists a lower-semicontinuous process (ζt)t∈[0,T ] (not necessarily

adapted) such that

Zt = E[ζt |Ft] a.s. for t ∈ [0, T ]

Furthermore, because Z is right-continuous, we may write Z = ◦ζ.

Theorem 8, chapter VII [22] states that if Z is a RCLL, nonnegative, super-

martingale of class (D), then there exists a predictable, integrable, increasing

(so right continuous by definition) process A indexed by [0,∞] which is zero at

t = 0 but may have a jump at infinity, such that

Zt = E[A∞ − At |Ft] a.s. for t ∈ [0,∞].

For a finite time-horizon, a similar statement holds with ZT = 0. We can always

add in ZT without affecting the continuity properties. Letting ζt = A∞ − At
proves the first statement. Because ζ is right-continuous and decreasing, it must

be lower-semicontinuous. Because ζ is right-continuous, ◦ζ is right-continuous

also (Theorem 47 VI in [22]). In particular, the identity ZS = E[ζS |FS] holds

almost surely for all finite stopping times S, i.e. Z = ◦ζ.

Consequently, the mapping C 7→ E〈C, Y 〉 is lower-semicontinuous for all non-

negative RCLL supermartingales of class (D).

(iii) As a final step, we prove that the mapping is lower-semicontinuous for all

nonnegative, RCLL supermartingales Y (for a finite time horizon). We start by
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observing that there exists a localizing sequence (τn)n∈N of stopping times such

that limn→∞ τn = T -a.e. and such that the stopped process Y τn is of class (D)

for each n. For this step, we argue as in the proof of Corollary 5.5 (by letting

τn , n ∧ inf{t > 0 |Yt ≥ n}).

Now suppose that (Cn)n∈N is a sequence of consumption plans converging to

some C ∈ C, then

lim inf
n→∞

E〈Cn, Y 〉 ≥ lim inf
n→∞

E〈(Cn)τm , Y 〉 ≥ E〈Cτm , Y τm〉.

The last inequality follows from the results proven in parts (i) and (ii). Taking

limits as m tends to infinity, we obtain

lim
m→∞

E〈Cτm , Y τm〉 = lim
m→∞

E
∫ τm

0

YtdC(t) = E
∫ T

0

YtdCt = E〈C, Y 〉.

In the above we have used the monotone convergence theorem to justify the

operations with limits. Putting these two parts together, we obtain the desired

result:

lim inf
n→∞

E〈Cn, Y 〉 ≥ E〈C, Y 〉.

2

In the remainder of this subsection we discuss the relationship of these results

regarding the mapping C 7→ E〈C, Y 〉 with the literature on equilibrium pricing.

Intuitively, prices should not jump in the absence of a surprise. This is because

if, for example, a price jump upwards is known in advance, there will be some

agents willing to withhold consumption today, and to sell later at the higher

price. Thus in an equilibrium the price today should be very close to the price

tomorrow. This intuition relies on the assumption that there are agents who
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are willing to delay consumption. The idea is thus related to the notion that

consumption at nearby dates should be close substitutes.

Hindy and Huang [27] define an information surprise as either a nonpredictable

stopping time, or a predictable stopping time τ such that the filtration F is

not quasi-leftcontinuous at τ . A filtration F is quasi-leftcontinuous at a

predictable time τ if Fτ =
∨
n Fτn(= Fτ−) where (τn) is an announcing sequence

for τ . If the filtration is quasi-leftcontinuous, then martingales do not jump at

predictable times.

To see what the implications are for supermartingales, we look at Theorem 14,

chapter VI in [22]: if X is a right-continuous supermartingale that is closed on

the right by X∞ (if X is nonnegative then it is closed by 0) and if S and T

are two predictable stopping times such that S ≤ T then XS− and XT− are

integrable and

XS− ≥ E[XT− |FS− ] ≥ E[XT |FS− ] a.s.

(with equality if X∞ closes X as a martingale.) In particular, if we let S = T

then the statement becomes

XS− ≥ E[XS |FS− ] a.s.

Thus, if a filtration is quasi-leftcontinuous, then supermartingales have only

downward jumps at predictable times. In general, supermartingales jump only

downward, except possibly at information surprises. Thus in our setting, where

the dual processes Y are supermartingales, lower-semicontinuity of the pairing

C 7→ E〈C, Y 〉 is the best that we can hope for. The pairing is not in general

continuous.
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However, if we know that the process Y defines an equilibrium price, then more

can be said. In particular, returning to the first step in the proof of Lemma 3.4

we note that if Y is continuous and bounded then the dominated convergence

theorem can be used to show that the pairing is continuous. Viewed as a price,

this makes sense. Consumption plans that are close in the agents’ preferences

should have similar prices.

The existence of continuous equilibrium prices for Hindy-Huang-Kreps utilities

have been established for stochastic pure exchange economies by Bank and

Riedel [8], Martins-da-Rocha and Riedel [37] and Martins-da-Rocha and Riedel

[38]. In these papers, the construction of equilibrium prices rests on economic

considerations which help prove continuity. In particular, Theorem 2 in [8]

states that, under the assumption of quasi-leftcontinuity, every equilibrium price

functional is continuous in the topology generated by dC. The continuity results

do not apply in our setting, because, for example, the processes Y Q ∈ YM

are not necessarily bounded. Note, however, that in our setting Y cannot be

directly interpreted as a price either. Also, in our result, quasi-leftcontinuity is

not needed.

3.2 Preferences

We have made a point of using a topology with desired economic robustness

properties, choosing the topology first and then proving that the consumption

space has good analytic properties. In this section we show that preferences, as

specified by our expected utility functional (10), are continuous as well.

In their paper, Hindy, Huang, and Kreps [29] show that standard time-additive
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utilities of the von Neumann-Morgenstern form

EU(C) = E
∫ T

0

F (t, Ċ(t)) dt

are continuous with respect to dC if and only if the felicity function F (t, ·) is

linear. In that case the utility is not strictly concave, or, in other words, the

agent is risk neutral. Thus these utilities are not compatible with our framework.

In particular, while consumption in gulps can be approximated by consumption

in rates, the same is not necessarily true of the utilities that the consumption

plans generate.

Note, however, that lack of continuity does not in general prevent one from

solving the utility optimization problem. For instance, Karatzas and Žitković

[34] use the duality technique to solve the utility optimization problem for the

above von Neumann-Morgenstern preferences. Their method of proof is an

extension of the work of Kramkov and Schachermayer [36] to processes, and

uses a product topology on the space Ω × [0, T ]. For the purposes of applying

a minimax theorem, they endow bounded subsets of this space with the L∞

topology. In that case, the preferences are, however, upper-semicontinuous.

This fact is enough to prove that a duality relationship exists.

Lemma 3.5 In the topology generated by the metric dC, the expected utility

functional

C 7→ EU(C) = E
∫ T

0

F (t, Ct)dt

is continuous on all subsets of consumption plans E ⊆ C such that the set

{U(C)}C∈E is uniformly integrable.
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Remark: If the set E is bounded in the sense that there exists a constant M

such that CT ≤ M a.s. ω ∈ Ω for all C ∈ E and if T <∞, then {U(C)}C∈E is

uniformly integrable. These bounded sets will be important later, when we ap-

ply the minimax theorem. Recall from Theorem 3.3 that they are also convexly

compact.

Proof : First, we prove the deterministic result, and then extend the results

via a diagonalization argument. Let (Ck)k∈N ∈ CM be a sequence of (deter-

ministic) consumption plans converging to C in the Prohorov metric, or equiv-

alently, in the weak topology. Recall that weak convergence also implies that

Ck converges pointwise at all continuity points of C(·) and at the terminal time

T . Furthermore, for large enough k we may assume that Ck(t) ≤ CT + 1, and

hence also that −F (t, Ck(t)) is bounded from below. We can thus apply Fatou’s

lemma;

lim inf
k→∞

(−U(Ck)) = lim inf
k→∞

∫ T

0

−F (t, Ck(t))dt

≥
∫ T

0

−F (t, lim sup
k→∞

Ck(t))dt

=

∫ T

0

−F (t, C(t)) dt = −U(C).

The second to last equality follows because the set of discontinuities of C has

Lebesgue measure zero. We thus obtain the desired result:

lim sup
k→∞

U(Ck) ≤ U(C)

Applying the same reasoning to U(Ck), which is nonnegative and hence bounded

from below, gives lim infk→∞ U(Ck) ≥ U(C). Combining results, we have that

the limit exists and that it is equal to U(C).
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We are now ready to treat the case with uncertainty.

Let (Cn)n∈N be a sequence of consumption plans that is convergent, with respect

to the metric dC, to some consumption plan C. Because convergence in L1

implies convergence in probability, we have that

lim
n→∞

P(d(Cn, C) > ε) = 0 ∀ε > 0.

In particular, the sequence is Cauchy in probability with respect to the Prohorov

metric d(·, ·),

lim
n,m→∞

P(d(Cn, Cm) > ε) = 0 ∀ε > 0.

Thus there exists a P-a.e. convergent subsequence. In fact, we may choose nk ∈

N such that the sets Enk := {d(Cnk+1
, Cnk) >

1
2k
} have measure P(Enk) <

1
2k

.

Then the set Fm :=
⋃∞
k=mEnk has measure P(Fm) ≤ 1

2m−1 . In particular, for all

ω ∈ F c
m and for all j ≥ l ≥ N ≥ m we have

d(Cnj , Cnl) ≤
j−1∑
r=l

d(Cnr+1 , Cnr) ≤
∞∑
r=N

d(Cnr+1 , Cnr) ≤
1

2N−1
.

Hence the subsequence (Cnk)k∈N is Cauchy sequence for all ω ∈ ∪∞m=1F
c
m =

(∩∞m=1Fm)c. This set has measure 1, so in particular, the subsequence is con-

vergent a.s. to a consumption plan C. This convergence is with respect to the

Prohorov metric. For each such ω continuity of the deterministic function U(·)

implies that

lim
k→∞

U(Cnk) = U(C).

Furthermore, for all ε > 0 there exists a δ > 0 such that if d(C,C ′) < δ then

|U(C) − U(C ′)| < ε. Because the sequence (Cn)n∈N is Cauchy in probability,

for all such ε and δ(ε) there exists an Nδ such that for all n,m > Nδ

P(d(Cn, Cm) ≥ δ) < ε.
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We may also pick Kε such that for all k ≥ Kε,

|U(Cnk)− U(C)| < ε.

Now fixing m, nk large enough, we have that for ω ∈ {d(Cm, Cnk) < δ},

|U(Cm)− U(C)| ≤ |U(Cm)− U(Cnk)|+ |U(Cnk)− U(C)| ≤ 2ε

Thus

P(|U(Cm)− U(C)| > 2ε) < ε ∀m ≥ Nε

and we have that the sequence {U(Cn)}n∈N converges in probability to U(C).

By assumption, the family (U(Cn))n∈N is uniformly integrable. Convergence in

probability thus implies convergence in L1. 2
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4 Duality Theory: Deterministic Preliminaries

At the heart of the duality approach is a family of upper bounds to the pri-

mal problem, in our case the indirect utility u(x), that allow us to turn the

maximization problem into a question of minimization over a different set of

variables, the dual variables. In this section we begin the discussion of the

appropriate dual problem and dual variables in a deterministic setting.

In the deterministic setting, a candidate upper bound can be found using tradi-

tional Lagrangian reasoning. To do this, we look at our question as a constrained

optimization problem over the set C of right-continuous, increasing functions:

u(x) = sup
C∈C

U(C) s.t. 〈C, Y 〉 ≤ x for all Y ∈ Y(1),

for some set of constraints, represented by Y(1), which may be infinite. For

each constraint, or pricing function, Y we can consider the Legendre-Fenchel

transform

L(Y, y) = sup
C∈C

[U(C)− 〈C, yY 〉+ yx]

, V (yY ) + yx

Most importantly, this transform gives an upper bound to our optimization

problem: u(x) ≤ L(Y, y) for all Y ∈ Y(1) and y ∈ R+.

The ultimate goal is to show that there exists a dual feasible pair (Y, y) such

that we in fact have equality above, also in the case of uncertainty. In other

words, we wish to relate the question of optimal consumption to a minimization

problem over the dual pairs (y, Y ). In this section we focus on the first step:

the relationship between our objective function U(·) and its conjugate V (·). In
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the next section we discuss the problems that arise with the above argument in

the case of uncertainty and how to handle these. It turns out that the structure

of the problem is maintained, but for a different choice of dual variables.

4.1 Inhomogeneously Convex Functions

In this section we present the definition of an inhomogeneously convex function.

Later we will see that the (super)gradients of U are of this type. The reader

wishing to skim this section on a first reading should note that the statement

of Lemma 4.3 is most important for what follows.

In order to define inhomogeneous convexity, we begin by presenting the results

for functions g : [0, T ] × R 7→ R ∪ {−∞} that are continuous and strictly

increasing from −∞ to ∞ in the second argument. In some sense, this is the

most natural class of functions to consider. All of the proofs and details can be

found in Bank [3], but, given the importance of this structure on our further

analysis, we include the important results here for completeness. At the end of

this section we provide an argument for when these results can be applied to

functions g defined only on the half line. As a specific example, the reader is

encouraged to think about how these results apply to −F ′(t, x).

Definition 4.1 A function x : [0, T ] 7→ R is inhomogeneously convex, or

g-convex for short, if for all 0 ≤ s < t < u ≤ T we have that

x(t) ≤ x(s) +

∫ t

s

g(r, `s,u),
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where `s,u is the unique constant satisfying

x(u) = x(s) +

∫ u

s

g(r, `s,u).

Remark: If the function does not depend on the time variable, i.e. g(t, x) =

g(x), then we recover the class of convex functions. In general, many of the

important properties of convexity remain true for g-convexity. The first such

property, the existence of a density, is described in the lemma below.

Lemma 4.2 (Proposition 3.8 in [3]) The following are equivalent:

(i) x is g-convex

(ii) For all 0 ≤ s < t < u ≤ T we have that

`s,t ≤ `t,u

(iii) There exists an increasing function l : [0, T ] 7→ R such that

x(t)− x(s) =

∫ t

s

g(r, `(r)) dr

we will call g(r, `(r)) the “density” of x.

In addition, for each function x, there exists a maximal g-convex function x̌

such that x ≥ x̌ (proposition 3.9 in [3].) Such a function is called the g-convex

envelope of x. The next lemma describes the key properties of this envelope.

Lemma 4.3 (Proposition 3.13 in [3]) Let x̌ be the g-convex envelope of a

lower-semicontinuous function x, then the following statements hold.
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(i) x̌(0) = x(0), and x̌(T ) = x(T )

(ii) Let ˇ̀ be the unique increasing, right-continuous function ˇ̀ : [0, T ]→ R such

that g(·, ˇ̀(·)) is a density for x̌ on (0, T ). Define

ˇ̀(0) = limt↓0 ˇ̀(t) and ˇ̀(T ) = limt↑T ˇ̀(t)

Then dˇ̀ induces a Borel measure on [0, T ] such that

supp(dˇ̀) ⊆ {x̌ = x}

(iii) The function x̌ is absolutely continuous on the closed interval [0, T ]

We are now ready to make a connection with the derivative of the felicity func-

tion F ′(t, x). Based on the previous discussion, if x is lower-semicontinuous and

x̌(T ) = 0 then we may write

x̌(s) = −(x̌(T )− x̌(s)) = −
∫ T

s

g(r, ˇ̀(r))dr (16)

Assume further that x is nonnegative. Then it is possible to apply these results

to functions defined only on the half-line. In particular, we can apply these

results to F ′ : [0, T ] × R+ → [0,∞]. First we extend F ′ to the whole real line

by defining

g(t, `) =


−F ′

(
t,−1

`

)
` < 0

0 ` = 0

` ` > 0

With this definition we observe that the function g is strictly increasing from

−∞ to∞, and it is continuous if the Inada conditions (11) and (12) are satisfied.

The theory developed above thus applies. In particular, there exists a g-convex
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envelope of the function x, and this envelope has the properties described in

lemma (4.3). To show that only nonpositive values of ` are relevant, it suffices to

find one g-convex function ǩ such that ǩ(t) ≤ x(t) and such that the increasing

process ` describing the density of ǩ is nonpositive. This is because we can

represent the g-convex function ǩ as in equation (16)

ǩ(s) = −
∫ T

s

g(r, `(r))dr

and so it is a decreasing function of `. Thus, because x̌ ≥ ǩ, we also have that

the density of x̌ is described by a nonpositive, increasing process ˇ̀≤ `.

In order to construct such a ǩ we start by defining `s,t to be the unique constant

such that

x(t) = x(s) +

∫ t

s

g(v, `s,t)dv

From the definition of g we note that if x(t) ≤ x(s) then `s,t ≤ 0. Because

0 = x(T ) ≤ x(0) we have that

`0 , inf
s,t∈[0,T ]

`s,t ≤ 0

Now define

ǩ(t) = x(0) +

∫ t

0

g(v, `0)dv

It is easy to check that it is g-convex and dominated by x. This establishes the

result. In particular,

x̌(t) =

∫ T

t

F ′(s, ˜̀(s))ds, ˜̀(s) =
−1
ˇ̀(s)

(17)

and the process ˜̀ is increasing and nonegative! In this sense we may talk about

(−F ′)-convex functions and (−F ′)-convex envelopes of nonegative functions x

(c.f. representation in equation (16).)
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Remark: Because we only require that x is lower-semicontinuous, we can

obtain the above representation by re-defining, if necessary, x(T ) = 0. In many

applications, this will not be a problem. For instance, in our problem there is

no gain from consumption at the terminal time, and thus, the terminal values

are not of concern.

4.2 The Conjugate Pair

At the beginning of this section, we informally defined the conjugate function V

of the utility U . We now make this definition precise and show how inhomoge-

neously convex functions come into play. The end of this subsection is devoted

to regularity properties of V such as lower-semicontinuity.

First, observe that in the deterministic setting, the natural domain H of U is

the set of right-continuous, increasing, non-negative functions on [0, T ], i.e.

H , {h|h is the distribution function of a nonnegative measure on [0, T ]}.

(18)

With this notation, we define, for every k in the set

K , {k : [0, T ]→ R+ | k Borel measurable}

the functional

V (k) , sup
h∈H

[U(h)− 〈h, k〉]. (19)

The bilinear pairing is defined, by analogy with the pairing (8), as follows,

〈h, k〉 ,
∫ T

0

k(t)dh(t). (20)
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Observe that the domain of definition K contains the paths of processes Y Q ∈

YM, and is thus a good candidate for the set of dual functions. The set K,

while convenient for its generality, contains many poorly behaving functions for

which V is difficult to calculate explicitly. It turns out that for many of the

concrete results of this section, we need to make the additional assumption that

k is lower-semicontinuous.

Remark: We will show that if k is lower-semicontinuous, then V (k) is uniquely

determined by its action on a strict subset of K, the subset of inhomogeneously

convex functions. Recall that for lower-semicontinuous functions, the inhomo-

geneously convex envelope has special properties. These are detailed in Lemma

4.3, most important of which is the statement about the support of the measure

induced by the right-continuous increasing function ˇ̀ associated with ǩ. The

support of this measure is contained in the set where the function k and its

inhomogeneously convex envelope ǩ are equal. In the next section (Proposition

5.7 and Corollary 5.10) we show how to extend this result to the stochastic

processes Y Q, which are only lower-semicontinuous in expectation.

The first result is closely related to the classical Legendre-Fenchel transform for

functions on Rn.

Lemma 4.4 (i) The functionals U and V (defined in (10) and (19) respectively)

are mutually conjugate. In other words, if V is defined by equation (19), then

the following reciprocal relation is also true:

U(h) = inf
k∈K

[V (k) + 〈h, k〉]. (21)
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(ii) The function

∇tU(h) ,
∫ T

t

F ′(s, h(s)) ds (0 ≤ t ≤ T ) (22)

is a supergradient of the concave functional U at the point h, in the sense that

U(h̃)− U(h) ≤ 〈h̃− h,∇U(h)〉, ∀ h̃ ∈ H (23)

Furthermore, this supergradient is unique.

Remark: The supergradients of U are (−F ′)-convex functions with∇TU(C) =

0.

Proof : We start with the proof of (ii); it is a straightforward application of

the theorem of Fubini-Tonelli. Begin with

〈h̃− h,∇U(h)〉 =

∫ T

0

∫ T

t

F ′(s, h(s)) ds d(h̃− h)

=

∫ T

0

F ′(s, h(s))(h̃− h)(s) ds,

and compare this expansion, term by term, with

U(h̃)− U(h) =

∫ T

0

F (s, h̃(s))− F (s, h(s))ds.

The supergradient property now follows from the fact that the felicity function

F (t, ·) is concave and has (super)gradient F ′(t, ·).

The uniqueness of supergradients follows as a special case of Proposition 1.3

in [3]. The proof involves showing that if we write g(ε) = U(h + ε1[t,T ]), then

∂+g(0) = ∇tU(h).

To prove (i) we note that the definition (19) implies that

U(h) ≤ V (k) + 〈h, k〉
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for all h ∈ H and k ∈ K. Thus

U(h) ≤ inf
k∈K

[V (k) + 〈h, k〉].

For the reverse inequality, it suffices to show that there exists a k∗ ∈ K that

achieves this infimum. In fact, setting k∗ = ∇U(h) and using definition (19)

along with (23)we have

V (∇U(h)) + 〈h,∇U(h)〉 = sup
h̃∈H

[U(h̃)− 〈h̃− h,∇U(h)〉]

= U(h)

2

Furthermore, the structure of the super-gradients gives the following corollary.

Corollary 4.5 The utility function U is also a solution to a minimization prob-

lem inf ǩ∈Ǩ[V (ǩ) + 〈h, ǩ〉] over the smaller set ,

Ǩ ,

{
ǩ ∈ K

∣∣∣∣ ǩ(s) =

∫ T

s

F ′(t, ˇ̀(t))dt, for a function ˇ̀ : [0, T ]→ [0,∞] that is

right-continuous, increasing and ˇ̀(T ) = lim
t→T

ˇ̀(t)
}
,

i.e.,

U(h) = inf
ǩ∈Ǩ

[V (ǩ) + 〈h, ǩ〉].

Remark: The set Ǩ consists of inhomogeneously convex functions ǩ such

that ǩ(T ) = 0. Because the value of ǩ is not influenced by ˇ̀(T ), we make

the additional assumption of left-continuity at the terminal time. This way

we can show (Corollary 4.8) that V is strictly convex when restricted to Ǩ.

Similarly, it is easy to see that U is strictly concave on the subset of H that

consists of distribution functions that are left-continuous at t = T . In the
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remainder of this section we study the properties of the conjugate functional

V . In particular, we find a characterization of its subgradients, show how to

evaluate this functional on the set Ǩ (and in fact for all lower-semicontinuous

k), and prove that it is lower-semicontinuous and strictly convex on Ǩ. This

discussion will also highlight the special role played by inhomogeneously convex

functions.

Lemma 4.6 If ǩ is (−F ′)-convex, with ǩ(t) =
∫ T
t
F ′(s, ˇ̀(s)) ds then

V (ǩ) = U(ˇ̀)− 〈ˇ̀, ǩ〉. (24)

In particular, if ǩ > 0 on [0, T ), then

V (ǩ) =

∫ T

0

[F (t, ˇ̀
t)− F ′(t, ˇ̀

t)ˇ̀
t] dt. (25)

Furthermore, if ǩ is the (−F ′)-convex envelope of k ∈ K and if k is lower-

semicontinuous with k(T ) = 0, then

V (k) = V (ǩ).

Proof : As long as the function ǩ > 0 on [0, T ), we have that ˇ̀< ∞ and

that the supremum is achieved at the point h∗ such that ∇U(h∗) = ǩ. In

other words, h∗ = ˇ̀. The characterization in equation (25) follows from the

Fubini-Tonelli theorem.

Now let t∗ = inf{t ≥ 0 |ǩ(t) = 0}. If t∗ < T then we have that

〈h, ǩt〉 =

∫ t∗

0

ǩ dh(t).

In other words, there is no constraint on consumption after time t∗ and we may

let it go to infinity. However, we also have that ˇ̀(t) = ∞ for all t ≥ t∗. Thus
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equation (24) still holds, provided that we define F (t,∞) = limx→∞ F (t, x). If

this limit is infinite for some t ≥ t∗ then V (ǩ) =∞ also.

For the second part, we note that if k is not (−F ′)-convex, then it dominates

its (−F ′)-convex envelope ǩ. Thus, for each h ∈ H we have the inequality

U(h)− 〈h, k〉 ≤ U(h)− 〈h, ǩ〉

Consequently, V (ǩ) ≥ V (k). However, letting h∗ be as above, we have that

supp(dh∗) = supp(dľ) ⊂ {k = ǩ}

according to lemma (4.3). This inclusion implies that 〈h∗, k〉 = 〈h∗, ǩ〉. In

particular,

U(h∗)− 〈h∗, k〉 = U(h∗)− 〈h∗, ǩ〉

Thus V (ǩ) ≤ V (k) and we must in fact have equality,

V (k) = V (ǩ)

2

Remark: The result does not extend to functions k that are not lower-

semicontinuous. For example, if k(t) = 2 at all rational points and k(t) = 1 at

all irrational points, then k∗(t) = 1 and ˇ̀ is constant, representing a point mass

at t = 0. But because k∗(0) 6= k(0), we have that 〈ˇ̀, k〉 6= 〈ˇ̀, k∗〉.

Another important result is that for ǩ ∈ Ǩ the subgradient of V evaluated at ǩ

is unique. This result is expanded on in the following lemma.

Lemma 4.7 (i) V (ǩ) < ∞ if and only if either the felicity function F (t, ·) is

bounded from above for all t ∈ [0, T ], or ǩ(t) > 0 for all t ∈ [0, T ).
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(ii) Suppose that V (ǩ) < ∞ and let k∗ be lower-semicontinuous and such that

its (−F ′)-convex envelope is ǩ∗(t) =
∫ T
t
F ′(s, ˇ̀∗(s))ds, then −ˇ̀∗ is a subgradient

of V at k∗. This means that

V (k)− V (k∗) ≥ 〈−ˇ̀∗, k − k∗〉 ∀k ∈ K

Furthermore, the subgradient is unique if we assume that it is left-continuous at

t = T . We call this subgradient ∇V (k∗).

Proof : The statement (i) follows from the characterization (24) and the

observation that if ǩ(t∗) = 0 then ǩ(t) = 0 for all t > t∗.

To prove (ii) we first note that the subgradient property follows easily from the

definition of V as the conjugate functional to U , at least when restricted to Ǩ.

In fact, let ľ∗ = h∗ and for any k, k∗ ∈ K we have that

V (ǩ)− V (ǩ∗) ≥ 〈−h∗, ǩ − ǩ∗〉

Then because V (k) = V (ǩ), 〈h∗, k∗〉 = 〈h∗, ǩ∗〉, and k ≥ ǩ, we have in addition

that

V (k)− V (k∗) ≥ 〈−h∗, k − k∗〉.

In particular, −h∗ = −ˇ̀∗ is a subgradient at k∗. Observe that equation (24)

guarantees that this result holds even if ˇ̀∗(t) =∞ for some t < T . In this case,

however, the subgradient is not a genuine consumption plan, but a limit of a

sequence of plans.

For uniqueness, we observe first that in the dual description of U

U(h) = inf
ǩ∈Ǩ

[V (ǩ) + 〈h, ǩ〉]
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the infimum is attained at any point ǩ such that −h ∈ {∇V (ǩ)}, the (convex)

set of subgradients of V at ǩ. Suppose that this set is not a singleton, i.e. that

there exists h1, h2 ∈ H such that −h1,−h2 ∈ {∇V (ǩ)} and h1 6= h2. Then from

the definition of a subgradient, the set {∇V (ǩ)} must contain the line between

h1 and h2. This, however, is a contradiction to the strict concavity of the utility

functional U . Thus, as an element of −H, the subgradient must be unique.

If ǩ(t) > 0 and the felicity function is not bounded, then the associated ˇ̀ is

finite. The above considerations thus show that −ľ is the unique subgradient.

If the felicity function is bounded, however, it still makes sense to talk about

gradients of V for functions ǩ that possibly hit zero. In this case, however,

we can also extend the definition of U to act on possibly infinite functions

h : [0, T ]→ [0,∞]. We can do this by a limiting procedure and by applying the

bounded convergence theorem. Observe that for such h, the dual description

(21) still holds and we again have uniqueness of subgradients. 2

This lemma has an important corollary

Corollary 4.8 Restricted to the set {ǩ ∈ Ǩ s.t. V (ǩ) <∞}, the functional V

is strictly convex.

Proof : Let ǩ1, ǩ2 ∈ Ǩ and such that V (ǩi) <∞, then for λ ∈ (0, 1) we have

V (λǩ1 + (1− λ)ǩ2) = sup
h∈H

[λ(U(h)− 〈h, ǩ1〉) + (1− λ)(U(h)− 〈h, ǩ2〉)]

≤ λ sup
h∈H

[U(h)− 〈h, ǩ1〉] + (1− λ) sup
h∈H

[U(h)− 〈h, ǩ2〉]

= λV (ǩ1) + (1− λ)V (ǩ2)
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with equality if and only if the supremum is achieved at the same h∗ in each of

the three supremums above (possibly allowing for infinite values of h∗). From

the characterization (24) of V , however, we know that this can only happen if

ǩ1 = ǩ2. Hence V is strictly convex. 2

Finally, we describe in what sense V is lower-semicontinuous on Ǩ. This result

is important for showing the existence of a solution to the dual problem.

Lemma 4.9 Assume that the asymptotic elasticity of the felicity function F (t, ·)

is less than one for each t ∈ [0, T ] and let (ǩn)n∈N ∈ Ǩ be a sequence such that

the corresponding processes ˇ̀
n converge to a right-continuous, increasing func-

tion ˇ̀ : [0, T ]→ [0,∞] at all points of continuity of ˇ̀. Let ǩ ∈ Ǩ be such that it

has density −F ′(t, ˇ̀(t)). Then we have

lim inf
n→∞

V (ǩn) ≥ V (ǩ).

Proof : If ˇ̀(T ) < ∞ then we may assume that for n large enough ˇ̀
n(T ) <

M <∞. Also, because F (·,M) and F ′(t,M) are continuous, they are bounded

on the interval [0, T ]. We can apply the dominated convergence theorem to

obtain

lim
n→∞

V (ǩn) = lim
n→∞

∫ T

0

F (t, ˇ̀
n(t))− F ′(t, ˇ̀

n(t))ˇ̀
n(t) dt

=

∫ T

0

lim
n→∞

[
F (t, ˇ̀

n(t))− F ′(t, ˇ̀
n(t))ˇ̀

n(t)
]
dt

= V (ǩ).

Now let t∗ = inf{t ∈ [0, T ] | ˇ̀(t) = ∞}. For the case ˇ̀(t∗) = ∞, first assume

that the felicity function is bounded for each t ∈ [0, T ]. In this case, we first
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show that the asymptotic elasticity is zero. To prove this fact, observe that for

any ε > 0 we may pick x0 large enough such that F (t, x0) > M(t) − ε. Then

using the fundamental theorem of calculus, we obtain

ε > F (t, x0 + x)− F (t, x0) =

∫ x0+x

x0

F ′(t, y)dy ≥ F ′(t, x0 + x)x

Because the derivative is decreasing. This calculation gives the estimate

F ′(t, x0 + x)(x0 + x)

F (t, x0 + x)
≤ ε

M(t)− ε
x0 + x

x
.

Letting x tend to infinity, we have that AE F (t, ·) ≤ ε
M(t)−ε . Letting ε → 0

we obtain the desired result. AE F (t, ·) = 0. In addition we may write it as a

genuine limit;

AEF (t, ·) = lim
x→∞

F ′(t, x)x

F (t, x)
.

We are now ready to show lower-semicontinuity. In fact, the definition of V

gives,

V (k) =

∫ t∗

0

F (t, ˇ̀(t))− F ′(t, ˇ̀(t))ˇ̀(t) dt+

∫ T

t∗
F (t,∞)dt

and applying the dominated convergence theorem to the limit and simplifying

we get,

lim
n→∞

V (ǩn) = lim
n→∞

∫ T

0

F (t, ˇ̀
n(t))− F ′(t, ˇ̀

n(t))ˇ̀
n(t) dt

=

∫ T

0

lim
n→∞

(
1− F ′(t, ˇ̀

n(t))ˇ̀
n(t)

F (t, ˇ̀
n(t))

)
F (t, ˇ̀

n(t)) dt

=

∫ t∗

0

F (t, ˇ̀(t))− F ′(t, ˇ̀(t))ˇ̀(t) dt+

∫ T

t∗
(1− AE F (t, ·))F (t,∞) dt

= V (ǩ)

The last equality follows because the asymptotic elasticity is zero.
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If the felicity function F is unbounded and we have ˇ̀(t∗) = ∞ for some t∗ <

T as above, then we may use Fatou’s lemma to show that both V (ǩ) and

lim infn→∞ V (ǩn) are infinite. For this we use an expansion similar to above.

If ˇ̀(T ) = ∞ but is finite for t < T , then we may only apply Fatou to get the

inequality

lim inf
n→∞

V (ǩn) ≥ V (ǩ)

In this sense the convex function V is lower-semicontinuous at the boundary

with respect to convergence is distribution of the right-continuous, increasing

functions ˇ̀. 2
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5 Duality Theory: Fully Random

In this section we lay the foundations for duality theory in a market with un-

certainty. To start, observe that if we follow the logic of Section 4, we are led

to the upper-bound

u(x) ≤ sup
C∈C

E [U(C)− 〈C, yY 〉+ yx] , for all Y ∈ YM(1).

Unfortunately, it is not true that we can exchange the supremum with the ex-

pectation operator, and recover the function V (which acts on functions and not

on stochastic processes). This is because there is no guarantee that for a general

process Y an ω by ω optimization will lead to an adapted optimal consumption

plan. However, we will show in Corollary 5.10 that for a slightly different class

of processes Y̌ , this pathwise approach does work and also provides an upper

bound to u(x). In fact, in the next section we prove that this bound is tight, i.e.,

that there exists a dual process for which we obtain equality above. In a sense

this new set of processes Y̌ is chosen to enforce the non-anticipativity constraint;

this property is illustrated in the first part of Corollary 5.10. For an additional

example see Davis and Karatzas [18], in addition to budget requirements; we

give a more precise definition later in this section.

Skipping ahead, in Section 6 we will formulate the main duality result (Theorem

6.3) in terms of these processes Y̌ . First, however, we discuss the relationship

between the sets YM and Y̌ in more analytic terms. One key idea that we use

is the stochastic representation theorem in [4].

The first two parts of this section are devoted to explaining the choice of dual

variables Y̌ and formulating the dual problem (40). To begin, we extend the
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budget constraint to a more tractable set of variables. In particular, we use the

process bipolar theorem of Žitković [51], to show that a financiable consump-

tion plan must satisfy an integrability constraint with respect to the whole set

of deflator processes, i.e., with respect to processes Y such that XY is a super-

martingale for all X ∈ X . We call this class of processes Y .

Finally, we note that in fact any set of processes whose optional projections

coincide with the set Y could be used for the budget constraint. The collection

of all such processes is too large, however, to be analytically tractable. But

we are free to choose a convenient subset, as long as it, or optional projections

of its elements, contain the set YM. Interchanging a process with its optional

projection will be important for the definition of Y̌ , the set that we ultimately

plan to use for the dual problem.

The last part of this section is devoted to proving important analytic properties

of the set Y̌ . In particular, we find conditions under which the set is convex,

and show that it is Fatou closed. For this part we will need the extra assump-

tion, Assumption 2.3, on the felicity function; this assumption is necessary and

sufficient for the set Y̌ to be convex. Finally, we also prove existence in the dual

problem.

5.1 The Budget Constraint Revisited

We now prove an important extension of the budget constraint (9) introduced

in the model description. In Section 2 we showed that a consumption plan is
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financiable with initial capital x if and only if

sup
Y Q∈YM

E
∫ T

0

Y Q
t dCt ≤ x.

This result expresses the budget constraint in terms of the economically mean-

ingful pricing measures Q ∈M and their densities. Recall that YM is the set of

density processes of these pricing measures (the set is defined in (7.) However,

it is also possible to express the constraint in terms of the set Y(1) instead,

where we define, for each y ∈ R+,

Y(y) , {Y adapted, RCLL, Y0 ≤ y, (Y X)t is a

supermartingale for all X ∈ X}.
(26)

The significance of the sets Y(1) for the duality approach, and also the reason

that makes it work for the budget constraint, is that it is the process-bipolar of

the set YM. The process bipolar theorem and the related concepts are developed

in [51]. For an application in utility optimization via duality, we refer the reader

to [34]. These ideas are an extension of the bipolar theorem for subsets of L0
+

(a non-locally-convex space) proved in [13] and the application of this theorem

in [36] to portfolio optimization.

We will use these bipolar results to prove the following theorem.

Lemma 5.1 The consumption plan C ∈ C is financiable with initial wealth x

if and only if

sup
Y ∈Y(1)

E
∫ T

0

Yt dCt ≤ x (27)

In fact, if B is any set of processes such that YM ⊆ B ⊆ Y(1), then the budget

constraint can be written in terms of B.
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Proof : Theorem 4 in [51] shows that Y is the process bipolar of YM. What

this means in our case is that, lettingD denote the set of non-increasing, adapted

RCLL processes, for all Y ∈ Y there exists sequences of processes Y Q
n ∈ YM

and Dn ∈ D such that Y Q
n Dn is Fatou-convergent to Y . We recall the definition

of Fatou-convergence for stochastic processes in Section 5.3.2, where we also use

the concept more extensively, see also [36]. Most importanly, what we get is

that

Yt = lim inf
s↓t

lim inf
n→∞

(Y QDn)(s) ≤ lim inf
s↓t

lim inf
n→∞

Y Q
n (s)

Furthermore, from taking conditional expectations and applying Fatou’s lemma,

we have that

Yt = E[Yt|Ft] = E
[

lim inf
s↓t

lim inf
n→∞

Y Q
n (s)

∣∣∣∣Ft] ≤ lim inf
n→∞

Y Q
n (t)

The last inequality follows because each Y Q
n ∈ YM is a non-negative local

martingale and hence also a supermartingale. We may thus write (applying

Fatou again)

E
∫ T

0

YtdCt ≤ lim inf
n→∞

E
∫ T

0

Y Q
n (t)dCt ≤ x

The last part of the theorem follows from the original statement of the budget

constraint in terms of YM. 2

5.2 Choice of Dual Variables

In Section 4 we defined inhomogeneously convex functions and showed how

these are the right choice of dual variables in the deterministic setting. We

are now ready to discuss the implications of these results in the stochastic
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setting. Recall that the objective is to identify a suitable class of dual variables

(processes) and to find a candidate for the dual of the indirect utility. We begin

with a representation result (Theorem 3 in [4], and Lemma 3.1 in [3]):

Theorem 5.2 (Stochastic representation) Suppose that the function

g : [0, T ] × R → R is continuous and, for any t ∈ [0, T ], g(t, ·) : R → R is

strictly decreasing from +∞ to −∞. Let X be a non-negative optional process

of class (D). Assume in addition that X is lower-semicontinous in expectation

with X(T ) = 0. Then there exists an optional process L such that

X(τ) = E
[∫ T

τ

g(t, sup
τ≤v≤t

Lv) dt

∣∣∣∣Fτ] (28)

holds almost surely, for every stopping time τ . Furthermore, If L is a solution to

the representation problem 30, then so is its upper-rightcontinuous modification

L̃ , lim sup
s↘t

L(s) = lim
ε↓0

sup
s∈[t,(t+ε)∧T ]

L(s)

This solution is unique up to optional sections.

Definition 5.3 An optional process X of class (D) is called lower-

semicontinous in expectation if, for every stopping time τ , we have

lim inf
n→∞

EXτn ≥ EXτ

whenever (τn, n = 1, 2, 3, . . .) is a monotone sequence of stopping times converg-

ing to τ almost surely.

Observe that if X is a non-negative, right-continuous supermartingale of class

(D), then X is lower-semicontinuous in expectation. In fact, the optional sam-

pling theorem shows that if (τn)n∈N is a sequence of stopping times converging
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to τ from below, then lim infn EXτn ≥ EXτ . Because X is of class (D) and right

continuous, this result holds also for τn ↓ τ .

Furthermore, when X is non-negative, the representation theorem holds also

when the function g is replaced with the derivative of the felicity function

F ′(t, x) : [0, T ] × [0,∞) → [0,∞). Given such a representation result, we

can easily find inhomogeneously convex envelopes, in an appropriate pathwise

sense, of the processes Y ∈ Y that are of class (D). Corollary 5.5 below shows

that we can dispense with the class (D) requirement. It is then possible to

apply duality theory (strictly speaking, the representation theorem is applied

to Y 1[0,T )(t).)

Corollary 5.4 Let X be as in Theorem 5.2 and let F be a function that satisfies

Assumption 2.1, then the conclusions of Theorem 5.2 also apply. In particular,

there exists an optional process L(ω, t) taking values in [0,∞] such that

X(τ) = E
[∫ T

τ

F ′(t, sup
τ≤v≤t

Lv) dt

∣∣∣∣Fτ] (29)

almost surely, and for every stopping time τ .

Proof : By analogy with the deterministic argument, use F ′ to define a new

function

g(t, `) =


F ′
(
t,−1

`

)
` < 0

0 ` = 0

−` ` > 0

that satisfies the conditions of the representation result (Theorem 5.2.) In

particular, there exists an optional process L̃ such that

X(τ) = E
[∫ T

τ

g(t, sup
τ≤v≤t

L̃v) dt

∣∣∣∣Fτ]
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The key step of the proof of theorem (5.2) is a level process argument and

we modify this only slightly in order to show that the process L̃ takes only

nonpositive values. The key constructions are taken from the proof of Theorem

3 in [4] (see also [3]). In particular, these authors show that for each ` ∈ R there

exists an optional process

Z`(σ) = ess inf
τ∈S(σ)

E
[
X(τ) +

∫ τ

σ

F (t, `) dt

∣∣∣∣Fσ]
such that the mapping ` 7→ Z l(t, ω) is continuously decreasing from

Z−∞(t, ω) , lim
`↓−∞

Z`(t, ω) = X(t, ω)

Furthermore, the level process

L̃(t, ω) , sup
{
` ∈ R |Z`(t, ω) = X(t, ω)

}
solves the representation problem (30). Also, because Lebesgue measure has no

atoms, we can let L̃(T, ω) = 0 for all ω ∈ Ω. For the special case that X is

nonnegative, we need to show that the process L̃ is nonpositive. To this end,

suppose that ` > 0, and observe that because XT = 0,

Z`(t) = ess inf
τ∈S(t)

E
[
X(τ) +

∫ τ

t

F (t, `) dt

∣∣∣∣Ft]

≤ E[XT |Ft]− `(T − t) < 0 ≤ Xt

Thus L̃(t, ω) ≤ 0 for all t ∈ [0, T ], and ω ∈ Ω. As in the deterministic setting,

as a last step we take,

L(t, ω) = − 1

L̃(t, ω)

2
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We next show that for supermartingales, a localization argument can be used

to dispense with the class (D) requirement.

Corollary 5.5 Suppose that the function g : [0, T ]×R→ R is continuous and,

for any t ∈ [0, T ], g(t, ·) : R→ R is strictly decreasing from +∞ to −∞. Let X

be a non-negative, right-continuous supermartingale such that X(T ) = 0. Then

there exists an optional process L such that for every stopping time τ , we have

X(τ) = E
[∫ T

τ

g(t, sup
τ≤v≤t

Lv) dt

∣∣∣∣Fτ] , a.s. (30)

Furthermore, if L is any progressively measurable solution to (30), then so is

its upper-rightcontinuous modification.

Remark: This corollary, just like the original representation theorem, also

applies to supermartingales on an infinite time horizon whenever the limit at

infinity is defined and equal to 0.

Proof : The key contribution of this corollary is a localization argument

that allows us to extend the results of the representation theorem to super-

martingales that are not necessarily of class (D). The last statement, that the

upper-rightcontinuous modification is also a solution, is Lemma 3.1 in [3].

The key fact is that non-negative supermartingales are locally of class (D). In

particular, if τn is the stopping time τn , n ∧ inf{t > 0 | Xt ≥ n}, then

Xτn∧S ≤ n+Xτn for all stopping times S.

Because τn is bounded, we may apply the optional sampling theorem to conclude

that Xτn is integrable: E[Xτn ] ≤ E[X0]. In particular, the family of random vari-

ables {Xτn∧S}S∈S (S is the set of all stopping times) is bounded by an integrable
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random variable and hence it is uniformly integrable. Thus the stopped process

Xτn(t) = Xτn∧t is of class (D). We also have that limn→∞ τn = T , so that

(τn)n∈N is a localizing sequence.

The stochastic representation theorem, Theorem 5.2, can be applied to show

that for each n, there exists an optional process (ξnt )t∈[0,T ] such that for all

stopping times σ

Xτn
σ = E

[∫ T

σ

g(s, sup
v∈[σ,s]

ξnv )ds)

∣∣∣∣∣ Fσ

]

almost surely. Section 4.3 in Bank and ElKaroui [4] shows how to characterize

this optional solution in terms of a family of Snell envelopes. In particular, we

have

ξn(ω, t) , sup
{
` ∈ R | Z`,n(ω, t) = Xτn(ω, t)

}
(31)

where

Z`,n(σ) = ess inf
κ≥σ

E
[
Xτn(κ) +

∫ κ

σ

g(t, `)dt

∣∣∣∣ Fσ
]

(32)

(κ is a stopping time).

We can view the process Z̄`,n(t) := Z`,n(t) −
∫ t

0
g(s, `)ds as the Snell envelope

(from below) of the process X`,n(t) := Xτn(t) +
∫ t

0
g(s, `)ds. In particular, Z̄`,n

is the largest submartingale dominated by X`,n. This fact can be used to show

that Z`,n (or equivalently Z̄`,n) is right continuous. In fact, because Z̄`,n is a

submartingale, its right- and left-hand limits exists a.s. along any countable set,

and the limit does not depend on the choice of countable set (see for example

Theorem VI.1.2 in [22]). Let Z̄`,n
t+ denote this limit. It is also a submartingale.

Then the right-continuity of the filtration implies that Z̄`,n
t ≤ Z̄`,n

t+ (also Theorem
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VI.1.2 in [22]). Furthermore, because X`,n is right-continuous, we have

Z̄`,n
t ≤ Z̄`,n

t+ ≤ lim sup
sm↓t

X`,n
sm = X`,n

t .

By the maximality of Z̄`,n we must have that Z̄`,n
t = Z̄`,n

t+ .

Observe also that the processes Z`,n satisfy (Lemma 4.12 in [4]),

Z`,n(s) ≤ Xτn(s) for all s ∈ [0, T ] (33)

and

` 7→ Z`,n
s (ω) is continuous and strictly decreasing in `. (34)

The next step is to show that this characterization leads to a solution that is

upper-semicontinuous from the right when the process to be represented X is

right-continuous. For this part, we adapt arguments found in Bank and Küchler

[6] Theorem 1.

According to Proposition 2 in Dellacherie and Lenglart [21] it is sufficient to

show that limm→∞ ξ
n
Sn
≤ ξnS for all sequences of stopping times Sm ↓ S and such

that the limit limm→∞ ξ
n
Sm

:= ζn exists almost surely.

Combining the right continuity of Z`,n, the properties (34) and (33), and the

definition of ξn we conclude that for all ε > 0

Zζ−ε,n(S) = lim
Sm↓S

Zζ−ε,n(Sm) = lim
Sm↓S

Xτn
Sm

= Xτn
S .

Letting ε tend to zero, we conclude that ζn ≤ ξnS , as desired. Hence the optional

solution ξn defined in terms of the Snell envelopes, is also upper-rightcontinuous.

According to Theorem 1 in Bank and ElKaroui [4], any upper-rightcontinuous

solution ξn to the representation problem is given by

ξnS = ess inf
κ>S

`nS,κ a.s. and for all stopping times S (35)
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where κ is a stopping time and `nS,κ is the unique FS measurable solution of

E[Xτn
κ −Xτn

S | FS] = E
[∫ κ

S

g(t, `nS,κ)dt

∣∣∣∣ Fs
]
.

Without loss of generality, we may assume that τn ≥ σ, because in the limit as

n tends to infinity this is true almost surely: P(limn→∞{τn ≥ S}) = 1. For the

family (Xτn)n∈N of supermatingales, it turns out that `nS,κ is increasing in n in

the sense that `mS,κ ≥ `nS,κ-a.e. for m ≥ n (on the set {τn ≥ S}). In fact, we can

use the optional sampling theorem for bounded stopping times to show that

E[Xτm
κ −Xτm

S | FS] ≤ E[Xτn
κ −Xτn

S | FS]

for all m ≥ n. Because g(t, ·) is decreasing, this proves that `mS,κ ≥ `nS,κ-a.e.

Recall that the essential infimum I of a family G of F measurable random

variables is the greatest-lower-bound of G in the sense of a.e.-equivalence. More

precisely, I = ess infg∈G g if

(i) I ≤ g a.e. for all g ∈ G.

(ii) If h is any F measurable random variable such that h ≤ g a.e. for all g ∈ G

then h ≤ I a.e.

In particular, we have that ξnS ≤ `nS,κ ≤ `mS,κ a.e. and hence also that ξnS ≤ ξmS

a.e. for each stopping time S.

The optional section theorem (see for example Bass [10] Corollary 2.4) can then

be used to show that

P(ξnt ≤ ξmt for all t ∈ [0, T ]) = 1.
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In particular, for a fixed S, the process supv∈[S,t] ξ
n
v is increasing in n point-wise.

We can thus apply the monotone convergence theorem to conclude

XS = lim
n→∞

Xτn
S = E

[∫ T

S

g(t, lim
n→∞

sup
v∈[S,t]

ξnv )dt

∣∣∣∣∣ FS

]

= E

[∫ T

S

g(t, sup
v∈[S,t]

lim
n→∞

ξnv )dt

∣∣∣∣∣ FS

]
almost surely for a fixed stopping time S. Because each ξn is optional, the

limit is also. In particular, we obtain a representation of X with respect to the

optional process

L , lim
n→∞

ξn.

2

The representation theorem Theorem 5.2 and Corollary 5.5 show that each

Y 1[0,T ) such that Y ∈ Y can be represented as an optional projection

Yt1[0,T )(t) = E
[∫ T

t

F ′(s, sup
t≤v≤s

L(v)) ds

∣∣∣∣ Ft
]

for some progressively measurable process L that is upper-rightcontinuous. In

order to make a connection with inhomogeneously convex functions, we undo

the optional projection and instead look at the possibly nonadapted process

Ỹt =

∫ T

t

F ′(s, sup
t≤v≤s

L(v)) ds

whose optional projection is an element Y 1[0,T ) ∈ Y , ◦Ỹ = Y . The pathwise

inhomogeneously convex envelope of this process is easy to describe.

Corollary 5.6 With the process L defined as above, set

Ľ(t) , sup
0≤v≤t

L(v) for all t ∈ [0, T ) and ĽT , lim
t↑T

Ľt.
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Then we have that the pathwise (−F ′)-convex envelope Y̌ of Ỹ is given as,

Y̌t ,
∫ T

t

F ′(s, Ľ(s)) ds (36)

and it satisfies

supp(dĽ) ⊂ {Y̌ (t) = Ỹ∗(t)}

Here Y∗ denotes the lower-semicontinuous envelope of Ỹ . Moreover, the process

Ľ is increasing and adapted. Furthermore, if the process L is pathwise upper-

rightcontinuous then Ľ is right-continuous.

Remark: The left-continuity of Ľ at the terminal time is a convention, conve-

nient for the duality framework. Observe that the value of Y̌ is not influenced by

the value of Ľ(T ). In this corollary we take as given a specific realization of the

process L and hence the support supp(dĽ) can be defined pathwise. The result

of the corollary then follows directly from the arguments in the deterministic

case. We also have the important

Proposition 5.7 Let Ỹ , Y̌ and Ľ be as in the above corollary and let C∗ = Ľ,

then

〈C∗, Ỹ 〉 = 〈C∗, Y̌ 〉.

Proof : The first step is to show that the process Ỹ is lower-semicontinuous

from the right. Observe that we may write

Ỹ (s) =

∫ T

0

1(s,T ](t)F
′(t, sup

v∈[s,t]

L(v)) dt.
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Because the integrand is positive, we my apply Fatou’s lemma to obtain

lim inf
s↓u

Ỹ (s) ≥
∫ T

0

lim inf
s↓u

1(s,T ](t)F
′(t, sup

v∈[s,t]

L(v)) dt

=

∫ T

0

1(u,T ](t)F
′(t, sup

v∈(u,t]

L(v)) dt

≥
∫ T

0

1(u,T ](t)F
′(t, sup

v∈[u,t]

L(v)) dt = Ỹ (u).

Approaching from the left, we have only a partial result: if Ľ(·) has a dis-

continuity at t, i.e. if the measure dĽ has an atom at t, then Ỹ (·) is lower-

semicontinuous at t. In order to prove this, we first observe that a discontinuity

at t implies the strict inequality

L(t) = sup
v∈[0,t]

L(v) > lim
ε↓0

sup
v∈[0,t−ε]

L(v).

In otherwords, L is upper-semicontinuous from the left (and the right) at the

point t: L(t) > lim supv↑t Lv. We can now proceed as above to obtain

lim inf
s↑u

Ỹ (s) ≥
∫ T

0

lim inf
s↑u

1(s,T ](t)F
′(t, sup

v∈[s,t]

L(v)) dt

=

∫ T

0

1[u,T ](t)F
′(t, lim

ε↓0
sup

v∈[u−ε,t]
L(v)) dt

= Ỹ (u).

This suggests that it is helpful to write the measure dĽ as a sum of a part dĽλ

that is absolutely continuous with respect to Lebesgue measure and a part dĽs

that is singular with respect to Lebesgue measure. In this notation, what we

have shown so far is that∫ T

0

Y̌ (t)dĽs(t) =

∫ T

0

Ỹ∗(t)dĽs(t) =

∫ T

0

Ỹ (t)dĽs(t).
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The equality of the integrals with respect to dĽλ follows from a theorem due to

Young (Theorem 2 in [50]): the left and right limit inferior of a function of one

real variable can differ at most countably many points. Because Ỹ is already

lower-semicontinuous from the right, this shows that Ỹ (t) 6= Ỹ∗(t) in at most

countably many points. Hence∫ T

0

Y̌ (t)dĽλ(t) =

∫ T

0

Ỹ∗(t)dĽλ(t) =

∫ T

0

Ỹ (t)dĽλ(t).

2

In the remainder of this section we discuss the importance of making a distinc-

tion between the deflator processes Y(y) defined by (26), and the set

Y̌(y) ,
{
Y̌t =

∫ T

t

F ′(s, Ľ(s))ds
∣∣ Ľ is adapted, increasing, and

right-continuous, and ∃Y ∈ Y(y) s.t. ◦Y̌t ≤ Yt
} (37)

Throughout we shall let Y denote the union
⋃
y∈R+

Y(y), and similarly for Y̌ .

Also, we make one comment about notation. Although we have used the nota-

tion Y̌ , it is not necessarily true that Y̌ ∈ Y̌ is the pathwise inhomogeneously

convex envelope of some Y ∈ Y . It is however, the pathwise inhomogeneously

convex envelope of some Ỹ such that ◦Ỹ ∈ Y .

In the Corollary 5.10 we will make clear how these sets relate to the original

optimization problem (1). First, however, we mention a few theorems regarding

integration with respect to optional random measures, an exposition of which

is presented in notes by Bass [10].

The first step is to notice that every right-continuous, increasing process A de-

fines a measure µA on (Ω×[0, T ],FT⊗B([0, T ])) via µA(B) := E
∫ T

0
1B(t, ω)dAt(ω).
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Also, define µA(X) := E
∫ T

0
XtdAt for any measurable process X. Then we have

the following existence result.

Theorem 5.8 (Theorem 5.1 in [10]) If µ is a finite measure on (Ω×[0, T ],F⊗

B([0, T ])) such that µ(X) = 0 when X ≡ 0. Then there exists a (unique) in-

creasing and right-continuous process A such that µ = µA.

This construction does not require that the process A be adapted. However,

if A is an optional process, then integration with respect to this measure has

some nice properties:

Theorem 5.9 (Jacod [31], Theorem 1.33) Let µA be a finite measure on

(Ω×[0, T ],FT⊗B([0, T ])) such that µA(X) = 0 if X ≡ 0. Then for every bounded

measurable process X and its optional projection ◦X we have that µA(X) =

µA(◦X) if and only if A is optional.

Observe that this measure is well defined, and that these results are valid, for

any finite non-negative process X as well. In particular, if C is a consumption

plan, then E〈C,X〉 = E〈C, ◦X〉 for an arbitrary process X ≥ 0. In particular,

Corollary 5.10 Fix Y ∈ Y and apply the representation theorem to obtain

a (possibly non-adapted) process Ỹ such that ◦Ỹ = Y . Then following the

construction in Corollary 5.6, we obtain a process Y̌ ∈ Y̌ such that

EV (Y̌ ) = sup
C∈C

E
[
U(C)− 〈C, Y̌ 〉

]
= E

[
sup
h∈H

[U(h)− 〈h, Y̌ 〉]
]
, (38)

and such that

sup
C∈C

E[U(C)− 〈C, Y̌ 〉] = sup
C∈C

E[U(C)− 〈C, Y 〉] (39)
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Proof : Proposition 5.7 gives the pathwise equality

arg max
h∈H

{U(h)− 〈h, Ỹ 〉} = arg max
h∈H

{U(h)− 〈h, Y̌ 〉}

The supremum on the left hand side is achieved by the associated process h∗(t) =

Ľ(t). Moreover, because Ľ is adapted, the functions h∗(t)(ω) that achieve the

supremum on the right hand side in fact form an acceptable consumption plan

C ∈ C. This proves the first identity,

EV (Y̌ ) = E sup
h∈H

[
U(h)− 〈h, Y̌ 〉

]
= sup

C∈C
E
[
U(C)− 〈C, Y̌ 〉

]
.

We also have that

E
[
sup
h∈H

[U(h)− 〈h, Ỹ 〉]
]

= E
[
sup
h∈H

[
U(h)− 〈h, Y̌ 〉

]]
= sup

C∈C
E
[
U(C)− 〈C, Ỹ 〉

]
Combining this result with the fact that C is optional, gives us

sup
C∈C

E
[
U(C)− 〈C, Y̌ 〉

]
= sup

C∈C
E [U(C)− 〈C, Y 〉] .

2

Remark: In the above proof we have glossed over the technicality that the

representation theorem applies to processes X such that X(T ) = 0. Notice,

however, that because E〈C, Y 〉 ≥ E〈C, Y 1[0,T )〉 and because

arg max

(
sup
C∈C

E
[
U(C)− 〈C, Y 1[0,T )〉

])
includes (the maximizer is not unique) a consumption plan C∗ that is left-

continuous at T , we also have that

sup
C∈C

E [U(C)− 〈C, Y 〉] = sup
C∈C

E
[
U(C)− 〈C, Y 1[0,T )〉

]
.
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Combining this corollary with the results in a deterministic setting, we have the

upper bound

sup
C∈C(x)

EU(C) ≤ EV (Y̌ ) + yx, ∀Y̌ ∈ Y̌(y).

We are thus led to consider the function

v(y) , inf
Y̌ ∈Y̌(y)

EV (Y̌ ) (40)

The final goal will be to show that u and v satisfy a dual relationship (Theorem

6.3). In other words, we wish to show that there is no duality gap:

sup
C∈C(x)

EU(C) = inf
y∈R+

inf
Y̌ ∈Y̌(y)

E{V (Y̌ ) + yx}.

5.3 Dual Variables in Detail

In this section we try to collect some of the important properties of the dual

variables that are needed for the application of minimax methods. As a first

step, we note that the set Y(y) is convex. To prove the corresponding property

for the sets Y̌(y), however, requires some additional work. Throughout we

assume that Assumptions 2.1, 2.2 and 2.3 hold. They will be needed to prove

that Y̌(y) is convex and Fatou closed.

5.3.1 Convexity

In this section we find necessary and sufficient conditions for the set Y̌(y) to be

convex for all y ∈ R+. We finish the section with a discussion of examples and

a derivative test for the necessary and sufficient conditions. First we prove an

important
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Lemma 5.11 Let ψ be a C1-function of two variables ψ : [0, T ] × R+ → R

that is strictly decreasing in the second variable. Then the function L defined

implicitly by

ψ(t, Lt) = λψ(t, L1
t ) + (1− λ)ψ(t, L2

t ). (41)

is increasing and right continuous for all choices of increasing, right continuous

functions L1, L2 and any λ ∈ [0, 1] if and only if ψt(t, ·) is concave relative to

ψ(t, ·) (if ψt ◦ ψ−1 is concave in the usual sense on ψ(t,R+).) In other words,

if we let u = ψ(t, b) and v = ψ(t, c) then we require that for all b, c ∈ R+,

t ∈ [0, T ], and λ ∈ [0, 1],

λψt(ψ
−1(t, u)) + (1− λ)ψt(ψ

−1(t, v)) ≤ ψt
(
ψ−1(t, λu+ (1− λ)v)

)
, (42)

where we have used the notation ∂tψ = ψt.

Remark: The concept of a relatively convex/concave function is standard,

equivalent formulations and applications are discussed, for example, in [14], [43],

and [42]. Observe, however, that because ψ is decreasing in the second variable,

the image ψ(t,R+) has an inverted order. Thus we find (see Proposition 5.13)

that an equivalent condition for ψt(t, ·) relatively concave to ψ(t, ·) is that the

relative difference quotients are increasing. If the second partial derivative ψtx

exists, then this is equivalent to the fact that ψtx(t, x)/ψx(t, x) is increasing in

x for all t ∈ [0, T ].

Remark: For simplicity of notation, we let φ(t, ·) := ψ(t, ·)−1. The assumption

that ψ is C1 is needed to guarantee that the inverse φ and its time φt and spatial

φx derivatives exist. In addition, with this assumption, we can apply the implicit
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function theorem to calculate these derivatives:

φx(t, y) =
1

ψx(t, φ(t, y))
and φt(t, y) = −ψt(t, φ(t, y))

ψx(t, φ(t, y))
.

Proof : Denote by L the set of all nondecreasing and right-continuous func-

tions L : [0, T ] → R+. We need to show that if L1, L2 ∈ L then L ∈ L if and

only if relation (42) holds.

First assume that the functions L1 and L2 are differentiable. With this assump-

tion, the implicitly defined function L is also differentiable. At the end we show

how to use approximations to obtain the proof in the general case.

(⇐) To simplify notation, define yt such that Lt = φ(t, yt). Next, assuming that

each of the functions L1 and L2 is differentiable, we calculate the derivative

dLt =
[
φt(t, yt) + λφx(t, yt)ψt(t, L

1
t ) + (1− λ)φx(t, yt)ψt(t, L

2
t )
]
dt

+ λφx(t, yt)ψx(t, L
1
t )dL

1
t + (1− λ)φx(t, yt)ψx(t, L

2
t )dL

2
t .

(43)

Observe that, because the function ψ is strictly decreasing,

λφx(t, yt)ψx(t, L
1
t )dL

1
t + (1− λ)φx(t, yt)ψx(t, L

2
t )dL

2
t ≥ 0. (44)

In particular, we have that

dLt ≥
[
φt(t, yt) + λφx(t, yt)ψt(t, L

1
t ) + (1− λ)φx(t, yt)ψt(t, L

2
t )
]
dt.

As a final step, we express all of the derivatives in terms of the derivatives of ψ

to obtain,

dLt ≥
[
−ψt(t, φ(t, yt))

ψx(t, φ(t, yt))
+ λ

ψt(t, L
1
t )

ψx(t, φ(t, yt))
+ (1− λ)

ψt(t, L
2
t )

ψx(t, φ(t, yt))

]
dt.
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Recall that ψx(t, φ(t, yt)) is negative. Thus, if relation (42) holds, then dLt ≥ 0.

(⇒) Returning to the calculation of the derivative of L in equation (43), we

observe that if the functions L1 and L2 are constant, then the identity (44) is

in fact an equality. In particular, for L1
t = b and L2

t = c, we have that

ψx(t, φ(t, yt))dLt = [−ψt(t, φ(t, yt)) + λψt(t, b) + (1− λ)ψt(t, c)] dt.

Assuming that dLt ≥ 0, we have the identity (42).

It remains to show that we can extend the arguments (for both directions of

the implication) to the case when the functions L1 and L2 are not necessarily

differentiable. To this end, let L̃ ∈ L, and define for each n ∈ N,

L̃n(s) , n

∫ s+ 1
n

s

L̃(t) dt.

Note that, because L̃ is increasing, both its left and right hand limits exist at

each point. This is enough to show that the left and right hand derivatives of

L̃n also exist for each n ∈ N. Similarly, it is easy to see that right continuity

implies

lim
n→∞

L̃n(t) = L̃(t) , ∀t ∈ [0, T ]

Furthermore, observe that equation (43) remains valid if the derivatives are

replaced with left and right hand derivatives D±L(s) and D±Li(s), i = 1, 2.

We now have an approximating sequence of processes Ln corresponding to the

approximations L1
n and L2

n, for which the theorem holds. Because the pointwise

limit of increasing functions is increasing, we have that the theorem holds for

general processes L1, L2 ∈ L 2
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An important consequence on this lemma is

Corollary 5.12 If the felicity function F satisfies assumption (2.3), then the

set Y̌(y) is convex for all y.

Proof : Observe that the assumptions imply that the previous lemma holds

for ψ(t, x) = F ′(t, x). What remains to show is that the relation (42) can be

extended to a statement about processes. To this end, let Y̌ 1, Y̌ 2 ∈ Y̌(y) for a

fixed y ∈ R+. Denote by L1 and L2 the adapted, increasing, right-continuous

processes such that

Y̌ 1
t =

∫ T

t

F ′(s, L1
s)ds, Y̌ 2

t =

∫ T

t

F ′(s, L2
s)ds.

Then we must show that the process Y̌t := λY̌ 1
t +(1−λ)Y̌ 2

t is also an element of

Y̌(y) for all λ ∈ [0, 1]. Because optional projection is linear, ◦Y̌ is dominated by

some Y ∈ Y(y). Next we show that the process Y̌ is pathwise inhomogeneously

convex. In particular, if we define the process L implicitly via

F ′(s, Ls) = λF ′(s, L1
s) + (1− λ)F ′(s, L2

s), (45)

then

Y̌t =

∫ T

t

F ′(s, Ls)ds.

It remains to show that the process L is adapted, right-continuous, and increas-

ing. Adaptivity and right-continuity are inherited from the processes L1 and L2

because F ′ is continuous. Finally, the previous lemma proves that, given the

assumptions on F ′, the process L is also increasing.

Note that the result also holds if L1(t) = ∞ or L2(t) = ∞ for some t ∈ [0, T ].

This follows from the Inada conditions by taking limits in Equation 41. 2
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The following proposition describes a relationship between the relation (42) and

the usual notion of convexity. In particular, if ψt is differentiable in the second

variable, it gives an easy derivative test for when the identity is true.

Proposition 5.13 The function ψ, satisfying the assumptions of lemma (5.11),

satisfies the inequality (42) if and only if the difference quotients are increasing

(for x < y < z):

ψt(t, x)− ψt(t, y)

ψ(t, x)− ψ(t, y)
≤ ψt(t, x)− ψt(t, z)

ψ(t, x)− ψ(t, z)
≤ ψt(t, y)− ψt(t, z)

ψ(t, y)− ψ(t, z)
(46)

If the second partial derivative ψtx exists, then the above condition is equivalent

to

β(t, x) ,
ψtx(t, x)

ψx(t, x)
is increasing in x ∀ t ∈ [0, T ].

Proof : (⇒) The proof of (46) is almost identical to the standard arguments

for convex functions. In particular, if we let

λ =
ψ(t, x)− ψ(t, y)

ψ(t, x)− ψ(t, z)

then

ψ(t, y) = (1− λ)ψ(t, x) + λψ(t, z).

The equivalence of the identities (42) and (46) follows from substituting for

λ and rearranging terms. It remains to prove the second statement in the

proposition.

We make a few calculations to prove the second statement.
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(⇒) Observe that existence of the second partial derivative allows us to calculate

β as the limit of difference quotients as follows,

lim
y↓x

ψ̇(t, x)− ψ̇(t, y)

ψ(t, x)− ψ(t, y)
= lim

y↓x

ψ̇(t,x)−ψ̇(t,y)
x−y

ψ(t,x)−ψ(t,y)
x−y

=
ψtx
ψx

= β(t, x).

It is now easy to see that the inequalities (46) imply that β(t, x) is increasing

in x.

(⇐) An application of Cauchy’s (extended) mean value theorem shows that if

β(t, ·) is increasing, then for x < y < z,

ψt(t, x)− ψt(t, y)

ψ(t, x)− ψ(t, y)
≤ ψt(t, y)− ψt(t, z)

ψ(t, y)− ψ(t, z)
.

Defining λ as before and rearranging terms, gives the identity in (42).

2

In the remainder of this section we discuss examples. In order to gain some

intuition about the identity (42), we start by looking at a function for which it

does not hold.

Example 1. Suppose that the felicity function is given as F (t, x) := 1− e−tx,

then the set Y̌(y) is not convex. For this choice of felicity function, we have the

following partial derivatives

Fx(t, x) = t e−tx Fxx(t, x) = −t2 e−tx

Fxt(t, x) = −tx e−tx + e−tx Fxtx(t, x) = −2t e−tx + t2 e−tx

Hence the ratio
Fxtx
Fxx

=
2

t
− x
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is strictly decreasing for all t ∈ [0, T ]. Figure 2 gives one example of what can

go wrong.

t̃0 T

@
@

��

HH

L1(t)

L2(t)

L(t)

Figure 2: An example where the set of dual variables Y̌(y) is not convex. If

the felicity function is given by F (t, x) = 1− e−tx, then Y̌(y) is not necessarily

convex. In particular, if we let let L1(t) = 2 + t and L2(t) = 1 + 0.1t, then the

implicitly defined function L is increasing only up to a time t̃ and is decreasing

from then onwards. Recall that L is defined by F ′(t, L(t)) = λF ′(t, L1(t)) +

(1− λ)F ′(t, L2(t))), where for this image we have used λ = 0.9.

Remark: The derivative test allows us to construct counter examples as solu-

tions to a simple PDE. We used this method to arrive at the example discussed

above.

Example 2. If the felicity function is separable, in other words F (t, x) =

θ(t)ũ(x), then the set Y̌(y) is convex. This is because the time dependency

drops out in equation (41).
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Example 3. In this example we allow for some time inhomogeneity. Suppose

that F (t, x) = e−tαũ(e−tγx) for a utility function ũ such that F satisfies the

assumptions (2.1), (2.2) and (2.3) and for α, γ > 0. If we assume further that

ũ is three times differentiable then,

Fxtx
Fxx

= −(α + 2γ)− γx e−γtũ′′′(x e−γt)

ũ′′(x e−γt)
.

Thus, according to Corollary 5.12 and Proposition 5.13, the set Y̌(y) is convex

if and only if the ratio xũ′′′(x)
ũ′′(x)

is not increasing. For instance, if ũ(x) = 1− e−cx

for some c > 0, then
xũ′′′(x)

ũ′′(x)
= −cx.

This ratio is strictly decreasing and we have the desired convexity. Observe also

that this is a more reasonable choice of a felicity function than the (similar)

choice in example 1. In this example we also have exponential utility, but with

a time-invariant risk aversion.

5.3.2 Fatou Closure

We next show that the set Y̌(y) is Fatou closed if the felicity function satisfies the

Inada conditions (2.1) and the assumption of reasonable asymptotic elasticity

(2.2). The result will follow from a series of lemmas identifying the structure of

the Fatou limit. These lemmas will also be used later to prove existence in the

dual problem.

First, we recall the definition of Fatou convergence in the setting of stochastic

processes (see for example [36]). If {Xn}n∈N is a sequence of nonnegative, RCLL,

adapted processes, then {Xn}n∈N is Fatou convergent to an adapted RCLL
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process X if

Xt = lim sup
s↓t

lim sup
n→∞

Xn
s

= lim inf
s↓t

lim inf
n→∞

Xn
s

almost surely for all t ∈ [0, T ]. A set A of RCLL, non-negative, adapted pro-

cesses is said to be Fatou closed if whenever (Xn)n∈N is a sequence in A Fatou

convergent to some process X, then X ∈ A also.

An important result that we will need is that the set Y(y) is Fatou closed. This

theorem is proved by Žitković [51], Theorem 4. Our task in this section, is to

show that the set Y̌(y) is also Fatou closed. Because processes in this set are

decreasing, we can make use of a result which states that, for a dense subset,

the Fatou limit is equivalent to an ordinary limit.

Lemma 5.14 (Lemma 4.2 [35]) Let (An)n∈N be a sequence of positive, de-

creasing processes on a filtered probability space (Ω,F ,F,P). Assume also that

the collection of random variables conv((An0 )n∈N) is bounded in probability. Then

there exists a sequence Bn ∈ conv(An, An+1, . . .) and a [0,∞) valued decreasing

process B such that

Bt = lim
ε↓0

lim sup
n→∞

Bn
t+ε = lim

ε↓0
lim inf
n→∞

Bn
t+ε (47)

for almost every ω ∈ Ω. Furthermore, there exists a countable dense subset

T ⊂ [0, T ] containing the set {0, T} such that

Bt = lim
n→∞

Bn
t ∀t ∈ T
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Remark: Strictly speaking, Lemma 4.2 in [35] is about convergence of in-

creasing processes. However, Lemma 5.14 is a straightforward modification for

decreasing processes.

The characterization of the limit (47) will be used to show that the limit of

pathwise inhomogeneously convex processes is also pathwise inhomogeneously

convex (P-a.s.). We can now state the main result of this section.

Theorem 5.15 Let (Zn)n∈N ∈ Y̌(y) be a sequence that is Fatou convergent to

some process Z. Then Z ∈ Y̌(y) also.

Remark: The proof of this theorem will proceed in several steps the goal of

which is to construct a density −F ′(t, Lt) for Z and to show that L is increasing,

right-continuous, and adapted. First, we restrict our attention to the individual

paths Z(ω) for ω ∈ Ω such that equation (47) holds. In what follows we suppress

the ω from the notation and look at Z,L, Zn, Ln as functions of time only.

We also use that the limit inferior and the limit superior of a sequence of in-

creasing functions is increasing. We will use this fact repeatedly.

Lemma 5.16 In the above notation, let Z denote the Fatou limit of a sequence

(Zn)n∈N ∈ Y̌(y), and let Ls,t be the unique constant such that

Z(s)− Z(t) =

∫ t

s

F ′(u, Ls,t) du

Then we have that

lim
r↓s

lim inf
n→∞

Lnr ≤ Ls,t ≤ lim sup
n→∞

Lnt (48)
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Proof : The definition of limit-superior and equation (47) imply

Z(s)− Z(t) = lim
ε↓0

(
lim sup
n→∞

Zn
s+ε − lim sup

n→∞
Zn
t+ε

)
≤ lim

ε↓0
lim sup
n→∞

(
Zn
s+ε − Zn

t+ε

)
.

Similar calculations can be made to show the opposite inequality for limit infe-

riors. Now supposing that we may apply Fatou’s lemma to both functions F ′

and (−F ′), then

lim
ε→0

∫ t+ε

s+ε

lim inf
n→∞

F ′(u, Lnu) du ≤
∫ t

s

F ′(u, Ls,t) du ≤ lim
ε→0

∫ t+ε

s+ε

lim sup
n→∞

F ′(u, Lnu) du

Continuing these calculations, we obtain the further relation∫ t

s

F ′(u, Ls,t) du ≥ lim
ε→0

∫ t+ε

s+ε

lim inf
n→∞

F ′(u, Lnu) du

=

∫ t

s

lim inf
n→∞

F ′(u, Lnu) du

≥
∫ t

s

F ′(u, lim sup
n→∞

Lnt ) du.

In these calculations, the first equality follows from the fact that the Lebesgue

measure is atomless. In the last inequality we have removed the time dependence

from the second variable. We can do this because F (t, ·) is decreasing while each

process Ln(t) is increasing in t. From these calculations, we can conclude that

Ls,t ≤ lim sup
n→∞

Lnt .

The proof of the second inequality is similar. In this case, however, we note

that the stronger identity∫ t

s

F ′(u, lim inf
n→∞

Lnu) du ≤
∫ t

s

F ′(u, lim
r↓u

lim inf
n→∞

Lnr ) du

also holds. The last step of the proof is to justify the use of Fatou’s lemma.

Because the felicity function is increasing, F ′(t, x) is non-negative and hence

bounded from below. It remains to show that it is also bounded from above.
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Because we are applying Fatou’s lemma to the integral over [s + ε, t + ε] it is

enough to prove that (F ′(t, Lnt ))t∈[t1,t2] is bounded for t1 6= 0.

We may assume, without loss of generality, that at t = 0 the Fatou limit of

processes is in fact a genuine limit: limn→∞ Z
n
0 = Z0. Thus, for a given ε > 0

and large enough n, we have that Z0 + ε > Zn
0 . Because each of these processes

is decreasing, we obtain the bound

M := Z0 + ε ≥ Zn
0 − Zn

s =

∫ s

0

F ′(t, Lt) dt ≥ s F ′(t̄, Ls)

The special time t̄ ∈ [0, s] comes from an application of the mean value theorem

for integrals. We have also used the fact that function L(·) is increasing.

Because the felicity function is strictly concave and continuously differentiable,

the inverse of the derivative exists, it is decreasing, and continuous. We denote

this inverse by φ(t, ·) = (F ′(t, ·))−1. Because we have assumed that F ′ is C1,

the inverse φ is continuous in both variables. It is also strictly greater than zero

on the compact interval [0, s]. These facts imply the bounds

Ls ≥ φ

(
t̄,
M

s

)
≥ min

t∈[0,s]
φ

(
t,
M

s

)
= ε(s) > 0.

For t ∈ [t1, t2], the bound above gives

F ′(t, Lnt ) ≤ F ′(t,n Lt1) ≤ F ′(t, ε(t1)) for all t ∈ [t1, t2].

The result now follows from the continuity of the function F ′(·, x) and the

compactness of the interval [t1, t2]. 2

The next step in the proof of the theorem is a characterization of the density

of the limiting process Z.
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Lemma 5.17 In the setting of lemma (5.16) we also have that,

lim
t↓t0

lim inf
n→∞

Lnt ≥ lim sup
n→∞

Lnt0 . (49)

Furthermore, Ls,t ≤ Lt,u if s < t < u and the limit Z is (−F ′)-convex. Define

Ľt , lim
s↓t

Lt,s. (50)

Then (−F ′(t, Ľ(t))) is a version of the density of Z and Ľ is right-continuous

and increasing.

Proof : Combining the results of equations (48) and (49) shows that Ls,t ≤

Lt,u if s < t < u. In particular,

Ls,t ≤ lim sup
n→∞

Lnt ≤ lim
r↓t

lim inf
n→∞

Lnr ≤ Lt,u.

According to lemma (4.2), this is equivalent to inhomogeneous convexity. Lemma

(4.3) shows that the inhomogeneously convex function Z(ω, ·) has a density, and

that a version of this density is given by the equation (50). Right-continuity

follows from the definition.

It remains to prove the first statement (49). We first treat the case when

s, t ∈ T . For these time points the limit, Zs − Zt = limn→∞
∫ t
s
F ′(u, Lnu) du

exists. Furthermore, the mean value theorem for integrals combined with the

fact that the functions Ln(·) are increasing, gives the following bounds

(t− s)F ′(t∗, Lnt ) ≤
∫ t

s

F ′(u, Lnu) du (51)

(t− s)F ′(t∗, Lns ) ≥
∫ t

s

F ′(u, Lnu) du (52)
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for some t∗, t
∗ ∈ [s, t] which may depend on n. As the next step, we take limits

in equations (51) and (52) (limit-superior and limit-inferior respectively);

(t− s) lim sup
n→∞

F ′(t∗(n), Lnt ) ≤ lim
n→∞

∫ t

s

F ′(u, Lnu) du,

(t− s) lim inf
n→∞

F ′(t∗(n), Lnt ) ≥ lim
n→∞

∫ t

s

F ′(u, Lnu) du.

The next estimate allows us to remove the dependence on n of the time points

t∗(n), and t∗(n):

lim sup
n→∞

F ′(t∗(n), Lnt ) ≥ inf
u∈[s,t]

F ′(u, lim inf
n→∞

Lnt ),

lim inf
n→∞

F ′(t∗(n), Lns ) ≤ sup
u∈[s,t]

F ′(u, lim sup
n→∞

Lns ).

Combining these results, we obtain

inf
u∈[s,t]

F ′(u, lim inf
n→∞

Lnt ) ≤ sup
u∈[s,t]

F ′(u, lim sup
n→∞

Lns ).

As a last step, we observe that, because F ′(·, ·) is continuous in both the time

and space variable, if we take the limit as t approaches s (along tn ∈ T if you

like), then we obtain

F ′(s, lim sup
n→∞

Lns ) ≥ F ′(s, lim
t↓s

lim inf
n→∞

Lnt ).

The proof for arbitrary s, t ∈ [0, T ] follows the same reasoning, but is nota-

tionally more complex. We omit the details, but note that repeatedly applying

equation (47) shows that

Z(s)− Z(t) = lim
ε↓0

lim inf
n→∞

∫ t+ε

s+ε

F ′(u, Lnu) du = lim
ε↓0

lim sup
n→∞

∫ t+ε

s+ε

F ′(u, Lnu) du.

We use this identity, instead of the existence of the limit, limn→∞
∫ t
s
F ′(u, Lnu) du,

to relate the estimates on lim inf and lim sup. 2
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Proof of Theorem 5.15 Returning for a moment to consider Z(ω, t) as a

process, note that we have shown that the pathwise limit Z(ω, t) is inhomoge-

neously convex for almost every ω ∈ Ω (when the sequence (Zn)n∈N converges as

processes in the sense of Fatou). Furthermore, because the filtration is assumed

right-continuous, the definition of Ľ in Lemma 5.17 shows that it is adapted if

for each n the processes Ln are adapted.

The remaining step in the proof of the Theorem 5.15 is to show that Z ∈

Y̌(y) for the particular y. From the definition, we easily see that for each Žn

there exists a non-negative supermartingale Ỹ n ∈ Y(y) such that Ỹ n ≥ ◦(Žn).

Lemma 4.2 in [36] shows that there exists a sequence of convex combinations

Y n ∈ conv(Ỹ n, Ỹ n+1, . . .) that is Fatou convergent to a supermartingale Y . In

fact, Y ∈ Y(y) because the set Y(y) is Fatou closed (Theorem 4 [51]). Observe

also that if we take further convex combinations of the processes Žn then the

limit is not altered, abusing notation call this sequence also (Žn)n∈N.

The optional projection ◦(Žn
t ) is the unique optional process such that ◦(Žn

T ) =

E[(Žn
T ) 1{T<∞} |FT ], for all stopping times T . Combined with Fatou’s lemma,

Yt = lim inf
s↓t

lim inf
n→∞

Y n
s ≥ lim inf

s↓t
lim inf
n→∞

E[Žn
s |Ft]

≥ lim inf
s↓t

E
[

lim inf
n→∞

Žn
s

∣∣∣ Ft
]

Next, let Z̃t := lim infn→∞ Ž
n
t . The choice of our subsequence and Lemma 5.14

imply that lim infs↓t Z̃s = lims↓t Z̃s = Zt. In particular, the limit exists and we

can use Lévy’s convergence result;

lim
s↓t

E[Z̃s |Ft] = E[Zt |Ft]

Combining this with the previous results, we obtain Y ≥ ◦Z. In particular, the
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limit Z ∈ Y̌(y). 2

Remark: In the above argument it suffices to show that P(Yt ≥ (◦Z)t) = 1 for

all t ∈ [0, T ] because both processes are right-continuous. Right-continuity of

Z ∈ Y̌ follows from Theorem 47 in [22], which states that the optional projection

of a right-continuous process is also right-continuous.

An important corollary of this discussion is a characterization of the (stochastic)

density of the limiting process Y̌ .

Lemma 5.18 Let (Y̌ n)n∈N ∈ Y̌(y) beFatou convergent to some Y̌ ∈ Y̌(y) and

denote by (Ln)n∈N and L the right-continuous, adapted processes describing their

densities. Then the limit limn→∞ L
n(ω, t) exists for almost every ω ∈ Ω at every

continuity point t of Ľ(ω, ·). In particular,

lim inf
n→∞

Ln(ω, t) = lim sup
n→∞

Ln(ω, t) = Ľ(ω, t)

at all but at countably many times t ∈ [0, T ]. This countable set may depend on

ω ∈ Ω

Proof : Fix ω ∈ Ω such that (47) holds (this is true a.s). For this choice of ω

the results of Lemmas 48 and 49 hold for the functions {Ľn(ω, ·)}n∈N and Ľ(ω, ·).

Now let t be a point of continuity of Ľ(ω, ·) and pick s < t (we may assume

that t 6= 0, T ). Equation (48) shows that for all r > s, Ls,r ≤ lim supn L
n
r . Let

r ↓ s to show (we suppress ω from the notation from now on),

Ľs ≤ lim
r↓s

lim sup
n

Lnr ≤ lim inf
n→∞

Lnt .

The last inequality is obtained from (49). From these same equations, we can

also conclude that for all v > t, lim supn→∞ L
n
t ≤ Lt,v. Taking the limit we
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obtain,

lim sup
n→∞

Lnt ≤ lim
v↓t

Lt,v = Ľt.

This gives the sequence of inequalities

Ľs ≤ lim inf
n→∞

Lnt ≤ lim sup
n→∞

Lnt ≤ Ľt.

Now let s ↑ t and observe that because t is a point of continuity, we must in

fact have equality: lim infn→∞ L
n
t = lim supn→∞ L

n
t = Ľt. 2

5.3.3 Existence in the Dual Problem

An important consequence of the characterization of the Fatou limit is existence

in the dual problem. This fact is a direct corollary of the following theorem.

Theorem 5.19 Let {Y̌ n}n∈N ∈ Y̌(y) be a sequence that is Fatou convergent to

a process Y̌ ∈ Y̌(y). Then we have

lim inf
n→∞

EV (Y̌ n) ≥ EV (Y̌ )

Proof : Now assume that the processes (Ln)n∈N and Ľ are finite valued.

Then we may apply Fatou’s lemma to show

lim inf
n→∞

EV (Y̌ n) = lim inf
n→∞

E
∫ T

0

(F (t, Lnt )− F ′(t, Lnt )Lnt ) dt

≥ E
∫ T

0

(
F (t, lim inf

n→∞
Lnt )− F ′(t, lim inf

n→∞
Lnt ) lim inf

n→∞
Lnt

)
dt.

We have also used the fact that the function G(t, x) := F (t, x) − F ′(t, x)x is

increasing in its second variable. In fact, G′(t, x) = −F ′′(t, x)x which is positive
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because the felicity function is concave. The key fact used is Lemma 5.18. It

shows that the Lebesgue integral is not changed if the limit-inferior is replaced

with Ľ. In particular,

lim inf
n→∞

EV (Y̌ n) ≥ E
∫ T

0

(
F (t, Ľt)− F ′(t, Ľt)Ľt

)
dt = EV (Y̌ ).

The argument for infinite valued processes requires only a few extra steps. This

is because the definition of the conjugate functional V (·) now splits into two

parts. In order to describe it, we define the stopping time τ∗ := inf{t > 0 | Ľt =

∞} and observe that because Ľ is right-continuous, Ľτ∗ =∞. Thus,

EV (Y̌ ) = E
∫ T

0

(
F (t, Ľt)− F ′(t, Ľt)Ľt

)
1{t<τ∗} + F (t,∞)1{t≥τ∗} dt. (53)

We first consider the case when Ľn(T ) < ∞ for all n large enough. In this

part we will need the assumption of reasonable asymptotic elasticity (2.2): the

asymptotic elasticity AEF (t, ·) is less than one for t ∈ [0, T ]. Furthermore,

observe that if the felicity function is bounded, F (t,∞) = M(t) <∞, then the

asymptotic elasticity is zero. This fact was proven in the proof of Lemma 4.9.

With this assumption, Fatou’s lemma gives,

lim inf
n→∞

EV (Y̌ n) = lim inf
n→∞

E
∫ T

0

F (t, Lnt )− F ′(t, Lnt )Lnt dt

≥ E
∫ T

0

lim inf
n→∞

(
1− F ′(t, Lnt )Lnt

F (t, Lnt )

)
F (t, Lnt ) dt

=

∫ T

0

(
F (t, Ľt)− F ′(t, Ľt)Ľt

)
1{t<τ∗}

+ (1− AE F (t, ·))F (t,∞)1{t≥τ∗} dt.

The second to last equality follows because the limit-inferior is equivalent to

Ľ at all but countably many points. In particular, because AE < 1, the last
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expression is infinite if the felicity function is unbounded. Comparing with

equation (53), we observe that the same is true of EV (Y̌ ). If, on the other

hand, the felicity function is bounded, then also AE = 0 and the second term

is just 1 · F (t,∞) = M(t). Again the result follows.

From this proof, we observe that the result is in fact true for arbitrary Ľn, finite

or possibly taking infinite values, because

lim inf
x→∞

(
1− F ′(t, x)x

F (t, x)

)
F (t, x) = F (t,∞).

To calculate the limit inferior of the product, we have used the fact that

limx→∞ F (t, x) exists. 2

Remark: If the increasing processes Ľn are uniformly bounded, then we have

equality:

lim
n→∞

EV (Y̌ n) = EV (Y̌ ).

This theorem has an important

Corollary 5.20 (Existence in the dual problem) Let the dual v to the value

function be defined as

v(y) , inf
Y̌ ∈Y̌(y)

EV (Y̌ )

Then there exists a process Y̌ ∗ ∈ Y̌(y) that achieves this infimum. In addition,

this solution is unique if v(y) <∞.

Proof : Let (Y̌ n)n∈N ∈ Y̌(y) be a sequence of processes such that v(y) =

limn EV (Y̌ n). According to lemmas (5.14) and theorem (5.15) there exists a

sequence of convex combinations Zn ∈ conv(Y̌ n, Y̌ n+1, . . .) that converges to
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some process Z ∈ Y̌(y). Because the functional V is convex, limn EV (Y̌ n) ≥

lim infn→∞ EV (Zn). Furthermore, we have just shown that lim inf EV (Zn) ≥

EV (Z). Because the sequence EV (Y̌ n)n∈N approaches the infimum v(y), we

must have that v(y) = EV (Z), in particular, the infimum is attained. This

solution is unique because V is strictly convex for Y̌ ∈ Y̌ and v(y) <∞. 2
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6 Proof of the Duality Theorem

We are now ready to prove a dual characterization of the optimal consumption

problem. In particular, we establish a relationship between the optimal solutions

C∗ and Y̌ ∗ of the primal and dual problems respectively. This result is Theorem

6.3. Furthermore, in Theorem 6.5 we will show how things simplify in a complete

market.

The first step is to apply a minimax theorem to prove a relationship between

the primal and dual functions (u(x) and v(y) respectively.) The general struc-

ture of this proof is inspired by the proof of Lemma 3.4 in [36]. The use of

these techniques is possible due to our choice of dual variables and the analytic

properties satisfied by the space of consumption plans.

Theorem 6.1 The value functions u and v (defined in (1) and (40) respec-

tively) are conjugate in the sense that

v(y) = sup
x>0

[u(x)− xy] (54)

for all y ∈ R+.

We apply the minimax theorem to show that

sup
C∈Cn

inf
Y ∈Y(y)

E[U(C)− 〈C, Y 〉] = inf
Y ∈Y(y)

sup
C∈Cn

E[U(C)− 〈C, Y 〉], (55)

where Cn = {C ∈ C | C(T ) ≤ n}. The version of the theorem we use is proved

in the appendix.
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Theorem 6.2 (Minimax) Let A be a nonempty convex subset of a topological

vector space, and B a nonempty, closed, convex, and convexly compact subset

of a topological vector space. Let h : A × B → R be convex on A, and concave

and upper-semicontinuous on B. Then

inf
A

sup
B
h = sup

B
inf
A
h.

Proof of Theorem 6.1 In our application, we take A to be the set of dual

variables Y(y) which is convex. Also, let B be the set of bounded consumption

plans Cn for some n > 0. It is clear that Cn is closed and convex. According

to Theorem 3.3 it is also convexly compact. Finally, for the function h we take

the mapping (C, Y ) 7→ E[U(C) − 〈C, Y 〉]. Because the bracket is bilinear, the

map is clearly convex in the Y variable. It is also concave in C because the

utility function is concave. Furthermore, combining the results of Lemmas 3.5

and 3.4 we see that it is also upper-semicontinuous. This result follows because

Y ∈ Y(y) is the optional projection of something with lower-semicontinuous

paths. Thus we know that the relation (55) indeed holds for all n ∈ N.

As a next step, we look at the limit as n tends to infinity. On the left hand side

we calculate

lim
n→∞

sup
C∈Cn

inf
Y ∈Y(y)

E[U(C)− 〈C, Y 〉] = lim
n→∞

sup
C∈Cn

[EU(C)− sup
Y ∈Y(y)

E〈C, Y 〉]

= sup
C bounded

[EU(C)− sup
Y ∈Y(y)

E〈C, Y 〉]

= sup
x>0

sup
C,πy(C)=xy

[EU(C)− sup
Y ∈Y(y)

E〈C, Y 〉]

= sup
x>0

[u(x)− xy].
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Some explanation of the validity of these statements is in order. First, observe

that in the third equality, we have removed the assumption that the consump-

tion plan is bounded. However, because all admissible plans are almost surely

finite, each plan can be approximated by a monotonically increasing sequence of

truncated processes. A more critical step is the classification of the consumption

plans by their price

πy(C) = sup
Y ∈Y(y)

E〈C, Y 〉.

This step is justified because the constraint set Y(y) scales linearly in y. In

other words, because Y(y) = yY(1), the budget constraint can be written in

terms of any of the sets Y(y):

C ∈ C(x) iff E〈C, Y 〉 ≤ xy ∀Y ∈ Y(y).

We next treat the right hand side. For this, we will need our earlier observations

about integrating with respect to an optional random measure. In particular,

Corollary 5.10 justifies the equality

lim
n→∞

inf
Y ∈Y(y)

sup
C∈Cn

E[U(C)− 〈C, Y 〉] = lim
n→∞

inf
Y̌ ∈Y̌(y)

sup
C∈Cn

E[U(C)− 〈C, Y̌ 〉].

This equality shows that we can do the rest of our analysis with the variables

Y̌ ∈ Y̌(y) instead.

As preparation for the next step, we make a few simplifying definitions. First,

we define an approximation to the conjugate functional V :

Vn(k) , sup
h∈H, h≤n

[U(h)− 〈h, k〉].

In Lemma 4.4 we showed that arg max(suph∈H U(h) − 〈h, ǩ〉) = ľ from the

concavity of F (t, ·) at each point in time. Similarly we can show that the
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supremum for the truncated problem, when h ∈ H, h ≤ n, is achieved at ľ ∧ n.

In particular, the optimum is adapted and we can conclude that

EVn(Y̌ ) = E
[

sup
h∈H, h≤n

[U(h)− 〈h, Y̌ 〉]
]

= sup
C∈Cn

E[U(C)− 〈C, Y̌ 〉].

Similarly we define the dual function for this truncated problem,

vn(y) , inf
Y̌ ∈Y̌(y)

EVn(Y̌ ).

Thus it remains to show that

lim
n→∞

vn(y) = v(y).

Because Cn ⊂ C, we know that EVn(Y̌ ) ≤ EV (Y̌ ). Consequently, vn(y) ≤ v(y)

also. Furthermore, because the sequence vn(y) is increasing in n, we know that

it converges. In order to relate this limit to the dual function v, we first choose

a subsequence {Y̌ n}n∈N ∈ Y̌(y) such that

lim
n→∞

EVn(Y̌ n) = lim
n→∞

vn(y).

From Lemma 5.14 we know that there exists a sequence

Žn ∈ conv(Y̌ n, Y̌ n+1, Y̌ n+2, . . .)

that converges to some process Ž. Furthermore, Theorem 5.15 shows that

Ž ∈ Y̌(y).

Observe that because the functionals Vn are convex and increasing in n,

EVn(Žn) = EVn

(
N∑
i=n

λiY̌
i

)
≤

N∑
i=n

λiEVn(Y̌ i) ≤ max
i=n,...N

EVn(Y̌ i) ≤ EVi∗(Y̌ i∗),



96

where i∗ is some index greater than or equal to n. Thus, renaming indices and

taking limit inferiors (on the right hand side, this is a genuine limit by the choice

of the sequence (Y̌ n)n∈N), we obtain

lim inf
n→∞

EVn(Žn) ≤ lim inf
n→∞

EVn(Y̌ n).

The last step is to show that

lim inf
n→∞

EVn(Žn) ≥ EV (Ž). (56)

Because Ž ∈ Y̌(y), we also have that EV (Ž) ≥ v(y) and hence in fact must

have equality. The proof of the inequality (56) follows ideas similar to those

used to prove that EV (·) is lower-semicontinuous (Theorem 5.19). The key part

in this proof is the characterization of the density of the limit Ž in Lemma

5.18. In particular, this description can be used to show that the approximate

functionals EVn(·) are also lower-semicontinuous. Given this fact, we know that

for any fixed N ,

lim inf
n→∞

EVn(Žn) ≥ lim inf
n→∞

EVN(Žn) ≥ EVN(Ž).

Furthermore, because VN is increasing in N , the limit limN→∞ EVN(Ž) exists.

In the setting of the proof of Theorem 5.19, we can use monotone convergence

to show

lim
N→∞

EVN(Ž) = E
∫ T

0

lim
N→∞

(
F (t, Ľt ∧N)− F ′(t, Ľt)(Ľt ∧N)

)
1{t<τ∗}

+ F (t,∞)1{t≥τ∗} dt

= EV (Ž),

where, as before, we define τ∗ := inf{t > 0 | Ľt = ∞} and Ľ is such that

Žt =
∫ T
t
F ′(s, Ľs)ds. 2
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The important consequence of this theorem is

Theorem 6.3 (i) The indirect utility u(x) is continuously differentiable on

(0,∞).

(ii)Let x, y ∈ R+ be such that u′(x) = y. Then the solutions to the primal and

dual problems are related in the following way: if C∗(x) is such that

u(x) = sup
C∈C(x)

EU(C) = EU(C∗(x))

and Y̌ ∗(y) ∈ Y̌(y) satisfies

v(y) = inf
Y̌ ∈Y̌(y)

EV (Y̌ ) = EV (Y̌ ∗(y))

then, almost surely, we have that,

∇V (Y̌ ∗(y)) = −C∗(x)

and

∇U(C∗(x)) = Y̌ ∗(y).

In particular, the representation Y̌ ∗t =
∫ T
t
F ′(s, Ľ∗(s))ds proves that

Ľ∗(y) = C∗(x).

Remark: Because the process Ľ is left continuous at the terminal time T , the

theorem shows that the optimal consumption plan has no gulp at the terminal

time (as expected).
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Proof : The basic idea of the proof of (ii) is to notice that for each Y̌ ∈ Y̌ (y),

the function V (Y̌ ) + 〈C∗(x), Y̌ 〉 provides an upperbound to U(C∗(x)) (for all

ω ∈ Ω). This fact and the budget constraint prove

E[|V (Y̌ ∗(y)) + 〈C∗(x), Y̌ ∗(y)〉 − U(C∗(x))|] = E[V (Y̌ ∗(y))

+ 〈C∗(x), Y̌ ∗(y)〉 − U(C∗(x))]

≤ v(y) + xy − u(x)

= 0.

Thus for P-almost surely ω ∈ Ω the relation

V (Y̌ ∗(y)(ω)) + 〈C∗(x)(ω), Y̌ ∗(y)(ω)〉 = U(C∗(x))(ω)

holds. In other words, Y̌ ∗(y)(ω) achieves the unique (see Lemma 4.7) infimum

in

U(C∗(x))(ω) = inf
k∈K

[V (k) + 〈C∗(x)(ω), k〉].

This proves the relation

∇V (Y̌ ∗(y)) = −C∗(x).

Similar considerations prove the second statement

∇U(C∗(x)) = Y̌ ∗(y).

To prove part (i) we first show that v(y) is strictly convex for y ∈ {v < ∞}.

From Corollary 5.20 we know that there exist a Y̌ ∈ Y̌(y) such that v(y) =

EV (Y̌ ) and that this solution is unique. Now fix y1 < y2 such that v(y1) < ∞

with optimal solutions Y̌ (y1) and Y̌ (y2) respectively. Then in particular,

Y̌ (y1) + Y̌ (y2)

2
∈ Y̌

(
y1 + y2

2

)
.
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This implies that

v

(
y1 + y2

2

)
≤ E

[
V

(
Y̌ (y1) + Y̌ (y2)

2

)]
<

1

2
EV (Y̌ (y1)) +

1

2
EV (Y̌ (y2))

=
1

2
v(y1) +

1

2
v(y2).

Because v is strictly convex, and because u and v satisfy the dual relation

(54), we know that u is continuously differentiable on (0,∞) (see for example

Rockafellar [44]. 2

Corollary 5.20 gives existence in the dual problem. Below we prove the corre-

sponding result for the primal problem.

Corollary 6.4 Suppose that the utility functional U is uniformly integrable on

the set of financiable plans C(x), and if the felicity function satisfies assumptions

(2.1) and (2.2) then there exists a consumtion plan C∗ ∈ C(x) that achieves the

supremum in

u(x) = sup
C∈C(x)

EU(C)

Remark: The uniform integrability assumption ensures that the value of the

optimization problem (1) is finite. For sufficient conditions for when uniform

integrability holds, see Lemma 2.1 in Bank and Riedel [9].

Proof : Let {Cn}n∈N be a sequence of consumption plans in C(x) such that

lim
n→∞

EU(Cn) = sup
C∈C(x)

EU(C).
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Then Lemma 4.2 in [35] shows that there exists a sequence of convex combi-

nations Bn ∈ conv(Cn, Cn+1, . . .) and a C ∈ C such that Bn → C in the sense

of Fatou. Without loss of generality, we may also assume that Bn(T ) → C(T )

if T < ∞. Because C(x) is convex, we have that Bn ∈ C(x) for all n ∈ N.

Observe also that Fatou convergence implies convergence in the metric dC. In

particular, we can use lower-semicontinuity of the pairing (Lemma 3.4) to show

that the limit C ∈ C(x). Additionally, continuity of preferences with respect to

convergence in dC implies that

E(U(C)) = lim
n→∞

EU(Bn).

Concavity of U gives the result. 2

We finish with a theorem specializing these results for a complete market.

Theorem 6.5 In a complete market, the unique dual optimizer is given by

Ž where Z is the density of the unique equivalent martingale measure Q. In

particular, for x and y such that u′(x) = y, if the representation result gives

yZt = E

[∫ T

t

F ′(t, sup
v∈[τ,t]

L(y)(v)) dt

∣∣∣∣∣Ft
]
,

then the optimal solution C∗(x) satisfies

C∗(x)(t) = sup
v∈[0,t]

L(y)(v).

Proof : The definition (19) of the dual functional V guarantees that it is a

decreasing function in the sense that if k1 and k2 are two deterministic functions

such that k1(t) ≤ k2(t) for all t, then V (k1) ≥ V (k2). To arrive at a similar
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statement for random processes, observe first that identity (39) shows that for

all Y ∈ Y(y) there exists a corresponding Y̌ ∈ Y̌(y) such that

EV (Y̌ ) = sup
C∈C

E[U(C)− 〈C, Y 〉].

Conversely, for each Y̌ ∈ Y̌(y) there exists a Y ∗ ∈ Y(y) such that Y̌ ≤ ◦Y ∗. In

particular, E〈C, Y̌ 〉 ≤ E〈C, Y ∗〉 for all C ∈ C. Hence, if we denote by Y̌ ∗ ∈ Y̌

the process corresponding to Y ∗ via the representation theorem i.e. such that

the identity (39) holds, then EV (Y̌ ) ≥ EV (Y̌ ∗).

Thus it remains to show that the unique martingale measure is a maximal

element of Y(1). To this end, let Y be an arbitrary element of Y(1). By right-

continuity, it suffices to show that for all t, the set Bt = {Yt > Zt} has measure

zero. This fact was proved by Kramkov and Schachermayer (Lemma 4.3 in [36].)

2

Remark: We can obtain maximality also directly from the process bipolar

theorem. In particular, Theorem 2.10 and Corollary 2.11 in [34] show that in

general the set of maximal elements is YD = {Y Q |Q ∈ D} where D is the

σ((L∞)∗,L∞)-closure of M in (L)∗. For a description of Y Q when Q is not

an element of M, see the discussion preceding Proposition 2.2 in [34] . In

particular, in an incomplete market, the set of maximal dual elements includes

more than just the densities of equivalent (local)martingale measures.
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7 Examples and Extensions

In this section we show how to extend the theory to infinite time-horizon in the

form of a verification argument (section 7.4), and use this to establish optimal

consumption plans for Wiener driven models (section 7.6). In the first part we

show how to extend the model to preferences based on level of satisfaction; this

level is a functional of the path of consumption up to date. The examples we

discuss are for these more general utilities.

7.1 Extension of the Class of Preferences

In this section we briefly describe how the duality methods can be applied to

utilities of the form

EU(C) , E
∫ T

0

F (t, Z(C)t)dt, (57)

where the level of satisfaction

Z(C)t ,
∫ t

0

βe−β(t−s) dCs. (58)

allows for appropriate discounting of past consumption. This model of prefer-

ences, in particular the case F (t, x) = e−δtxα/α of discounted HARA utility,

has been studied by various authors. In particular, Hindy and Huang [28] find

explicit solutions for a (complete) market in which the risky asset follows a ge-

ometric Brownian motion. The optimal solution is a ratio barrier policy: the

optimizing agent invests a constant proportion of wealth in the risky asset, and

consumes just enough the keep the ratio W/Z of current wealth below a pre-

determined level k∗, i.e. W/Z < k∗ almost surely. A viscocity solution approach
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to this problem was first considered by Alvarez [2]. Later, Benth, Karlsen, and

Reikvam extend these results to exponential Lévy markets [12], [11]. These

authors prove that the value function is the unique solution of an associated

integro-differential variational equation. They are also able to solve for explicit

solutions for spectrally negative Lévy processes. All of these explicit solutions

are for the (discounted) HARA utilities in an infinite time-horizon. Solutions

for complete markets can be found in Bank and Riedel [9], Bank and Föllmer,

[5] and Bank [3].

The duality methods developed in this paper can be extended to these general-

ized preferences by a change of variables.

Proposition 7.1 Let the utility function be given as above in (57), and let C̄

denote the increasing, right-continuous process

C̄t ,
∫ t

0

βeβsdCs. (59)

Also, define the discounted dual variables

Yd(y) ,

{
Y d
t =

Yte
−βt

β
s.t. Y ∈ Y(y)

}
and define Y̌d(y) in analogy with (37), but with respect to these discounted pro-

cesses.

Then we have that C∗ is optimal with respect to the preferences expressed in

(57) if and only if C̄∗ is optimal with respect to Ũ(C) :=
∫ T

0
F̃ (t, Ct)dt where

F̃ (t, x) := F (t, e−βtx).

Furthermore, letting Ṽ denote the conjugate of Ũ , if C̄∗(x) is such that

ũ(x) = sup
C∈C(x)

EŨ(C) = EŨ(C̄∗(x))
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and Y̌ ∗d (y) satisfies

ṽ(y) = inf
Y̌d∈Y̌d(y)

EṼ (Y̌d) = EṼ (Y̌ ∗d (y))

for x, y ∈ R+ such that ũ′(x) = y, then

Ľ∗(y) = C̄∗(x),

where Y̌ ∗d (t) =
∫ T
t
F̃ ′(s, Ľ∗(s))ds.

Proof : The proof follows from two observations. First, we may express the

utility associated with C as a functional of the increasing process C̄:

EU(C) = E
∫ T

0

F (t, e−βtC̄t)dt.

Second, from the relation (59) it follows that the budget constraint can be

rewritten as

E〈C, Y 〉 = E
∫ T

0

YsdCs ≤ x ⇐⇒ E
∫ T

0

Yse
−βs

β
dC̄s ≤ x.

2

In the rest of this section we will use C and C̄ interchangeably, taking it for

granted that their dynamics are related as in (59). We will also assume that

preferences are modeled as in (57), with the felicity function F (t, x) = e−δtxα/α

for α ∈ (0, 1). We assume that the discount factors δ and β are positive.

Remark: The discount factor e−δt can be interpreted as accounting for

the probability of death at an exponential time τ independent of the mar-

ket filtration and with parameter δ. More precisely, suppose that EU(C) =



105

E
∫ τ

0
F (t, Ct)dt so that utility is obtained from the optimal consumption plan

until death at the unknown (exponential) time τ . Then we may write

EU(C) = E
∫ τ

0

F (t, Ct)dt = E
∫ ∞

0

F (t, Ct)e
−δtdt.

In this way the infinite time model can capture termination at an unknown

finite time.

7.2 Budget Constraint in Infinite Time-Horizon

Recall that a consumption plan C is called financiable if there exists a pre-

dictable, S-integrable process H such that the value process V = (Vt)t∈[0,T ],

Vt = x+

∫ t

0

Hu dSu − Ct, 0 ≤ t ≤ T,

is nonnegative. In the introduction we explained that when the setM of equiv-

alent (local) martingale measures is non-empty, a plan C is financiable with

initial wealth x if and only if E〈C, Y Q〉 ≤ x for all Y Q ∈ YM(1). When the

time-horizon is infinite, however, there generally are no equivalent martingale

measures: M = ∅.

Often, however, each finite dimensional restriction of the market does have a set

of equivalent (local) martingale measures. Furthermore, the densities of these

measures can be extended in a consistent manner for an arbitrary (finite) time

horizon T . For example, in Wiener driven markets, the Girsanov transforms

Yt = e−
Pd
j=i

R t
0 λj(s)dW

j
s− 1

2

R t
0 λ
∗λ(s)ds give rise to the martingale measures. And

while Y is not in general uniformly integrable, and hence does not have a last

element, we can define Yt for all t ∈ [0,∞). In an infinite time-horizon these

extended processes are what we will need to deal with.
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When the constraints for finite time-horizons, the sets YM(y) for a fixed end

time T < ∞, come from a family of processes restricted to t ∈ [0, T ] as in a

Wiener driven market, then it is possible to adapt the finite time-horizon theory.

This is because the budget constraint for T = ∞ is just a series of finite-time

constraints: for each t < ∞ we need to be able to find a trading strategy H

such that the value process Vs is non-negative for each s ∈ [0, t]. Thus when the

set YM(y) is the same for all times, then the condition E〈C, Y Q〉 ≤ x for all

Y Q ∈ YM(1) is the budget constraint for T =∞ as well.

In the following, when we discuss deflators or refer to Y ∈ YM in an infinite

time-horizon, we mean the extension of the density processes to the infinite

time-horizon.

7.3 Candidate Optimal Consumption Plans

The first step to finding an optimal consumption plan is to construct solutions

to the representation problem (30). The duality theorem, Theorem 6.3, shows

that the gradient of the utility functional,

∇tŨ(h) ,
∫ T

t

F̃ ′(s, h(s)) ds (0 ≤ t ≤ T ),

evaluated at the optimal plan C∗ must be equal to the auxiliary process Y̌

arising from the representation of Y ∈ Y(y) in terms of the running supremum

of some optional process L. In this section we show how to construct this process

L in the case that Y ∈ YM is an exponential Lévy processes.

The construction of the solution for discounted exponential Lévy processes is

done in Bank and Föllmer [5]. We include these calculations here for complete-
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ness and easy reference.

In our examples we will use discounted HARA utilities F (t, x) = e−δtxα/α with

α ∈ (0, 1), or, equivalently, F̃ (t, x) = e−t(δ+βα)xα/α. Because we will be using

preferences based on the level of satisfaction, we are interested in representing

the discounted process

Yt =
y

β
e−βteXt

where Xt is a Lévy process. We will also work over an infinite time-horizon and

will use the duality theory as a verification argument. This step will be outlined

in the next section in Theorem 7.3. In this way it might be sufficient to solve

the representation problem for a subset of the deflators only.

The following calculations appear in Bank and Föllmer [5], and we collect these

in the proposition below for easy reference.

Proposition 7.2 (Section 3.1.2 in [5])

y

β
e−βteXt = E

[∫ ∞
t

F̃ ′(s, sup
v∈[t,s]

Lv)ds

∣∣∣∣∣ Ft

]

such that

Lt =

(
eXtet(δ+β(α−1))

κ(y)

) 1
α−1

,

where

κ(y) =
β

y
E
∫ ∞

0

e−s(δ+αβ) inf
v∈[0,s]

eXvev(δ+β(α−1))ds

Proof : See calculations in section 3.1.2 of Bank and Föllmer [5]. 2
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We can thus associate to each discounted deflator Yt = 1
β
e−βeXt a family of

consumption plans

C̄K,Y
t = sup

s∈[0,t]

[(
eXtet(δ+β(α−1))

K

) 1
α−1

]
. (60)

indexed by the constant K > 0. When K = κ(y) as given above, then we get a

plan arising from the representation of yYt.

Remark: We will show in the next section that if a consumption plan CK,Y is

financiable with initial wealth x and is such that E〈CK,Y , Y 〉 = x (i.e. there is

no other deflator Y ′ that would result in a higher price: E〈CK,Y , Y ′〉 > x), then

it is optimal. The linearity of the pairing then implies that if we can find such

a plan CK(x),Y for a particular choice of x, then optimal consumption plans for

any initial wealth are simply constant multiples of this plan. In Section 7.5 we

show how to calculate the appropriate constant K(x).

7.4 Duality Result as a Verification Theorem

Sometimes both the dual and primal problems can be very difficult to solve.

In these instances we would like to be able to use the duality framework to

guess and then verify the optimal solution. The following theorem describes

one possibility; it relies on the ability to calculate the price of the consumption

plan.

Theorem 7.3 Let C̄K,Y be one of the consumption plans associated, as de-

scribed in (60), to the deflator Y ∈ Y(y) and suppose that it is possible to

choose the constant K such the C̄K,Y is financiable with initial wealth x and

such that E〈CK,Y , Y 〉 = xy, then CK,Y is optimal.
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Remark: The result is valid for any time horizon T ≤ ∞. The important

property of deflators Y ∈ Y(1) we are using here is that if C ∈ C(x) then

E〈C, Y 〉 ≤ x.

Proof : The key observation is that the dual function provides an upper

bound. In particular, if C ∈ C(x) and Y̌ (y) ∈ Y̌(y) then we have the following

result

u(x) ≤ sup
C∈C

E[U(C)− 〈C, Y̌ 〉+ yx]

= EV (Y̌ ) + xy.

Subtracting EU(C) from both sides of this identity gives us an estimate for how

close C is to the optimal plan:

u(x)− EU(C) ≤ EV (Y̌ (y)) + xy − EU(C). (61)

From the definition of the dual functional V and using the notation from the

previous section, we have that

EV (y̌Y ) = EŨ(C̄κ(y),Y )− yE〈Cκ(y),Y , Y 〉.

Thus if it is possible to choose y such that κ(y) = K, and such that E〈Cκ(y),Y , Y 〉 =

x then the right hand side of (61) is zero and EU(CK,Y ) maximizes utility

amongst all plans C ∈ C(x). Note that K is first chosen so that CK,Y ∈ C(x),

where membership in C(x) does not a priori only depend on the “price” with

respect to the deflator Y .

2
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Remark: If Y is the density of an equivalent martingale measure Q (for

T < ∞), then another way to think about the condition of the theorem is

that the price of the consumption plan CK,Y is the “price” calculated under

the measure Q. One way to verify that a consumption plan is financiable with

given capital x is to explicitly construct the financing portfolio. We will use this

technique in the examples that follow.

Remark: The identity (61) can also be used to estimate how close to an

optimal solution a given plan C is.

Remark: The condition of this theorem can be rephrased as a sensitivity

result along the lines of Karatzas, Lehoczky, Shreve, and Xu [32]. In particular,

it shows that if E〈CK,Y , Y Q〉 ≤ x for all Q ∈ M, and if E〈CK,Y , Y 〉 = x

then CK,Y is optimal. I.e. the dual optimizer Y maximizes the price. Other

equivalent sensitivity results for the utility optimization problem for terminal

wealth are discussed in [32].

7.5 How to Calculate the Price, Value, and the Dual

Function

In this section we show how to calculate some of the important quantities such

as EU(C) and EV (Y ). The calculations here are based on the results in Bank

and Riedel [9]. These authors exploit the special structure of the consumption

plans C̄K,Y , which are associated to a deflator Y ∈ Y that is an exponential

Lévy process. A few additional requirements on the jumps of this Lévy process

are also made.
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The basic budget constraint tells us that the price w(C) of such a consumption

plan is given by

w(C) = sup
Q∈M

EQ
∫ T

0

1

β
e−βtdC̄t.

Breaking up this calculation, for each measure Q we have that

Proposition 7.4 (Lemma 4.9 in [9]) Let Q ∈M such that EQ ∫ T
0

1
β
e−βtdC̄t <

∞, then

EQ
∫ T

0

1

β
e−βtdC̄t =

1

β
EQ(C̄(τ ∗))

where τ ∗ is an independent exponential random variable with parameter β.

Remark: When we refer to the equivalent (local) martingale measure Q ∈M

we mean only that Q is equivalent to P on all finite time-horizons, i.e. on the

sigma algebras FT for T <∞.

Proof : See proof of Lemma 4.9 in [9]. 2

We now turn to look at consumption plans that are our candidates for optimal-

ity: those plans that arise from the representation theorem. In the notation of

the previous section, for Xt a Lévy process, let

C̄t = sup
s∈[0,t]

(
eXtet(δ+β(α−1))

κ(y)

) 1
α−1

= κ(y)
1

1−α exp

[
1

1− α
sup
s∈[0,t]

[−Xt − t(δ + β(α− 1))]

] (62)

Proposition 7.5 Suppose that under the measure Q and the original measure

P, the process −Xt−t(δ+β(α−1)) is a Lévy process that is not strictly decreasing

and has no positive jumps. And let C̄ be given as in (62), then
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(i) Then the “price” under the measure Q, denoted by wQ(C), is given by

wQ(C) =


1
β
κ(y)

1
1−α ξQ(1−α)

ξQ(1−α)−1
if ξQ > 0

1
β
κ(y)

1
1−α if ξQ = 0

where the parameter ξQ is the unique nonnegative solution to

πQ(ξ)− ξ(δ + β(α− 1)) = β

where πQ is the Laplace exponent of −Xt under the measure Q.

(ii) The associated value function EU(C) is given by

EU(CQ(x)) =


1

α(δ+βα)
κ(y)

α
1−α

(
ξ(1−α)

ξ(1−α)−α

)
if ξ > 0

1
α(δ+βα)

κ(y)
α

1−α if ξ = 0

where ξ is the unique nonnegative solution to

π(ξ)− ξ(δ + β(α− 1)) = δ + αβ

such that π(·) is the Laplace exponent of −Xt under the original measure P.

(iii) The dual function evaluated at yY Q is given as

EV (yY Q) =

(
1

y

) α
1−α
[(

(κQ)
α

1−α

α(δ + αβ)

)(
ξ(1− α)

ξ(1− α)− α

)

−

(
(κQ)

1
1−α

β

)(
ξQ(1− α)

ξQ(1− α)− 1

)] (63)

Remark: These calculations essentially appear in Bank and Riedel [9]. We

include them here for easy reference and to preserve unity of notation.
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Proof : (i) From the previous Proposition 7.4 we have the representation

wQ(C) =
1

β
EQ(C̄(τ ∗)).

From Lemma 4.11 (ii) in Bank and Riedel [9] we know that if −Xt− t(δ+β(α−

1)) is a Lévy process with no positive jumps and such that it is not strictly

decreasing, then the supremum, supt∈[0,τ∗][−Xt− t(δ+ β(α− 1))] is distributed

like an exponential random variable with parameter ξQ, which is the unique

nonnegative solution to

πQ(ξ)− ξ(δ + β(α− 1)) = β

where πQ is the Laplace exponent of −Xt under the measure Q. Now the

calculations are straightforward. If ξQ > 0 then

1

β
EQ(C̄(τ ∗)) =

1

β

∫ ∞
0

κ(y)
1

α−1 e
1

1−αxe−ξ
Qxξ dx

=
1

β
κ(y)

1
1−α

ξQ(1− α)

ξQ(1− α)− 1

(the constant κ = yκ(y) depends on the measure Q). If ξQ = 0 the calculations

give wQ(C) = 1
β
κ(y)

1
1−α .

(ii) This part follows from similar calculations as above, once we realize that

the value function can be written as

EU(C) =
1

α(δ + αβ)
E(C̄(τ))α

where τ is an independent exponential random variable with parameter δ+αβ.

(iii) The last part is a combination of the results (i) and (ii) and the definition

of the dual function V . In particular, we recall from Lemma 4.6 that

V (ǩ) = U(ǩ)− 〈ľ, ǩ〉



114

where the density of ǩ is given by F ′(t, ľt). The result now follows. 2

7.6 Example: Wiener Driven Models

In this section we construct the optimal consumption strategy when the stock

dynamics for i = 1, ...n are given by

dSit = µiS
i
tdt+

d∑
j=1

σijS
i
tdW

j
t .

We assume that d ≥ n so that the market is possibly incomplete (although

see remark at the end). The filtration is the augmentation of the filtration

generated by W j for j = 1, ...d. We also assume that the volatility matrix σ is

surjective on to its range Rn.

The possible equivalent martingale measures on finite time-horizons correspond

to deflators that must be martingales themselves. In a Wiener driven market,

all martingales can be written as stochastic integrals with respect to the driving

Brownian motions. In particular, Y is a strictly positive (so that 1/Yt is defined)

martingale if and only if there exists a vector valued process λ(t) such that

dYt = −Ytλ∗(t)dWt

where λ∗ denotes the transpose of λ. The solution to this SDE is given by

Yt = e−
Pd
j=i

R t
0 λj(s)dW

j
s− 1

2

R t
0 λ
∗λ(s)ds, for Y0 = 1.

Standard calculations show that Zi := (Y Si)t is a martingale under the original

measure P for all i = 1, .., n if and only if

σλ(t) = µ.
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In fact, the Itô formula shows that the dynamics of Zi are given by

dZi
t = Zi

t [µi −
d∑
j=1

σijλj(t)]dt+ Zi
t

d∑
j=1

(σij − λj)dW j
t .

The minimal (in magnitude) solution to this equation is given by

λ̂ = σ∗(σσ∗)−1µ,

and it is constant in time, while a general solution is of the form

λ(t) = λ̂+ ν(t) for ν(t) ∈ N(σ),

where N(σ) denotes the null space of σ. Another way to state this is that ν(t)

is orthogonal to the rows of σ. Also λ̂ ∈ N(σ)⊥, and hence

‖ λ(t) ‖2=‖ λ̂ ‖2 + ‖ ν(t) ‖2 .

For the solutions λ that are constant in time, the corresponding deflator is an

exponential Lévy process. We can thus apply the previous analysis to solve the

representation problem:

y

β
e−βte−λ

∗Wt− 1
2
‖λ‖2t = E

[∫ ∞
t

e−t(δ+βα)( sup
v∈[t,s]

Lλv)
α−1ds

∣∣∣∣∣ Ft

]
where

Lλt =

(
e−λ

∗Wt− 1
2
‖λ‖2tet(δ+β(α−1))

κλ(y)

) 1
α−1

,

and

κλ(y) =
β

y
E
[∫ ∞

0

e−s(δ+αβ) inf
v∈[0,s]

e−λ
∗Wv− 1

2
‖λ‖2vev(δ+β(α−1))ds

]
.

In order to use the verification result in Theorem 7.3 we first look at which

deflator Y would be a good candidate for minimizing the dual function. To this
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end, we parametrize these deflators by ν(t) where ν(t) ∈ N(σ) for all t ∈ (0,∞),

such that

Y ν
t = e−

Pd
j=i

R t
0 λ̂j+ν(s)j(s)dW

j
s− 1

2

R t
0 ‖λ̂‖

2+‖ν(s)‖2ds.

Asociated to the deflators for which ν is constant in time are families of con-

sumption plans

C̄K,ν
s = sup

t∈[0,s]

(
e−(λ̂+ν)∗Wt− 1

2
(‖λ̂‖2+‖ν‖2)tet(δ+β(α−1))

K

) 1
α−1

.

For each such consumption plan, we can calculate the expected value using

Proposition 7.5:

EU(CK,ν) =
1

β
K

1
1−α

ξν(1− α)

ξν(1− α)− α
where ξν is the unique nonnegative solution of

1

2
(‖ λ̂ ‖2 + ‖ ν ‖2)ξ(ξ + 1)− ξ(δ + β(α− 1)) = δ + αβ.

We can also calculate the “price” under each measure Q ∈M that preserves the

Lévy property. These measures correspond to deflators Y µ where µ is constant

in time. The price wµ(CK,ν) is then given by

wµ(CK,ν) =
1

β
K

1
1−α

ζν.µ(1− α)

ζν,µ(1− α)− 1
,

where ζµ,ν solves

(ζ−1)2 ‖ λ̂ ‖2 +(ζ−1) ‖ λ̂ ‖2 +ζ ‖ ν ‖2 − ‖ µ ‖2 + ‖ ζν−µ ‖2 −2ζ(δ+β(α−1)) = 2β.

Observe that if ν = 0 then the dependence on µ drops out, in other words, the

price of CK,ν is the same under all of the Lévy property preserving measures.

This suggests that Y 0 is a good candidate for the dual optimizer. In fact, we can
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verify directly, by exhibiting the financing portfolio for each finite time-horizon

T , that if E〈C, Y 0〉 = x then C ∈ C(x).

To this end we first recall that a consumption plan C is financiable up to time

T < ∞ and with initial capital x if and only if there exists an admissible

portfolio strategy H such that

Vt = x+
n∑
i=1

∫ t

0

H i
sdS

i
s − Ct

is nonnegative for all t ∈ [0, T ]. Let E0 denote expectation under the measure

Q0 associated to Y 0. In order to find such a strategy H, we first observe that

our assumptions ensure that the process

Vt , E0

[∫ T

t

dCs

∣∣∣∣ Ft
]

+ x− E0CT

is nonnegative. Furthermore, it can be written as the sum of a martingale

Mt := E0[CT |Ft]− E0CT and a decreasing process:

Vt = x+Mt − Ct.

Re-writing the portfolio dynamics, so that we know what we are looking for,

observe first that W̃t := Wt + λ̂t is a Brownian motion under Q0. Let πt denote

the amount of money invested in each stock, i.e. πit = SitH
i
t , then in terms of

this new Brownian motion, our goal is to find a portfolio π such that

Vt = x+

∫ t

0

π∗(s)σdW̃s − C0,K
t . (64)

From the form of the consumption plan C̄K,λ̂ we know that Mt is adapted to

the filtration generated by λ̂∗Wt. Following the calculations found in Karatzas
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and Shreve (Proposition 5.8.6 in [33]), we can then show that Mt can be written

as the stochastic integral

Mt =

∫ t

0

ψ(s)λ̂dW̃t.

By construction, however, λ̂ is in the range of σ∗, the transpose of the volatility

matrix. In particular, the least squares solution to the problem σ∗π = ψ(s)λ̂ is

an exact solution. In fact, we have that π(s) = ψ(s)(σσ∗)−1σλ̂ is the desired

financing portfolio.

These calculations show that with initial capital x = E0〈C̄0,K , Y 0〉 we can find

a portfolio that finances this consumption plan up to time T . The choice of T ,

however, is arbitrary, so we have that C is financiable for the full infinite-time

horizon. We can now use the verification theorem, Theorem 7.3, to conclude

that the consumption plan associated with λ̂ is optimal. Proposition 7.5 can

then be used to calculate the appropriate constant K for the initial wealth x,

and to calculate the value of the utility optimization problem.

Observe that we could have also approached our guess of the optimal dual vari-

able by performing a partial minimization of the dual problem (partial because

we only know how to solve the representation problem for the time-homogeneous

deflators). Using Proposition 7.5 we can evaluate the dual function as follows

EV (yY ν) =

(
β

y

) α
1−α
(

1

δ + αβ

) 1
1−α
(

ξν

ξν + 1

)
×[(

(ξν + 1)(1− α)

ξν(1− α)− α

)
−
(

ζν,ν(1− α)

ζν,ν(1− α)− 1

)]
.

Looking at this expression we observe that the dual function depends on ν only

through its magnitude. Thus if a minimum occurs for a deflator such that ν is

constant (i.e. such that the above calculations are valid), then it must be that



119

ν = 0. If this were not the case, then the minimum would not be unique (This

is true at least in the general case that the dimension of the null space N(σ) is

greater than one.).

Remark: There is also a third way to look at this problem, and the question

of why λ̂ should be the overall minimizer: for the purposes of portfolio optimiza-

tion, this market is complete. In fact, if we choose an orthonormal basis v1, ..., vn

for the range R(σ∗) of σ∗, then we can see from the covariance structures (and

the Lévy characterization of Brownian motion) that W ′ = (v∗1W, ..., v
∗
nW ) is

a standard n-dimensional Brownian motion. Furthermore, the stock dynamics

can be written solely in terms of W ′, and, with respect to the (augmented)

filtration FW ′ , the market is complete.
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A Appendix

In this section we provide a proof of the minimax theorem used. The proof

follows the basic outline of theorem 3.1 in [49] with appropriate modifications

to account for convex compactness.

Theorem A.1 (Minimax, Theorem 6.2) Let A be a nonempty convex sub-

set of a topological vector space, and B a nonempty, closed, convex, and convexly

compact subset of a topological vector space. Let h : A × B → R be convex on

A, and concave and upper-semicontinuous on B. Then

inf
A

sup
B
h = sup

B
inf
A
h

Proof. As a first step we note that

inf
A

sup
B
h ≥ sup

B
inf
A
h.

We show that the reverse inequality also holds. Define α := infA supB h. Next,

consider any finite collection of elements a1, ..., am ∈ A and define gi := h(ai, ·),
i = 1, ...,m. A consequence of the Mazur-Orlicz theorem (lemma 2.1 (b) in [49])

is that there exists λ1, ..., λm ≥ 0 with
∑m

i=1 λi = 1 such that

sup
b∈B

[h(a1, b) ∧ ... ∧ h(am, b)] = sup
b∈B

[λ1h(a1, b) + · · ·+ λmh(am, b)].

By assumption, the function h is convex on the set A, and hence

sup
b∈B

[h(a1, b) ∧ ... ∧ h(am, b)] ≥ sup
b∈B

h

(
m∑
i=1

λiai, b

)
≥ α.

Furthermore, the supremum is achieved. In fact, for a fixed a ∈ A, suppose that

{bn}n∈N is a sequence such that

lim
n→∞

h(a, bn) = sup
b∈B

h(a, b).
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Then because B is convexly compact, there exists a subnet of convex combina-

tions {yβ}β∈D and y ∈ B such that yβ → y. In particular, each yβ is a finite

convex combination yβ =
∑
γibi. Because the function h is concave on B,

h(a, yβ) ≥
∑

γih(a, bi)

In addition, because h is upper-semicontinuous in B we know that

lim sup
β

h(a, yβ) ≤ h(a, y).

In particular, combining these two results,

h(a, y) ≥ sup
b∈B

h(a, b) ≥ h(a, y).

This shows that the supremum is achieved, in particular combining this with

the previous result,

{b ∈ B | , h(a1, b) ≥ α} ∩ · · · ∩ {b ∈ B | h(am, b) ≥ α} 6= ∅.

Each of these sets is closed and convex, because h is concave and upper-

semicontinuous on B. Thus the collection [{b ∈ B | h(a, b) ≥ α}]a∈A of closed

and convex sets satisfies the finite intersection property. Convex compactness

implies that ⋂
a∈A

{b ∈ B | h(a, b) ≥ α} 6= ∅.

In particular,

sup
B

inf
A
h ≥ α := inf

A
sup
B
h.

2


