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Abstract

Geometry of Rational Curves on Algebraic Varieties

Matthew F. DeLand

In this thesis we study the geometry of the space of rational curves on various pro-

jective varieties. These varieties include projective spaces, and smooth hypersurfaces

contained within them. The parameter space we will use is the Kontsevich moduli

space M0,n(X, β). In Chapter 2, we first study the space of conics on hypersurfaces

without appealing to the bend and break Lemma. We then undertake a thorough

study of rational degree e curves on Fermat hypersurfaces. In the bend and break

range, we are able to use a detailed understanding of the space of lines on these hy-

persurfaces to prove that the moduli spaces are irreducible and have the expected

dimension. In Chapter 3, we give an upper bound on the largest dimension of a com-

plete family of linearly non-degenerate rational curves contained in projective space.

This bound is an improvement over what the Bend and Break Lemma would imply.

In Chapter 4, we study the property of strong rational simple connectedness as it re-

lates to smooth cubic hypersurfaces. Using a naturally defined foliation on the moduli

space of pointed lines together with a careful understanding of the variety of lines

and planes on such a hypersurface, we are able to conclude that cubic hypersurfaces

are strongly rationally simply connected in the best possible range.
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Chapter 1

Introduction

In some sense, the simplest example of a projective variety is that of P1, a rational

curve. The study of rational curves on algebraic varieties is a classical subject. Orig-

inally, questions about rational curves were posed in the framework of enumerative

geometry. Two such question are “How many conics in P2 pass through two points

and are tangent to three lines?” or ”How many lines are on a smooth cubic surface in

P3?”. The solutions to these questions (4, 27) and ones like them have been know for

quite some time. In “modern history”, the study of rational curves has seen a resur-

gence as an important subject within algebraic geometry. As well as playing central

roles in modern enumerative geometry and Gromov-Witten theory, an understanding

of the geometry of rational curves on varieties has become central to the study of

higher dimensional or birational geometry and “arithmetic” over function fields.

When studying rational curves on a given variety, one is asking for information con-

cerning the moduli space of such objects - that is a “space” whose points are in one

to one correspondence with the sorts of objects one wishes to study. A beautiful

aspect of algebraic geometry is that these spaces are again algebraic objects (whether
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varieties, schemes, or stacks). There is more than one moduli space attached to the

study of rational curves on a variety X. These include the Hilbert scheme, the Chow

variety, and the Kontsevich mapping space - which parameterize, in turn, closed sub-

schemes of X, cycles on X, and stable (genus 0) maps to X. Each space is a way

of compactifying the collection of objects that we are really interested in studying

(smooth rational curves on X of a given degree or homology class). The benefit is

that we are able to work with a compact (and often projective) object which provides

many tools with which to study the resulting space (for example, the cohomology

ring). The downside is that the method we use to compactify the space of smooth ra-

tional curves on X may force us to consider many objects “in the boundary” which we

never wanted to consider in the first place. This leads us to choose different parameter

spaces depending on the sorts of questions that we are interested in answering.

We would like to know everything about these parameter spaces, in some cases to

better study X. One could hope to understand their Picard groups or even their

cohomology or Chow rings. We could ask questions about the types of singularities

they admit. We could also ask refined birational questions like the Kodaira dimension

or ask for an understanding of the various cones of curves on the moduli space itself.

While these questions are interesting, they presuppose we know the answer to much

more “basic” questions.

Question. What is the dimension of this space and what are the irreducible com-

ponents? In fact, even for relatively simple projective varieties X, much about the

geometry of these moduli spaces remains unknown.

In this thesis we choose to work with the Kontsevich moduli space (and sometimes

the Hilbert scheme) as our parameter space. This is because of the tools available to

study spaces which represent certain functors (as these do). After one proves that a

functor (say, on the category of schemes defined over a field) is representable, there is

a certain “yoga” available to study the geometry of the resulting moduli space locally
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at a point (there are also some tools available to study global properties, though this

is usually more difficult). We will not give an introduction to deformation theory

here, though there are many good references (see [Kol96] or [Ser06] for example).

The deformation theory of the two functors allows us to identify the tangent space to

the moduli space as a certain cohomology group. Sometimes we can conclude that a

point of the moduli space is smooth if there are no obstructions to deforming - this

is usually easiest in case the entire obstruction space (which is another cohomology

group) vanishes. Such deformation theoretic considerations allow us to conclude that

the moduli space has a (global) lower bound on its dimension which we will refer to as

the expected dimension (see [Kol96] II.1.13). We immediately restrict our attention

to varieties X defined over the complex numbers, because in characteristic zero the

deformation theory behaves well.

The first class of varieties where the Kontsevich moduli spaces are well behaved are

homogeneous spaces (which include projective spaces, Grassmannians, and flag vari-

eties). This is because these spaces are convex - that is, the tangent bundle restricts

to be positive on all rational curves contained inside them. A consequence of this

fact, is that the resulting moduli spaces are always smooth and have the expected

dimension. The next case one might consider is hypersurfaces inside such homoge-

neous varieties. Here, even if one only considers smooth hypersurfaces in projective

space, the corresponding spaces are more poorly behaved and more poorly under-

stood. These spaces can be singular, have the wrong dimension, and can be “poorly”

behaved in families. For example, if we consider smooth degree 100 hypersurfaces in

P4, most of them will not contain a line, but some of them certainly do. By “most”,

we mean there is an open set in the moduli space of hypersurfaces (which in this case

is simply another projective space) where each hypersurface corresponding to a point

in this open set has no lines on it. We will often encode this “most” by saying that

a general degree 100 hypersurface in P4 has no lines on it - without referring to the

open set - because making the open set explicit is often quite difficult.
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This brings us to one of the difficulties of this area of algebraic geometry - it is

often much easier to prove properties of the moduli spaces for “general” varieties

(where this general will depend on what sort of varieties you are considering - we

will mostly be considering smooth hypersurfaces in projective spaces). For example,

though we know that a general degree 100 smooth hypersurface in P4 has no lines on

it, given any particular example, we will have a difficult time determining if this is

one with a line on it or not. One reason for this is that the proof that the moduli

space of rational curves on a general hypersurface satisfies a certain property often

makes use of statements like generic smoothness (see [Har77] III.10). This often

leaves us with the knowledge that moduli spaces have the correct dimension (or are

smooth or irreducible) for a generic hypersurface without being able to identify which

hypersurfaces are appropriately generic. As another example, suppose that X ⊂ Pn

(with n > 3) is a smooth hypersurface of degree d < n. If X is general, then the space

of lines on X is irreducible and has the expected dimension (see [Kol96], Theorem

V.4.3).

Conjecture (Debarre-de Jong, see [Deb01], page 51). For arbitrary smooth hyper-

surfaces X in this degree/dimension range, the space of lines on X is irreducible and

has the expected dimension.

In the paper [HRS04], the authors Harris, Roth, and Starr prove that for a general

hypersurface of “low degree” (2d < n + 1) the space of degree e rational curves on

a general hypersurface is irreducible and of the expected dimension. The main idea

behind their proof is that for the space of pointed lines in X, the evaluation map

to X is flat. Then they use the bend and break lemma (see [Deb01] or [Kol96]), to

degenerate to the boundary where the results are known by induction. In Chapter 2,

we undertake a study of rational curves on Fermat hypersurfaces - those given by

the vanishing of Xd
0 + . . . Xd

n = 0. Given their symmetry, these hypersurfaces are in

some sense “highly” non-generic. The space of lines on a Fermat hypersurface can

be computed, and this spaces is irreducible and of the expected dimension as long as
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d < n. The corresponding evaluation map for pointed lines on a Fermat hypersurface

is (very) non-flat. Nevertheless, by applying a careful understanding of how the space

of lines through a fixed point behaves, we are able to apply a similar degeneration to

the boundary argument in order to prove that the space of degree e rational curves

on degree d Fermat’s are irreducible and of the expected dimension in a restricted

degree range.

Theorem. (Chapter 2, Corollaries 2.4.23, 2.4.30, and 2.4.36) If X is a degree d

Fermat hypersurface in Pn and if ed < n when e > 2 (2d ≤ n + 1 when e = 2), then

the moduli space M0,0(X, e) is irreducible and of the expected dimension.

There is hope that the statement remains true in larger degree ranges - we refer to

that section for the relevant discussion.

One main tool in studying the space of rational curves on a variety is the bend

and break Lemma which, when it applies, allows the conclusion that components of

a Kontesevich moduli space will have to meet the boundary divisor. The Lemma

itself states that it is impossible to have a complete family of rational curves passing

through two fixed points (say in some projective space). For a projective variety X,

when a dimension count implies that there is a one dimensional family of degree e

rational curves through two general points, then we can often apply the bend and

break Lemma to draw the conclusion above. For e = 2 and degree d hypersurfaces in

projective space, this will apply in what we refer to as the “bend and break range”,

2d < n + 1. When this numerical condition is not satisfied, it is difficult to say

anything about the space of degree e ≥ 2 curves on a hypersurface because many

techniques proceed by degenerating to the boundary and concluding (something) by

induction. In the special case that e = 2, some arguments become possible because

conics (smooth or otherwise) are always complete intersections in projective space.

Using this fact, we are able to prove:

Theorem. (Chapter 2 Theorem 2.3.4 and Theorem 2.3.6) Suppose that X ⊂ Pn is



CHAPTER 1. INTRODUCTION 6

a smooth degree d hypersurface with d < n. If X is general, then the moduli space of

conics is irreducible and of the expected dimension. If X is arbitrary (but smooth), we

can conclude that there is a unique component which contains a curve passing through

a general point of X.

We mention an application of these Theorems to “modern” enumerative geometry,

Gromov-Witten theory. Knowing that the parameter spaces have the expected di-

mension lets us conclude that Gromov-Witten invariants are “enumerative”. In other

words we may combine the above Theorems with the Kleiman-Bertini Theorem to

make the following statement. If, given general linear spaces Λ1, . . .Λr ⊂ Pn with

Σi(codim(Λi ⊂ Pn)− 1) equal to the virtual dimension of M0,0(X, e), then the Gro-

mov Witten invariant
∫

[M0,1(X,e)]vir
ev∗1[Λi]∪ . . .∪ev∗1[Λr] is equal to the actual number

of degree e rational curves in X intersecting each of Λ1, . . . ,Λr.

The bend and break Lemma implies an upper bound on the dimension of complete

families of smooth rational curves on projective varieties. We may ask though, “What

is the largest dimension of a complete family of degree e smooth rational curves on

X?”. Surprisingly enough, the answer to this question is not known even when X is

projective space. There has been related work in the case of higher genus, see [CR94].

When all the rational curves are linearly non-degenerate, we consider an associated,

finite map to the appropriate Grassmannian and prove the following:

Theorem. (Chapter 3 Theorem 3.1.1) If X is the base of a complete family of linearly

non-degenerate degree e ≥ 3 curves in Pn with maximal moduli, then dimX ≤ n− 1.

For e = 2, we can conclude that dimX ≤ n.

Note that for degree 2 and 3 curves, an irreducible rational curve in projective space

is smooth if and only if it is linearly non-degenerate. That is, the above theorem

gives an upper bound on the dimension on the largest dimension of a complete family

of smooth degree 2 and 3 rational curves in projective space. The theorem leaves

open a few interesting questions. First, is this bound sharp? Second, can the linearly
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non-degenerate condition be dropped? And third, and perhaps most relevant to the

discussion above, is there a better bound in the case that each rational curve is to

lie on a smooth degree d hypersurface in projective space. Notice that the answer

to such a question could provide a way of circumventing the numerical restrictions

imposed by relying on the bend and break Lemma.

As the geometry of the moduli space of rational curves on X reflects (and is reflected

by) the geometry of X, it is interesting to ask questions about curves (especially

rational curves) contained in these various moduli spaces. Are these spaces rationally

connected, for example? If we treat the projective line as the algebraic analogue

of the unit interval in topology, then being rationally connected can be though of

as analogous to the topological property of being path connected. Building on this

analogy, if the space of rational curves on X passing through two (resp. or more)

fixed points is itself rationally connected, then we have a property which we think of

as being analogous to the topological property of being simply connected (we refer

to Chapter 4 for a more thorough introduction). If X satisfies this property then we

say it is rationally simply connected (resp. strongly rationally simply connected).

As motivation for why we would be interested in this property, consider the following

problem. Suppose f : X → C is a family of rationally connected varieties over a

curve. The famous Graber-Harris-Starr theorem [GHS03] guarantees that f has a

section, or equivalently that X has a k(C) point. When g : X → S is a family

over a surface, the fibers being rationally connected do not guarantee the existence

of a section. However, if the fibers satisfy the stronger property of being strongly

rationally simply connected, then sections can be proven to exist. What’s more, if

the fibers of f : X → C (over a curve again) are strongly rationally simply connected,

then f admits “so many” sections that it satisfies weak approximation. Showing the

existence of sections (or of many sections) is what we refer to as “arithmetic over

function fields” as an analogy with more number theoretic questions where existence

of solutions to Diophantine equations are sought in various number fields.
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It turns out though that very few varieties are known to satisfy this stronger geometric

property which is quite hard to verify in practice. In [dS06], de Jong and Starr are

able to prove that a smooth hypersurface of degree d in Pn is strongly rationally

simply connected if it general and satisfies d2 ≤ n, and that an arbitrary smooth

hypersurface satisfying 2d2 − d ≤ n + 1 satisfies this property. It should be the case

that this property is satisfied in the range d2 ≤ n for arbitrary smooth hypersurfaces,

but as explained above, it is often easier to prove results about general hypersurfaces.

When we restrict to d = 3, we are able to exploit some geometry which holds on an

arbitrary smooth cubic hypersurface. This includes the fact that the moduli space

of lines on a smooth cubic hypersurface is always smooth of the expected dimension

(which is not true for larger values of d) and the moduli space of planes at least always

has the expected dimension. Using these facts, we are able to prove the existence of

sufficiently positive surfaces (which are abstractly isomorphic to P1 × P1) on cubic

hypersurfaces from which the method developed in [dS06] allows us to conclude that

smooth cubic hypersurfaces are strongly rationally simply connected when they can

be:

Theorem. (Chapter 4 Theorem 4.7.13) If X is a smooth degree 3 hypersurface in Pn

with n ≥ 9, then X is strongly rationally simply connected.

Note that if g : X → S is a family of cubic hypersurfaces, then the above theo-

rem implies that g has a section. This is already implied by Tsen’s theorem (see

[Tse36]). That families of such hypersurfaces over curves satisfy weak approxima-

tion has already been shown by Hassett and Tschinkel [HT09]. Nevertheless, this

stronger geometric property is interesting in its own right, and it is hoped that the

techniques to verify it in this case (which are different than those used in [dS06]) will

be applicable to other classes of varieties.
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Chapter 2

Rational Curves on Hypersurfaces

2.1 Introduction

Throughout this chapter we assume that all schemes, stacks, and morphisms are

defined over Spec C.

The study of rational curves on varieties has come to have applications in many areas

of algebraic geometry. Indeed, there are applications to Gromov-Witten theory as

well as birational geometry and the minimal model program. Nevertheless, on many

varieties the geometry of the space of rational curves is not well understood. A careful

understanding of the geometry of this space can lead to results in weak approximation,

or to proving the existence of sections for families of these varieties (see [dS06] for ex-

ample). By “the space of rational curves” one (often) means a part of the appropriate

Hilbert scheme. Let X be a smooth projective variety over C. Let Re(X) be the open

subscheme of Hilbet+1(X) which parameterizes smooth, degree e rational curves on

X. For a given variety, even basic questions about this locus remain unanswered. For

example, we often can say very little about its dimension, connectedness, irreducibil-

ity, or singularities. In fact, after leaving the class of homogeneous varieties, these

questions become quite difficult even for smooth hypersurfaces in projective space,
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the cases studied this paper.

One recurring theme in the study of these spaces is that it is often easier to answer

questions about Re(X) for a general hypersurface. By this we mean for a fixed n,

there is the well known Hilbert scheme of hypersurfaces in projective space, namely

P = P(H0(Pn,O(d))), and many times something can be said about the Re(X) for

X in an open set U ⊂ P. This is often a consequence of using results like generic

flatness or generic smoothness, and as a consequence, this open set U is rarely made

explicit.

For example, in [Kol96] (Chapter V), it shown that for a generic degree d hypersurface

X with d ≤ 2n− 3 the space of lines on X is irreducible and smooth of the expected

dimension 2n − d − 3. We are able to prove here that for d < n − 1 the space of

conics on a general X is smooth of the expected dimension, see Proposition 2.3.4. As

another example, in [HRS04], it shown that if X is a general hypersurface of degree

d with 2d < n + 1, then Re(X) is irreducible and has the expected dimension for all

e ≥ 1. Still, it is difficult to determine which hypersurfaces are general in this sense.

In this Chapter, we are concerned with what can be said about non-general hypersur-

faces. See [CS09] for methods which address this issue for cubic hypersurfaces, where

the deformation theory works out quite nicely. The known methods for studying the

geometry of rational curves on varieties involve using the Kontsevich moduli spaces

which sometimes allow the degeneration to the boundary technique. The tool allow-

ing such a degeneration is Mori’s bend and break Lemma (see [Deb01] Proposition

3.2). This Lemma can only be applied in a certain numerical range, which explains

the degree restrictions used in [HRS04]. We now outline the results of this paper. In

Section 2, we review properties of the Kontsevich moduli space and the deformation

theory techniques which will be used throughout. In Section 3, we focus back on the

Hilbert scheme Hilb2t+1(X) and carefully analyze the deformation theory at points

parameterized by this scheme. The first result of this chapter is a study of conics on
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hypersurfaces in projective space where the bend and break degree range does not

hold.

Theorem. (See Theorem 2.3.6) Suppose X is a smooth degree d hypersurface in Pn

with d < n− 1 and that the dimension of non-free lines on X is at most n− 3. Then

there is a unique component of R2(X) whose general point corresponds to a conic

through a general point of X.

This at least implies that if R2(X) is to be reducible, then any component other than

the “good” one (see Section 2) parameterizes conics which are constrained to lie in

a subvariety of X. In Section 4, we switch gears to work out what is known about

rational curves on Fermat hypersurfaces. These varieties are certainly not general and

provide a testing ground to understand what could be true on an arbitrary smooth

hypersurface. The fact that enables us to study these varieties is that we are able

to understand in depth the lines contained in them (see Section 2.4.2) and even lines

passing through a fixed point (see Section 2.4.3). We then restrict ourselves to the

bend and break range (in fact, even further depending on e). In Sections 2.4.4-2.4.6,

we prove the following theorem:

Theorem. Suppose that e > 3 (resp. e = 2, 3) and that X ⊂ Pn is the degree d

Fermat hypersurface such that ed < n (resp. 2d ≤ n+ 1, 3d < n+ 6) then M0,0(X, e)

is irreducible and has the expected dimension e(n+ 1− d) + (n− 4).

The proof of the theorem relies on the bend and break Lemma in order to degenerate

to the boundary where we can say something inductively. In fact, the theorem only

relies on an understanding that while there may be too many lines through some

points of X, the locus where this happens occurs in appropriately high codimension,

see Definition 2.4.18. It is not known whether any smooth projective hypersurface

violates this hypothesis. Outside of the bend and break range, very little is known,

even about conics on the Fermat hypersurfaces. We discuss possible problems and
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approaches in Section 2.4.7 Appendix 2.5 discusses the construction of incidence va-

rieties.

2.2 Kontsevich Moduli Space

To study rational curves on varieties, it is often useful to have a complete parameter

space at hand. We will make use of both the Kontsevich moduli space and the Hilbert

scheme. Recall that if X is a smooth hypersurface in Pn (n ≥ 4) of degree 2 < d < n,

then A1(X) = Z. Denote by e, the class of e[̇line] in A1(X). The Kontsevich moduli

space M0,r(X, e) parameterizes isomorphism classes of data (C, q1, . . . , qr, f) of a

proper, connected, at-worst-nodal, arithmetic genus 0 curve C, an ordered collection

q1, . . . , qr of distinct smooth points of C and a morphism f : C → X such that

f∗[C] = e and f satisfies the following stability condition:

Stability Condition: Any component Ci of C such that f(Ci) = pt must contain at

least three special points. A special point is either one of the qj or a node of C. This

condition is equivalent to the condition that the automorphism group of the map

f : C → X is finite.

In general,M0,r(X, e) is a proper, Deligne-Mumford stack and its points parametrize

maps from nodal genus 0 curves to X. The coarse moduli space of M0,r(X, e) is

projective, but need not be smooth or irreducible.

There is an evaluation map, which is a projective morphism,

ev :M0,r(X, e)→ Xr

sending a datum (C, q1, . . . , qr, f) to the ordered collection (f(q1), . . . , f(qr)). For

these statements and a more complete discussion, see Sections 0 and 1 of [FP97].
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2.2.1 Preliminaries on Deformation Theory

Let X be a smooth hypersurface in Pn of degree 2 < d < n (n > 3 as above). We

recall the following definitions and properties.

Definition 2.2.1. A rational curve on X is a map f : P1 → X. This is, by definition,

a point of the parameter space Hom(P1, X); see [Kol96], Section I.1. Recall that if

f(P1) = C is a local complete intersection in X, then the normal sheaf NC/X is locally

free on C of rank n− 2. If f is an isomorphism onto its image, this bundle splits into

the direct sum of n− 2 line bundles (see [Kol96], II.3.8).

Definition 2.2.2. The splitting type of C ∼= P1 is the sequence of integers a1 ≤ a2 ≤

. . . ≤ an−2 such that NC/X
∼= O(a1) ⊕ O(a2) . . . ⊕ O(an−2). For r ≥ 0 a curve C is

called r-free if r ≤ a1. A 0-free curve is often called free and a 1-free curve is often

called very free.

In general, there is a dimension bound on the parameter space Hom(P1, X):

Theorem 2.2.3. ([Kol96], Chapter II.1 Theorem 1.2 and 1.3). Let X be smooth and

f : P1 → X a point of M = Hom(P1, X). Locally around [f ], the scheme M can be

defined by h1(P1, f ∗TX) equations in a nonsingular variety of dimension h0(P1, f ∗TX).

In particular, any irreducible component M of Hom(P1, X) has dimension at least

h0(P1, f ∗TX)− h1(P1, f ∗TX) = χ(P1, f ∗TX) = −KX · f∗[C] + dimX,

where the last equality follows by Riemann-Roch. Further, if h1(P1, f ∗TX) vanishes,

then M is smooth at [f ].

When X is a smooth degree d hypersurface in Pn, the theorem implies that any

irreducible component M of M0,r(X, e) satisfies

dimM ≥ e(n+ 1− d) + r + (n− 4).
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Given a stable, genus 0 map to X, we may associate the corresponding topological

type of the curve. This is the graph of C. We will constantly make use of the following

fact.

Proposition 2.2.4. Suppose that π : C → S is a family of semi-stable genus 0 curves

with S irreducible. Suppose that the generic fiber has topological type τ . Locally in

the étale topology on S, there are normal crossing divisors Di, i ∈ I, such that the

topological type of π : C → S is constant over DJ . Here J ⊂ I and DJ denotes the

locus of points in Dj for j ∈ J and not in Di for i ∈ I\J .

Remark 2.2.5. A more complete discussion can be found in Section 2 of [dJO97]

or in Section 1 of [DM69]. We will often say, informally and without referencing this

Proposition, that if maps degenerate, then they do so along a divisor.

2.2.2 Remarks on Conics

The study of conics on hypersurfaces is easier than the study of higher degree rational

curves on them. One reason is that, as is well known, the Hilbert scheme of plane

conics is easy to describe. We have Hilb2t+1(P2) = P(Sym2(O(1))∗) = P5.

Lemma 2.2.6. Suppose that [C] ∈ Hilb2t+1(Pn) is any point. Then the close sub-

scheme C ⊂ Pn is contained in a unique linear P = P2 ⊂ Pn. It is a complete

intersection in projective space of type (2, 1, . . . , 1). In particular it is of pure dimen-

sion one, and is one of the following types of curves.

1. The curve C is defined by an irreducible degree 2 polynomial in P . It is then a

smooth degree 2 rational curve in P ⊂ Pn.

2. The curve C is defined by the product of two distinct linear forms in P . It is

then the union of two intersecting lines in P ⊂ Pn. This case will be referred to

as a “broken” conic.
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3. The curve C is defined by the square of a single linear form in P . It is a

“double” line in P , and in the ambient projective space.

Proof. Suppose C ⊂ Pn has Hilbert Polynomial 2t + 1. Let I be the ideal sheaf

defining X and consider the exact sequence

0→ I → OPn → OC → 0.

We have that OPn(1) has n + 1 global sections, and from the Hilbert polynomial of

C, we know that OC(1) has at most 3 global sections. This implies that I(1) has at

least n − 2 independent global sections. If it had more than n − 2 global sections,

then C would be contained (scheme theoretically) in a line (or a point), which is

impossible by Hilbert polynomial considerations. This implies that C is contained in

a unique P2, namely the intersection of the hyperplanes in H0(Pn, I(1)). The next

statement follows from the fact that a subscheme of Pn having the Hilbert polynomial

of a degree d hypersurface must be a degree d hypersurface (see [Ser06] Section 4.3.2).

Thus C is defined by a degree 2 polynomial inside P and the only choices for such a

polynomial are the three cases listed.

Remark 2.2.7. For n > 2, the above lemma is the key step in showing that

Hilb2t+1(Pn) = P(Sym2(S)∗) where S is the universal rank 2 subbundle on the Grass-

mannian. To see this, we know thatNC/Pn = OC(1)n−2⊕OC(2)n−2, the Hilbert scheme

is smooth at C. The above Lemma implies that we have a map from Hilb2t+1(Pn)

to Grass(3, n + 1,) and the fibers are exactly Hilb2t+1(P2) ∼= P5. Of course, this P2

is canonically identified with the fiber of S, and the statement follows. In particular,

Hilb2t+1(Pn) is a P5 bundle over the Grassmannian Grass(3, n+ 1), so is smooth and

irreducible.

Lemma 2.2.8. Let X ⊂ Pn be a smooth projective variety and let C be a double

structure on a line l ⊂ X, see Lemma 2.2.6. The reduced line l is defined by a

square zero ideal inside the structure sheaf of C. Said another way, l is a point of
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Hilbt+1(X), C is a point of Hilb2t+1(X) and Cred = l . There is an exact sequence:

0→ Ol(−1)→ OC → Ol → 0.

Proof. As in Lemma 2.2.6, we may choose coordinates of Pn so that the ideal of C

is given by (x2
2, x3, . . . , xn). Then clearly the ideal defining l is (x2, . . . , xn), a square

zero ideal inside OC . In other words, there is an exact sequence

0→ I → OC → Ol → 0,

where I is a sheaf of ideals and I2 = 0. This implies that I naturally inherits

the structure of a sheaf of Ol modules, in fact it is locally free. Since C has Hilbert

polynomial 2t+1 and l has Hilbert polynomial t+1, we can compute that the Hilbert

polynomial of I is just t (the Hilbert polynomial is additive on exact sequences).

However, since I is a locally free sheaf on l , it can be written in the form Ol(α) for

some integer α. Then the Hilbert polynomial of Ol(α) is t+1+α and so α = −1.

2.2.3 Canonical Components

The following ideas are established in [dS06], but are included here for completeness

and often specialized to the situations that will be encountered in what follows.

Hypothesis 2.2.9. Let X be a smooth, degree d hypersurface in Pn such that 2 <

d < n. Assume that M1,0 = M0,0(X, 1) is irreducible of the expected dimension.

There is always a line through a general point of X. This implies that a general point

of M1,0 parameterizes a free line (see [Kol96] Exercise V.4.6 and Theorem II.3.10.1).

Remark 2.2.10. No hypersurfaces in the given degree range are known to violate

this hypothesis. Indeed, it is conjectured [Deb01] (page 51) to always hold for any

smooth degree d < n hypersurfaces and it is known in some cases which include d = 3

([Kol96] V.4.4) and d ≤ 6 ([Beh06]). ThatM0,0(X, 1) is smooth for a general degree

d hypersurface with d ≤ 2n− 3 follows from [Kol96] Theorem V.4.3.
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Lemma 2.2.11. ([dS06] Corollary 4.5) Suppose that X is a degree d hypersurface

in Pn with d < n − 1 and that X satisfies Hypothesis 2.2.9. Denote by M1,1 the

irreducible space M0,1(X, 1). Then the geometric generic fiber of ev : M1,1 → X is

irreducible.

Lemma 2.2.12. ([dS06] Lemmas 3.3-3.6) Suppose X ⊂ Pn is a smooth degree d

hypersurface in d < n − 1 and that X satisfies Hypothesis 2.2.9. For every posi-

tive integer e there exists a unique irreducible component Me,0 of M0,0(X, e) which

contains points that correspond to the following.

1. Degree e covers of free lines in M1,0.

2. Reducible curves C = C1 ∪ C2 where degCi = ei, e1 + e2 = e, and such that

each curve Ci is a free curve parameterized by Mei,0.

3. Maps C → X which are smooth points in M0,0(X, e) such that each non-

contracted component Ci of C is in some Mei and such that at most one of

the Ci is not a free curve.

Further, the general point of Me parameterizes a smooth, free curve. In addition, for

every positive integer e, denote by Me,1 the unique irreducible component ofM0,1(X, e)

dominating Me,0. The geometric generic fiber of

ev|Me,1 : Me,1 → X

is also irreducible.

Definition 2.2.13. Suppose X is a smooth degree d hypersurface in Pn satisfying

d < n − 1 and suppose Hypothesis 2.2.9 holds. The component from Lemma 2.2.12

will be called the good component.

For a vector bundle on a broken curve, we can explicitly compute its cohomology via

restricting to the separate components in some nice situations.

Lemma 2.2.14. Let C = C1 ∪C2 be a reducible genus zero curve on X and let E be

a vector bundle on C. If E|C2 is semi-positive, then H1(C,E) = H1(C1, E|C1).
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Proof. Consider the exact sequence

0→ E ⊗OC2(−p)→ E → E ⊗OC1 → 0

where p is the intersection point of C1 and C2. By assumption, E restricts to have only

non-negative summands on C2
∼= P1 and so twisting down by p does not contribute any

h1. By the long exact sequence in cohomology then, H1(C,E) = H1(C1, E|C1).

Remark 2.2.15. In the case where E does not restrict to be semi-positive on C2,

the only conclusion that can be drawn is h1(C,E) ≥ h1(C1, E|C1).

In the special case of conics, we can recognize when an arbitrary reducible conic is

in the good component. This will be a key step in classifying the components of

M0,0(X, 2). We will need to know that lines on X are well behaved in the following

sense:

Definition 2.2.16. Lines on X are well-behaved if the Fano variety (which for lines

is the same as the Hilbert Scheme and the same as the Kontsevich moduli space) of

lines on X has the expected dimension, and the locus of lines which are not free has

dimension at most n− 3. Define the open set LX ⊂ X to be the set of all points on

X through which all lines are free.

Proposition 2.2.17. On a general hypersurface of degree d < n, lines are well-

behaved.

Proof. The proof is very similar to that of Theorem V.4.3 in [Kol96]. Define I to be

the incidence correspondence {[l], [X]|l ⊂ X} corresponding to a line contained in a

degree d hypersurface. Let H be the projective space which parameterizes degree d

hypersurfaces in Pn. There is a natural projection map p : I → H. We also have the

projection map q : I → Grass(2, n+ 1). Let I0 ⊂ I be the tuples where X is smooth

along l. Let Z0 ⊂ I0 denote the locus where l is not a free line on X. We claim that
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for a point [l] of the Grassmannian, q−1([l]) ∩ Z0 has codimension at least n − d in

q−1[l].

To prove the claim, we may choose coordinates so that l is given by x2 = . . . = xn = 0.

If a degree d hypersurface X contains l, its equation may be written as

Σn
i=2xifi + Σj,k≥2xjxkqjk

where fi = fi(x0, x1) and deg fi = d − 1. Lemma 4.3.7 of [Kol96] shows that X

is singular at a point contained in l if and only if the fi have a common zero. It

is straightforward to show that if X is smooth along l, then l is free if and only

H1(l, Nl/X(−1)) = 0. As in the second part of Lemma 4.3.7 [loc. cit], this is equivalent

to the condition that H0(l,O(d− 1)) = Span(f2, . . . , fn).

For a point [l] ∈ Grass(2, n+ 1), we have

I0 ∩ q−1([l]) = {(f2, . . . , fn, qjk)|fi ∈ H0(l,O(d− 1)) have no common zeros}.

We also have

Z0∩q−1([l]) = {(f2, . . . , fn, qjk)|fi ∈ H0(l,O(d−1)) and Span(fi) ( H0(l,O(d−1))}.

For a hyperplane V ⊂ H0(l,O(d− 1)), define

Z0
V := {(f2, . . . , fn, qjk)|Span(fi) ⊂ V } ⊂ Z0 ∩ q−1([l]).

It is clear that codim(Z0
V , I

0 ∩ q−1([l])) = n− 1. Then codim(Z0 ∩ q−1([l]), q−1([l])) ≥

n− d because Z0 ∩ q−1([l]) = ∪VZ0
V . This proves the claim.

It is clear then, that codim(Z0, I0) ≥ n − d. When we consider the fibers of p, this

implies that for a general hypersurface X, the locus of lines on X which are not free

has codimension at least n − d. For a general hypersurface X, the variety of lines

contained in X is smooth, irreducible, and has dimension 2n− d− 3 (Theorem V.4.3

of [Kol96]). Thus for a general X, the space of non-free lines has dimension at most

n− 3 as was to be shown.
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Hypothesis 2.2.18. Suppose X is a smooth degree d hypersurface in Pn satisfying

d < n − 1 and suppose Hypothesis 2.2.9 holds. We assume that lines on X are well

behaved.

The main result of this section is the following:

Theorem 2.2.19. Assume that X satisfies Hypothesis 2.2.18. Suppose M is an

irreducible component of M0,0(X, 2) containing a reducible conic C through a point

of LX (notation as in Definition 2.2.16), then M is the good component.

Note that Lemma 2.2.12 does not apply here because it is not a priori true that C is

a smooth point in the moduli space.

Proof. Denote by ∆ = ∆1,1 the boundary locus of M0,0(X, 2). There are two cases

to consider:

Case 1: B = (M ∩∆) 6= M and so B ⊂M is a divisor (Proposition 2.2.4).

In this case, dim(M) = 1+dim(B). Write C = C1∪C2, where C1 and C2 are lines on

X which intersect at P and assume that C1 contains a point of LX . This implies that

C1 is a free line. If C2 is also a free line, then M is the good component by Lemma

2.2.12. If C2 is not a free line, then we count the dimension of such configurations

C = C1 ∪ C2 where C1 is free but C2 is not.

By assumption, the choice of C2 is at most an (n− 3)-dimensional choice. The choice

of P on C2 is of course a one-dimensional choice. The choice of a free line through

a fixed point is an (n − d − 1)-dimensional choice. Thus, the dimension of such

configurations is 2n− d− 3. However, by Theorem 2.2.3, dim(M) ≥ 3n− 2d− 2 and

so dim(B) ≥ 3n−2d−3. For d < n, the inequality (2n−d−3) < (3n−2d−3) holds

and these configurations of broken conics through a general point cannot account for

all the points of B. Choose a general curve T in B which contains C.

First, from Lemma 2.2.14 we know that H1(C, TX |C) = H1(C2, TX |C2) because C1 is
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a free line so the tangent bundle of X restricted to C1 is semi-positive. We claim that

the general point of T cannot be the union of two non-free lines specializing to C.

This follows from semi-continuity theorem (see [Har77] III.12.8). Indeed, if the general

point of T corresponded to two non-free lines, then we could produce a family of non

free lines specializing to C1. This is impossible though because on the free line C1

we have h1(C1, TX |C1(−1)) = 0, but on a non free line the corresponding cohomology

group has positive dimension.

This implies that a general point of T is a broken conic, each of whose components

is a free line. These are smooth points of M by Lemma 2.2.14 and so M is the good

component by Lemma 2.2.12.

Case 2: M ⊂ ∆, that is M is contained entirely in the boundary.

By the same dimension count as above (which works one better in this case), we see

that configurations C = C1 ∪ C2 where C1 is a free line and C2 is not a free line

cannot fill out all of M . By the same argument, M contains points which correspond

to free line union free line. However, these are smooth points of the moduli space by

Lemma 2.2.14 and so are contained only in the component M . By Lemma 2.2.12, M

is the good component. In fact, this shows Case 2 cannot occur.

2.3 A study of Conics on X Using Hilbert Schemes

2.3.1 Incidence Correspondences

It becomes convenient to use the Hilbert Scheme in order to say something about the

space of conics passing through a general point of X.

Before beginning, recall a fact about the irreducibility of fibers:

Lemma 2.3.1. ([dS06], Lemma 3.2) Suppose that i : N → M and e : M → Y are
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morphisms of irreducible schemes. If i(νN) is a normal point (here νN denotes the

generic point of N) of M and if e ◦ i is dominant with irreducible geometric generic

fiber, then e : M → Y is also dominant with irreducible geometric generic fiber.

Proposition 2.3.2. Fixing d < n−1, there is a scheme I whose points parameterize

the data of {p ∈ C ⊂ X} where X is a smooth degree d hypersurface in Pn, C is

a conic on X (by which we will mean a point of Hilb2t+1(X)), and p is a point on

C. The scheme I is a smooth quasi-projective variety. There is a forgetful map to a

smooth variety, H, whose points parameterize {p ∈ X} (point contained in a smooth

hypersurface):

f : I → H, (p ∈ C ⊂ X) 7−→ (p ∈ X).

The general fiber of this map is smooth, projective, and irreducible. In fact every fiber

is connected.

Remark 2.3.3. The word parametrize in the above Proposition (and the following

proof) should be read as represents the appropriate flag Hilbert functor. Results from

Appendix 2.5 will be used.

Proof. The existence of H′ which parameterizes points contained in any hypersur-

face in Pn follows from Lemma 2.5.6 where S = Spec (C) and the linear space has

dimension 0. The scheme H′ is smooth as it is a projective bundle over a smooth

variety. The condition for a hypersurface to be singular is closed in P(Symd(V ∗)),

call the complement U . The scheme H then is simply the restriction of P(K∗) to U ,

so smooth.

By Lemma 2.5.3 (and the remark following it), the scheme I ′ exists (as above the

prime is a reminder that all hypersurfaces in Pn are allowed). By Lemma 2.5.9, I ′ is

smooth as it is a projective bundle over a flag variety.

Thus, I ′ is smooth and so the restriction I to U is also smooth. By the Yoneda

Lemma there is a natural map from I to H given by forgetting the conic. By generic

smoothness (see [Har77] Corollary III.10.7), a general fiber is smooth.
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Consider the scheme K′ which is the locus {p ∈ C ⊂ X} ⊂ Pn × Hilb2t+1(Pn) ×

P(Symd(V ∗)) where each C is a “double line”. This is the locus parameterizing a

point contained in a non-reduced conic contained in a degree d hypersurface. Call

the pullback of K′ to U , simply K. Arguments almost exactly as above show that K

(resp. K’) is smooth and irreducible. We will also consider the scheme J ′ which is

the incidence locus {p ∈ L ⊂ X} ⊂ Pn × Hilbt+1(Pn) × P(Symd(V ∗)). This is the

locus parameterizing a point contained in a line contained in a degree d hypersurface.

It is also smooth and irreducible and we form J by pulling back to U . There is a

natural map from both K and J to H, as well as a map K → J which assigns the

non-reduced conic to the associated underlying reduced line. The obvious triangle of

maps clearly commutes.

We now prove the irreducibility of the general fiber of f . To apply Lemma 2.3.1,

let M = I, Y = H, e = f , N = K and i the map described above. To apply the

Lemma, we must verify the hypothesis are satisfied. Both N and M are irreducible.

The incidence locus M is smooth, so that i(νN) ∈M is automatically a normal point.

We claim now that e◦ i is dominant with irreducible generic fiber. To check this, first

note that the generic fiber of J → H is smooth and irreducible (here we use [Kol96]

Theorem V.4.3 as well as Lemma 2.2.11). For a line l on X, the space of doubled

lines contained in X having reduced structure l can be identified with the bundle

P(H0(Nl/X(−p))) over l (at least when d > 1). For a general line on X, this will be

a Pn−d−2 bundle over P1 (see [Kol96] V.4.4.2). This shows that the generic fiber of

K → H is dominant with irreducible generic fiber when d < n − 1. Composing the

two maps then, we have that e ◦ i is dominant with irreducible general fiber, and the

Lemma implies the same is true for f .

Consider the Stein factorization of f : I → H. That is, f factors g : I → Z and

h : Z → H where h is finite and g has connected fibers (see [Har77], III.11.5).

However, by the argument above, we know that the general fiber of h ◦ g is already

connected (in fact, irreducible) and so the degree of g is 1. This shows that every
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fiber of f is connected (see [Har77] Ex.III.11.4).

Proposition 2.3.4. For d < n − 1, the Hilbert scheme Hilb2t+1(X) for a general

degree d hypersurface in Pn is smooth, irreducible and has the expected dimension.

Proof. The proof is similar to the one given above. Write Pn = P(V ). Let H =

Hilb2t+1(Pn). Let P = P(Symd(V ∗)) be the Hilbert scheme of degree d hypersurfaces

in Pn. Let I be the incidence correspondence {C ⊂ X} ⊂ H × P . As in Proposi-

tion 2.3.2, we have that I is smooth and irreducible (it is a projective space bundle

over H). We can consider the projection π : I → P . By generic smoothness, a

fiber over a general degree d hypersurface X is smooth, and this is isomorphic to

Hilb2t+1(X). We now argue that the generic fiber is irreducible.

Consider the scheme K which is the locus {C ⊂ X} ⊂ Hilb2t+1(Pn) × P(Symd(V ∗))

where each C is a “double line”. This is the locus parameterizing a non-reduced conic

contained in a degree d hypersurface. The variety K is irreducible and smooth as in

Proposition 2.3.2. We have that K maps to I and the image of the generic point of

K is a smooth point in I. We must now verify that the map g : K → P is dominant

and has irreducible generic fiber. Let X be a general hypersurface. A general X has

a smooth 2n − d − 3 dimensional family of lines on it (see [Kol96] V.4.3.2). As in

Proposition 2.3.2, the space of double structures on a fixed general line on a general

hypersurface is a projective space bundle of dimension n − d − 1. This implies that

the map g is dominant with irreducible generic fiber when d < n− 1.

As above, we may now apply Lemma 2.3.1 with N = K, M = I and Y = P . We

conclude that the general fiber of I → P is irreducible. The general fiber is smooth

by generic smoothness, so the Proposition follows.
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2.3.2 Conics Through General Points

To study conics through a general point, the locus of such curves where the conic on

X is a double line must be analyzed. First, it will be shown that they correspond to

smooth points in the Hilbert Scheme.

Proposition 2.3.5. Let C be a subscheme of X with Hilbert polynomial 2t+ 1 such

that Cred = l is a line through a point of LX (see Definition 2.2.16). Note that l is

defined by a square zero sheaf of ideals on C as in Lemma 2.2.8. Let NC/X denote

the normal sheaf of C in X. Then we have that H1(C,NC/X) = 0. In particular, C

is a smooth point of Hilb2t+1(X).

Proof. Both l and C are local complete intersections on X (the property of being l.c.i.

is intrinsic to subschemes of smooth schemes) because each is a complete intersections

in P2. Denote their ideal sheaves by IC and IL respectively. The inclusion of IC into

Il induces the following exact sequence of sheaves

0→ Ol(1)→ Nl/X → NC/X |l → Ol(2)→ 0.

Using the long exact sequence of cohomology then, it follows that h1(l, Nl/X(a)) =

h1(l, NC/X |l(a)) for each a ≥ −2. In particular since l is free, h1(l, NC/X |l(a)) = 0 for

a ≥ −1. The short exact sequence in Lemma 2.2.6 implies that

0→ NC/X |l(−1)→ NC/X → NC/X |l → 0

is short exact. Taking cohomology, h1(C,NC/X) = 0 because h1(l, NC/X |l(a)) = 0 for

a ≥ −1. This is what was to be shown.

Theorem 2.3.6. Suppose that X is a smooth hypersurface in Pn of degree d < n−1.

Suppose further that X satisfies Hypothesis 2.2.18. Consider the Hilbert Scheme

H = Hilb2t+1(X). There is a nonempty open set UX ⊂ LX such that there is a

unique component Z of H whose general point corresponds to a smooth conic through

a point of UX . The component Z contains all curves corresponding to
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1. A nonsingular degree 2 rational curve on X containing a point of UX .

2. A broken conic with at least one line containing a point of UX .

3. A doubled line containing a point of UX .

Proof. There is an open set of U such that every irreducible conic passing through

U is free, let UX = U ∩ LX . Suppose there are components Z1, . . . , Zn of H whose

general point corresponds to a smooth conic in X through a general point of X, and

none of these is the good component, Z.

Consider the variety I from Proposition 2.3.2. Fixing our X, we have the fiber IX
for the map I → P(Symd(Cn+1)∗). There is an evaluation map:

π : IX −→ H, (p ∈ C) 7−→ C.

There is also a map:

ev : IX −→ X, (p ∈ C) 7−→ p

Denote by Z̃ = π−1(Z) and Z̃i = π−1(Zi). Restrict these components to ev−1(p) for a

general point p ∈ X, by Proposition 2.3.2 this fiber is connected. By assumption the

components Z̃i and Z̃ are non-empty when restricted to this fiber, and clearly they

are the only components that can occur there.

Since the fiber is connected over p, there is some Z̃i that intersects Z̃ in this fiber,

say in the point (p ∈ C). By applying π we see that C is a conic in Z ∩ Zi, and so a

singular point of H. However, by the computations above, this is impossible. If C is

a smooth conic, it is free and so a smooth point of H. If C is a reducible curve, then

by Theorem 2.2.19, C is only contained in Z. And finally, if C is irreducible, but not

reduced, then by Proposition 2.3.5 again this is a smooth point of H and so cannot

be contained in the intersection of two irreducible components. This exhausts the

options for C, and so such a C cannot exist. This means exactly that Z̃ intersects

none of the Z̃i in the fiber over p. But since this fiber is connected, none of the Zi can
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actually occur there. This contradiction implies that none of the Zi exist to begin

with.

2.4 An Extended Example

2.4.1 Fermat Hypersurfaces

Let X = X(d, n) denote the degree d Fermat hypersurface in Pn. That is, X is defined

by the equation Σn
i=0x

d
i = 0. These hypersurfaces are not general (highly so, in some

sense). The large amount of symmetry they exhibit make them appealing to analyze

the rational curves they contain, though this turns out to be a non-trivial task. In

this section, rational curves on low degree Fermat Hypersurfaces will be studied. We

will illustrate the ranges of degree and dimension where some problems can be solved,

but also ranges where even basic questions remain unanswered.

Definition 2.4.1. Let X = X(d, n). Suppose that x = [a0, . . . , an] ∈ X. We say

that a subset I ⊂ [0, . . . , n] of the coordinates form a clump if ∀i ∈ I we have ai 6= 0,

Σi∈Ia
d
i = 0 and for no proper subset J ⊂ I does this condition hold.

We say that x ∈ X is an r-clumping point, if there are r disjoint subsets Ij ⊂

{0, . . . , n} each of which form a clump, such that if ai ∈ [0, . . . , n]\ ∪ Ij then ai = 0

and such that there is no r′ > r disjoint subsets satisfying these conditions. If k ≥ 0

and r ≥ 1, denote the locus Xk,r as the subvariety of X consisting of points with k

zero coordinates, and such that the (n + 1 − k) non-zero coordinates are r-clumped

as above.

We first collect some facts about clumping points whose proofs are straightforward.

Lemma 2.4.2. Each clump must contain at least two indices. Every point on X has

at least 1 clump. Any point x ∈ X can have at most (n + 1)/2 clumps. In general
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Xk,r, if it is non-empty, has codimension k + (r − 1). The locus X0,1 is open in X.

The locally closed sets Xk,r are disjoint and cover X.

Notation 2.4.3. Let X = X(d, n). Given a point x ∈ Xk,r, up to a permutation of

coordinates, we can write

x = [0, . . . , 0, a1, . . . , as(1), as(1)+1, . . . , as(1)+s(2), . . . , as(r)−1, . . . , an].

This notation means that the coordinates have k zeros and each clump Ij has size

s(j). Note that the symmetric group acts on the coordinates of X and stabilizes the

set Xk,r. This notation is a convenient choice of representative for the orbit.

We will invoke the following linear algebra statement a number of times while studying

lines on Fermat hypersurfaces.

Proposition 2.4.4. Let X = X(d, n). Suppose that we are given a point P =

[0, . . . , 0, ak, . . . , an] ∈ Xk,r (written up to a permutation of coordinates). Let Im for

1 ≤ m ≤ r be the partition of (k, . . . , n) into the clumps of the point P . Write

a = (adk, . . . , a
d
n). Suppose we are given a vector c = (ck, . . . , cn) ∈ Cn+1−k such

cj 6= 0 for each k ≤ j ≤ n and such that

adkc
i
k + . . .+ adnc

i
n = 0 for each i = 1, . . . , d− 1. (2.1)

Then,

1. if d− 1 ≥ n+ 1− k then ci = cj for some distinct k ≤ i, j ≤ n.

2. if d− 1 ≥ n+ 1− k, then for each clumping Im (1 ≤ m ≤ r) of P we have that

ci = cj for i, j ∈ Im.

3. if d− 1 < n+ 1− k and there are at most (d− 1) distinct values of the ci, then

for each clumping Im (1 ≤ m ≤ r) of P we have ci = cj for i, j ∈ Im.
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Proof. The conditions of the Proposition imply that we have the matrix identity
ck . . . cn

c2
k . . . c2

n

...
...

cd−1
k . . . cd−1

n




ad1
...

adn−1

 =


0
...

0

 . (2.2)

In case d − 1 ≥ n + 1 − k, then the first (n + 1 − k) rows of the matrix are lin-

early dependent. We may then apply the Vandermonde identity to conclude that∏n
j=k cj

∏
k≤i<j≤n(ci − cj) = 0. Because we have each cj 6= 0, this implies ci = cj for

some pair i < j. This implies Part 1.

Let (S1, . . . , Sm) be a partition of (k, . . . , n) so that (c(1), . . . , c(m)) are distinct non-

zero numbers satisfying ci = c(j) for every i ∈ Sj. By assumption m ≤ d − 1. For

each 1 ≤ j ≤ m, define a(j) = Σi∈Sja
d
i . We have the matrix equation


c(1) . . . c(m)

c(1)2 . . . c(m)2

...
...

c(1)d−1 . . . c(m)d−1



a(1)

...

a(m)

 =


0
...

0

 .

If the vector (a(1), . . . , a(m)) is not the zero vector, then we can apply the Vander-

monde identity again to conclude that c(j) = c(k) for distinct j and k. This is a

contradiction, so we have that each a(j) = 0. We conclude then, that each clump I

of P is contained in some Sj. This completes Part 2.

The same argument proves Part 3 because then we have that m ≤ d−1 and the same

Vandermonde identity can be applied.
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2.4.2 Lines on Fermat Hypersurfaces

Definition 2.4.5. Let x ∈ Xk,r be a point. Up to a permutation of coordinates we

may write

x = [0, . . . , 0, a1, . . . , as(1), as(1)+1, . . . , as(1)+s(2), . . . , as(r)−1, . . . , an]

with sets Ij as above. We can construct a linear Pr−1 ⊂ X(d, n) in the following

way. For any point [λ1, . . . , λr] ∈ Pr−1, note that the point (again written up to a

permutation of coordinates)

[0, . . . , 0, λ1a1, . . . , λ1as(1), λ2as(1)+1, . . . , λ2as(1)+s(2), . . . , λras(r)−1, . . . , λran]

is also contained in X(d, n). So the λ coordinates give a linear space on X, which we

call a clumped linear space. Note that there will be many clumped linear spaces on

X like this.

Definition 2.4.6. A line contained in one of the above Pr−1 ⊂ X(d, n) (up to a

permutation of coordinates) will be called standard. (See [Deb01], 2.14).

Lemma 2.4.7. If d ≥ n then any line l ⊂ X(d, n) passes through a point with two

zero coordinates.

Proof. Suppose l is a line on X = X(d, n). Let P = [0, a1, . . . , an] and Q =

[b0, . . . , bn−1, 0] be points on l. We can always find points on l that have this form

(simply the intersection of l with the appropriate coordinate hyperplanes). Note that

if l is contained in a coordinate hyperplane, then the Lemma is immediate.

The line l is then given by the linear equation tP + sQ ∈ X for all values of t, s so

the following system of equations must be satisfied (expand the equation for X to l

and collect terms in t and s):

ad−i1 bi1 + · · ·+ ad−in−1b
i
n−1 = 0 for each i = 1, . . . , d− 1
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If either P or Q has two zero coordinates than the Lemma holds. So we may assume

that a1a2 · · · an 6= 0 and b0b1 · · · bn−1 6= 0.

Set cj = (
bj
aj

), this is nonzero and the system of equations can be rewritten

ad1c
i
1 + · · ·+ adn−1c

i
n−1 = 0 for each i = 1, . . . , d− 1.

By Part 1 of Proposition 2.4.4, we have ck = cj for some (k < j) pair. In this case,

we have λ = bk
ak

=
bj
aj

. Then the point on l given by λ ·P −Q satisfies the Lemma.

Lemma 2.4.8. For d ≥ n any line l ⊂ X(d, n) is a standard line.

Proof. By Lemma 2.4.7, l contains a point with two zero coordinates. Let P be a

point on l with the maximal number of zero coordinates. Up to a permutation of

coordinates, we may write P = [0, . . . 0, at, . . . , an] with t ≥ 2 and at . . . an 6= 0.

Assume that Q = [b0, . . . , bn] is a general point on l. First, we claim that not each

bi = 0 for i < t. If this were the case, then the line l would be contained in X(d, n−t).

Then by Lemma 2.4.7, this line would contain a point with two zero coordinates, and

so we could have found a point on the original l with more zero coordinates than P .

In the same manner as in Lemma 2.4.7, we may expand the condition that l = tP+sQ

lies on X to arrive at the following system of equations.

ad−it bit + . . .+ ad−in bin = 0 for each i = 1, . . . , d− 1,

and again we change coordinates cj = bj/aj to arrive at the system:

adt c
i
t + . . .+ adnc

i
n = 0 for each i = 1, . . . , d− 1.

By Part 2 of Proposition 2.4.4, for each clumping Im of the point P , we have that

ci = cj for each i, j ∈ Im. This implies that there is a nonzero λm such that bi = λmai

for each i ∈ Im. Then we have that bd0 + . . . + bdt−1 = 0 as well (possibly with more

than one clump) and so l is a standard line.
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Corollary 2.4.9. For any value of d the dimension of standard lines on X(d, n) is

n− 3. For d ≥ n there is an n− 3 dimension family of lines on X = X(d, n). This

is the expected dimension, 2n− d− 3 when d = n but too large for all d > n.

Proof. The linear Pr−1’s from Definition 2.4.5 inside X are parameterized by products

of Fermat varieties, each of dimension |Ij| − 2. A quick computation shows that

Σj|Ij| − 2 = n+ 1− 2r. Each Pr−1 has a 2r − 4 dimensional family of lines on it. So

when d ≥ n, this gives an n − 3 dimensional family of lines on X. Since there are

only finitely many ways to choose these clumpings, this is indeed the dimension. The

last statement follows immediately.

Theorem 2.4.10. The moduli space of lines on X = X(d, n) has the expected di-

mension 2n− d− 3 whenever d ≤ n. It is irreducible whenever d < n.

Remark 2.4.11. This is claimed to follow from the exercises in Chapter 2 of [Deb01];

however, it does not appear to follow directly from the results listed there. When

d = n, it is indeed the case that the space of lines is reducible. For example, F (X(4, 4))

is the union of 40 curves each with multiplicity 2 and F (X(5, 5)) is the union of 1960

surfaces (of varying multiplicity) (see [Deb01], Section 2.5).

We delay the proof of Theorem 2.4.10 until we have established a result about the

space of lines through points of X(d, n) which are not clumped.

2.4.3 Lines Through Clumped Points

Fixing d < n write X = X(d, n). We now work to understand how many lines can

pass through points x ∈ Xk,r for different values of k and r. The variety of lines

through a point x ∈ X will be denoted by F (X, x). This can be given a scheme

structure as the fiber of the evaluation morphism M0,1(X, 1) → X over the point

x ∈ X.



CHAPTER 2. RATIONAL CURVES ON HYPERSURFACES 33

Suppose that x = [a0, . . . , an] ∈ X. Let l ⊂ X be a line through x and let [b0, . . . , bn] ∈

l be a point different than x. Then we may choose coordinates [t, s] on P1 ∼= l such

the inclusion map P1 → X is given by [t, s]→ [a0t+ b0s, . . . , ant+ bns]. Since l ⊂ X,

we have that
∑

(ajt + bjs)
d = 0. We have the normal bundle sequence on l twisted

down by the point x,

0→ Nl/X(−1)→ On−1
l → Ol(d− 1)→ 0,

and the piece of the associated long exact sequence in cohomology:

H0(l,Ol)n−1 α′ // H0(l,Ol(d− 1)) // H1(l, Nl/X(−1)) // 0.

If the map α′ is surjective, then H1(l, Nl/X(−1)) = 0 and so F (X, x) is smooth at l

(see [Deb01], Section 2.4). This group H1(l, Nl/X(−1)) is the cokernel of the map

α : Cn+1 → H0(l,Ol(d− 1))

sending

(z0, . . . , zn)→ Σzj(ajt+ bjs)
d−1.

Fixing the basis (td−1, td−2s, . . . , sd−1) of H0(l,Ol(d− 1)) this map α is given by the

matrix

A =


ad−1

0 ad−1
1 . . . ad−1

n

ad−2
0 b0 ad−2

1 b1 . . . ad−2
n bn

...
...

...

bd−1
0 bd−1

1 . . . bd−1
n

 (2.3)

which has rank at most d. When the rank is d, then the map α′ is surjective and

l is a smooth point as above. When the rank of this matrix is less than d, then

H1(l, Nl/X(−1)) 6= 0 and the line is not free on X. This is not a sufficient condition

for the point l ∈ F (X, x) to be a singular point, but it is however necessary.

Definition 2.4.12. A line l ⊂ X for which H1(l, Nl/X(−1)) 6= 0 will be called

obstructed fixing a point.
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Proposition 2.4.13. Let X = X(d, n) with d < n. Suppose that x ∈ Xk,r and let l

be a line on X containing x. Suppose that d − 1 ≥ n + 1 − k, then l is a standard

line. If d− 1 < n+ 1− k, the obstructed lines through x are standard lines.

Proof. Up to a permutation of coordinates, write x = [0, . . . , 0, ak, . . . , an] with ai 6= 0

for each k ≤ i ≤ n. Let y = [b0, . . . , bn] be a general point on a line l through x. Since

y is general, we have bi 6= 0 for each k ≤ i ≤ n.

Because the line l is contained on X, we have that
∑k−1

j=0(sbj)
d+
∑n

j=k(ajt+sbj)
d = 0

identically as a polynomial in s and t. Collecting the coefficients of sαtn−α for α < d

and making the substitution cj = bj/aj for k ≤ j ≤ n, we have the relationship
ck . . . cn

c2
1 . . . c2

n

...
...

cd−1
k . . . cd−1

n



adk
...

adn

 =


0
...

0

 .

The matrix above is (d− 1)× (n+ 1− k). There are two cases to consider.

Case 1 (“many zeroes”): (d − 1) ≥ (n + 1 − k). By Part 2 of Proposition 2.4.4, we

conclude that ci = cj inside each clump Im of the point x. In other words, for each

1 ≤ m ≤ r, there is a nonzero λm such that bi = λmai for each i ∈ Im. Note that

there is no condition on the first k coordinates of y other than that they must form

their own clump, possibly with zeros, possibly with many clumps. Since the non-zero

coordinates of x in each clump are multiples of the corresponding coordinates of the

point y, the line l is standard.

Case 2 (“few zeroes”): d− 1 < n+ 1− k. In this case, we consider the matrix

A =


0 . . . 0 ad−1

k . . . ad−1
n

0 . . . 0 ad−2
k b1 . . . ad−2

n bn
...

...
...

...
...

...

bd−1
0 bd−1

1 . . . bd−1
k . . . bd−1

n


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which by assumption has rank less than d. By Part 3 of Proposition 2.4.4, we again

conclude that ci = cj inside each clump Im of the point x. The same argument as in

Case 1 implies that l is standard.

Corollary 2.4.14. Let X = X(d, n) with d < n. Suppose that x ∈ Xk,r.

1. All lines through points with many zeros, that is, when d − 1 ≥ n + 1 − k are

standard.

2. If l ⊃ X is a line containing x which is not free, then l is a standard line.

3. The dimension of the space of non-free lines through x is at most r+k−3 when

k ≥ 1 and r − 2 when k = 0. When x ∈ X0,1 or x ∈ X1,1, this means there are

no non-free lines through x.

4. The space of lines through a point x ∈ Xk,r with r + k − 3 ≤ n− d− 1 has the

expected dimension n− d− 1. If r + k − 3 > n− d− 1, then the space of lines

through a point in Xk,r has dimension at most r + k − 3.

Proof. The first statement is simply a restatement of Proposition 2.4.13. In the case

that (d − 1) < n + 1 − k, all obstructed lines through x are standard by the same

proposition. This shows 2.

Because all non-free lines containing x are standard lines, we can bound the dimension

of standard lines containing x. Suppose first that k = 0 and r > 1. The point x defines

a linear Pr−1 on X (see Definition 2.4.5). We claim that any standard line containing

X must be contained in this Pr−1. This is clear though, because if a l containing x

were contained in some other “clumped” Pr′−1, then the point x would admit more

“clumps”. To count the dimension of standard lines through x then, we are counting

the dimension of lines in Pr−1 through a fixed point, and this has dimension r− 2 as

claimed.

Suppose then that 0 < k and 1 < r. Up to a permutation of coordinates, write

x = [0, . . . , 0, ak, . . . an]. Suppose l is a standard line containing x, contained in some
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clumped Ps. As x is a point of this Ps, the clumps defining the linear space must

include the clumps occurring in x. In other words, a standard line through x is defined

by a line in the Pr−1 formed from the clumping of the non-zero coordinates of x, and

an arbitrary choice of point (b0, . . . , bk−1) ∈ Ak such that Σbdi = 0. The point is taken

in affine space to account for the fact that the scaling of the coordinates has already

been accounted for in Pr−1. This is an r + k − 3 dimensional choice as asserted.

In the case r = 1 and k arbitrary, the same argument applies, but there is no line in

Pr−1. So in this case, the choice of point (b0, . . . , bk−1) must be taken in Pk−1. This

is a k − 2 = r + k − 3 dimensional choice again, and 3 now follows.

Suppose the space of lines through a point x ∈ Xk,r has a component of dimension

larger than the expected dimension. Then the generic point of that component is an

obstructed point of the moduli space. By 2 though, the obstructed lines are exactly

the standard lines, and by 3 we can bound the dimension of these obstructed lines

through x. Exactly when r + k − 3 ≤ n− d− 1, there are not enough standard lines

through x that they could form a component of the space of lines through x of too

large a dimension. In general, this same argument shows that for any x ∈ Xk,r, there

cannot be more than r + k − 3 dimensional component of the space of lines through

x. This finishes 4.

Remark 2.4.15. The proposition above says that there are points in X = X(d, n)

which have “too many” lines through them in the sense that there is more than the

expected dimensions worth of n − d − 1. For example, suppose ω is a d-th root of

−1. Then the point x = [1, ω, 0, . . . , 0] has an n − 3 dimensional of lines containing

it (r = 1, k = n − 1). In this extreme case, x is a conical point; that is, X contains

the cone over the Fermat cut out by x0 = x1 = xd2 + . . . xdn = 0 and the vertex of this

cone is x. The fact used in the following sections will be that points which contain

“too many” lines occur in appropriately high codimension. For example, there are

only finitely many conical points on X; see Corollary 2.2 of [CS09].
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Remark 2.4.16. Not all standard lines are obstructed. When d = 3 the moduli

space of lines on X(d, n) is smooth (see [CS09]). Some standard lines will not even be

obstructed while fixing a point. For example, a general line l in X = X(3, n) inside

a P2 given by scaling three clumps will have normal bundle Nl/X = O(1)N−4 ⊕ O2.

In particular, it will not be obstructed while fixing a point. (See [Deb01] 2.5 for this

statement). Even for larger values of d, when the number of clumps is large, the

rank of the corresponding matrix 2.3 could be full. In any case, we never need a full

analysis of when standard lines are obstructed, only a bound on the dimension of

lines through points of Xk,r.

The knowledge of the space of pointed lines on X = X(d, n) can now be used to prove

the irreducibility of the space of lines on the Fermat.

Proof of Theorem 2.4.10. We prove the Theorem by induction on n. The case d = n

follows from Corollary 2.4.9. Consider the space of lines F (X) on X = X(d, n + 1).

This space has dimension at least 2(n + 1) − d − 3. When X is intersected with a

hyperplane of the form xi = 0, the result is X(d, n) and F (X(d, n)) has the expected

dimension 2n− d− 3 by the induction hypothesis. Suppose that Y is an irreducible

component of F (X). Let H be the subvariety of the Grassmannian corresponding

to all lines in the hyperplane xi = 0. By Lemma 4.4 in [Beh06], either Y ∩ H

has codimension 2 or all the lines parameterized by Y are concurrent. In the first

case, Y has codimension 2 in F (X(d, n)) and so dim(Y ) ≤ dimF (X(d, n)) + 2 =

2(n + 1)− d− 3. But this implies that Y has the expected dimension. In the latter

case, all lines parameterized by Y pass through a fixed point x ∈ X. However, since

each of these lines are contained in the tangent hyperplane to X at x and X does

not contain this hyperplane, dimY ≤ n − 2 ≤ 2(n + 1) − d − 3. Note that such a

Y cannot form a component under the degree assumption. In any case, Y has the

expected dimension.

To show the irreducibility, note that by Corollary 2.4.14, if x ∈ X is not a clumped
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point, then the fiber of the map M0,1(X, 1) → X over X is smooth of the expected

dimension, namely n − d − 1 and all lines through x are free. When d < n, the

moduli space of lines is connected, (see [Kol96] Theorem V.4.3.3). Now, suppose

there is a component of the space of lines M ⊂M0,0(X, 1) which only parameterizes

lines passing through clumped points. For [l] ∈ M corresponding to l ⊂ X, if l

contains a non-clumped point then M meets the smooth locus of the moduli space

and so cannot form its own component. So suppose then that l contains only clumped

points. Then it is contained in some clumped Pr−1 ⊂ X as discussed above. However,

there is only an n − 3 dimensional family of such lines, and when d < n, we have

that 2n− d− 3 > n− 3 and so again M cannot form its own component. Thus when

d < n, there is a unique component of the expected dimension.

2.4.4 Conics in the Bend and Break Range

In this section, fix d such that 2d ≤ n + 1. This is what will be called the bend and

break range. In this degree range, each component of M0,0(X, e) (e ≥ 2) must meet

the boundary ∆ ⊂M0,0(X, e).

Lemma 2.4.17. Suppose that X ⊂ Pn is a degree d smooth hypersurface satisfying

2d ≤ n + 1. Let e ≥ 2 be an integer. Every irreducible component M ⊂ M0,0(X, e)

satisfies either M ⊂ ∆ or M ∩∆ ⊂M is nonempty and has codimension one.

Proof. Suppose M as above is not contained in the boundary ∆. There is a unique

component M2 ⊂ M0,2(X, e) dominating M . The dimension of M2 is at least e(n +

1 − d) + n − 2. The dimension of every non-empty fiber of the evaluation map

ev : M2 → X × X is at least e(n + 1 − d) − n which is greater than 0 for all e ≥ 2

in this range of d and n. However, there can be no complete curve contained in any

fiber by the bend and break Lemma (see [Deb01], Proposition 3.2). This implies that

M2 ⊂ M0,2(X, e) meets the boundary in a divisor by Proposition 2.2.4. The result

then follows for M as well.
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We can abstract the properties satisfied by lines on the Fermat Hypersurfaces into a

general definition.

Definition 2.4.18. Suppose that X ⊂ Pn is a degree d smooth hypersurface with

d < n. Recall that F (X, x) denotes the scheme of lines on X through x. Consider

the stratification of X given by X =
∐

eXe where Xe = {x ∈ X| dimF (X, x) =

n− d− 1 + e} for e > 0. Note then that Xe is the locus on X where the dimension

of the space of lines is e more than expected. Suppose that M0,0(X, 1) is irreducible

of the expected dimension and that lines on X are well behaved. We say that X is

well-stratified if codim(Xe) ≥ e + 1 + n − d whenever e > 0 and Xe is non-empty.

When X is well-stratified, denote by Ze the space of lines through points of Xe. That

is, Ze = ev−1(Xe) for ev :M0,1(X, 1)→ X.

Remark 2.4.19. Suppose X as above is well-stratified. When e > d−2, this implies

the dimension of Xe is negative, so that Xe is empty. In other words, we only need

to ever consider 0 ≤ e ≤ d − 2. If we do not assume that the space of lines on X

is irreducible and has the expected dimension, then the remaining condition implies

the dimension statement. It does not imply the irreducibility. We may then ask if

every smooth hypersurface is well-stratified (in this weaker sense). We know of no

counterexamples.

We record the following straightforward fact.

Lemma 2.4.20. If X ⊂ Pn is well stratified, then dimZe = dim(Xe)+(n−d−1+e).

Lemma 2.4.21. Suppose that X = X(d, n) is a Fermat Hypersurface and d < n.

Then X is well-stratified.

Proof. By Theorem 2.4.10, the variety F (X) is irreducible and has the expected

dimension 2n − d − 3. By Corollary 2.4.14, the dimension of the space of lines

through x ∈ Xk,r is at most max(r + k + 3, n− d− 1). If r + k + 3 = n− d− 1 + e

then codim(Xk,r) = e+ 1 + n− d by Lemma 2.4.2.
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Theorem 2.4.22. Suppose that X ⊂ Pn is a well-stratified, smooth, degree d hy-

persurface with 2d ≤ n + 1. Every irreducible component M ⊂ M0,0(X, 2) has the

expected dimension 3n− 2d− 2.

Proof. Let Y =M0,1(X, 1)×ev,X,evM0,1(X, 1). As a stack, Y admits a 2 to 1 cover of

the boundary ∆. Let ev :M0,1(X, 1)→ X be the evaluation map. By Lemma 2.4.20,

the space of pointed lines M0,1(X, 1) has the expected dimension 2n − d − 3 + 1 =

2n− d− 2.

Consider a point x in the locus Xe. Through a point x ∈ Xe, there is a n− d− 1 + e

dimensional family of lines. We have that dim(Ze ×Xe Ze) = 2 dim(Ze) − dim(Xe).

Using Lemma 2.4.20 and the definition, this is at most 2n − d − 4 + e when e > 0.

When e = 0, this dimension reads 3n − 2d − 2. When e > 0, this dimension is at

most 2n− 6 because e ≤ d− 2 (see Remark 2.4.19). This dimension is always strictly

less than 3n− 2d− 3 because of our assumption that 2d ≤ n+ 1.

The stratification of X gives a stratification Y =
∐
Ye where Ye = Ze ×Xe Ze. Each

irreducible component of Y has dimension bigger than or equal to 2(2n − d − 2) −

(n− 1) = 3n− 2d− 3. But from the stratification of Y and the computations above,

each Ye has dimension less than or equal to this expected dimension. The locus Ye

cannot contribute a component to Y when e > 0. In fact, the expected dimension is

only achieved over the stratum Z0×X0Z0. In any case we see that Y has the expected

dimension.

Because we are in the bend and break range, M∩∆ 6= ∅ and we know thatM∩∆→M

has image that is codimension 1, or is all of M (see Lemma 2.4.17). From the

dimension count above though, we know that ∆ has dimension 3n − 2d − 3, but

dim(M) ≥ 3n− 2d− 2, so the case M ⊂ ∆ is ruled out. That is, ∆ is a divisor in M

and so M has dimension one bigger, namely, the expected dimension.

Corollary 2.4.23. Suppose that X ⊂ Pn is a well-stratified, smooth, degree d hyper-

surface with 2d ≤ n + 1. Then M = M0,0(X, 2) is irreducible and has the expected
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dimension.

Proof. Every irreducible component of M has the expected dimension by Theo-

rem 2.4.22. Because X ⊂ Pn is well-stratified, by Lemma 2.2.12 it suffices to

prove that any component V ⊂M contains a point parameterizing a reducible curve

C = C1 ∪ C2 where each Ci is a free line. To show this, we use the fact that any

component of M meets the boundary component ∆ in a divisor by Lemma 2.4.17.

Suppose that the general point in V ∩ ∆ is not given by free curves. This general

point cannot correspond to a point in Ye for e > 0 because dim(Ye) < 3n − 2d − 3

(see the proof of Theorem 2.4.22). Then we see that the general point of V ∩∆ must

correspond to a point in Y0. However, for a general point of X0, every line through

x ∈ X0 is free. Thus the general point of V ∩ ∆ must correspond to a point of a

proper subvariety Y ′ of Y0. But this implies that dim(Y ′) < 3n− 2d− 3 so that the

general point of V ∩∆ cannot be contained in Y ′ either. This gives a contradiction,

and the Corollary follows.

Corollary 2.4.24. If X = X(d, n) with 2d ≤ n + 1, then M0,0(X, 2) is irreducible

and has the expected dimension.

2.4.5 Cubics in the Bend and Break Range

In this section, assume that 3d < n + 6 and again suppose that X is well-stratified.

As in the case of conics, in this degree range, each component of M0,0(X, 3) must

meet the boundary ∆ ⊂ M0,0(X, 3) (Lemma 2.4.17). We are not able to prove

irreducibility of M0,0(X, 3) in the range 2d ≤ n + 1 because of the possibility of

components completely contained in the boundary. One could still hope there is a

unique component parameterizing smooth cubics, but the methods used here will not

show this. In any case, in this restricted range we prove that the moduli space of

cubics is irreducible and of the expected dimension.
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Remark 2.4.25. In this section and the next, we will freely use the terminology of

a stable genus 0 graph. This represents the dual graph to a stable map. At times,

the two ideas will be (slightly) conflated but we trust no confusion will result. For a

thorough treatment of these objects, see [BM96] Section 1.

Proposition 2.4.26. Suppose that X ⊂ Pn is a well-stratified, smooth, degree d

hypersurface with 3d < n+6. There can be no irreducible component M ofM0,0(X, 3)

contained completely in the boundary.

Proof. Consider the following dual graphs (which represent stable maps): τ(1,1,1) =

line ∪ line ∪ line, τ1,2 = line ∪ conic, and τ3 which consists of a contracted P1 with

3 lines attached to it. In each of these cases, we may consider M(X, τ) which is a

proper Deligne-Mumford Stack [BM96]. Note that these are the only dual graphs

which can occur in the boundary.

The stack M(X, τ1,1,1) admits an evaluation map ev to X by sending a graph to the

first node (implicitly the nodes are ordered). Writing M(τ1,1) (resp. M(τ1) to denote

the stable degree two maps of graph type line ∪ line (resp. line) along with a point

on one of the lines, we have the following fiber product diagram.

M(τ1,1,1) //

��

M(τ1,1)

ev′

��
M(τ1) ev // X

This evaluation map stratifies M(τ1,1,1) as M(τ1,1,1) =
∐
M(τ1,1,1)e. We first check

that the space of chains of three free lines has the expected dimension. The choice

of a free line is 2n − d − 3 parameters, indeed this is open in the space of lines on

X. The choice of two points on such a line is two parameters and the choice of a free

line through each of these points is n− d− 1 parameters. This implies this locus has

dimension at most 4n− 3d− 3, the expected one.

We must also consider the cases where we have glued a non-free line to a pair of free

lines or glued any line to a pair of lines where at least one is not free. In fact, we may
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directly bound the dimension of chains of three lines where at least 1 is not free. The

space of non-free lines on X has dimension n − 3. Suppose we are considering the

locus of such chains where the “middle” line is not free. This is an (n−3) dimensional

choice, and the choice of two points on this line is of course, another 2 dimensional

choice. The choice of lines through these points is at most an n − 3 dimensional. It

is only equal to n− 3 in case we have chosen a conical point on our line, but because

there are only finitely many of these, we see that this locus has dimension bounded by

3(n− 3). The case where the non-free line occurs on the “end” is bounded similarly

by 3(n− 3).

Now consider the stack M(X, τ3). It admits a map ev to X sending a map to its

evaluation at the contracted point. Let Be := ev−1(Xe). The dimension of Be is

bounded from above by dim(Xe) plus three times the dimension of the space of lines

through a point of Xe. If e > 0, then dim(Be) ≤ d − e − 2 + 3(n − d − 1 + e) =

3n−2d−5+2e ≤ 3n−9. If e = 0, then dim(Be) = (n−1)+3(n−d−1) = 4n−3d−4,

the expected dimension.

We have proven the following Lemma which we note for future reference.

Lemma 2.4.27. Suppose that M(τ) ⊂ M0,0(X, 3) is the Deligne Mumford Stack

associated to a graph τ that has exactly three degree one components. Consider the

locus in M(τ) where each component maps to a free line. Then the dimension of

this locus is the expected one, 4n − 3d − 1 −#n(τ), where n(τ) denotes the number

of nodes of the graph type τ . If instead at least one of the components maps to a

non-free line on X, then this locus has dimension at most 3(n− 3). In particular, no

component of M0,0(X, 3) is contained in M(τ) (in fact, no codimension two locus of

any component can be either) because 3d < n+ 6.

Finally consider the substack M(τ1,2). This stack has dimension at least 4n − 3d −

2. Suppose though that there is V ⊂ M(τ1,2) which forms an open substack of

a component of M0,0(X, 3). Note that the curves in V cannot be mapped to free
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curves on X. We mark two points on τ1,2, one on the line, one on the conic to

create the new stable graph type τ ′1,2. We have an evaluation map from M(τ ′1,2) →

X3, where we evaluate at the two points just marked and at the node. Note that

under the evaluation map, the image of the node cannot be a general point on X

and the image of the two marked points cannot be a general point of X2. Because

4n − 3d + 1 − (3(n − 1) − 2) > 0 in the assumed degree range, the fibers of this

map are positive dimensional. But the fibers correspond exactly to a line through

two fixed points and a conic through two fixed points. As the line clearly can not

deform, it must be the conic that moves on X. By the bend and break Lemma then,

the component V meets the boundary (so in codimension one). When it does meet

the boundary, it does so at a graph type which is the union of lines (possible with a

contracted component), but because these lines cannot all be free, such a locus has

dimension at most 3(n − 3) as shown above. In the assumed degree range though,

this cannot be a codimension one locus in any component.

Theorem 2.4.28. Suppose that X ⊂ Pn is a well-stratified, smooth, degree d hy-

persurface with 3d < n + 6. Every irreducible component M ⊂ M0,0(X, 3) has the

expected dimension 4n− 3d− 1.

Proof. By the above proposition, every component M intersects the boundary in codi-

mension one. Suppose there is a component M of too large a dimension, dim(M) >

4n − 3d − 1. In particular, the general point of M parameterizes a non free curve.

However, by the explicit computation in Proposition 2.4.26, the boundary locus con-

sisting of curves where at least one of the components is not free is bounded by

3(n− 3) + 1. In the restricted degree range, this cannot be a divisor instead of M , so

that such an M cannot exist.

Corollary 2.4.29. Suppose that X ⊂ Pn is a well-stratified, smooth, degree d hyper-

surface with 3d < n + 6. Then the moduli space M = M0,0(X, 3) is irreducible and

has the expected dimension.
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Proof. Every irreducible component of M has the expected dimension by the first

proposition. It suffices to prove by Lemma 2.2.12 again, that any irreducible com-

ponent V ⊂ M contains a point parameterizing a reducible curve C = C1 ∪ C2 ∪ C3

where each Ci is smooth and free as in the statement. For this, we use the fact

that any component of M meets the boundary component ∆ in a divisor. Applying

the bend and break lemma again as in Proposition 2.4.26, we may assume that in

codimension at most two, M contains graphs which are the union of “three lines”

(possibly concurrent). If the general point in V ∩∆ is not given by free curves, then

it must be entirely contained in a locus, which, by Lemma 2.4.27, cannot constitute

an entire codimension two locus inside V .

Corollary 2.4.30. If X = X(d, n) is a Fermat hypersurface with 3d < n + 6, then

M0,0(X, 3) is irreducible and has the expected dimension.

2.4.6 High Degree Curves on Low Degree Fermat Hypersur-

faces

In this section, we focus on curves of degree α > 3. Given such an α, we work in the

range α · d < n. Using similar methods to the preceding two sections, we prove the

following theorem.

Theorem 2.4.31. Suppose that X ⊂ Pn is a well-stratified, smooth, degree d hyper-

surface with α ·d < n. Every irreducible component M ⊂M0,0(X,α) has the expected

dimension E(α) = α(n+ 1− d) + n− 4.

Remark 2.4.32. This theorem says heuristically that whenever the most degenerate

configurations of curves on X cannot contribute a component of too large a dimension,

then every component has the expected dimension.

First we show:
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Proposition 2.4.33. Suppose that X ⊂ Pn is a well-stratified, smooth, degree d

hypersurface with α · d < n. There can be no irreducible component of M contained

completely in the boundary.

Proof. Suppose that τ is a degree α stable graph type with at least two vertices (that

is, of boundary type). Suppose further that V ⊂ M(τ) is open inside an irreducible

component ofM0,0(X,α). This component is clearly not the good component and so

the maps at each vertex of the generic graph type of V cannot all be free. Because

we are in the bend and break range (“well within” in fact), we may apply the bend

and break lemma repeatedly to arrive eventually at a stable graph type where each

vertex has degree at most 1. The goal is to construct a map V → Xr such that the

fibers have positive dimension and such that in the general fiber, there is a degree

greater than one component which must “move” while fixing two points. This will

allow us to conclude that M\V consists of more degenerate boundary strata.

Let f : C → X be a generic map in V (so of type τ). We claim that we can mark α

special points on C such that the following properties hold.

1. Each component Ci of C which has degree greater than one has two special

points on it; whenever possible, the special points are always nodes of C rather

than smooth points of Ci.

2. Every leaf (that is, component of C meeting the rest of C in a single point) has

a special point in its smooth locus.

3. Every positive degree component of C has a special point on it.

4. There are at most α− 2 degree 1 components containing a single special point.

To arrange this, suppose that there are m components of C with positive degree and

that m′ of them have degree greater than one. We simply choose 2 special points on

each of these m′ components, choosing nodes whenever possible (there may be many

ways to do this). We then have α − 2m′ special points left to distribute, but this
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number is at least m′ − m, that is, the number of degree 1 components. Choose a

special point in the smooth locus of each degree 1 leaf, then choose special points

on the remaining degree 1 components as nodes. With any remaining special points

to choose, place them at nodes of degree 1 components which only have one special

point on them already.

Let V ′ ⊂M ′ be the locus where we have marked the non-nodal special points of τ as

described above. We have an evaluation map V ′ → Xα given by evaluating at all the

special points. The dimension of V ′ is at least α(n+1−d)+(n−4)+k, where k is the

number of special points which are not nodes of τ . Then the fibers of this evaluation

have dimension at least 2α − α · d + n + (k − 4). By assumption, this number is at

least α (since k is at least 2). We wish to show that in the fibers of this map, the

graph type becomes more reducible. Suppose that, in the fibers of this map, none

of the components with degree greater than one move. We have then that the only

possible deformations in fibers are given by the lines which can move through a single

fixed point. However, each line with a single special point on it must meet the rest

of the curve in the specified way. By arguing inductively beginning with components

which do not move, such a line can only contribute one moduli to the fiber. As there

are at most (α − 2) lines with only one marked point on them, we have that these

arrangements do not account for all the moduli in the fiber. Thus at least one of the

components of degree greater than one must move in the fiber. But when it does,

we have a rational curve deforming while fixing two points, so it must break. This

implies that the component M contains a more degenerate locus (in codimension one

as usual).

We successively apply the same argument to the next locus until a graph type of α

lines is reached (possibly with contracted components). Note that we are able to do

this because of the assumption that α ·d < n and we may have to apply the argument

(α−1) times. By the following Lemma though, in the assumed degree range, this locus

cannot have enough moduli so that V could have contributed an entire component,
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which finishes the proof of the proposition. Note that when we apply the Lemma,

we know that the arrangement of lines reached by successively breaking inside M

cannot be an arrangement of free lines - otherwise we would already be in the good

component.

Lemma 2.4.34. Suppose that X ⊂ Pn is a well-stratified, smooth, degree d hyper-

surface with α · d < n. Let τ be a stable degree α graph such that each vertex of

τ has degree at most 1. Then the dimension of M(τ) is at most E(α) − α. More-

over, the locus of maps in M(τ) containing a non-free line has dimension bounded by

α(n− 3) + α− 3 which is strictly less than E(α)− α by assumption.

Proof. The proof will proceed by induction on α. The base case, α = 2 follows from

a brief analysis of the proof of Theorem 2.4.22. The case α = 3 was treated explicitly

above. Thus we suppose that the Lemma is true for all 3 ≤ k < α. Choose a leaf v of

the graph τ (necessarily of degree 1) and note that there is a fiber product diagram:

M(τ) //

��

M(τ ′)

ev′

��
M(τ1) ev // X

Here τ1 is the stable graph which corresponds to a single degree one vertex and a single

marked point on it. The evaluation map to X is denoted ev. The graph τ ′ is the one

obtained by replacing v with a single marked point, and the map to X (ev′) is the

evaluation map at that marked point. By considering the stratification X =
∐
Xe,

we may also stratify M(τ) according to which locus the node corresponding to v maps

to. In other words, write Ev : M(τ)→ X, the evaluation at the node v, and then we

have M(τ) =
∐
M(τ)e = Ev−1(Xe).

Let U ⊂M(τ ′) be the open substack corresponding to maps where each line of τ ′ maps

to a free chain of lines on X. By induction, U has at most the expected dimension

E(α − 1) − (α − 1) + 1, and is equal to this if and only if there are no contracted
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components. Then (with the obvious notation) dim(Ue) ≤ E(α− 1)−α+ dim(Xe)−

dim(X).

Let We ⊂ M(τ1)e be the locus of free lines. This locus the expected dimension

(n + 1 − d) + dim(Xe). Then we see that the locus Ve ⊂ M(τ)e corresponding to

chains all of which are free lines, has dimension dim(Ue) + dim(We) − dim(Xe) ≤

E(α − 1) − α + (n + 1 − d) + (dim(Xe) − dim(X)). Again, there is equality if and

only if there are no contracted components. In particular, we see that the locus of

free chains of lines in M(τ) has dimension E(α)− α.

There are two further cases to consider. We must consider the locus inside M(τ)e

where we have glued a line to a chain where at least one line is not free, or a non-free

line to a chain of free lines.

In the first case, we may at least say that, by induction, the dimension of the locus in

M(τ ′)e of chains which contain at least one non-free line have dimension (α− 1)(n−

3)+(α−4)+1. Then the space of lines in M(τ1)e has dimension dim(Xe)+n−d−1+e,

and so the dimension in M(τ)e of glued chains of this type has dimension at most

α(n− 3) + (α− 3) as desired (because e ≤ d− 2).

In the second case, we know that dim(Ue) = E(α−1)−α+dim(Xe)−dim(X) and the

space of non free lines containing a point of Xe has dimension dim(Xe)+n−d−1+e.

Then the dimension in M(τ)e of glued chains of this form has dimension at most

E(α− 1)−α+n− 3 which we can immediately check is less than α(n− 3) + (α− 3).

Since M(τ) =
∐
M(τ)e, the dimension statements are immediate.

Proof of Theorem 2.4.31. Suppose M is an irreducible component ofM0,0(X,α). By

the bend and break Lemma, M ∩∆ 6= ∅. By Proposition 2.4.33, we know that M ∩∆

is not contained in the boundary, and so is a divisor on M . By the same Proposition,

we know that dim ∆ ≤ e(n+ 1− d) + (n− 4)− 1, because no component is contained

inside the boundary. Since dimM ≥ α(n + 1 − d) + (n − 4) and M ∩∆ is a divisor
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on M , we get that dim(M) = α(n+ 1− d) + (n− 4) as desired.

Corollary 2.4.35. Suppose that X ⊂ Pn is a well-stratified, smooth, degree d hyper-

surface with α · d < n. Then the moduli space M0,0(X,α) is irreducible and has the

expected dimension.

Proof. By Lemma 2.4.17, we know M0,0(X,α) has a unique component M parame-

terizing reducible chains of maps C1 ∪ . . . ∪ Ce → X where each Ci is free line.

Suppose that V is any component of M0,0(X, e) which is not the good component.

By Theorem 2.4.31, we know that V has the expected dimension. Because V is not

the good component, a general point of V cannot parameterize a free curve. By the

complicated bend and break method used in Proposition 2.4.33, in codimension at

most α − 1, the component V contains graph types which correspond to chains of

lines on X. But by Lemma 2.4.34, this locus does not have large enough dimension to

contribute a codimension e locus to an entire component. This contradiction finishes

the proof.

Corollary 2.4.36. If X = X(d, n) is a Fermat hypersurface with α · d < n, then

M0,0(X,α) is irreducible and has the expected dimension.

2.4.7 Remarks Concerning Conics on Fermat Hypersurfaces

not Included in the Bend and Break Range

When the degree of a Fermat Hypersurface becomes large (meaning outside the bend

and break range), much can “go wrong”. We give all the examples of this phenomenon

of which we know.

• We cannot hope that M0,0(X, 2) has the expected dimension or is irreducible

for large values of d. Pick a point x ∈ Xn−1,1, this is one of finitely many conical

points on X. The space of lines through x has dimension n−3 and so the space
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of reducible conics through x has dimension 2n−6. This locus will be contained

in a separate component (and have dimension larger than expected dimension)

whenever 2n − 6 ≥ 3n − 2d − 2; i.e. if 2d ≥ n + 4. Of course, one could still

hope that M0,0(X, 2) is irreducible and of the expected dimension.

• Even the latter cannot hold always. If n = 2k+ 1 (for simplicity), X contains a

linear Pk. The space of (smooth) conics in Pk has dimension 3k− 1. This locus

must also be contained in its own component whenever 3k − 1 > 3n − 2d − 2.

Reworking the algebra, this reads 2d > 3k+ 2 = (3/2)(n− 1) + 2. It is possible

that in this range, the moduli space is irreducible.

• The goal, for d < n is to apply Theorem 2.3.6. According to that Theorem,

we know that there is a unique component of the space of conics corresponding

to conics passing through a general point of X. Unfortunately, it is difficult to

control the open set guaranteed by the adjective, “general”. The initial hope

was that the non-clumping locus on X would be the desired open set. This has

the nice property that we have already verified that all lines passing through a

non-clumping point are smooth points in the moduli space.

If it were true that (*): all conics through a non-clumping point were unob-

structed, then we would be able to conclude there is a unique component of the

space of conics passing through a non-clumping point. Assuming this for a mo-

ment, any other component would correspond to conics contained completely in

the “clumped” loci on X, and in turn would correspond to conics contained in

lower dimensional Fermat hypersurfaces. Via an inductive procedure, in some

cases we would be able to conclude that these conics could not contribute an en-

tire component and so the space would be irreducible of the expected dimension

as desired. Unfortunately, this (*) is simply not true for the following reason.

Suppose that [q0, . . . , qm] is an unclumped but obstructed conic on X(d,m) for

some d > m. This will mean that qi is a degree two polynomial in two variables,
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∑
qdi = 0, and that no subset of the qi satisfy this relation. Such an obstructed

conic will “propagate” to higher dimensional Fermat hypersurfaces in the fol-

lowing way. Let (c0, . . . , ck) be a tuple such that
∑
cdi = 1 and no subset satisfies∑

cdij = 0. Then consider the following conic: [c1q0, c2q0, . . . , ckq0, q1, . . . qm]. A

quick check shows that this is an unclumped conic on X(d, n) where n = m+k.

Lemma 2.4.37. If [q0, . . . , qm] is an unclumped, obstructed conic on X(d,m),

then [c1q0, c2q0, . . . , ckq0, q1, . . . , qm] with the ci as above is an obstructed conic

on X(d,m+k). In particular, we can find a k dimensional family of unclumped,

obstructed conics on X(d,m+ k).

Proof. Similar to the case of lines, the conic is obstructed if H0(P1, f ∗TPm) →

H0(P1, f ∗NX/Pn) = H0(P1,O(2d)) fails to be surjective. The cokernel of this

map is identified with the cokernel of the map given by (p0, . . . , pm)→
∑
qd−1
i pi.

Then we can check immediately that the map corresponding to the new conic

on X(d, n) is not surjective because the original one failed to be

The question then becomes whether or not there are such unclumped conics

when d > m. The answer is that there are some, but we cannot effectively

bound their dimension. Thanks to beautiful work of Bruce Resnick [Res], we

can write down the following examples (for more see the cited location):

Example 2.4.38. Let q0 = x2 +
√

2xy − y2, q1 = ix2 −
√

2xy + iy2, q2 =

−x2 +
√

2xy+y2, and q3 = −ix2−
√

2xy− iy2. Then
∑
q5
i = 0 and this conic is

unclumped. Thus, we get an obstructed conic on X(5, 3), which will propagate

as above. Resnick shows that
∑
qdi = 0 for d = {1, 2, 5}, but for no other values

of d. In fact, these are the only four quadratic forms up to scaling that satisfy

this relation when d = 5, (see [Res] Theorem 3.5). (Resnick’s results are for

the most part concerned with what values of d can occur for r homogeneous

polynomials of degree v in w variables).
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Example 2.4.39. Let t = 2c + 1 be odd, and fix ζ to be a primitive t-th root

of unity. Let qj = ζjx2 + ζ−jy2 for 0 ≤ j ≤ t − 1 and qt = xy. Up to scalar

multiples of the qi (which depend on d), these polynomials satisfy
∑
qdi = 0 for

d < t odd and d < 2t even.

Example 2.4.40. Let t be arbitrary now and again fix ζ to be a primitive t-th

root of unity. Fix an integer s so that 2 ≤ s ≤ t− 1. Let qj = ζjx2 + αxyζ−jy2

for 0 ≤ j ≤ t − 1 and qt = xy where α ∈ C is a complex parameter. Up to

scalar multiples of the qi (which depend on d) and a careful choice of α, these

polynomials satisfy
∑
qdi = 0 for d < t and d = t+ s. Again, for details consult

the location cited. This example gives particularly “bad” examples; that is,

unclumped conics on relatively large degree Fermats. In other words, there is an

unclumped conic on X(2t−1, t). When t = 4 for example, there is an unclumped

conics onX(7, 4). For k > 0, this will contribute a k dimensional family of conics

on X(7, k + 4), but note that this will not be enough to contribute an entire

component in the interesting range.

In other words, it is not known thatM0,0(X, 2) is not irreducible for any Fermat

Hypersurface in the already restricted range 2(n+ 1) < 4d < 3n. The examples

show that there can be obstructed conics through unclumped points. We hope

to show that such conics cannot contribute an entire component (to the space of

conics through these points). If so, we would be able to conclude that, in an even

further restricted range, the space of conics not contained in the boundary is

irreducible. Nevertheless, this seems to be a difficult problem given the sporadic

and semi-arithmetic nature of the examples Resnick has produced (and indeed,

he makes no claims to have found “all” such examples).

• Though there can be obstructed smooth conics through points on X0,1 (here

X = X(d, n)), if we can bound the dimension of these conics, it is possible to

apply a version of Theorem 2.3.6. Thus we can ask the questions (**) Is there
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a bound on the dimension of obstructed conics through a point of X0,1? Also

we can ask (***) When d ≥ n, can we bound the dimension of obstructed,

unclumped conics on X? An effective bound would allow us to push the result

of Corollary 2.4.23 slightly past the bend and break range.

2.5 Appendix: Some Representable Functors

2.5.1 Well Known Facts

Suppose that S is a scheme and E is a rank r vector bundle on S. In other words, E

is a locally free OS-module of rank r. Define a functor Grn from S-schemes to sets

Grn : S-Sch→ Set

U 7→ {Set of rank n quotient bundles H of EU}.

Here and in the following, ET denotes the pullback of E to T by the structure map

T → S. We have the following well known Proposition.

Proposition 2.5.1. The functor F is represented by a smooth projective S-scheme,

Grassn(E) which comes with a universal quotient bundle Q of EGrassn(E). In other

words, morphisms U → Grassn(E) are in bijective correspondence with rank n quo-

tients G of EU through the relationship f 7→ f ∗Q. The universal n-plane is P(Q) ⊂

P(E)×G.

Proof. See for example, Section 1.7 of [Kol96].

Suppose now that P = P(E) is a projective bundle over S of rank m. Define another

functor G from the category of S-schemes to sets by:
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G : S-Sch→ Set

U 7→

 Closed subschemes V ⊂ U ×S P(E)

such that V is a degree d hypersurface in each fiber over U.

More precisely (though equivalently), setting Pd(t) =
(
m+t
m

)
−
(
m+t−d
m

)
, this should be

reformulated as

U 7→


Closed subschemes of P(E)×S U

which are proper and flat over U

and have Hilbert polynomial P (t).

This is a Hilbert scheme. An element on the right side will be called a flat family of

degree d hypersurfaces of P(E). Denoting H = P(SymdE∗), we have:

Lemma 2.5.2. The above Hilbert functor G is represented by the scheme H. That is

H = HilbPd(t)(P(E)/S). In particular it is smooth.

Proof. See [Kol96] 1.4.1.4.

Fix two polynomials Q1(t) and Q2(t) and define another functor:

G ′ : S-Sch→ Set

Y 7→



Pairs of closed subschemes V1 ⊂ V2 ⊂ P(E)×S Y

which are proper and flat over Y

such that V1 is flat over Y and has Hilbert polynomial Q1(t)

and V2 is a flat over Y with Hilbert polynomial Q2(t) .
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The Hilbert scheme which parameterizes subschemes of P(E) ×S Y flat over Y with

Hilbert polynomial Qi(t) will be denoted Hi and the universal family will be denoted

Ui (for i = 1, 2).

Lemma 2.5.3. The functor G ′ is represented by a closed subscheme Z ⊂ H1 ×H2.

Proof. See [Ser06], 4.5.1.

Remark 2.5.4. The generalization to longer chains is clear.

Remark 2.5.5. In the case where both the varieties V1 ⊂ V2 in the preceding Lemma,

are families of linear spaces, the result is called a (partial) flag variety. It is well known

to be smooth (in fact, it is a projective bundle over the Grassmannian).

2.5.2 Well Known Extensions of Well Known Facts

In the special case where V1 is a linear subspace and V2 is a flat family of hypersurfaces,

something even more can be said:

Lemma 2.5.6. With the notation as above, suppose that Q2(t) = Pd(T ) and Q1(t) =(
n+t
n

)
. In the following, denote G = Grass(n,E). Then the corresponding functor G ′,

which is representable by the previous Lemma, is in fact represented by Z = P(K∗).

Here K is the kernel of the surjection Symd(V )G → Symd(Q). In particular, Z is

smooth.

Proof. With the notation as in the above, we have that H1 = H and H2 = G. The

ideal sheaf of U1 is (p∗2OH(−1))(−d) ⊂ OP(E)×H from the proof of Lemma 2.5.2. In the

notation of that Lemma, one checks that N = d works and the map u in Lemma 2.5.3,

is the composition:

u : p∗(OH(−1)P(E)×G×H)→ Symd(E)⊗OG×H → Symd(Q)⊗OG×H
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And Z is the scheme of zeroes of u. This map is simply:

OH(−1)G×H →a∗ Symd(V )G×G → Symd(QH)G×H

Then the ideal of Z is equal to the image of the composition of the dual of u:

Symd(Q∗)H×G(−1)→ Symd(V ∗)H×G(−1)→ OH×G.

From this sequence, observe that Z and P(K∗) have the same ideal sheaf, and so are

equal.

Lemma 2.5.7. Let S = Spec (k). Define another functor:

C : k − Sch→ Set

U 7→



Pairs of subschemes V1 ⊂ V2 ⊂ Pn ×k U

which are proper and flat over U

such that V1 is flat over U and has Hilbert polynomial 2t+ 1

and V2 is a flat over U with Hilbert polynomial
(
n+2

2

)
.

That is, V1 is a conic in Pn and V2 is the plane which contains it. Actually the data

of the plane is redundant. Then we have Hilb2t+1(Pn) = P(Sym2(Q∗)) where Q is the

universal rank 3 bundle over Grass(3, n + 1) and this scheme represents the functor

above.

Remark 2.5.8. Pointwise this is already clear. That is if n = 2, the result is

Lemma 2.5.2. This result globalizes that one. The proof is almost identical. See

Remark 2.2.7.



CHAPTER 2. RATIONAL CURVES ON HYPERSURFACES 58

Lemma 2.5.9. Again take S = Spec (k). Define another functor:

D : k − Sch→ Set

U 7→



Tuples of subschemes V0 ⊂ V1 ⊂ V2 ⊂ Pn ×k U

which are proper and flat over U

such that: V0 is flat over U with constant Hilbert polynomial 1,

V1 is flat over U and has Hilbert polynomial 2t+ 1,

and V2 is a flat over U with Hilbert polynomial
(
t+2

2

)
.

That is, fiberwise this says V0 is a point on V1 which is a conic in Pn and V2 is the plane

which contains it. Again the data of the plane is redundant. The functor D is repre-

sented by a closed subscheme Z ⊂ P(Sym2(Q∗))×GFl(1, 3, n+1) ∼= P(Sym2(Q∗))×Pn.

Here F = Fl(1, 3, n + 1) is the flag variety which parameterizes point contained in

plane contained in Pn. In particular it is smooth. In fact, Z can be identified canon-

ically with P(K∗) where K is the kernel of the surjection Sym2(Q)F → Sym2(Q′).

Here Q is the universal rank 3 bundle on the Grassmannian and Q′ is the universal

rank 1 bundle on the Flag variety.

Remark 2.5.10. This is simply a globalization of Lemma 2.5.6. Note that the same

proof will work for linear spaces contained in degree d hypersurfaces in Pr ⊂ Pn. This

special case is simply the one applied in this paper. The proof follows the Lemma 2.5.6

in the same way that Lemma 2.5.7 globalizes Lemma 2.5.2 and so will be left to the

reader.
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Lemma 2.5.11. Again take S = Spec (k). Define another functor:

E : k − Sch→ Set

U 7→



Tuples of subschemes V0 ⊂ V1 ⊂ H ⊂ Pn ×k U

which are proper and flat over U

such that: V0 is flat over U with constant Hilbert polynomial 1,

V1 is flat over U and has Hilbert polynomial 2t+ 1,

H is flat over U with Hilbert polynomial Pd(t).

The functor E is represented by a smooth scheme.

Proof. Suppose that H is the scheme which represents E . By Yoneda’s Lemma, there

is a natural map from H to P(K∗) (notation as in Lemma 2.5.9) corresponding to the

transformation of functors which forgets the data of the degree d hypersurface. We’ll

compute the fiber over a point which corresponds to a x ∈ C where C is a conic in

Pn. Since C is a complete intersection, we may choose coordinates so that its ideal

has the form (F (x0, x1, x2), x3, . . . , xn) where F is homogenous of degree 2. To say

that a degree d hypersurface V contains C is to say that the defining equation for V

can be written B ·F +A3 · x3 + . . .+An · xn where B is homogeneous of degree d− 2

and Ai is homogeneous of degree d − 1. As these are the only conditions, we note

that the space of hypersurfaces containing C is itself a projective space. As H maps

to PK∗ with projective space fibers, it itself is smooth. In fact, as the Proof suggests,

it is another projective bundle as in the previous Lemmas. We leave the details to

the reader.
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Chapter 3

Complete Families of Rational

Curves

3.1 Introduction and Main Theorem

In this chapter we prove the following theorem.

Theorem 3.1.1. If X is the base of a complete family of linearly non-degenerate

degree e ≥ 3 curves in Pn with maximal moduli, then dimX ≤ n− 1. If X is the base

of such a complete family of non-degenerate degree 2 curves in Pn, then dimX ≤ n.

We first introduce the notation used above. Since H2(Pn,Z) = Z, we will use the

standard notation e = e · [line] for an element in the Chow ring.

The Kontsevich moduli spaceM0,0(Pn, e) parameterizes isomorphism classes of pairs

(C, f) where C is a proper, connected, at-worst-nodal, arithmetic genus 0 curve, and

f is a stable morphism f : C → Pn such that f∗[C] = e[line] ∈ H2(Y,Z). This is a

Deligne-Mumford stack whose coarse moduli space, M0,0(Pn, e), is projective; see, for

example, [FP97].

Let U ⊂M0,0(Pn, e) be the open substack parameterizing maps f : P1 → Pn which are
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isomorphisms onto their image such that the span of each image is a Pe (in particular,

e ≤ n). Note that no point in U admits automorphisms and U is isomorphic to an

open subscheme in the appropriate Hilbert and Chow schemes. In particular, U is a

quasi-projective variety over C.

Definition 3.1.2. Suppose X and C are proper varieties and π : C → X is a proper

surjective morphism. We will consider diagrams of the form:

C
f //

π

��

Pn

X

In the case where each fiber of π is a P1 and f , restricted to each fiber, corresponds

to a point in U , we will call the diagram a complete family of linearly non-degenerate

degree e curves. Such a family induces a map α : X → U . If the map is generically

finite, that is, if dimX = dimα(X), we will call the diagram a family of maximal

moduli. We will refer to X as the base of the family. Note that C is the pullback

of the universal curve over U , and so we will refer to the map f above as ev. The

notation (C, X, ev, π, n, e) will denote a complete family of linearly non-degenerate

degree e curves in Pn, as above.

One can ask for the largest number of moduli of such a family, that is, the dimension

of the base X of a family of maximal moduli. This is also the largest dimension of

a proper subvariety of U . A simple argument shows that the number of moduli of a

complete, linearly non-degenerate family of degree e curves in Pe is in fact 0. The

bend and break lemma ([Deb01], Proposition 3.2) gives a strict upper bound on the

dimension of complete subvarieties of X ⊂ M0,0(Pn, e), namely 2n − 2. When the

genus of the curves in question is positive, M. Chang and Z. Ran have obtained a

similar dimension bound. They prove that if Λ is a closed non-degenerate family of

positive genus immersed curves in Pn, then dim Λ ≤ n − 2 [CR94]. Theorem 3.1.1

addresses the situation where the curves are rational and required to be linearly non-

degenerate.
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3.1.1 Discussion

Question 3.1.3. What is the best possible result along the lines of Theorem 3.1.1?

For any value e > 1, there are certainly examples of complete, linearly non-degenerate

r dimensional families in Pr+e. One way to construct such families is to take the Segre

embedding:

P1 × Pr
(e,1) // PN ,

where N = (e+ 1) · (r + 1)− 1. Project from a point p ∈ PN not in any Pe spanned

by the image of P1 × {q} for every point q ∈ Pr. This gives an r dimensional family

of non-degenerate degree e curves in PN−1. Continue projecting in this fashion. We

can always find a point p to project from as long as N > r + e. So we arrive at an r

dimensional family of degree e curves in Pr+e.

Question 3.1.4. Does there exist a complete family with maximal moduli of degree

e non-degenerate rational curves in Pm whose base has dimension greater than m−e?

Does there exist a complete 2 parameter family of smooth conics in P3? Does there

exist a complete 2 parameter family of smooth cubics in P4?

Question 3.1.5. Does there exist a similar bound if the condition of being linearly

non-degenerate is removed?

Question 3.1.6. If the variety swept out by these curves is required to be contained

in a smooth hypersurface, does the bound improve? In fact, this question was the

original motivation for this work.

3.1.2 Outline of Proof

We give a brief outline of the proof:

Let e > 2 and fix X to be the base of a complete family of linearly non-degenerate

degree e curves in Pn with maximal moduli. Assume that dimX ≥ n. Using results
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from section 2, we will reduce the situation to the case where the universal curve C

over X is the projectivization of a rank 2 vector bundle E on X. The situation will

then be further reduced to the case where we have the following maps:

Diagram 3.1.7.

C = P(E) ev //

π

��

Pn

X
φ // Grass(e+ 1, n+ 1)

Here φ is the generically finite map which associates to each map the e-plane it spans.

Using the universal curve C, we will form the following commutative diagram.

Diagram 3.1.8.

P(E)
γ //

π

��

Fl(1, . . . , e+ 1;n+ 1)

��
X

φ // Grass(e+ 1, n+ 1)

The map γ associates to point of the universal curve (that is, a map f : P1 → Pn and

a marked point p ∈ P1), the sequence of osculating k-planes to f(P1) at f(p). The

map between the flag variety and the Grassmannian is the obvious projection.

In Section 3, we will construct an ample line bundle L on Fl(1, . . . , e+ 1;n+ 1) and

give a cohomological argument to show that c1(L)n+1 pulls back to 0 by γ. This

will allow us to conclude the Theorem when e ≥ 3. In the case e = 2, a different

computation is needed, but similar ideas apply.

Notation 3.1.9. Fix the ambient Pn. We will denote by Fl(a1, . . . , ak;n + 1) with

a1 < a2 < . . . < ak the flag variety parameterizing vector quotient spaces Cn+1 →

Ak → Ak−1 → . . .→ A1 (all arrows surjective) such that dim(Ai) = ai. In the special

case Fl(a;n + 1) we will write Grass(a, n + 1), the Grassmannian of a dimensional

quotients of Cn+1. We will follow the convention of [Gro61] and denote the set of

hyperplanes in the fibers of E by P(E).
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3.2 Reductions

We first prove some general lemmas. We will apply these to the case of a complete

family of linearly non-degenerate degree e curves in the following section.

Proposition 3.2.1. Suppose that π : C → X is a proper, surjective morphism of

complete varieties where each fiber of π is abstractly isomorphic to P1. Then there

exists a surjective, generically finite map f : X ′ → X such that in the fiber square

C ′

π′

��

f ′ // C
π

��
X ′

f // X

π′ realizes C ′ as the projectivization of a rank 2 vector bundle E on X ′. That is,

C ′ = P(E).

Proof. Let i : ν → X denote the inclusion of the generic point into X. Let Cν be the

generic fiber. That is, there is a fibered square:

Cν //

��

C
π

��
ν i // X

Let y be a closed point of Cν , and let X ′ = y in C. Note that X ′ is irreducible, proper,

and π(X ′) = X. The restricted map f = π|X′ : X ′ → X is proper, and has only one

point in the generic fiber, so is generically finite.

Consider then, the fibered square which defines C ′.

C ′

π′

��

f ′ // C
π

��
X ′

f // X

Note that X ′ maps to C by construction, so (by the universal property of fiber prod-

ucts) there is a section of π′. That is, there is a map σ : X ′ → C ′ such that π′◦σ = idX′ .
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The existence of the section allows us to conclude that C ′ ∼= P(E) by a standard argu-

ment. For example, the argument used in [Har77] V.2 Proposition 2.2 applies word

for word.

In the case where a projective bundle over X admits a map to Pn, we are able to

adjust the bundle (using another finite base change) to control the pullback of OPn(1).

Proposition 3.2.2. Suppose that E is a rank 2 vector bundle on a variety X and let

π : P(E)→ X be the natural map. Suppose in addition that P(E) admits a map to Pn

which is degree e on each fiber. Then there exists a finite, surjective map f : X ′ → X

such that in the fiber product diagram

P(EX′)
π′

��

f ′ // P(E) ev //

π

��

Pn

X ′
f // X

we have that π′∗ev
′∗O(1) = Syme(EX′) where ev′ = ev ◦ f ′.

Proof. First we remark that ev∗O(1) is a line bundle that is degree e on each fiber of

π. Thus ev∗O(1) = O(e)⊗ π∗(N ) for some line bundle N on X. This follows by the

description of the Picard group of a projective bundle [Har77]. Then π∗ev
∗O(1) =

Syme(E)⊗N . If there is a line bundle L on X such that Le ' N then it is an easy

exercise to show that Syme(E)⊗N ' Syme(E ⊗L) and it is well known [Har77] that

P(E) ' P(E ⊗ L). Finally, Lemma 2.1 of [BG71] implies that there exists a finite,

surjective map τ : X ′ → X and a line bundle L on X ′ such that L⊗e ' τ ∗N .

3.3 Proof of Theorem 3.1.1 in High Degrees

Before looking at the general case, we first prove a stronger (though well-known)

result than the main theorem would imply when n = e:
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Proposition 3.3.1. If n = e, and (C, X, ev, π, n, n) is a family of maximal moduli as

in Definition 3.1.2, then dimX = 0. That is, there is no complete curve contained in

U ⊂M0,0(Pn, n).

Proof. The space of rational normal curves in projective space is well-known to be

PGLn+1/PGL2. By Matsushima’s criterion, the quotient of a reductive affine group

scheme by a reductive subgroup is affine [BB63]. As no affine variety contains a

positive dimensional complete subvariety, the proposition follows. Note that there

has been recent success in determining the effective cone of this moduli space, (see

[CHS08]).

We are now ready to prove the main theorem for e > 2.

Proof of Theorem 3.1.1. Fix (C, X, ev, π, n, e) to be a family of maximal moduli as

in Definition 3.1.2 with 2 < e < n. By way of contradiction, assume that dimX ≥ n.

By taking an irreducible proper subvariety of X, and restricting the family, we may

assume that dimX = n.

For any point x ∈ X, denote by φ(x) the linear e-plane spanned by the image of

the map corresponding to x. That is, φ(x) = Span(ev(π−1(x)). The map φ : X →

Grass(e+ 1, n+ 1) is well-defined because each curve corresponding to a point in X

is linearly non-degenerate. This morphism factors through α : X → U (notation as

in Definition 3.1.2) and so is generically finite by Proposition 3.3.1.

Applying Proposition 3.2.1 and then Proposition 3.2.2 we may assume that there is

a generically finite, surjective map f : X ′ → X such that we have a fiber product

diagram:

P(E)

π′

��

f ′ // C ev //

π

��

Pn

X ′
f // X
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where E is a rank two vector bundle on X ′ and π′∗(f
′ ◦ ev)∗O(1) = Syme(E). The

collection (P(E), X ′, f ′◦ev, π′, n, e) is still a family of linearly non-degenerate degree e

curves with maximal moduli, and dimX ′ = n. The composed map f◦φ is a generically

finite map from X ′ to the Grassmannian. To simplify notation, we rename this new

family (P(E), X, ev, π, n, e).

We construct the universal section. Let Y = P(E) and consider the fiber product

diagram:

P(EY)

π′

��

// P(E)

π

��
Y // X

We have a natural section σ : Y → P(EY) given by the diagonal map. This section

corresponds to a surjection EY → L where L = σ∗OP(EY)(1). Let L1 = L and let L2

be the line bundle such that

0→ L2 → EY → L1 → 0.

This sequence induces a filtration on Syme(E):

Syme(EY) = F 0 ⊃ F 1 ⊃ . . . F e ⊃ F e+1 = 0,

such that F p/F p+1 ' Lp2 ⊗ L
e−p
1 ([Har77] II.5). Note that Y corresponds to curves

parameterized by X and a point on that curve. We have a natural map from Y →

Grass((, e) + 1, n + 1) by composition, and the data of the F ps induce a map from

γ : Y → Fl(1, . . . , e + 1;n + 1). Informally, the information of “the point” on the

curve induces a linear filtration of the Pe spanned by the curve. The linear spaces

between the point and the entire Pe are the osculating k-planes, k = 1, . . . , e. We can

see this by working locally where the map is defined by t→ (1, t, t2, . . . , te, 0, . . . , 0).

All the maps in Diagram 3.1.7 and Diagram 3.1.8 have been constructed.

On Fl(1, . . . , e+ 1;n+ 1) we have the natural sequence of universal quotient bundles

On+1 → Qe+1 → · · · → Q1 → 0.
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Recall the previously defined map: γ : P(E) → Fl(1, . . . , e + 1;n + 1). The proof

hinges on the following construction.

Proposition 3.3.2. There exists an ample line bundle on the flag variety Fl(1, . . . , e+

1;n+ 1) whose first Chern class D ∈ H2(Fl,Z) satisfies γ∗(Dn+1) = 0.

Assuming the proposition for the moment, we always have that DdimY · γ(Y ) > 0

because γ is generically finite and D is ample (see Lemma 3.3.3 below). Since dimY =

n + 1, we can rewrite this as (D|γ(Y ))
n+1 > 0. Applying Lemma 3.3.3, we see that

γ∗(Dn+1) > 0 which contradicts Proposition 3.3.2 above. Hence we can conclude that

dim P(E) < n+ 1 and so dimX < n. The theorem follows.

It remains to prove Proposition 3.3.2.

Proof. For p = 0, . . . , e let xp = c1(kerQp+1 → Qp). By construction of γ, we have

γ∗xp = c1(Fp/Fp+1) = pc1(L2) + (e− p)c1(L1).

Consider the projection map

pr : Fl(1, . . . , n;n+ 1)→ Fl(1, . . . , e+ 1;n+ 1)

and the injective map it induces on cohomology (always with rational coefficients):

pr∗ : H∗(Fl(1, . . . , e+ 1;n+ 1))→ H∗(Fl(1, . . . , n;n+ 1))

It is well known that H∗(Fl(1, . . . , n;n + 1)) = Q[x0, . . . , xn]/I where I is the ideal

of symmetric polynomials in the xis [Ful98]. By a slight abuse of notation, denote

pr∗(xi) again by xi.

In the cohomology ring of full flags, we claim that xn+1
p = 0 for each p. To see this,

note that in this ring, the following identity holds:

T n+1 = (T − x1) · (T − x2) · · · · · (T − xn)
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since on the right hand side each coefficient of T k with k < n + 1 is a symmetric

polynomial. Taking T = xp proves the identity. Then since pr∗ is injective, we must

also have that xn+1
p = 0 in the cohomology ring of partial flags, so (pc1(L2) + (e −

p)c1(L1))n+1 = 0 for each p = 0, . . . , e.

To simplify notation, in what follows we write z = c1(L1) and y = c1(L2). For

relevant facts about the cohomology ring of the flag variety, see Appendix 3.5. For

any D = λ0x0 + . . .+ λexe we have:

γ∗(D) = γ∗(λ0 · x0 + . . .+ λe · xe)

=
e∑

p=0

λp · (py + (e− p)z)

= (λ1 + 2λ2 + 3λ3 + . . .+ eλe)y + (eλ0 + (e− 1)λ1 + . . .+ λe−1)z

Let A be the coefficient of y and B the coefficient of z. If we can choose λ0, . . . , λe

so that γ∗(D) = Ay +Bz is a Q multiple of one of the (py + (e− p)z) then for some

rational number m we have:

γ∗(Dn+1) = (m(py + (e− p)z))n+1

= 0

It remains to show that D can be chosen with these properties. See Appendix 3.5 for

a description of the ample cone of the flag variety. To arrange this choice of D, set

λ0 =
1

e
, λ1 =

1

e− 1
, . . . , λi =

1

e− i
, . . . , λe−1 = 1.

Then obviously we have that B = e. We will prove that λe can be chosen to satisfy:

λe > λe−1 = 1 and
A

B
= e− 1
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This is equivalent to:

eλe = e(e− 1)−
e−1∑
i=1

i

e− i

λe = (e− 1)−
e−1∑
i=1

i

e(e− i)

Using partial fractions and simplifying, we get

λe = e−
e−1∑
i=0

1

e− i

It is then easy to show this is strictly larger than 1 as long as e ≥ 3. Therefore, D

can be chosen with the required positivity property and the proof is complete when

e ≥ 3. A simple calculation shows this method cannot work when e = 2. To show a

slightly weaker result in that case, we need another method.

We include the statement of the projection formula used in the proof above:

Lemma 3.3.3. [Deb01] Let π : V → W be a surjective morphism between proper

varieties. Let D1, . . . , Dr be Cartier divisors on W with r ≥ dim(V ). Then the

projection formula holds, i.e.:

π∗D1 · · · π∗Dr = deg(π)(D1 · · ·Dr).

3.4 The Proof for Conics

In this section we prove a bound for families of smooth conics one dimension weaker

than for a family of higher degree curves. Note that for conics (and cubics), being

linearly non-degenerate is equivalent to having smooth images.
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Theorem 3.4.1. If (C, X, ev, π, 2, n) is a family of linearly non-degenerate conics in

Pn with maximal moduli, then dimX ≤ n.

Proof. Exactly as in the case e > 2, we apply Proposition 3.2.1 and then Proposi-

tion 3.2.2 to reduce to the case where the family has the form:

C = P(E)

π

��

ev // Pn

X

where E is a rank two vector bundle on X and π∗ev
∗O(1) = Sym2(E). As in the

higher degree case, we have a generically finite map φ : X → Grass(3, n+ 1). On the

Grassmannian Grass(3, n+ 1), we have the tautological exact sequence

0→ S → On+1 → Q→ 0,

where Q is the tautological rank 3 quotient bundle. Applying Lemma 2.1 from

[BG71] again, and pulling back the family one more time, we may further assume

that φ∗(Q) = Sym2(E).

Now we proceed with a Chern class computation. First, we compute the Chern

polynomial:

ct(Sym2(E)) = 1 + 3c1(E)t+ (2c1(E)2 + 4c2(E))t2 + 4c1(E)c2(E)t3

If we let A = 3c1(E), B = 2c1(E)2+4c2(E), and C = 4c1(E)c2(E), an easy computation

shows

9AB − 27C − 2A3 = 0

Write Ã = c1(Q), B̃ = c2(Q), and C̃ = c3(Q). These classes pull back under φ in the

following way:

A = c1(Sym2(E)) = c1(φ∗(Q)) = φ∗(c1(Q)) = φ∗(Ã)
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Here, we have used the properties of φ and the functoriality of Chern classes. Similarly

B = φ∗(B̃) and C = φ∗(C̃). By the functoriality of Chern classes and the above

relationships, we have

φ∗(9ÃB̃ − 27C̃ − 2Ã3) = 0

Let ξ = 9ÃB̃ − 27C̃ − 2Ã3. It becomes convenient to rewrite ξ in terms of the Chern

roots of Q. If α1, α2, α3 are the Chern roots of Q, then we calculate:

Ã = α1 + α2 + α3

B̃ = α1α2 + α1α3 + α2α3

C̃ = α1α2α3

ξ = (α1 + α2 − 2α3)(α2 + α3 − 2α1)(α1 + α3 − 2α2)

Now let f = φ∗[X] ∈ H∗(Grass((, 3), n+ 1),Q) where [X] is the fundamental class of

X. The projection formula then gives ξ · f = 0.

Since c1(Q) is positive, c1(φ∗Q) is positive by Lemma 3.3.3, and we get the desired

bound on dimX by showing that c1(φ∗Q)n+1 = 0. Since we have already shown that

φ∗(ξ) = 0, it would suffice to show that c1(Q)n+1 is divisible by ξ in H∗(Grass(3, n+

1)). Instead, we show that this relationship holds in the cohomology ring of full flags,

and argue that this is enough to conclude.

Claim: ξ divides (α1 + α2 + α3)n+1 in H∗(Fl,Q), where Fl denotes the space of full

flags.

Consider the following fiber square:

X̃

p′

��

φ′ // Fl

p

��
X

φ // Grass(3, n+ 1)

We have presentations for the cohomology rings:

H∗(Grass(3, n+ 1),Q) = Q[α1, α2, α3]/I
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H∗(Fl,Q) = Q[α1, . . . , αn+1]/(Symm)

where Symm is the ideal generated by the elementary symmetric functions, and the

injective map p∗ satisfies p∗(αi) = αi for i = 1, 2, 3. In H∗(Fl,Q) we have

T n+1 = (T − α1) · · · (T − αn+1)

as before. Evaluate the two sides of the equation at T = α1+α2+α3

3
to find:

(α1 + α2 + α3)n+1 = (
α2 + α3 − 2α1

3
)(
α1 + α3 − 2α2

3
)(
α1 + α2 − 2α3

3
)g′(α)

= ξ · g(α)

for some polynomials g′ and g which proves the claim. To finish the proof, remark

that the fibers of p are projective varieties, that is, effective cycles, and so the same

is true of p′. By [Ful98], we have

(p′)∗φ∗(c1(Q))n+1 = (φ′)∗p∗(c1(Q))n+1

The left hand side of the equation gives an effective cycle on X̃, in particular, a

non-zero cohomology class. On the right side, however, we get:

(φ′)∗p∗(c1(Q))n+1 = (φ′)∗(α1 + α2 + α3)n+1

= (φ′)∗(ξ · g(α))

= (φ′)∗(p∗ξ · g(α))

= (φ′)∗p∗ξ · (φ′)∗g(α)

= (p′)∗φ∗ξ · (φ′)∗g(α)

= 0 · (φ′)∗g(α)

= 0

This gives a contradiction, so we conclude that dim(X) ≤ n.
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3.5 Appendix - Divisors on the Flag Variety

We include some notes on the ample cone of the flag variety F = Fl(1, . . . , e+1;n+1).

Let wi be the P1 constructed by letting the ith flag vary while leaving the others

constant. These e+ 1 lines freely generate the homology group H2(F ). They are also

generators of the effective cone of curves. The e+1 Chern classes xp = c1(ker(Qp+1 →

Qp)) generate H2(F ) and we check that the intersection matrix 〈xi, wj〉 is given by :

1 0 . . . 0 0

−1 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

0 0 . . . −1 1


with 1’s on the diagonal and −1’s on the lower diagonal. The ample cone of F is

given by combinations of the xi’s which evaluate positively. That is, by Q divisors

λ0x0 + . . .+ λexe where 0 < λ1 < λ2 < . . . < λe.

In fact, it is well known that for varieties of the type F = G/B, the Picard group of F

is isomorphic to the character group of F , often denoted X(T ) where T is a maximal

torus. Any character can be written as a linear combination of the fundamental

weights λ =
∑
aiti and a character is called dominant if all ai ≥ 0, regular if all ai

are non-zero. The ample divisors correspond exactly to the dominant and regular

characters, (see [LG01]). In our case, the full flag variety corresponds to G/B for

G = SL(n + 1). The simple roots correspond to si = αi − αi+1 for 0 ≤ i ≤ n.

Suppose L = λ0x0 + . . .+λnxn where the xi are as above. Then L corresponds to the

weight λ0s0 + . . . + λnsn which is dominant if and only if L is ample, if and only if

0 < λ1 < λ2 < . . . < λn. The case of the partial flag variety then follows immediately

from this one.
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Chapter 4

Cubics and Rational Simple

Connectedness

4.1 Introduction

The study of rational curves on algebraic varieties has applications in many areas of

algebraic geometry. We focus on a generalization of the property of being rationally

connected to one involving a “higher” connectivity condition developed by Joe Harris,

Johan de Jong, and Jason Starr; see [HS05] and [dS06]. All varieties, schemes, stacks,

and maps between them will be assumed to be over Spec C.

A smooth variety X is rationally connected if two general points on X can be

connected by a P1 on X (see [Kol96] Section IV.3). If M = Hom(P1, X) and

M2 = M × P1 × P1, then there is an evaluation map φ : M2 → X × X. This

map sends (φ, p, q) to (φ(p), φ(q)). The variety X is rationally connected if and only

if the map φ is dominant.

The algebraic property of being rationally connected is analogous to the topological

property of being path-connected. Indeed, this similarity stems from the analogy



CHAPTER 4. CUBICS AND RATIONAL SIMPLE CONNECTEDNESS 76

that the projective line in algebraic geometry plays the role of the unit interval in

topology. There is also an algebraic property analogous to the topological property of

being simply connected. The main observation is that a space is simply connected if

the space of paths with specified endpoints is itself path- connected. Carrying through

the analogy, a variety is called rationally simply connected if the space of rational

curves of sufficiently positive homology class passing through two general points on

X is itself rationally connected.

To implement this idea, we need to work with a compactification of the space of

rational curves on X. We use the Kontsevich moduli space. Let X be a hypersurface

in projective n-space for n ≥ 4. The stack M0,n(X, e) parameterizes stable, n-

pointed, degree e maps from arithmetic genus 0 curves; see [FP97]. When X is a

general hypersurface, this stack is irreducible and of the expected dimension as long

as deg(X) is at most 1 + dim(X)/2; see [HRS04]. For arbitrary smooth X, this need

not be the case and verifying strong rational simple connectedness becomes more

technical.

Definition 4.1.1. A hypersurface X ⊂ Pn is rationally simply connected if for each

e ≥ 2, there is a given irreducible component Me,m ⊂ M0,2(X, e) such that the

evaluation map ev : Me,2 → X × X is dominant and a general fiber is rationally

connected.

A theorem of de Jong and Starr [dS06] says that any smooth degree d hypersurface

X ⊂ Pn is rationally simply connected if n+ 1 ≥ d2 (with the exception of a quadric

surface).

The fiber of the map ev : M0,m(X, e) → Xm over a general m-tuple of points on

X plays the role of the space of m-pointed paths on X. In topology, if the space

of based-paths is path-connected, then the same is true of m-pointed paths. The

corresponding fact for rationally simply connected varieties is not a priori true.

Definition 4.1.2. A hypersurface X ⊂ Pn is strongly rationally simply connected if
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for every m ≥ 2 there is a number e and a given irreducible component of Me,m ⊂

M0,2(X, e) such that the evaluation map ev : Me,m → Xm is dominant and a general

fiber is rationally connected.

The property of being strongly rationally simply connected is related to the existence

of sections. A theorem of Hassett (Theorem 1.4 [dS06]) shows that if X is a K-

variety, where K is the function field of a curve, then X satisfies weak-approximation

if X⊗KK is strongly rationally simply connected. There is also the expectation that

(strong) rational simple connectedness will sometimes imply the existence of sections

for maps from X → S to a surface; see [dHS08]. In the case of families of degree d

hypersurfaces in projective n-space with d2 ≤ n over a surface, the existence of such

sections is guaranteed by the Tsen-Lang theorem. One hope is that the methods

developed to verify the property of being strongly rationally simply connected can be

applied to other varieties to produce sections where they are otherwise not known to

exist.

It is also shown in [dS06] that a general degree d hypersurface in Pn is strongly

rationally simply connected if d2 ≤ n and that an arbitrary smooth hypersurface

satisfies the same property if 2d2 − d ≤ n + 1. The expectation in [dS06] is that the

genericity assumption should be removed and that every smooth degree d hypersurface

in the given range is strongly rationally simply connected. Here we settle this matter

for d = 3.

In [dS06], the property of being strongly rationally simply connected is shown to be

implied by the existence of m-twisting surfaces on X for m = 1, 2. Let Σ = P1 × P1

and let π : Σ→ P1 be the first projection map. Denote by F the class of a fiber and

F ′ the class of a square zero section on Σ. If f : Σ → X is a morphism, we may

consider the associated map (π, f) : Σ→ P1 ×X. The normal sheaf of this map will

be denoted Nf .

Definition 4.1.3. Suppose Σ = P1 × P1 and π : Σ→ P1 is the first projection map.



CHAPTER 4. CUBICS AND RATIONAL SIMPLE CONNECTEDNESS 78

For an integer m > 0 a map f : Σ→ X is an m-twisting surface on X if

1. The sheaf f ∗TX is globally generated.

2. The map (π, f) is finite and H1(Σ,Nf (−F ′ − nF )) = 0.

The properties of such surfaces are reviewed in Appendix 4.8. Our construction will

produce surfaces which are isomorphic to P1 × P1 → X such that fibers of the first

projection are mapped to lines on X. We will identify these surfaces with maps

P1 → F (X) where F (X) denotes the Fano scheme of lines on X. For an m-twisting

surface, every infinitesimal deformation of a curve given by the union of a constant

section and m fibers extends to an infinitesimal deformation of the surface. Loosely

speaking, this is the meaning of m-twisting surfaces.

Theorem. If X is a smooth degree 3 hypersurface in Pn with n ≥ 9, then X contains

m-twisting surfaces for m = 1, 2. Such an X is strongly rationally simply connected.

For n < 9 a smooth cubic hypersurface does not contain 2-twisting surfaces.

Outline of the Argument:

The chapter applies a careful understanding of lines and planes on a smooth cubic

hypersurface X along with an algebraic foliation argument to show that curves in-

side M0,1(X, 1) (corresponding to ruled surfaces on X with fixed section class) can

be made appropriately “positive”. This positivity implies that deformations of the

surfaces (which will be abstractly isomorphic to P1×P1) fixing a section and 2 fibers

are unobstructed. In Section 4.2 we review some well known properties of the Fano

variety of lines, F (X). This space is particularly well behaved when the hypersurface

has degree 3. In Section 4.3, we undertake a careful analysis of the variety of planes

contained in X and show that it is reasonably well behaved.

Section 4.4 is devoted to studying the deformations theory of maps P1 → F (X),

respectively maps P1 → C (C is defined to be M0,1(X, 1), it admits an evaluation

map ev : C → X). Such maps are equivalent to giving surfaces on X ruled by lines



CHAPTER 4. CUBICS AND RATIONAL SIMPLE CONNECTEDNESS 79

(respectively such surfaces on X with a section). Indeed, the deformation theory of

maps to the space of lines and of the surfaces on X are closely related. The goal is

to produce a map P1 → C, such that the relative tangent bundle Tev pulls back to

an ample bundle on P1. For the corresponding surface, every deformation in X of a

minimal section curve extends to a deformation in X of the entire surface.

In Section 4.5, we further study cohomology and deformation theory. We first show

that there exist maps P1 → C pulling back Tev to a globally generated bundle, i.e., X

contains 1-twisting surfaces. Our main results are in Section 4.6 and Section 4.7. We

define an integral foliation D ⊂ Tev spanned by the positive directions of the pullback

of Tev by all 1-twisting morphisms. We then construct an X-scheme Y and a rational

transformation of X-schemes τ : C 99K Y , whose vertical tangent bundle is D. Finally

we prove Y = X by a careful study of the curves which are contracted by τ . Thus

D equals Tev. This implies that every union of sufficiently many 1-twisting rational

curves in C deforms to a 2-twisting rational curve in C. We will review a result of

[dS06]: existence of a 2-twisting surface and rational simple connectedness by conics

implies strong rational simple connectedness.

4.2 The Fano Scheme of Lines

Here we recall some well-known facts about the scheme of lines on a smooth hyper-

surface (much of the material is contained in or follows from [CG72] Sections 5-7 and

[Kol96] Section V.4). Fix X to be a smooth degree 3 hypersurface in Pn. Denote by

F (X) the scheme which parameterizes lines lying completely in X. It is a subscheme

of the Grassmannian G = Grass(2, n+ 1). Denote by Q the universal rank 2 quotient

bundle on G. The equation defining X gives a regular section of Sym3(Q), and the

zero locus of this section is exactly F (X) (see e.g. [Kol96] V.4.7). The scheme F (X),

called the Fano scheme, equals the Hilbert scheme Hilbt+1(X), the Chow Variety

Chow1,1(X) and the Kontsevich space M0,0(X, 1).



CHAPTER 4. CUBICS AND RATIONAL SIMPLE CONNECTEDNESS 80

Lemma 4.2.1. For every smooth cubic hypersurface X ⊂ Pn of dimension at least

2, F (X) is smooth of dimension 2n− 6.

Proof. This is well known (see Exercise V.4.4.1 of [Kol96]) but we include an outline

of the proof.

Given a degree 1 map f : P1 → X, the space of first order deformations of f are

parameterized by H0(P1, f ∗TX); obstructions to lifting infinitesimal deformations to

a small extension are contained in H1(P1, f ∗TX). The sheaf f ∗TX is locally free of

rank n− 1 and has degree n− 2. This can be seen by analyzing the tangent bundle

sequence. Because NX/Pn is isomorphic to OX(3), this is the exact sequence,

0→ TX → TPn|X → OX(3)→ 0.

We next consider the same sequence for the map f . Because TP1 is isomorphic to

OP1(2), this is the sequence,

0→ OP1(2)→ f ∗TX → NP1/X → 0. (4.1)

Because all locally free sheaves on P1 decompose as a direct sum of line bundles (see

[Har77] Exercise V.2.6), we may write,

f ∗TX ∼= O(a1)⊕
n−1⊕
i=2

O(ai)

with a1 ≥ 2 and a2 ≥ a3 ≥ . . . ≥ an−1. Using the fact that NP1/Pn is isomorphic to⊕n−1
i=1 O(1) we have the normal bundle sequence,

0→ NP1/X →
n−1⊕
i=1

OP1(1)→ OP1(3)→ 0.

This implies that NP1/X
∼=
⊕
O(bi) where each bi ≤ 1. It follows that the se-

quence (4.1) is split exact. Since
∑n−1

i=2 ai = n − 4, it follows that each ai ≥

−1 and H1(P1, f ∗TX) = 0. Thus, F (X) is smooth at f(P1) and has dimension

H0(P1, NP1/X) = 2n− 6 (see [Kol96], proof of V.4.3.7).
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The argument above shows that there are only two possible splitting types for the

normal bundle of a line on a smooth degree three hypersurface. Following [CG72],

we make the following definition:

Definition 4.2.2. Given a line L ⊆ X (with deg(X) = 3), we say L is a type I,

respectively a type II, line if NP1/X
∼= O(1)n−4⊕O2, respectively NP1/X

∼= O(1)n−3⊕

O(−1).

SupposeX is given as the zero locus of a degree 3 homogeneous equation F (x0, . . . , xn).

The Gauss map is the morphism

DX : X → Pn∗

[x0, . . . , xn] 7−→ [
∂f

∂x0

(~x), . . . ,
∂f

∂xn
(~x)].

In coordinate free terms, it associates to each point x ∈ X, the projective hyperplane

Tx which is tangent to X at x. Because X is smooth, this is a well-defined morphism.

We sum up some well-known results on the geometry of lines on X as described in

[CG72]:

Proposition 4.2.3. The map DX is finite-to-one and generically injective. For a

line L ⊂ X, L is type I if and only if the map DX |L : L→ DX(L) is an isomorphism

to a smooth plane conic. These are both equivalent to the condition that the base

locus of the linear system Span(DX(L)) has dimension n− 3. Similarly, L is type II

if and only if the map DX |L : L→ DX(L) is a 2-to-1 cover of a line. These are both

equivalent to the condition that the base locus of the linear system Span(DX(L)) has

dimension n− 2.

Proof. See [CG72], 5.14, 5.15, 6.6, 6.7, and 6.19.

From this, one concludes:

Proposition 4.2.4. ([CG72], 7.6) Let F2(X) ⊆ F (X) be the subscheme of type II

lines on X. Then dimF2(X) ≤ n− 3
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Remark 4.2.5. This estimate is sharp, as there are smooth degree three hypersur-

faces X such that dimF2(X) = n− 3; for example, the Fermat hypersurface given by

x3
0 + x3

1 + . . . + x3
n = 0. There is an n− 3 dimensional family of lines on the Fermat

connecting the “conical point” [1,−1, 0, . . . , 0] to points of the form [0, 0, a2, . . . , an],

and each of these lines is type II.

Proposition 4.2.6. ([Kol96] V. 4.7) The canonical bundle of F (X) is isomorphic

to OF (X)(5− n). In particular, when n ≥ 6, the variety F (X) is a Fano manifold in

the sense that its anticanonical bundle is ample.

From here on, we will consider F (X) as being embedded in projective space by

the Plücker embedding. The restriction to F (X) of the universal rank 2 quotient

bundle on the Grassmannian will be denoted again by Q. When n ≥ 5, we have

Pic(F (X)) = Z (see [DM98]). By a line, respectively a conic, on F (X), we will mean

a P1 → F (X) ⊆ PN of degree one, respectively embedded of degree 2.

Lemma 4.2.7. For any line L on F (X), Q|L = OL ⊕OL(1).

The rank 2 universal quotient bundle Q on the Grassmannian G = Grass(2, n+ 1) is

globally generated and has degree 1, so the same is true when it is restricted to any

line (see [CC] for a much stronger result).

In fact, all lines on the Grassmannian may be constructed as follows. Let V be a

vector space of dimension n+ 1. Let V3 be a 3-dimensional quotient of V and let V1

be a 1-dimensional quotient of V3. The set of 2-dimensional quotients V2 of V3 such

that V1 is quotient of V2 determine a line on the Grassmannian G and all lines are

determined this way. As is well known (Borel-Weil Theorem), this P1 is a generator

for H2(G,Z).

Another way to observe this phenomenon is to consider the dual picture. That is,

given subvector spaces Wn−2 ⊆ Wn ⊆ V we can again consider all n− 1 dimensional

subspaces of V containing Wn−2 and contained in Wn. Consider the bundle whose
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fiber over Wn−2 ⊆ Wn−1 ⊆ Wn is (Wn−1/Wn−2,Wn/Wn−1). As Wn−1 varies, this

bundle is O ⊕O(−1) (on that P1) and of course, this is the dual of Q|L.

Geometrically, a line on Grass(2, n+ 1) corresponds to a “line of lines” in projective

space, which sweep out a plane. One obtains such a line by choosing a P2 ⊆ Pn,

fixing a point on the plane, and considering the union of all the lines on the plane

passing through that fixed point. Often this is referred to as a degenerate scroll or a

(1, 0)-scroll. The line L on the Grassmannian is contained in F (X) if and only if the

plane that L sweeps out is contained in X.

Suppose as above that X ⊆ P(V ), where dimV = n + 1, and n ≥ 9. Pick a general

point [l] ∈ F (X) and denote the line on X it represents by l. By a dimension count,

we expect every line on X to be contained in at least an (n− 8)-dimensional family

of planes contained in X. This is true.

Lemma 4.2.8. (Théorém 5.1 [DM98]), each line l ⊂ X is contained in at least an

(n− 8)-dimensional family of 2-planes contained in X.

(We will see in the following that this is the actual dimension for a general line, see

Proposition 4.3.16). So we may pick two distinct planes on X which contain l and

which correspond to two distinct three dimensional quotients of V , V3 and W3. Choose

distinct points on the line l corresponding to distinct one dimensional quotients, call

them V1 and W1. With notation as above, the pair of spaces (V3, V1) and (W3,W1)

correspond to two lines on F (X) which intersect at [l].

We now study how nodal curves L1 ∪L2 ⊂ F (X) can be deformed to smooth curves.

Definition 4.2.9. A vector bundle E on P1 is almost balanced if E ∼= O(r)⊕a⊕O(r−

1)⊕b for some integer r. The subbundle
⊕
O(r) ⊂ E will be denoted Pos(E). The

rank of Pos(E) will be called the positive rank of E, and the number r the positive

degree.

Definition 4.2.10. Given two vector subspaces U, V of a fixed finite dimensional
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vector space W , we say that U, V are as linearly independent as possible if dim(U ∩

V ) = max(0, dim(U) + dim(V )− dim(W )).

The following result is certainly well known to experts.

Theorem 4.2.11. Let C → B 3 0 be a flat family of genus 0 curves over a one-

dimensional, irreducible, smooth pointed base. Assume that the central fiber C =

C1∪C2 is reducible with a single node p, and that the general fiber is a smooth rational

curve. If E is a vector bundle on C of rank n such that E|Ci is almost balanced for

i = 1, 2 and if Pos(E|C1)|p and Pos(E|C2)|p are as linearly independent as possible

inside E|p, then E|Cb is almost balanced for a general b ∈ B.

Proof. Suppose E has positive rank r1, respectively r2, and positive degree d1, re-

spectively d2, on C1, respectively C2. We may assume that the map C → B has two

sections σ1, σ2 such that σ1 · Ci = δ1i and σ2 · Ci = δ2i (Kroenecker delta symbols).

Indeed, because either component of the central fiber may be blown down over B,

this is a special case of the fact that weak approximation is satisfied for rationally

connected varieties over a curve (see Theorem 3 in [HT06]). Denote the divisor σi(B)

by Di. Define E ′ to be E(−d1D1 − d2D2). Restricted to a general fiber, the bundle

E ′|Cb ∼= E|Cb(−d1 − d2) has degree r1 + r2 − 2n. Because Cb is a smooth rational

curve, we may write E ′|Cb ∼=
⊕n

i=1OCb(bi) for integers bi.

Let ki : Ci → C0 be the inclusion. Then we have the short exact sequence

0→ E ′|C → k1∗(E
′|C1)⊕ k2∗(E

′|C2)→ E ′p → 0.

The relevant part of the associated long exact sequence reads

0→ H0(C,E ′|C)→ H0(C1, E
′|C1)⊕H0(C2, E

′|C2)
s→ E ′|p

→ H1(C,E ′|C)→ H1(C1, E
′|C1)⊕H1(C2, E

′|C2) = 0.

Suppose first that r1 + r2 > n. Then the linear independence assumption implies

that s is surjective and so H1(C,E ′|C) = 0. By the semicontinuity theorem ([Har77],



CHAPTER 4. CUBICS AND RATIONAL SIMPLE CONNECTEDNESS 85

III.12.8), H1(Cb, E
′|Cb) = 0 for general b ∈ B. We conclude that bi ≥ −1 for each

i. The same argument applies to E ′(−D1); in this case the corresponding map s is

injective and we conclude that bi ≤ 0, i.e., that E|Cb is almost balanced for a general

b ∈ B.

The case r1+r2 ≤ n is similar. In this case, the independence assumption implies that

the map s is injective, and so H0(C,E ′|C) = 0. Thus H0(Cb, E
′|Cb) = 0 for a general

b ∈ B and bi < 0 for each i. On the other hand, E ′(D1)|C1 is globally generated and

thus H1(C,E ′(D1)) = 0. It follows that H1(Cb, E
′(D1)|C−b) = 0 for a general b ∈ B

and that bi + 1 > −1 for each i. Then E|Cb is almost balanced for general b ∈ B.

Definition 4.2.12. (See [Kol96], Section II.3) A map f : P1 → X is called unob-

structed if it is a smooth point of Hom(P1, X). The map f is called free if f ∗TX is

globally generated.

Proposition 4.2.13. With the notation as above, let L1 = (V3, V1) and L2 = (W3,W1)

be two lines on F (X) intersecting at a general point [l] ∈ F (X). Suppose that V1 6= W1

and let L be the union L1∪L2; L has a single node at [l]. The curve L is unobstructed

and a general deformation of L parameterizes a smooth conic C on F (X) such that

Q|C is isomorphic to O(1) ⊕ O(1). Such a C parameterizes the lines in one of the

rulings of a smooth quadric surface contained in X.

Proof. Because the lines L1 and L2 contain a general point of F (X), they are free

(see [Kol96] Theorem II.3.11), so unobstructed (see [Kol96] II.1.7). Denote by k :

L→ F (X) and ki : Li → F (X) the inclusions. Consider the sequence

0→ OL2(−[l])→ OL → OL1 → 0.

Tensoring with k∗TF (X) yields

0→ k∗2TF (X)(−[l])→ k∗TF (X) → k∗1TF (X) → 0.

Since the Li are free lines, we conclude from the long exact sequence in cohomology

that H1(L, k∗TF (X)) = 0; i.e., that L is unobstructed. Since the restriction of Q
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to any P1 ⊂ F (X) is globally generated, the only question is whether Q|C splits as

O(1) ⊕ O(1) or O(2) ⊕ O when restricted to a general deformation C of L. The

former case implies that C sweeps out a smooth quadric surface on X, the latter that

C sweeps out a conical quadric surface on X.

At the point [l], write Q[l] = Y where Y is a two dimensional quotient of V and

l = P(Y ). By Lemma 4.2.7 we have Q|Li ∼= O(1)⊕O. Since the quotients V1 and W1

are distinct, the subspaces OLV (1)|[l] and OLW (1)|[l] of Y are distinct. The proposition

now follows from Theorem 4.2.11.

We also have the following result on the subvariety of F (X) consisting of lines through

a general point.

Lemma 4.2.14. If X is a smooth hypersurface in Pn with n ≥ 5, the space of lines

through a general point x ∈ X is a smooth (2, 3) complete intersection in Pn−2.

Proof. Because lines through a general point are free ([Kol96] Theorem II.3.11), the

space of lines through a general x ∈ X is smooth (see [Kol96] II.1.7). The fact

that this space is a (2, 3) complete intersection can be verified by a computation in

coordinates; see, for example, [CS09] Lemma 2.1.

4.3 Planes on Cubic Hypersurfaces

Let X be any smooth degree 3 hypersurface in Pn. In this section, assume that n ≥ 6.

Let P be the variety of planes contained in X. It is a subscheme of the Grassmannian

Gr = Grass(3, n+ 1).

Proposition 4.3.1. ([DM98] Théorème 2.1) The variety P is connected, and every

irreducible component has dimension at least 3n− 16 whenever n > 5.
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Suppose X is defined by the degree 3 homogeneous equation f(x0, . . . xn) = 0. As in

Section 4.2, we have the Gauss map DX : X → Pn∗. It is quasifinite and generically

injective by Proposition 4.2.3.

Remark 4.3.2. There is some confusing notation when one considers the meaning

of the “type” of a line on X and the “type” of a plane on X which we are about to

introduce. We feel compelled to remain consistent with the notation in the literature.

Definition 4.3.3. For P ∈ P , we say DX has rank rP on P if the span of DX(P )

has dimension rP . We will refer to such a plane P as having type rP .

The Gauss map is given by quadrics; there is a commutative diagram

P5

pr

��
P

v2
>>~~~~~~~DP // Pr � � // Pn∗.

(4.2)

Here r is the rank of P , v2 is the Veronese 2-uple embedding, DP is DX |P and pr is

projection from a linear subspace in P5. For any P ∈ P , we automatically have the

inequality 2 ≤ rP ≤ 5.

Remark 4.3.4. For each P ∈ P , there is the twisted normal bundle sequence

0→ NP/X(−1)→ On−2
P → OP (2)→ 0.

Considering the associated cohomology sequence, the map on cohomology

Cn−2 // H0(P,OP (2))

Cn+1

OO
∂

77ppppppppppp

is given by linear combinations of partial derivatives of f . This is the map ∂. With

the notation from above, this map has rank rP + 1.

Denote by Pj the locus {P ∈ P|rP = j}. This is locally closed in P .
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Proposition 4.3.5. The dimension of P2 is at most n− 4.

Remark 4.3.6. This is claimed in Lemma 3.3 of [Iza99] as following by reasoning

similar to [CG72] Section 7. Here we fill in some of the details.

Proof. If P is a plane of type 2, DP is degree 4.

Consider the incidence correspondence I = {(x, P )} ⊂ X × P2 such that x ∈ P and

such that x does not map to a branch point of DP : P → D(P ). We denote by

πX and πP the two projections. The map πP is surjective and of relative dimension

2. Indeed by generic smoothness, the map DP is étale over a dense open subset of

DP (P ).

We claim that πX : I → X is quasi-finite. Let (y0, P ) ∈ I be a point. Because y0 does

not map to a ramification point of DP , there are four distinct points (y0, y1, y2, y3) ∈ P

in the fiber of DP over DP (y0). We claim that the four points, (y0, y1, y2, y3) cannot be

collinear. Assume to the contrary that they are all contained in a line L ⊂ P . As the

map DX is given by quadrics, it has degree 2 when restricted to L. Because L contains

four points in the fiber of DX , the entire line is contracted to the point DX(y0). This

is a contradiction to the fact that DX is quasi-finite, see Proposition 4.2.3. Therefore,

the plane P is the unique 2-plane containing the four points yi. These four points

are contained in the fiber D−1
X (DX(y0)). As the Gauss map DX is quasi-finite, the

fiber D−1
X (DX(y0)) is a finite set. Thus the set of non-collinear 4-tuples of points in

D−1
X (DX(y0)) is finite as well. Therefore, the set of 2-planes P of type 2 containing

y0 is also a finite set. This proves that the projection πX is quasi-finite.

As the map DX is generically injective but fails to be injective on planes of type 2,

the dimension of πX(I) is at most n − 2. Since πX is quasi-finite, the dimension of

I is also bounded from above by n − 2. This implies that the dimension of P2 is at

most n− 4.

Remark 4.3.7. In [Iza99], it is claimed that dimP2 ≤ 5 independently of n. It is
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also claimed that dimP3 ≤ n− 2 (Lemmas 3.3 and 3.6). We give counterexamples to

these statements.

Example 4.3.8. Suppose X = {x2
0x1+x3

1+K = 0}, where K is a generic degree three

homogeneous polynomial in x2, . . . xn. One checks immediately that X is smooth.

The point p = [1, 0, . . . , 0] ∈ X is a “conical” point in the following sense. Let Y

be the zero locus of K in the embedded Pn−2 defined by x0 = x1 = 0. If q ∈ Y ,

the entire line pq is contained in X. Thus, X contains a cone over a variety of

dimension n − 3. For any line L contained in Y , the lines pq are contained in X as

q ranges over all the points in L. Thus the 2-plane pL is contained in X. Choose

x0, x1, z2, . . . , zn to be coordinates on Pn so that the line L contained in Y is given

by x0 = x1 = z4 = . . . zn = 0 and the plane pL is given by x1 = z4 = . . . zn = 0.

The equation defining Y in Pn−2 can be written z4Q4 + . . . + znQn where Qi is a

degree 2 polynomial in the z variables. The cubic equation defining X can be written

F = x2
0x1 + x3

1 + z4Q4 + . . .+ znQn. Note that

∂F

∂x0

|P = 0,

∂F

∂x1

|P = x2
0,

and
∂F

∂zi
|P = Qi(z2, z3, 0, . . . , 0) = Q̃i.

Here 2 ≤ i ≤ n and Q̃i is a degree 2 polynomial in the variables z2, z3. Since the

space of such polynomial is 3-dimensional, rP ≤ 3. The case rP = 3 occurs exactly

when L is a type I line on Y and rP = 2 occurs when L is a type II line on Y .

If Y is a smooth degree 3 hypersurface in Pn−2, the variety of lines on Y is smooth of

dimension 2n−10. The variety of type II lines on Y has dimension at most n−5 and

this upper bound can be reached (on the Fermat hypersurface for example). Thus,

there exist cubic hypersurfaces such that the dimension of the families of planes P2

and P3 are n− 5 and 2n− 10 respectively.
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Example 4.3.9. The second example deals exclusively with the Fermat hypersurface

X = {x3
0 + . . . x3

n = 0} ⊂ Pn.

Assume n ≥ 5. Choose a partition of {0, . . . , n} into subsets I1, I2, I3 of cardinality

at least 2. Let Xk be defined by the equation Σi∈Ikx
3
i = 0 in P|Ik|−1 for k = 1, 2, 3.

Note that dimXk = |Ik| − 2. For each triple of points (x1, x2, x3) ∈ X1 × X2 × X3,

we embed a linear 2-plane into X by

P2 → X, [y1, y2, y3] 7→ [. . . yi · xi,k . . .].

If P is the image of this embedding, rP = 2. The 3 global sections giving the map

DX |P are y2
1, y

2
2, y

2
3. Each partition I1, I2, I3 as above gives a family of planes in P2 of

dimension n− 5, providing another counterexample to Lemma 3.3 in [Iza99].

Note that the more subdivisions there are, the larger the dimension of the projective

space we will find on our Fermat variety. With r+ 1 mutually disjoint sets Ik we will

see a Pr ⊆ X. Choosing a general plane contained in this projective space however, it

will no longer satisfy rP = 2. The same argument shows that we can form an n+r−8

dimensional space of planes on X in this way where r is the number of subdivisions

(notice that we can have at most n/2 subdivisions).

We can at least show that

Proposition 4.3.10. For any smooth cubic hypersurface X ⊂ Pn with n ≥ 6,

dimP3 ≤ 2n− 9.

Remark 4.3.11. Given Example 4.3.8, we cannot hope for a much better bound.

Proof. If P ∈ P3, then the map pr in diagram 4.2 is projection from a line. This line

must intersect the secant variety of v2(P2), which is a degree three hypersurface, in

at least one point. Such a point of intersection must actually lie on a 1-parameter

family of secant lines. So the image under the projection contains at least one double

line; i.e., P contains a line of type II. (See [Har92], page 144).
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In fact, up to the action of PGL3, every such projection (that is, the restriction of

DX to the plane) is conjugate to one of the following (listed with the corresponding

type II lines).

[X2
0 +X2

1 +X2
2 , X0X1, X0X2, X1X2]; V(X0),V(X1), and V(X2)

[X2
0 , X

2
1 , X

2
2 , (X0 +X2)X1]; V(X1) and V(X0 +X2)

[X2
0 +X1X2, X

2
1 , X

2
2 , X0X2]; V(X2)

[X2
0 , X

2
1 , X

2
2 , X0X2] all lines of the form V(aX0 + bX2)

That these are the only possibilities up to the action of PGL3 can be verified by

identifying such projections with pencils of conics in P2 which contain no double line

as a member. Given P ∈ P3, consider the exact sequence

0→ NP/X(−1)→ On−2
P → OP (2)→ 0.

Here we think of the −1 that we twisted down by as a type II line L contained

in P . The hypothesis that P has rank equal to 3 says that the rank of the map

H0(On−2
P ) → H0(OP (2)) equals 4. Thus the kernel, H0(NP/X(−1)), has dimension

n − 6. As this vector space is the Zariski tangent space to the variety of 2-planes

containing L, we conclude that this variety has dimension at most n − 6. Since the

dimension of the variety of type II lines on X is at most n− 3, and since the variety

of 2-planes containing each such line has dimension at most n− 6, the variety of rank

3 planes on X has dimension at most (n− 3) + (n− 6), i.e., 2n− 9.

Using the same argument one can show

Proposition 4.3.12. The dimension of the subvariety P ′4 of P4 consisting of the

planes containing a type II line is at most 2n− 10.

Question Is it true that P ′4 ⊂ P4 is codimension 1 and an ample divisor? If so, we

can conclude that dimP4 ≤ 2n− 9 as well.
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Proposition 4.3.13. If n ≥ 6 and P ∈ P with rP ≥ 3 then P is a smooth point of

P. Also if n ≥ 7 then P is irreducible and has the expected dimension 3n− 16.

Proof. For a plane P ⊂ X, we have that NX/Pn|P = OP (3). The normal bundle

sequence then reads

0→ NP/X → OP (1)n−2 → OP (3)→ 0.

The variety P will be smooth at point [P ] corresponding to P ⊂ X if H1(P,NP/X) =

0. By considering the long exact sequence of cohomology associated to the sequence

above, this is equivalent to the surjectivity of the map on global sections,

H0(P,OP (1)n−2)→ H0(OP (3)).

We may choose coordinates so that the plane P is given by the vanishing of x3 =

. . . = xn = 0. Let F (x0, . . . , xn) be the equation defining X in Pn. The above map

is identified with multiplication by the partial derivatives ∂F
∂xi
|P for 3 ≤ i ≤ n. By

assumption on the type of P , we have that V = Span( ∂F
∂xi
|P ) ⊂ H0(P,OP (2)) is a

base point free linear system of dimension at least 3.

The first part of the Proposition will follow from the claim that V ·H0(P,OP (1)) =

H0(P,OP (3)). It suffices to prove this claim when V is a base point free linear

system of dimension exactly 3. As the claim is invariant under the action of PGL3,

it is enough to check that it holds for each of the four different linear systems listed

in Proposition 4.3.10. This is a straightforward computation in each case. Thus, P

is smooth at each point corresponding to a plane of type at least 3.

By Proposition 4.3.5, the locus where P is either not of dimension 3n − 16 or not

smooth has dimension at most n − 4. We conclude that P is a local complete in-

tersection when n is at least 6. This follows because the defining equations of P in

Grass(3, n + 1) cut out a variety of the expected dimension (see [Ful98], Theorem

14.4). When n ≥ 6, the variety P is connected. Since the codimension of P2 is
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at least 2 when n is at least 7, it follows from Hartshorne’s connectedness theorem

([Eis95] Theorem 18.12) that P is irreducible for all n at least 7.

Proposition 4.3.14. When n ≥ 8, a general plane P ∈ P is type 5.

Proof. By Lemma 4.2.14, if x ∈ X is a general point then the space of lines through x

is a smooth (2, 3) complete intersection V ⊂ Pn−2. A plane containing x corresponds

to a line in V .

Choose coordinates so that x = [1, 0, . . . , 0] and the projective tangent plane to X

at x is given by x1 = 0. Write the equation defining X in the form F = x2
0x1 +

x0x1L
′ + x0Q + x1Q

′ + K where the degree of L′, resp. Q and Q′, resp. K, is 1,

resp. 2, resp. 3, and each is a function of (x2, . . . , xn). The equations Q and K cut

out V in Pn−2. By [Kol96] Exercise V.4.10.5, every point of V is contained in a line

contained in V . By [Kol96] Theorem II.3.11, for a general point of V , every line on

V containing this point is a free line. Denote the plane it corresponds to by P . We

need to show that ∂F
∂xi
|P give 6 independent quadrics as i ranges from 0 to n. When

i = 0, ∂F
∂x0
|P = (2x0x1 + Q)|P which will be identically 0. When i = 1, we have

∂F
∂x1
|P = x2

0 + G will give one quadric. To see the five others, look at the restricted

tangent bundle sequence:

0→ TV |l → TPn−2|l → NV/Pn−2|l → 0.

We have an isomorphism NV/Pn−2|l ∼= O(2)⊕O(3). Twisting down by 1, we know that

H1(l, TV |l(−1)) = 0 because l is free. Then the mapH0(l,On−3)→ H0(l,O(1)⊕O(2))

is surjective and is given by the partial derivatives, as in Remark 4.3.4. This implies

that the span of ∂F
∂xi
|P for 2 ≤ i ≤ n in H0(P,OP (2)) is 5 dimensional and does not

contain ∂F
∂x1
|P .

Thus, a general 2-plane on X containing a general point of X is type 5.

We also discuss the subvariety of planes containing a given line.
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Proposition 4.3.15. If n ≥ 8, and if l is a line contained in a type rP plane on X,

then the dimension of the subvariety of P consisting of planes containing l is at most

n− 3− rP .

Proof. This follows from the same long exact sequence as in Proposition 4.3.10.

For a general line though, we have:

Proposition 4.3.16. For every integer n ≥ 3, for every line l contained in X,

the variety in Pn−2 parameterizing 2-planes in X containing l is an intersection of

hypersurfaces of type (1, 1, 1, 2, 2, 3). For 3 ≤ n ≤ 7, a general line is contained in

no 2-plane contained in X. For n ≥ 8, the variety parameterizing 2-planes in X and

containing l is smooth of dimension n− 8.

Proof. We leave it to the reader to compute that the equations defining planes con-

taining a given line l ⊂ X are of the specified type. By Proposition 4.3.5 and

Proposition 4.3.13, the dimension of every irreducible component of the incidence

correspondence

I := {([l], [P ])|l ⊂ P ⊂ X}

is the maximum of 3n − 14 and n − 2. Thus the projection onto F (X) cannot be

dominant for n ≤ 7. For n ≥ 8, every fiber of the projection is nonempty because the

vanishing set in Pn−2 of 6 positive degree homogeneous equations is nonempty. We

denote Ftype I the dense open subset of F (X) parameterizing type I lines. Denote by

Itype I the inverse image of Ftype I in I. By Proposition 4.3.5 and Proposition 4.3.13

again, Itype I is generically smooth and the singular locus (given by type 2 planes)

cannot dominate F (X). By generic smoothness, a general fiber of Itype I is smooth

of dimension dim(I)− dim(F (X)), which is n− 8. Thus, a general fiber is a smooth

complete intersection in Pn−2 of type (1, 1, 1, 2, 2, 3).

Corollary 4.3.17. If n ≥ 8 and l ⊂ X is a general line, then every 2-plane on X

containing l is type 5.
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Proof. By Proposition 4.3.16, the variety of planes on X containing l is smooth of

dimension n− 8. For such a plane P then, H1(P,NP/X(−1)) = 0. Thus the map

H0(P,On−2
P )→ H0(P,OP (2))

is surjective (as in Proposition 4.3.10). It follows that rP = 5.

Remark 4.3.18. Suppose Y ⊂ X ⊂ Pn is a reduced subscheme. We have that

Span(Y )∩X contains Y as a codimension 0 subscheme. Then the “other” subscheme

of this intersection is the residual to Y in Span(Y )∩X. This has a rigorous algebraic

definition, see [Ful98] Section 9.2. Since our argument is mainly a geometric one, we

forego making the discussion of the residual more precise.

Lemma 4.3.19. Suppose X is a smooth degree 3 hypersurface in Pn with n ≥ 8. If

l, l′ ⊂ X are general lines such that l ∩ l′ 6= ∅, then Span(l, l′) ∩X = l ∪ l′ ∪m where

m is a third line on X not equal to l or l′.

Proof. By Lemma 4.2.14, the space of lines intersecting l is at least n − 3 dimen-

sional. By Proposition 4.3.16, the dimension of planes on X containing l is (n − 8)-

dimensional, and so the variety of lines which meet l and are contained in a plane on

X containing l is (n − 6)-dimensional. Thus, if l ∩ l′ is generic, Span(l, l′) * X. We

will argue that generically, Span(l, l′) ∩X consists of three distinct lines.

Consider a projection Pn 99K Pn−2 from l. Blowing up along l and letting X̃ be the

strict transform of X, we obtain

X̃ //

πX

!!CC
CC

CC
CC P̃n

π

��
Pn−2 Ql

oo Tl.oo

Generically, πX is a conic bundle. The discriminant locus Ql of π parameterizes

planes P containing l such that P ∩ X is reducible, non-reduced, or has dimension

2. This last locus, which we denote by Tl, has dimension n − 8. A general line in
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Pn−2 corresponds to a line of planes in Pn containing l which sweep out a P3 ⊆ Pn

containing l. Since P3 ⊂ Pn is general, the resulting surface S = X ∩ P3 is a smooth

cubic surface containing l. The line l meets 10 other lines on S which are divided up

into 5 pairs {m,m′} so that Span(l,m)∩S = l∪m∪m′. Thus, a generic line in Pn−2

meets Ql in five points and at such a point of intersection, the residual to l in P2 ∩X

is the union of two distinct lines, neither of which is l.

In fact, more is true for the residual to a generic intersecting pair (l, l′) in X:

Lemma 4.3.20. With the notation and assumptions as above, for a generic pair (l, l′)

of intersecting lines on X, the residual line m to l ∪ l′ in Span(l, l′) ∩ X lies on a

smooth, (n− 8)-dimensional family of planes on X.

Proof. Denote by Dl ⊆ F (X) the closure of the locus of lines contained in X which

meet l. By Lemma 4.3.19, there is a rational map ι : Dl 99K Dl sending a line l′

to m 6= l, l′ so that Span(l, l′) ∩ X = l ∪ l′ ∪m). This map is injective on the open

set U where it is defined. By Proposition 4.3.16, there is an open set V ⊆ F (X)

such that for each [p] ∈ V there is a smooth (n − 8)-dimensional family of planes

on X containing the corresponding line p. Since l ∈ Dl ∩ V , Dl ∩ V 6= ∅ and thus

Dl∩V ∩U∩ι(U) 6= ∅. The map is a bijection on Dl∩V ∩U and the lemma follows.

We collect facts here about the interaction between lines and planes on a cubic hy-

persurface, specialized to the case of X ⊂ P9.

Proposition 4.3.21. Suppose X is a smooth cubic hypersurface in P9. Let J be

the incidence correspondence in X × F (X)× F (X) which is the closure of the locus

(x, l, l′) such that l∩ l′ = {x}. Let p1 be the projection from J to X. There is an open

set U ⊆ X and an open set V ⊆ p−1
1 (U) such that for each (x, l, l′) ∈ V the following

holds.

(i) For each x ∈ U , no line of type II or plane of type 2 on X contains x. The variety

of lines on X containing x is a smooth type (2, 3) complete intersection in P7, and
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the variety of planes containing x is a smooth five dimensional variety. Moreover, x

is contained in no P4 ⊂ X.

(ii) The variety of planes on X containing l or l′ is smooth and one dimensional 1.

Moreover, no P3 ⊂ X contains l or l′.

(iii) A general point q ∈ l satisfies the condition (i).

(iv) The plane Span(l, l′) is not contained in X and Span(l, l′) ∩ X is the union of

three distinct lines, l ∪ l′ ∪m.

(v) The line m from (iv) is contained in a smooth, one-dimensional family of planes.

Proof. Condition (i) follows from the fact that F (X) and P are generically smooth

and from Lemma 4.2.14. Note that neither type II lines nor type 2 planes can sweep

out an open subset of X. Denote this open set in X by U1. The last statement in (1)

follows from the Appendix in [BHB06] where it is shown that there can be at most

finitely many Pm’s on a smooth degree d ≥ 3 hypersurface in P2m+1.

By Proposition 4.3.16, a general line on X satisfies the first condition in (ii). We

show that a general line through a general point also satisfies this property. Consider

the incidence correspondence I ⊆ X × F (X) × P consisting of x ∈ l ⊆ P with the

projection to X. By generic smoothness, this projection has smooth 6 dimensional

fibers over an open set U2 in X. Set U3 = U2 ∩ U1. The fiber over x ∈ U3 maps to

the space of lines on X through x which is smooth of dimension 5. The fiber of this

map is the space of planes on X containing l and by generic smoothness, a general

fiber is smooth and one-dimensional. A P3 on X containing l would correspond to a

line in the space of planes containing l. By Proposition 4.3.16, the space of planes

containing l is smooth, irreducible, 1 dimensional, and not a line, and so no such P3

can exist. This shows (ii).

Fix a point x ∈ U3. Let Dx be the variety of lines on X through x, and let W be the

open set of Dx corresponding to lines which satisfy (ii). Denote by Y ⊆ X the union
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of the lines corresponding to points in W . Since Y ∩U3 is not empty (it contains x),

a general point of Y also lies in U3. In other words, a general point on a general line

through x ∈ U3 is also in U3. This shows (iii).

The first statement of (iv) follows by the same proof of (ii). The second statement is

that of Lemma 4.3.19.

Condition (v) follows by Lemma 4.3.20.

4.3.1 Planes and Quadric Surfaces

We continue to assume that X ⊂ P9 is a smooth cubic hypersurface. Suppose that

x ∈ X is a general point, σ, l are two general lines containing x, and m is the residual

line to σ ∪ l in Span(σ, l) ∩ X. For any irreducible (but possibly singular) quadric

surface Σ ⊂ X containing σ, l, we have Span(Σ) = P3. By Proposition 4.3.21(ii), this

P3 cannot be contained on X. Then P3 ∩X is a degree 3 surface on X and so must

be the union of Σ and a 2-plane P ⊂ X. Since this intersection must also contain

the line m, and m does not lie on Σ, we must have m ⊆ P . Conversely, for any

plane P ⊆ X which contains m, Span(P, σ, l) = P3 cannot be contained in X and

this P3 ∩X = P ∪ ΣP where ΣP ⊂ X is a degree 2 surface containing σ and l.

Thus we get a bijection (Σ, σ, l)↔ (P,m) between quadric surfaces on X containing

σ, l and 2-planes on X containing m. In the correspondence from plane on X con-

taining m to quadric surface, a priori, it is possible that a degenerate union of two

planes is produced. However for the generic setup, this does not occur.

Lemma 4.3.22. Suppose X ⊂ P9 is a smooth cubic hypersurface. Let (σ, l) be two

general lines containing a general point of X, and let m be the residual line as above.

There is no plane P on X containing m such that Span(P, σ, l) ∩ X is the union of

P and a reducible quadric surface.

Proof. The intersection point q = σ∩l is a general point in X. Thus q is not contained
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in a plane P on X of type rP = 2. Let Dq ⊂ F (X) be the variety of lines on X passing

through q. By Lemma 4.2.14, it is a smooth complete intersection of type (2, 3) in P7.

Suppose that there is a plane P ⊂ X containing m such that Span(P, q) ∩X is the

union of three planes, P, Pσ, and Pl where Pσ ⊃ σ and Pl ⊃ l. The planes Pσ and Pl

must intersect in a line (which of course passes through q). The lemma follows from

the claim that two general points in Dq cannot be connected by a chain of two lines

in Dq.

By Proposition 4.3.16, the space of planes on X containing σ is one dimensional,

and so the space of lines in Dq containing [σ] is also one dimensional. These lines

sweep out a 2-dimensional subvariety W of Dq. As the line w corresponding to

[w] ∈ W contains q, it cannot be contained in any plane on X of type 2. Thus, w

is only contained in planes in X of type rP ≥ 3 and so can be contained in at most

a 3 dimensional family of planes in X by Proposition 4.3.15. The point [w] then

is contained in at most a 3 dimensional family of lines on Dq. Because a general

point of W is contained in a one-dimensional family of lines on Dq, we compute that

the variety {v ∈ Dq|v is connected to a point in W by a line} can have dimension at

most 4. This variety will not contain a general point of Dq (which has dimension 5).

This proves the claim.

Lemma 4.3.23. The above bijection between irreducible quadric surfaces containing

σ, l and planes containing m is an isomorphism of the appropriate components of the

Hilbert scheme. In particular, if the space of planes containing m is smooth and one

dimensional, then the space of irreducible quadric surfaces containing (σ, l) is smooth

and one dimensional as well.

Proof. There is a map φ from the smooth, one dimensional variety of planes containing

m to Grass(4, 10) given by P 7→ Span(P, σ, l). The derivative of this map cannot

vanish at any point, because the plane is must be contained in the intersection with

the P3 it defines and X. Thus this map is a closed immersion.
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Similarly, there is also a map from the space of irreducible quadric surfaces containing

(σ, l) to Grass(4, 10) given by Σ 7→ Span(Σ). Again, the derivative of this map cannot

vanish. Thus the map is also a closed immersion, and so an isomorphism with the

image of φ.

4.4 Deformation Theory

In this section we assume that X ⊂ Pn is a smooth degree 3 hypersurface and that

n ≥ 9.

We will focus on properties of rational curves in the universal line C ∼= M0,1(X, 1).

We have the following diagram

C ev //

π
��

X

F (X)

(4.3)

where ev is the map which sends a pointed line on X to the corresponding point.

A map f : P1 → F (X) corresponds to a diagram

Σ

π′

��

f ′ //

h

%%
C ev //

π
��

X

P1
f // F (X)

(4.4)

where Σ ∼= P1 ×F (X) C is a P1-bundle over P1 and h is the composition of the two

horizontal maps. Conversely, the data of

Σ

π′

��

h // X

P1

such that each fiber of π′ is a P1 and is mapped to a line on X by h determines a

map f : P1 → F (X). Analogously, the data of a map f : P1 → C is equivalent to a
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diagram

Σ

π′

��

h // X

P1

σ

CC

.

Here, each fiber of π′ is a P1 mapped to a line on X, and σ is a section of π′. From

now on we notate π′ by simply π and trust no confusion will result.

Definition 4.4.1. We will call f : P1 → C a family of pointed lines. Such a map

determines and is determined by the tuple (Σ, π, σ) as above.

Remark 4.4.2. The obstruction space to a map g : P1 → X is given by Ext2(g∗ΩX →

ΩP1 ,OP1). Here g∗ΩX → ΩP1 is the relative cotangent complex for g, which will be

denoted by Lg. There is a long exact sequence

0→ Ext0(Lg,OP1)→ Ext0(ΩP1 ,OP1)→ Ext0(g∗ΩX ,OP1)→

→ Ext1(Lg,OP1)→ Ext1(ΩP1 ,OP1)→ Ext1(g∗ΩX ,OP1)→

→ Ext2(Lg,OP1)→ Ext2(ΩP1 ,OP1)→ 0.

We have Ext2(ΩP1 ,OP1) ∼= H2(P1,O(2)) = 0. Then because Ext1(ΩP1 ,OP1) = 0, we

have

Ext2(Lg,OP1) ∼= Ext1(g∗ΩX ,OP1) ∼= H1(P1, g∗TX).

Definition 4.4.3. A family of pointed lines f : P1 → C will be called

1. Section Unobstructed (S.U.) if Ext2(Lev◦f ,OP1) = 0.

2. Fiberwise Unobstructed (F.U.) if Ext2(Lft ,OP1) = 0 for each t ∈ P1.

Remark 4.4.4. By the remark above, the condition S.U. is satisfied if (ev ◦ f)∗TX

splits as
⊕
O(ai) with each ai ≥ −1. Similarly, the condition F.U. is satisfied if each

fiber of π corresponds to a smooth point of F (X).

Definition 4.4.5. A family of pointed lines f : P1 → C will be called
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1. Strongly Section Unobstructed (S.S.U.) if (ev ◦ f)∗TX splits as
⊕
O(ai) with

each ai ≥ 0.

2. Strongly Fiberwise Unobstructed (S.F.U.) if ht : Σt → W is free for each t ∈ P1.

Notation 4.4.6. If f : P1 → C is a family of pointed lines and the map (π, h) is

finite, let Nf be the normal sheaf for the map

(π, h) : Σ→ P1 ×X.

When (π, h) is an embedding, this is a vector bundle. The sheaf Nf is π-flat; see

[dS06] Lemma 7.1.

Lemma 4.4.7. If f : P1 → C is a family of pointed lines satisfying S.F.U., then

R1π∗Nf (−σ) = 0.

Proof. As π is a submersion,

Nf |Σt ∼= h∗tTX/TΣt
∼= NΣt/X

for each t ∈ P1. Since ht(Σt) is a free line on X, H1(Σt,Nf (−σ)|Σt) = 0. This implies

the claim.

Lemma 4.4.8. If [g] ∈M0,0(F (X), 1) is a general element and f : P1 → C is a family

of pointed lines such that [g] = [π ◦ f ] then the family [f ] is S.F.U. If in addition, σ

has self intersection number 1, then the family [f ] is S.S.U.

Proof. An element ofM0,0(F (X), 1) corresponds to a 2-plane P ⊂ X with a marked

point. By Proposition 4.3.14, a general plane on X is type 5, and so contains only

type I lines. As these lines are free, the first claim follows. If σ has self intersection

number 1, then ev ◦ f is also a line on P , so must also be free.

Notation 4.4.9. Denote by Cev the inverse image under π : C → F (X) of all points

in F (X) corresponding to type I lines. Let Tev be the dual of the sheaf of relative

differentials for the map ev.
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Lemma 4.4.10. If f : P1 → C is a family of pointed lines satisfying S.F.U., then

f ∗Tev = π∗(Nf (−σ)).

Proof. We will continue to denote the map Σ→ X by h.

For any [p ∈ l] ∈ Im(f) ⊆ C we have that

TC|[p,l] = Coker
(
H0(l, Tl(−p))→ H0(l, ev∗TX |l)

)
.

This follows from the corresponding sequence for hyper-Ext discussed above and the

fact that H1(l, Tl(−p)) = 0. Thus,

f ∗TC = Coker (π∗Tπ(−σ)→ π∗h
∗TX) .

Twisting down the sequence

0→ Tπ → TΣ → π∗TP1 → 0

by σ and pushing it forward by π, implies that

π∗Tπ(−σ) ∼= π∗TΣ(−σ)

because π∗π
∗(TP1(−σ)) = 0. Using the exact sequence

0→ Tπ → h∗TX → Nf → 0

and computing that R1π∗(Tπ(−σ)) = 0, we conclude that

0→ π∗Tπ(−σ)→ π∗h
∗TX(−σ)→ π∗Nf (−σ)→ 0
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is a short exact sequence. Putting this all together and using R1π∗h
∗TX(σ) = 0 gives

0 0

h∗TX |σ

OO

f ∗ev∗TX

OO

0 // π∗(Tπ(−σ)) // π∗h
∗TX

OO

// f ∗TC //

OO

0

0 // π∗(Tπ(−σ)) // π∗h
∗TX(−σ)

OO

// π∗Nf (−σ)

OO

// 0

0

OO

0

OO

.

Since there is also the short exact sequence

0→ f ∗Tev → f ∗TC → f ∗ev∗TX → 0,

we conclude that f ∗Tev ∼= π∗Nf (−σ).

4.5 Cohomological Arguments and 1-Twisting Sur-

faces

In this section we assume that X is a smooth degree 3 hypersurface in P9. We

will begin by concerning ourselves with diagrams, as in the previous section, of the

form 4.4 where the f(P1) is a line on F (X). The image h(Σ) is a plane on X, and

h : Σ→ h(Σ) is the blow-up of the plane at some point p ∈ P2. A general plane on X

is unobstructed by Proposition 4.3.14. Further, for a general line on X, every plane

on X containing it is type 5 by Corollary 4.3.17. For such a 2-plane P ⊂ X, we have

H1(P,NP/X(−1)) = 0.

The Picard group of Σ has rank 2, and is generated by the class of the exceptional

divisor C of h and the class of a fiber F of π : Σ → P1. We have C2 = −1, F 2 = 0,
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C · F = 1, and h∗(O(1)) = C + F . Cohomology groups on Σ are closely related to

cohomology groups on h(Σ) = P2.

Lemma 4.5.1. Let P = h(Σ) be a 2-plane on X as above. If H1(P,NP/X(−1)) = 0,

then H1(Σ, NΣ/X(−C − F )) = 0.

Proof. Factor the map h as:

Σ
b //

h

$$
P

i // X

where b is the blowup at a point p ∈ P and i is the inclusion map. There is a

commutative diagram

G 0 0

0 // b∗TP2

OO

// b∗i∗TX

OO

// b∗NP2/X

OO

// 0

0 // TΣ

OO

// f ∗Tx

OO

// NΣ/X

OO

// 0

0

OO

0

OO

K

OO

where G is the cokernel and K is the kernel of the obvious sheaf maps. By the snake

lemma, K ∼= G. The support of G is the exceptional curve, and so the cohomology of

G is the same as the cohomology of G⊗ b∗O(−1). Since R0b∗b
∗G = G (this holds for

any locally free sheaf G on P by the projection formula), the Leray spectral sequence

implies

H1(Σ, b∗NP/X(−1)) = H1(P,NP/X(−1))

which is 0 by assumption. Applying the Leray spectral sequence again, we find that

H1(Σ, b∗TP2(−1)) = H1(P2, TP2(−1)) = 0.

This follows, for example, from the long exact sequence in cohomology determined

by the Euler sequence. If π : Σ→ P1 is the projection map, the sequence

0→ Tπ → TΣ → π∗TP1 → 0
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is exact. We claim that H2(Σ, TΣ(−1)) = 0. Indeed, because π∗TP1 = 2b∗(O(1)),

Tπ = 2F , and KΣ = −2b∗O(1)−F , Serre duality implies that both H2(Σ, π∗TP1(−1))

and H2(Σ, Tπ(−1)) are zero. The claim then follows from twisting down the sequence

by O(−1) and considering the associated long exact sequence in cohomology.

From the long exact sequence in cohomology associated to the left vertical short exact

sequence above, we conclude that H1(Σ, C(−1)) = 0. Using this and the long exact

sequence in cohomology associated to the twisted right vertical short exact sequence,

we conclude that H1(Σ, NΣ/X(−1)) = 0 as claimed.

Lemma 4.5.2. Let f : P1 → C be a family of pointed lines such that P = h(Σ) is

a 2-plane on X as above. If H1(P,NP/X(−1)) = 0 and if σ = [C], [C + F ], then

H1(Σ, NΣ/X(−σ)) = 0.

Proof. The latter case is a restatement of Lemma 4.5.1, and so we may assume σ = C.

There is a commutative square

H0(Σ,O(F ))⊗H0(Σ, NΣ/Pn(−C − F ))

��

// H0(Σ, NΣ/Pn(−C))

��
H0(Σ,O(F ))⊗H0(Σ, h∗NX/Pn(−C − F )) // H0(Σ, NX/Pn(−C)).

The left vertical arrow is surjective because H1(Σ, NΣ/X(−C − F )) = 0. The bot-

tom horizontal arrow is surjective because this is multiplication on global sections

H0(Σ,O(F ))⊗H0(Σ,O(2F + 2C))→ H0(Σ,O(3F + 2C)). Thus, the right vertical

arrow surjects and we conclude that H1(Σ, NΣ/X(−C)) = 0.

We have the following commutative diagram of short exact sequences.
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Diagram 4.5.3.

0 0

0 // π∗TP1 // Nf

OO

// NΣ/X

OO

// 0

0 // π∗TP1 // π∗TP1 ⊕ h∗TX

OO

// h∗TX

OO

// 0

TΣ

OO

TΣ

OO

0

OO

0

OO

Lemma 4.5.4. Under the assumptions of Lemma 4.5.2, both groups H1(Σ,Nf (−σ))

and H1(P1, π∗Nf (−σ)) are zero.

Proof. By the long exact sequence in cohomology associated to the top horizontal row

in diagram 4.5.3 twisted down by σ, to prove the first part of the lemma it suffices to

show that H1(Σ, π∗TP1(−σ)) and H1(Σ, NΣ/X(−σ)) are both zero. The latter group

is 0 by Lemma 4.5.2. In either of the cases σ = C or σ = C + F , we compute that

R1π∗π
∗TP1(−σ) = 0 and that H1(P1, π∗π

∗TP1(−σ)) = 0. The desired vanishing then

follows from the Leray spectral sequence.

The second part of the lemma follows from another application of the Leray spectral

sequence. Since H1(P1, π∗N (−σ)) → H1(Σ,N (−σ)) is injective, the claim follows.

Suppose now that [l] ∈ F (X) is a general point and L1 and L2 are two general

(distinct) lines in F (X) containing [l]. Each Li (i = 1, 2) sweeps out a plane, Pi on X

which may be assumed to be type 5 by Corollary 4.3.17. Because the Li are general,

the distinguished points vi ∈ Pi are distinct points on the line l ⊆ X. Denote by Σi

the corresponding projective bundle over Li and bi : Σi → Pi the blowup at the point

vi ∈ Pi. On Σi, Ci will denote the negative curve class and Fi the class of the fiber. If
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l′ 6= l is a line on P1 passing through v2, then σ1 = b−1
1 (l) is a section of π1 : Σ1 → L1

in the curve class |C1 + F1|. We define a section σ2 of π2 : Σ2 → L2 by choosing the

negative section C2, identified with b−1
2 (v2).

The construction described above gives two maps fi : P1 → C (where C =M0,1(X, 1)

as before) such that their respective composition with π : C → F (X) corresponds to

the line Li. The images of fi intersect at the point (v2, [l]). Let L0 = L1 q[l] L2 and

Σ0 = Σ1 ql Σ2 be the obvious gluings. Let σ0 : L0 → Σ0 be the unique section which

agrees with σ1 on L1 and σ2 on L2. This induces a map f0 : L0 → C. Pulling back

the tangent bundle sequence for the map ev : C → X we obtain

0→ f ∗0Tev → f ∗0TC → f ∗0 ev
∗TX → 0.

If ji : Li → L0 is the inclusion map, then for each i = (1, 2) the diagram

Σi

j′i //

πi
��

Σ0

π0

��
Li

σi

II

ji //

fi

77L0
f0 //

σ0

II

C ev // X

commutes. By Lemma 4.4.8, both families of pointed lines are S.F.U. By Lemma 4.4.10,

f ∗0Tev|Li = f ∗i Tev = πi∗Nfi(−σi) by Lemma 4.4.10.

By Lemma 4.5.2, for each i = (1, 2), we have that H1(Li, πi∗Nfi(−σi)) = 0. There is

also an exact sequence

0→ OL2(−[l])→ OL0 → OL1 → 0.

Tensoring this sequence with f ∗0Tev gives the relevant piece of the long exact sequence

in cohomology

H1(L2, f
∗
2Tev(−[l]))→ H1(L0, f

∗
0Tev)→ H1(L1, f

∗
1Tev).

We have H1(L1, k
∗
1Tev) = H1(L1, π1∗N1(−σ1)) = 0. We also have that

H1(L2, f
∗
2Tev(−[l])) = H1(L2, π2∗Nf2(−σ2)(−[l]) = H1(L2, π2∗Nf2(−σ2 − F2))
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by the projection formula. This last group is 0 by Lemma 4.5.4. We conclude that

H1(L0, f
∗
0Tev) = H1(L0, π0Nf0(−σ0)) = 0 and so H1(Σ0,Nf0(−σ0)) = 0 as well.

Proposition 4.5.5. The map f0 : L0 → C is unobstructed. A general deformation of

f0 corresponds to a map fb : Lb → C where Lb ∼= P1. Further, in the diagram:

Σb

πb
��

hb

))SSSSSSSSSSSSSSSSSSS

Lb

σb

II

fb // C

��

ev // X

F (X),

the map Lb → F (X) has degree 2, Σb
∼= P1 × P1 (actually to P(O(1)⊕O(1))), σb is

a ruling of the quadric surface, and H1(Lb, πb∗Nfb(−σb)) = 0.

Proof. Because L1 and L2 are lines through a general point on F (X), they can be

smoothed into a conic; see Lemma 4.2.13. By the same Lemma, the corresponding

ruled surface over a general deformation is P(O(1) ⊕ O(1)). The maps fi are unob-

structed by Lemma 4.4.8. The self intersection of σb must be constant in a flat family.

Since σ2
0 = σ2

1 + σ2
2 = 0, σ2

b = 0 and so σb is a ruling of the corresponding quadric

surface Σb. For a deformation over a 1 dimensional base B, consider the diagram:

Σ0
//

��

Σ̃

��

h′

((RRRRRRRRRRRRRRRRRRR

L0

��

// L̃

φ

��

f̃ // C

��

ev // X

0 // B F (X)

By the preceding discussion, a general deformation of L0 is a pointed family of lines

satisfying S.F.U. By Lemma 4.4.10, f̃ ∗Tev restricts to Nfb(−σb) on a general fiber

φ−1(b). SinceH1(L0, π∗Nf0(−σ0)) = 0 by the preceding discussion, the semicontinuity

theorem ([Har77] III.12.8) implies that H1(Lb,Nfb(−σb)) = 0 for a general b ∈ B.
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The remainder of the section is devoted to proving the following.

Theorem 4.5.6. Let n = 9. A general deformation fb of f0 : L0 → C as in Proposi-

tion 4.5.5 is a smooth quadric surface π : Σ→ P1 on X satisfying H1(P1, π∗Nfb(−σ−

F )) = 0 where σ is a ruling not equal to F and F is a fiber of π. This implies that

these surfaces are 1-twisting (see Appendix 4.8).

On a ruled surface π : Σ → P1 with Σ ∼= P(O(1) ⊕ O(1)) we denote by C the class

of a section and F the class of a fiber. We have the numerical data C2 = F 2 = 0,

C · F = 1, pa(Σ) = 0, c2(Σ) = 4 and KΣ = −2C − 2F (see [Har77] Chapter V).

We list the steps in a (standard) Grothendieck Riemann Roch calculation:

Calculation 4.5.7. We suppose that X is a smooth degree d hypersurface in Pn,

that f : Σ → X is a smooth quadric surface, that N is the twisted normal sheaf on

Σ and that R1π∗(N (−C)) = 0.

Since Tπ = 2C, ch(Tπ) = 1 + 2C and Todd(Tπ) = 1 + C. Also we have

ch(f ∗TX) = (n− 1)[id] + (n+ 1− d)(C + F ) + (n+ 1− d2)[pt].

From 0→ Tπ → f ∗TX → N , we compute

ch(N = (n− 2)[id] + (n+ 1− d)(C + F )− 2C + (n+ 1− d2)[pt]

ch(N (−C) = (n− 2)[id] + (1− d)C + (n+ 1− d)F + (d− d2)[pt].

Applying Grothendieck-Riemann-Roch,

ch(π∗N (−C)) = π∗(ch(N (−C) · Todd(Tπ))

= π∗((n− 2)[id] + (n− 1− d)C + (n+ 1− d)F + (n+ 1− d2)[pt])

= (n− 1− d)[P1] + (n+ 1− d2)[pt].

If d = 3 and n = 9, we see that π∗N (−C) has rank 5 and degree 1. In the situation of

Proposition 4.5.5, we have H1(P1, π∗Nfb(−σb)) = 0. Since π∗Nfb(−σb) is locally free
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on P1, so we may write π∗Nfb(−σb) =
⊕5

i=1O(ai) with each ai > −2 and Σai = 1.

We will argue that the generic quadric surface must have the most positive splitting

type, (1, 0, 0, 0, 0).

Discussion 4.5.8. The variety of lines on F (X) can be identified with a P2 bundle

over P , the variety of planes on X. Since n ≥ 9 the variety P is irreducible and

has the expected dimension by Proposition 4.3.13. This implies that M0,0(F (X), 1)

is irreducible as well. By Proposition 4.3.16, a general line l ⊆ X is contained in a

smooth n− 8 dimensional family of planes. Thus, a general fiber of

ev :M0,1(F (X), 1)→ F (X)

is also irreducible.

This setup allows us to talk about the good component of M0,0(F (X), e) which we

will denote Me, see [dS06] Section 3. The good component is the unique component

whose points parametrize (among others) “smoothed out” configurations of free lines

on F (X). By Lemma 4.2.13), a general point of M2 is a “balanced” conic.

A general point of M2 (indeed Me) corresponds to a free curve, and so the good

component is a generically smooth and reduced stack, but the discussion also applies

to the coarse moduli space. We now lift this discussion to maps to C.

It is well known that there is a cohomology class ψ ∈ H2(C,Z) satisfying the following

property: A map f : B = P1 → C corresponds to a P1 bundle Σ with a section

σ : B → Σ. Then ψ satisfies ψ ·f∗[B] = σ2 (see [HM98] Section 6D, this is the inverse

of the relative dualizing sheaf for π). Let β2 be the unique homology class in H2(C,Z)

such that β2 ∩ ψ = 0 and π∗(β2) = 2.

Lemma 4.5.9. There is a unique component M̃2 ofM0,0(C, β2) dominating M2. This

component is generically smooth (and so reduced).

Proof. Consider a general point f : P1 → F (X) in M2. We “lift” [f ] to a point [g] in

M0,0(C, β2) by choosing a section of Σ→ P1 which has square 0, that is, a line in the
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ruling. There is a short exact sequence

0→ g∗Tπ → g∗TC → g∗π∗TF (X) → 0.

The sheaf g∗π∗TF (X) = f ∗TF (X) has no H1 because [f ] is a smooth point of M2. The

sheaf g∗Tπ = O(σ2) = O also has no H1. Thus [g] is a smooth point of M0,0(C, β2).

These points are contained in at most (so exactly) one irreducible component.

Let M̃2,1 be the unique component of M0,1(C, β2) dominating M̃2. It is generically a

P1 bundle over M̃2 and so is also generically smooth and reduced. Note that a general

closed point of M̃2,1 corresponds to a tuple (π : Σ → P1, h : Σ → X, σ, l) such that

Σ ∼= P(O(1)⊕O(1)), h embeds Σ as a quadric surface on X, σ is a section of π with

σ2 = 0, l is in the class of a fiber, and so both are lines on X.

Let the incidence correspondence I ⊆ F (X)× F (X) denote the closure of the locus

(l, l′) with l∩l′ 6= ∅. The scheme I is generically smooth. This can be shown by noting

that a general fiber of the first projection p1 : I → F (X) and is generically smooth.

There is a map M̃2,1 → I sending a quadric surface with two lines (the section σ

and the second line l) on it to the two lines. Again, the map has generically smooth

generic fiber. So for a generic fiber, the dimension of the fiber is the dimension of

the tangent space to the fiber (at a general point in that fiber). We will argue that a

general fiber is actually smooth and one dimensional so that the tangent space to a

general fiber is also one dimensional.

Proof of Theorem 4.5.6. The map pr : M̃2,1 → I sends (Σ, σ, l) to (σ, l). By Proposi-

tion 4.3.21, (σ, l) ∈ I is general, then Span(l, σ)∩X = l∪ σ ∪m where m is a line on

X not equal to σ or l and is contained in a smooth (n− 8) = 1 dimensional family of

planes on X. Further, we have the correspondence between planes on X containing

m and irreducible quadric surfaces Σ containing σ, l, see Lemma 4.3.23. A general

fiber of pr is thus one-dimensional.
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If f ∈ M̃2 is general, there is a commutative diagram

Σ

π
��

h

))SSSSSSSSSSSSSSSSSSS

P1

σ

II

f // C

��

ev // X

F (X)

.

where Σ is a quadric surface, and σ is a ruling. A global section of f ∗TC corresponds

to an infinitesimal deformation of the map f . A global section of f ∗Tev ↪→ f ∗TC

corresponds to an infinitesimal deformation of f which fixes ev ◦ f(P1); this is a

deformation of the map so that the corresponding deformed quadric surface on X

contains the line σ. Similarly, a global section of f ∗Tev(−p) with p ∈ P1 corresponds

to an infinitesimal deformation of f such that σ is fixed and π−1(p) is also fixed. By

Lemma 4.4.10, f ∗Tev(−p) ∼= (π∗N (−σ))(−p). A global section of f ∗Tev(−p) then

corresponds to a deformation of the closed embedding h : Σ→ X passing through σ

and l where l is the image of a fixed fiber F . By Lemma 4.3.23, there is a smooth one

dimensional family of quadric surfaces containing the pair (σ, l). So if f is general we

compute

h0(P1, (π∗Nf (−σ − F ))) = h0(P1, (π∗Nf (−σ))(−p)) = h0(P1, f ∗Tev(−p)) = 1.

Indeed, because the general fibers of pr is smooth, infinitesimal deformations are

unobstructed and will lift to actual deformations. Considering the possible splitting

types for π∗N (−σ), the only with this property is π∗N (−σ) ∼= O(1) ⊕ O4. This

implies that H1(P1, π∗N (−σ − F )) = 0 as claimed.

Remark 4.5.10. There is a much less round about way to this result. The stack

M0,0(F (X), 1) has dimension 3n− 16 + 2 = 13 as expected and so the dimension of

M2 is 14 + 14−12 + 1 = 17. The dimension of M̃2,1 then is 19, while the dimension of

I is 18. By virtue of being the good component, the map pr : M̃2,1 → I is dominant;

as both are reduced, the generic fiber is generically smooth and one-dimensional; see
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the proof of Corollary 4.7.1. The rest of the proof is as above, as the computation

goes through a general point of the fiber. Nevertheless, the geometric construction of

fixing σ, l and considering planes through the residual line m will become important

in what follows.

Remark 4.5.11. Deforming two lines on F (X) into a conic gives a quadric surface on

X with a choice of ruling. The other ruling gives a different conic on F (X). Suppose

two lines L1 and L2 on F (X) meet at a point [l]. Each line corresponds to a surface

Σi along with a map to X with image a 2-plane on X containing l. There are two

distinguished points on the line l ⊆ X, the images of the exceptional divisors Ei,

call them x1, x2. Suppose the union Σ1 ∪ Σ2 deforms into a quadric surface Q with

rulings A and B. Reducible curve classes on Σ1∪Σ2 which are in E1∪ (E2 +F ) (lines

meeting at x1) or are in (E1 +F )∪E2 (lines meeting at x2) both deform into the same

section class, suppose it is A. The surface Q with the other ruling B degenerates to

Σ1 ∪ Σ2 with the distinguished points x1 and x2 swapped; the exceptional divisor on

Σi is now contracted to x3−i. Thus, QA and QB, the quadric surface considered with

its two rulings, correspond to conics in the same component of maps to C over F (X),

namely the good component M̃2, because they are both “smoothed” out lines (with

corresponding section classes) on F (X).

4.6 The Foliation

As in Lemma 4.5.9, we consider the component M̃r consisting of maps to C which

dominate the component Mr from discussion 4.5.8 and have section class of square 0.

For a general point [f ] of M̃2, corresponding to a map f : P1 → C passing through

a general point y = [p ∈ l] of C, we have f ∗Tev = O(1) ⊕ O4. In particular we have

a distinguished one dimensional subspace of k∗Tev|y corresponding to the positive

direction O(1). If Span(∪O(1)|y) ⊆ Tev|y is all of Tev|y for general y (here the union

is taken over all generic maps in M̃2 passing through y) then we would be able to
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smooth out chains of maps [f ] ∈ M̃2 to a form a map [g] ∈ M̃r corresponding to a

2-twisting surface. The details are filled in by the following sequence of lemmas.

Lemma 4.6.1. Suppose φ1 ∈ Mr1 and φ2 ∈ Mr2 are general maps P1 → F (X) such

that φ1(0) = φ2(0). There is a unique map φ : P1∪0 P1 → F (X) agreeing with φ1 and

φ2 on each component. This map is unobstructed and a general deformation of φ is

contained in Mr1+r2.

Proof. This is the property of the good component. See [dS06].

Lemma 4.6.2. Suppose φ1 ∈ M̃2r1 and φ2 ∈ M̃2r2 are general maps P1 → C such that

φ1(0) = φ2(0). There is a unique map φ : P1 ∪0 P1 → C agreeing with φ1 and φ2 on

each component. This map is unobstructed and a general deformation is in M̃2(r1+r2).

Further, the corresponding surface is a P1 × P1 on X.

Proof. By Lemma 4.6.1, the underlying curves in F (X) deform into curves which

are contained in the good component. By induction, the universal rank 2 bundle

Q on F (X) restricts to be balanced on the image of φi in F (X) (the base case is

Proposition 4.2.13). By Theorem 4.2.11, Q restricts to be almost balanced on a

general deformation of φ. It must be balanced for degree reasons and so the resulting

surface on X is a P1×P1. Since the self intersection of a section class will be constant

in a flat family, and since it is 0 on the special fiber, it is also 0 on a generic fiber.

Thus, it is exactly a section of the resulting ruled surface with self square 0.

For φ ∈ M̃2r general, φ∗Tev =
⊕5

i=1O(ai) with each ai non-negative and at least

one of the ai > 0. This follows from the preceding section when r = 1. The case

r > 1 follows from the fact that general φ ∈ M̃2r is a deformation of chains of

lower degree maps with this property. Define Pos(φ) :=
⊕r

i=0O(ai) ⊆ φ∗Tev to be

the subbundle consisting of those summands which have ai strictly greater than 0.

Define mφ = rank(Pos(φ)) to be the positive rank of φ. Let m = maxφ∈M̃2r
mφ where
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the maximum is taken over all positive values of r and all maps φ where the generic

splitting type occurs.

There is an open set U2r of M̃2r where for each map φ ∈ U , φ∗Tev has constant

splitting type (this follows from the semicontinuity theorem, [Har77] III.12.8) . Fix

w to be the smallest integer where mφ = m generically on U2w. That is, where

the positive rank no longer increases upon gluing together further free curves and

smoothing them out. We wish to show that m = 5, the maximal possible value. If

so, then for a general φ ∈ M̃2w, we will have H1(P1,Nφ(−σ− 2F )) = 0. This implies

that the corresponding surface Σφ is 2-twisting.

The “directions” that the positive summands point in control positive summands of

the smoothed out curves in the following sense.

Proposition 4.6.3. With the notation in Lemma 4.6.2, suppose

Span(Pos(φ1)|0, Pos(φ2)|0)

has dimension greater than mφ1 and mφ2. Then for a general deformation φ of φ1∪φ2,

mφ > m′ = max(mφ1 ,mφ2)

Proof. Denote the domain of φi by Ci ∼= P1. Let π : C → B be a general deformation

of φ1 ∪ φ2. This will be a diagram of the form

C1 ∪ C2

��

// C
f //

π

��

C ev // X

0 // B

.

We may assume that π has two disjoint sections D1 and D2 meeting the central fiber

only at a single point of C1 and C2 respectively (see the proof of Theorem 4.2.11).

Denote the restriction of f ∗Tev(−D1 − D2) to C, respectively to C1, C2, by E, re-

spectively by E1, E2. Let i1 : C1 → C0 and i2 : C2 → C0 be the inclusion maps. The

short exact sequence

0→ E → i1∗E1 ⊕ i2∗E2 → E|0 → 0
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gives rise to the long exact sequence in cohomology

0 // H0(C,E) // H0(C1, E1)⊕H0(C2, E2)
a // Tev|0 // H1(C,E) // 0 .

Here the last 0 follows because for each φi ∈ M̃rj (with the appropriate rj) the

corresponding bundle φ∗iTev is non-negative. By assumption, the map a has rank

greater than m′ and so h1(C,E) < n −m′. By the semicontinuity theorem ([Har77]

III.12.8), for a general b ∈ B, h1(Cb, f
∗Tev(−D1 −D2)|Cb) < n −m′ as well. But on

a general fiber, f ∗Tev(−D1 − D2)|Cb ∼= f ∗b Tev(−2). As the map fb : Cb → C is free,

f ∗b Tev
∼= ⊕O(ai) with each ai ≥ 0. But then we see that the number of i’s so that

ai > 0 must be greater than m′, as claimed.

We now define a subsheaf of Tev which encodes these positive subspaces. For a general

point p ∈ C, define D(p) = Spanφ∈M̃2r,φ(0)=p(Pos(φ)|0). Note that this makes sense on

an open set U of C because a curve passing through a general point of C is free and

on a (possibly smaller) open set U ′, the curves φ passing through p ∈ U ′ will satisfy

that Pos(φ)|p has the generic splitting type.

In fact, we can set up the following more general situation.

Situation 4.6.4. Let W be a smooth projective variety, f : P1 → W a free morphism,

and E a vector bundle on W such that f ∗E is globally generated. The point [f ]

is a smooth point of the mapping space Hom(P1, X), so is contained in a unique

irreducible component, M1. We may define a sequence of components Mi for i > 1

in the following way. Let g : C → W be a map from a nodal curve such that

each component Cj of C is parameterized by a smooth point of M1. Because the

Cj are free curves on W , the map g is also a smooth point of the moduli space,

may be deformed to a map from an irreducible curve (which is also free), and so

defines a unique component Mi. Over an open set Ui ⊂ Mi, for each map h ∈ Ui,

the pullback h∗E has constant splitting type (this follows from the semicontinuity

theorem). We may define the positive rank for this splitting type as above. We may
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define F (p) analogously to the definition of D(p) in the preceding discussion. By

Proposition 4.6.3, this is well-defined because as we take curves in all Mi through

general p, the span of the positive directions must stabilize.

Proposition 4.6.5. In situation 4.6.4, there is a subsheaf F of E and an open set

U ⊂ W such that for p ∈ U , F|p = F (p). In fact, F restricts to a vector bundle on

some open set of W whose complement has codimension at least 2. In particular, the

D(p) glue together to give a subsheaf D of the relative tangent bundle Tev having this

property.

Proof. A proof can be found in [She09], Proposition 2.5. Note that the proof given

there is not phrased in this generality, but it readily extends. We sketch the steps here.

We may find some M = Mj such that for a general [h] ∈ M , the map corresponding

to h has maximal positive rank. By shrinking M , we may assume that the splitting

type for h∗E is constant over M . The universal map π : M × P1 → W is smooth,

denote U the image (which is open). Denote the positive subbundle of π∗E by G

and let Z = M × P1. Descent data on G from the descent data on π∗E may be

constructed. Indeed, for the scheme Z ×X Z with projections p and q to Z, there is

an isomorphism p∗G ∼= q∗G because the positive subspaces are well defined. That this

isomorphism satisfies the cocycle condition follows from the same fact. By faithfully

flat descent, there is a subbundle F of E over U , that pulls back to G via π.

The bundle F on U determines a section of Gr(m,Tev) over U which extends to an

open set with complement of codimension at least 2 because the Grassmannian is

projective. Denote again F the smallest coherent sheaf such that restricts to this

bundle over U . This F satisfies the claim.

In the situation where D is a subsheaf of the relative tangent bundle, we may consider

the restriction of the Lie bracket.

Lemma 4.6.6. The sheaf D above is integrable, that is, [D,D] ⊆ D.
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Proof. Again see [She09], Proposition 2.6. Restrict D to the open set U where it is a

vector bundle. Consider the following diagram,

D ⊗C D
[ , ] //

&&MMMMMMMMMMM Tev // Tev/D

D ⊗OC D

p
99rrrrrrrrrr

.

We form M as in the proof of Proposition 4.6.5. For a general φ ∈ M , we have

φ∗Tev = ⊕mi=1O(ai) ⊕ O5−m with each ai > 0. Let π be the map M × P1 → C, then

we have π∗D⊗OC D =
⊕
O(ai + aj) and π∗(Tev/D) = O5−m. The map p pulled back

by π corresponds to a map ⊕
O(ai + aj)→ O5−m.

Since each ai > 0, π∗p = 0 and by a descent argument, we have p = 0. This implies

that D is closed under the Lie bracket, as was to be shown.

Lemma 4.6.7. If φ ∈ U2w ⊆ M̃2w is general, then φ(P1) ⊆ U and φ∗D is ample.

Proof. For the first statement either note that
⋃
φ∈U2w

φ(P1) is open in C and contained

in U , or that the free rational curves can be deformed to miss any fixed codimension

two locus; see [Kol96] II.3.7. The last statement is clear, for a bundle to be ample on

P1 simply means it is the direct sum of ample line bundles, which it is by construction

here.

The existence of D ⊆ TC gives a holomorphic foliation by the holomorphic Frobenius

Theorem (see [Voi07], Section 2.3). The following theorem of Kebekus-Solá-Toma

[KSCT07] supplies an algebraic analogue:

Theorem 4.6.8. (See [KSCT07]) Let X be a complete normal variety and C ⊆ X

a complete curve contained entirely in Xreg. Suppose F ⊆ TX is a foliation which is

regular and ample on C. Then, for every point x ∈ C, the leaf through x is algebraic.
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Remark 4.6.9. The main result of [KSCT07] is that the leaves of the foliation are

rationally connected, a fact we will not use. At the heart of the algebraicity argument

is a result due to Hartshorne related to formal neighborhoods of subvarieties.

Theorem 4.6.10. The leaves of the foliation given by D on a (possibly different)

open set U ⊆ C are algebraic. Further, there is a projective variety Y fitting into a

commutative diagram

C ⊇ U

ev

��

τ

##GG
GG

GG
GG

G

X Y.
ψ

oo

Over U , the relative tangent bundle Tτ agrees with D.

Proof. Changing notation slightly, denote by V ⊆ C be the largest open set where

D|p = D(p). By Lemma 4.6.7, the open set U =
⋃
φ∈U2w

φ(P1) is contained in V and

for each φ ∈ U2w, φ∗D is ample. By Theorem 4.6.8, on the open set U , every leaf of

D is algebraic. We have a map (of sets for the moment),

U → Chow(C), u 7→ (Leaf through u)

We claim that Y , the image of this map, satisfies the statement of the theorem.

Consider the incidence correspondence IU ⊆ U × C given by {(u, x)|x ∈ Leaf(u)}.

The projection p2 : IU → U is proper and generically smooth, so gives rise to a map

τ : U ′ → Chow(C) where U ′ ⊆ IU is the smooth locus of p2; see [Kol96] I.3. It is

always the case that Im(τ) is constructible, so there is an open subvariety Y0 which

is dense in its closure. Let U ′′ = τ−1(Y0). As Chow(C) is projective and we are in

characteristic 0, Y0 embeds in a smooth projective variety, Y . The morphism τ is a

rational map C 99K Y which is defined on U ′′. Two points in U ′′ have the same image

in Y if and only if they lie on the same leaf (the leaves of a foliation are disjoint)

which implies that D|U ′′ equals the relative tangent bundle Tτ . Since C is projective,

the map extends over an open set whose complement has codimension at least 2 in

C.
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There is at least a map of sets ψ : Y0 → X sending all points in Leaf(u) to ev(u). Let

f ∈ C(X) be a rational function on X. The pullback ev−1(f) ∈ C(C) is a rational

function on C. By construction, this function is constant on the fibers of U ′′ → Y0. It

then comes from a rational function f ′ ∈ C(Y ). In other words, we have an inclusion

of fields C(X) ⊂ C(Y ) and so a dominant rational map ψ : Y 99K X. By replacing

Y with a blowup, we may as well assume this map is everywhere defined.

We can describe which points in the fibers of ev are contracted by τ . Let y ∈ C and

let x1 and x2 be two general points in the fiber of ev over x ∈ X. Suppose there exist

curves α1, α2 ∈ M̃2r such that α1(0) = x1, α2(0) = x2, ev(α1(P1)) = ev(α2(P1)) and

α1(∞) = α2(∞) = y, then the points x1 and x2 will have the same image under τ .

This is made more precise below.

4.7 2-Twisting Surfaces

We continue to assume that X ⊂ P9 is a smooth cubic hypersurface and keep the

notation of the previous sections. Pick a general point y = [q, l] ∈ C, a general line

σ through q ∈ X, and a general point x on σ. Denote the residual line to σ ∪ l

in Span(σ, l) ∩ X by m. By Lemma 4.3.23, the irreducible quadric surfaces on X

containing σ ∪ l are in bijection with the 2-planes on X containing m. For each

quadric surface Q which contains σ ∪ l, there is a corresponding line lQ through x.

This lQ is in the same ruling as l if Q is smooth, or it is σ if Q is a cone over a conic.

Because n = 9 we get a one parameter family in ev−1(x). Denote this curve by Cy,σ,x.

This construction is well-defined by Lemma 4.3.22.

For a fixed general x ∈ X, for each (general) choice of σ, q, l (where q is the point

σ ∩ l) we get a complete curve in ev−1(x). Two different choices of the data (σ, q, l)

will give rise to distinct curves. There is a 5-dimensional choice for the line σ ⊂ X

containing x, a 1-dimensional choice of q ∈ σ and a 5-dimensional choice for the



CHAPTER 4. CUBICS AND RATIONAL SIMPLE CONNECTEDNESS 122

line l ⊂ X containing q. If everything is chosen generically, then Proposition 4.3.21

describes the behavior.

Lemma 4.7.1. With the notation as above, there is an 11-dimensional family of

complete curves in ev−1(x) ⊂ C for a general point x ∈ X.

Proof. The dimension follows from the preceding discussion since everything is well

defined generically by Proposition 4.3.21. The map π : M̃2,1 → I in the proof of

Theorem 4.5.6 is dominant. To see this, note that M2 is the component consisting

of free conics on F (X), so that there is a conic passing through a general [l] ∈ F (X)

where the line l contains a general point x ∈ X. Choosing the section l′ containing

x of the corresponding quadric surface, we obtain a curve in M̃2. By Remark 4.5.11,

we may consider l as the section and l′ as the “other” line. Since this surface is 1-

twisting, a general deformation of the map φ : P1 → C corresponding to this surface is

unobstructed even when we impose the condition that the section l is fixed. Thus, our

quadric surface can be made to contain a generic line l and a generic line l′ meeting

l. This shows π is dominant.

Different sets of data (σ, p, l), (σ′, p′, l′) cannot determine the same curve. Suppose

the contrary. If σ 6= σ′ then each quadric surface containing σ and l would also have

to contain σ′. Since the quadric surface is determined by the P3 it spans, there cannot

be 2 quadric surfaces containing (σ, l, σ′) as they would both span the same P3, and

so be equal. If l 6= l′, the same argument applies.

Restricting the commutative diagram in Theorem 4.6.10 to the fiber over a general

point x ∈ X, we obtain the diagram

ev−1(x)

ev

��

τ

''NNNN

Yx

ψvvnnnnnnnnn

x .

(4.5)
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The map τ is still defined on some open set Ux ⊆ ev−1(x) whose compliment has

codimension at least 2. The curves Cy,σ,x form an 11 dimensional family as above and

each one is parallel to the foliation D of Theorem 4.6.10. This property is explained

in the following lemma.

Lemma 4.7.2. With the notation as above, for a general curve Cy,σ,x, the image of

the restriction τ : U ∩ Cy,σ,x → Yx is a single point.

Proof. By Proposition 4.3.21, for a general choice of σ and of l, the variety B of planes

through the residual line is smooth and one dimensional. Each b ∈ B induces a map

P1 → C corresponding to the quadric surface residual to the plane P2
b ⊆ Span(P2

b , x).

This corresponds to a diagram of the form

E

��

h

''OOOOOOOOOOOOOO

E

s

II

g //

��

C ev // X

B .

Here E → B is a P1-bundle and E→ B is a (P1×P1)-bundle. The map h ◦ s = ev ◦ g

is constant on fibers of π, the image is the line σ. This implies that the bundles E

and E are trivial. The curve Cy,σ,x is identified with g−1(ev−1(x)). The differential

dg : TCy,σ,x → g∗TC factors through g∗Tev as the curve Cy,σ,x is contracted to a point

by ev. Let UC = g−1(U ∩ Cy,σ,x). Then the map dg : TUC → g∗Tev and we claim this

map factors through D|U .

Choose c ∈ UC and let b be its image in B. There is a Kodaira-Spencer map TB,b →

H0(Eb, g
∗TC) associating to a tangent direction in B the corresponding deformation

of the map g (restricted to the fiber). By the previous paragraph, this map factors

through H0(Eb, g
∗Tev). Further, it actually factors through H0(Eb, g

∗Tev(−[l])) where

[l] ∈ Eb is the point mapping to [l] ∈ C. This point corresponds to the line l ⊆ X which

is contained in every quadric surface in the family. By the proof of Theorem 4.5.6,
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g∗Tev(−1) has splitting type O ⊕ O(−1)4. So the deformation of Eb is given by the

positive part of Tev (when restricted to the curve). This is exactly what it means for

dg|UC to factor through D|U by definition of the foliation D. As D|U is the vertical

tangent bundle of the map from τ : U → Y , the curve Cy,σ,x is contracted by τ at

least where the map is defined.

With so many (possibly affine) curves on U ⊆ ev−1(x) being contracted, one would

hope that there is an actual homology class (i.e. a complete curve) contracted by τ

and that this will force the map τ to be equal to the map ev. Indeed, this is how the

proof will proceed.

Proposition 4.7.3. With notation as above, a generic curve Cy,σ,x is contained in

Ux.

Before proving this statement, we study further the interaction between lines and

planes contained in X.

Lemma 4.7.4. Let X ⊂ P9 be a smooth cubic hypersurface and let x ∈ X be a general

point in the sense of Proposition 4.3.21 (i). Suppose that w is any point on any line

on X through x. Then the space of lines through w is a 5 dimensional (2, 3) complete

intersection in P7.

Proof. Choosing appropriate coordinates, we may assume that w = [1, 0, . . . , 0] and

that the projective tangent plane to X at x is defined by x1 = 0. Then we may write

the equation defining X as

x2
0x1 + x0x1L

′(x1, . . . , x9) + x0Q(x2, . . . , x9) + x1Q
′(x2, . . . , x9) +K(x2, . . . , x9)

where the degree of L′, respectively Q, Q′ and K is 1, respectively 2, 2 and 3. The

equations Q and K define Dw scheme theoretically in P7. The equation K cannot be

identically 0, otherwise X would be singular. If Q is identically 0, then w is a conical

point; i.e., X contains a cone over a 6 dimensional variety with vertex at w. Each
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line through a conical point must be type II. Indeed, if some line through w were

type I, then the tangent space to Dw at that line would be five- dimensional. By the

assumption that w lies on a line through x, there is a type I line through w. Thus

Dw contains a component of dimension 5 and so Q is not identically 0.

The variety Dw is, a priori, the union of two varieties Z5 ∪Z6 where dim(Zi) = i. We

will argue that Z6 is actually empty. The degree of Z6 is at most 3, and it cannot

be 3 because Q is not identically zero. If the degree were 1, then there would be a

linear P6 worth of lines on X through w which would correspond to a P7 on X which

cannot occur since X is smooth. If the degree were 2, then there would be a linear

form L′ such that K = QL′. The variety Q contains a positive dimensional family of

linear P3’s (see [GH94] Chapter 6.1) and these would sweep out a positive dimensional

family of P4’s on X which is impossible according to the appendix of [BHB06]. Thus,

Z6 is empty. We conclude that Dw is a five dimensional (2, 3) complete intersection

in P7 (but possibly singular).

Lemma 4.7.5. Let D ⊂ P7 be a (2, e), irreducible complete intersection with e ≥ 2.

If D contains no linear P4 and no one dimensional family of linear P3s, then there

cannot be a 3 dimensional family of lines through a general point of D.

Proof. As lines on D are the same as lines on Dred, we may assume that D is reduced.

Suppose there is a 3 dimensional family of lines through a smooth point of ξ ∈ D. As

lines are determined by their tangent directions, the projective tangent plane P = P5

to D at ξ contains a cone over a threefold. Call this cone C (it is also contained in

D).

Consider the quadric Q which cuts out D. Suppose that P is not contained in Q,

so that C is contained in P ∩ Q. Because C is irreducible and four dimensional, it

must be a component of this intersection. The intersection is a quadric, so that C is

either linear or equal to the quadric. But C cannot be linear because then it would

be a P4 contained in D. The cone C can also not be a quadric in P5 because such a
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cone contains at least a 3 dimensional family of P3s (see [GH94], Chapter 6.1). This

implies that P must be contained in Q.

Since P is contained in Q and Q is not reducible, the rank of Q must be either 3, 4,

or 5. Let k ∈ (3, 4, 5). When the rank of Q is k, then Q is the join of a T = P7−k

with a smooth quadric in Pk−1 (disjoint from P ). In each case, the only linear P5s on

Q are joins of T with the correct dimensional linear spaces contained in the smooth

quadric. Let ψ be projection away from T ; it is a rational map from D to the smooth

quadric. The derivative dψ at ξ has rank k − 3. Indeed, the tangent plane P must

contain the linear space ψ−1(ψ(ξ)). The image of D then has dimension k− 3. Since

D is contained in ψ−1ψ(D), it must be equal to it because this inverse image is 5

dimensional. If k = 3 then D = P5. If k = 4 then D contains a P4, the join of T = P3

with any point in ψ(D). If k = 5 then D contains infinitely many P3s, the join of

T = P2 with any point in the image of ψ(D), which has dimension 2.

Thus each value of k gives a contradiction to our assumptions. As these are the only

possible cases, there cannot be a 3 parameter family of lines through a general point

of D

Proposition 4.7.6. Let X be a smooth cubic hypersurface in P9. If x is a general

point on X and w is an arbitrary point on a an arbitrary line containing x, then there

is no 7 dimensional family of 2-planes on X through w.

Proof. A plane through w corresponds to a line on Dw, the space of lines through

w. As above, since lines on Dw are in one to one correspondence with lines on

(Dw)red, we may suppose Dw is reduced. By Lemma 4.7.4 above, the variety Dw is

a 5 dimensional complete intersection in P7. Suppose by way of contradiction that

there is a 7-dimensional family of planes through w and so a 7-dimensional family

of lines on Dw. Call this family M , and the universal line over it U . We have the
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diagram:

U
f //

π

��

Dw

M

where the dimension of M is 7, the dimension of U is 8, and the dimension of Dw is 5.

IfDw is irreducible, then by Lemma 4.7.5, the fiber over a general point ofDw can have

dimension at most 2. Indeed, Dw can contain no P4 and no one dimensional family

of P3s because X can contain no P5 and only finitely many P4’s (see the appendix of

[BHB06]). The preimage of the smooth locus, f−1((Dw)sm) can have dimension at

most 7 then (so is 6 dimensional inside M). Then the 7 dimensional family of lines

must be completely contained in the singular locus of Dw. Call V = ((Dw)sing)red.

Note that dim(V ) ≤ 4 and V is generically smooth. There can be no 3 dimensional

family of lines through a general point v ∈ V . If there were, then V would have to

contain the entire tangent plane (a P4) to v at V , which is a contradiction. Then the

7 dimensional family would have to be contained completely in the singular locus of

V , which is absurd. This contradiction proves the proposition in this case.

If Dw is reducible, then consider the form of the defining equation for X as in the

proof of Lemma 4.7.4. The equation for K can not factor because then X would

contain a singular point. Thus the equation for Q must factor as the product of two

distinct linear equations; that is, Dw is the union of 2 cubic 5-folds. We leave it to

the reader to show that if a (possibly singular) cubic fivefold contains a 3-dimensional

family of lines through a general point then it must contain a P4 or a one dimensional

family of P3’s. The proposition follows.

Proof of Proposition 4.7.3. If Z ⊆ ev−1(x) denotes the complement of Ux, then dim(Z)

is at most 3. Suppose each curve Cy,σ,x meets Z. Denote by CM the universal curve
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over M , the variety parameterizing the curves Cy,σ,x. We have the diagram

CM
f //

π

��

ev−1(x)

M .

Since every curve meets Z, f−1(Z) maps dominantly onto M . Then f−1(Z) must

have dimension at least 11. Suppose that dim(Z) = 3. Then either, i) there is an 8

dimensional family of curves passing through the general point of Z, ii) there is a 9

dimensional family of curves passing through the general point of some surface in Z,

iii) there is a 10 dimensional family of curves passing through the general point of a

curve on Z, or iv) there is some point on Z through which each curve parameterized

by M passes.

Each point on such a curve Cy,σ,x corresponds to a choice of (σ, l) and a plane contain-

ing the residual line m. If the curve Cy,σ,x passes through z ∈ Z then the correspond-

ing quadric surface contains the line lz 3 x (where lz denotes the line corresponding to

the point z ∈ Z). To each curve Cy,σ,x meeting z, the plane P ⊇ m meets the line lz

since they are contained in the same P3. The line cannot be contained in the plane be-

cause P does not contain x. This describes the map {C ∈M |C 3 z} → {P |P∩lz 6= ∅}

from curves meeting the point z to planes meeting the line lz. This map can have

at most one dimensional fibers. Otherwise the entire P3 = Span(x, P ) would be con-

tained in X and would contain a general line σ ⊆ X contradicting Proposition 4.3.21.

Note that the fibers will be one dimensional: At a smooth quadric surface containing

(σ, l, lz) the l move in a one dimensional family on the quadric without changing the

surface or the corresponding plane (though the line m will “swivel”).

If a point z ∈ Z is contained in an n dimensional family of curves in M , then the line

lz must intersect an n − 1 dimensional family of planes contained in X. The claim

then follows by a careful analysis of planes and lines contained in X. By part (i) of

Proposition 4.3.21, x is contained in a 5 dimensional family of planes in X. By a

semi-continuity argument, for a line l containing x, the general point of l must also
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be contained in a 5 dimensional family of planes. Since lz contains a general point

(namely x) to say that lz meets an m > 5 dimensional family of planes is to say there

must be some point on lz which is contained in an m dimensional family of planes

(since by the above discussion, a general point on lz is contained in a 5 dimensional

family).

By Proposition 4.7.6, there is no line containing x which meets a 7 dimensional

family of planes. The proposition follows because for dim(Z) ≤ 3 and the dimension

estimates above, there must be some point z ∈ Z such that the corresponding line lz

is contained in an 8 dimensional family of curves in M .

Now that a complete curve is contracted by τ , it is not difficult to show that τ

contracts all of ev−1(x) = Dx.

Lemma 4.7.7. For a general x ∈ X, we have that Dx satisfies H2(Dx,Z) = Z and

H2(Dx,Z) = Z.

Proof. Since x is generic, we have by Proposition 4.3.21 that Dx is a (2, 3) complete

intersection in P7. By the Lefschetz hyperplane theorem, the restriction map on

cohomology H2(P7,Z) → H2(Dx,Z) is an isomorphism. As H2(P7,Z) = Z, the

lemma is proved. The same proof works in homology.

Recall that U ⊆ ev−1(x) = Dx is the largest open subset where the map τ is defined.

Call Z the complement of U in X. Recall that dim(Z) ≤ 3.

Proposition 4.7.8. Suppose V is a smooth complete variety and Z is a complete

subvariety of codimension at least 2. Denote by U = V − Z the complement. Then

H2(V,Z) → H2(U,Z) is an isomorphism. Similarly H2(U,Z) → H2(V,Z) is an

isomorphism.

Proof. Define Z1 = Z −Zsing, V 1 = V −Zsing. Note that U = V 1−Z1. We have the
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Gysin sequence in cohomology whose relevant portion looks like:

H2
Z1(V 1)→ H2(V 1)→ H2(U)→ H3

Z1(V1)

(all coefficients are understood to be Z). As the codimension of Z1 in X is c ≥ 2

we have that H2
Z1(V 1) = H2−2c(Z1) = 0 and H3

Z1(V 1) = H3−2c(Z1) = 0 so that

H2(V 1) ∼= H2(U). Now set Y 2 = Zsing and let Z2 = Y 2 − Y 2
sing and V 2 = V − Y 2

sing.

We repeat the same argument above to get that H2(V 2) ∼= H2(V 1). Repeating the

argument implies that H2(V ) ∼= H2(U) (eventually, the set being thrown away has

dimension 0).

Thus, H2(U) has rank 1. By the homology exact sequence of a pair and the Thom

isomorphism in homology, the same argument shows that H2(U) ∼= H2(V ).

Corollary 4.7.9. For U ⊆ Dx as above, we have that H2(U,Z) = Z and H2(U,Z) =

Z.

Proposition 4.7.10. For a general x ∈ X as in Proposition 4.3.21, the map τ

restricted to Ux → Yx coincides with the map ev, that is, Yx is a point.

Proof. By Corollary 4.7.9 we know that H2(U,Z) = Z. By Proposition 4.7.3, we have

that some complete curve C is contracted by τ . This curve determines a homology

class which we may write as d ·H for some d > 0 where H is the positive generator

of H2(U,Z). Of course, every homology class can be written as e ·H. Clearly then,

every multiple of H is also contracted by τ , and τ must map all of Ux to a point.

Theorem 4.7.11. Every smooth degree 3 hypersurface X ⊆ P9 admits 2-twisting

surfaces.

Proof. The vertical tangent bundle for τ : C 99K Y is the sheaf D (at least on the

open set U where the map τ is defined). By Proposition 4.7.10, the map τ agrees

with ev over an open set of X. From this fact, we see that D has rank 5. The sheaf

D was constructed from positive parts of the pullback of Tev by maps φ : P1 → C
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where φ ∈ M̃2r. Thus, there must be some map φ ∈ M̃2r where φ∗Tev = π∗(Nφ(−σ))

is ample. In other words, we can write π∗Nφ(−σ) =
⊕
O(ai) with each ai > 0. From

this we conclude that H1(P1, π∗(Nφ(−σ))(−2)) = H1(P1, π∗Nφ(−σ − 2F )) = 0. By

the Leray spectral sequence, H1(Σ,Nφ(−σ − 2F )) = 0. The theorem follows.

Corollary 4.7.12. Every smooth degree 3 hypersurface in Pn where n ≥ 9 admits 1

and 2 twisting surfaces.

Proof. We proceed by induction on n where the base case is Theorem 4.5.6 and

Theorem 4.7.11. Suppose Y ⊆ Pn with n > 9 is a smooth degree 3 hypersurface.

Let X be a smooth hyperplane section of Y . By induction, X admits 1-twisting

and 2-twisting surfaces. By Lemma 4.8.4, X admits m-twisting surfaces then for all

values of m. Choose m large so that Σ ∼= P(O(a) ⊕ O(a)) where a > 2 and Σ is

m-twisting. From the sequence of inclusions Σ ⊆ X ⊆ Y we have the usual normal

bundle sequence which fits into the following diagram,

0 0

0 // NΣ/X

OO

// NΣ/Y

OO

// NX/Y |Σ // 0

0 // NX //

OO

NY

OO

// NX/Y |Σ // 0

π∗TP1

OO

π∗TP1

OO

0

OO

0

OO

.

Here NX and NY denote the corresponding relative normal bundles for Σ ⊆ X and

Σ ⊆ Y . Since Σ ⊆ X is m-twisting, it is also 1 and 2 twisting (Lemma 4.8.4). Note

that NX/Y |Σ ∼= OΣ(1) ∼= O(C + aF ) where C is the section of minimal degree (i.e.

C2 = 0). We have that H1(P1, π∗(NX(−C − kF )) = 0 when k = 1, 2 because Σ is k-

twisting on X. Also one checks immediately that H1(P1, π∗O((C+aF )−C−kF )) = 0
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for k = 1, 2 and so H1(P1, π∗(NX(−C − kF )) = 0 for k = 1, 2 as well. Note also that

R1π∗(NX(−C−kF )) = 0. From the long exact sequence in cohomology associated to

the push forward of the middle row, we conclude that Y also admits 1 and 2 twisting

surfaces.

Theorem 4.7.13. Main Theorem

Every smooth degree 3 hypersurface is Pn for n ≥ 9 is strongly rationally simply

connected.

Proof. Let X ⊂ Pn be a smooth cubic hypersurface. We will explain how the exis-

tence of 1 and 2 twisting surfaces on X implies that X is strongly rationally simply

connected. The methods are taken from the paper [dS06], but the relevant results in

their manuscript are scattered throughout the paper making it difficult here to site

just one result.

Remark 4.7.14. The moduli space M0,0(X, e) of rational curves on a cubic hyper-

surface is actually irreducible, see [CS]. However, these spaces of rational curves on

degree d hypersurfaces for d > 3 can be reducible, but there is always a canonically

defined component which in some sense behaves functorially. Because the space of

lines through a general point on X (at least if X ⊂ Pn is a smooth degree d hyper-

surface satisfying n− 2 ≥ d) is irreducible, there is a canonically defined component

Me ⊂M0,0(X, e) as discussed in [dS06] Section 3. This component will be referred to

as the good component; for its properties, see the location cited. Informally, it is the

unique component which parameterizes smoothed out configurations of free curves on

X, as well as multiple covers of free curves. Denote by Me,n ⊂M0,n(X, e) the unique

component dominating Me. We will continue with the outline of the proof assuming

only the existence of the good component, to remain as general as possible.

To remain consistent with the notation of [dS06], a ruled surface Σ on X will be said

to have M -class (e1 · α, e2 · α) if the fibers are parameterized by points of the good
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component Me1 and the section of minimal self intersection (classically, the directrix)

is parameterized by a point of the good component Me2 . By Theorem 4.5.6 there is a

one twisting surface on X and since both fibers and minimal section are mapped to

lines (the space of which is irreducible), then these surfaces have M -class (1 ·α, 1 ·α).

By Lemma 4.8.4, then, there are 1-twisting surfaces on X of M -class (e1 · α, e2 · α)

for all e1, e2 ≥ 1. By Theorem 4.7.11, there is a number e0 = e0(n) (possibly large)

such that there is a 2-twisting surface Σ ∼= P1 × P1 of M -class (1 · α, e0 · α). To see

that this is the case, return to the construction of these surfaces. They were proved

to exist by considering smoothed out configurations of glued together conics in the

Fano scheme of lines. So fibers of the resulting surface are certainly mapped to lines

on X. The minimal section class of Σ is the “smoothed out” section class of the

conics which correspond to quadric surfaces. That is, the section class is constructed

by smoothing out configurations of free lines on X, and so by definition, is in good

component Me0 . By Lemma 4.8.4 again, there is a number em, such that there exist

m-twisting surfaces of M -class (1 · α, em · α) on X. From now on we will abbreviate

the M type (c1 · α, c2 · α) by (c1, c2).

In other words, we are going to prove the following theorem and immediately deduce

the main theorem above as a corollary.

Theorem 4.7.15. Suppose X is a smooth degree d hypersurface in Pn with d2 ≤ n

which satisfies that the space of lines through a general point of X is irreducible.

Suppose further that X admits one-twisting surfaces of M-class (1, 1) and 2 twist-

ing surfaces of M class (1, e0) for some e0. Then X is strongly rationally simply

connected.

Remark 4.7.16. To reiterate, the conditions of the theorem imply that we can speak

of the good component Me ⊂M0,0(X, e), that 1 twisting surfaces on X of type (e1, e2)

exist for all e1, e2 ≥ 1, and that there is a number em such that m-twisting surfaces

of type (1, em) can be found on X.
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We prove the theorem in a sequence of steps.

Step 1: For each number e ≥ 2, consider the good component Me·α,2 and the restricted

evaluation map: ev : Me·α,2 → X ×X. Then a general fiber is rationally connected.

Proof: By the above remark, for each integer k, there is a 1-twisting surface of type

(1, k) on X. The proof that the fiber of eve : Me·α,2 → X × X over a general point

is rationally connected proceeds by induction on e. The base case is e = 2 where we

can verify directly that the space of lines through two general points on X is cut out

by equations of degrees (1, . . . , d, 1, . . . , d − 1) in Pn. For a generic choice of a point

in X ×X, this locus will be smooth, non-empty, Fano, and so rationally connected.

We know there exist 1-twisting surfaces of type (1, 1). By Lemma 4.7.19, the MRC

quotient of a strong resolution of a fiber of M2,2 → X2 is dominated by ∆1,1. By

Lemma 4.7.20 then, because a general fiber of ∆1,1 → X2 is rationally connected, so

is a general fiber of ev2.

By way of induction, assume e > 2 and that the result is known for e − 1. We will

use the existence of a one twisting surface of type (1, (e − 1)). Using the 1-twisting

surface machine, we get again by Lemma 4.7.19 that the image of ∆1,(e−1) intersects

the domain of definition of the MRC fibration of a strong resolution of the fiber.

By Lemma 4.7.20, this implies that a general fiber of eve is geometrically rationally

connected if the fiber of ev∆ : M∆ = Mα,2 ×M(e−1)α,2 → X × X is geometrically

rationally connected.

To see the geometric rational connectivity of a general fiber of ev∆, consider the

projection p : M∆ → Mα,2. Over the fiber of a general point (x1, x2) ∈ X2, this is

exactly the space of pointed lines on X through x1. As the space of lines through

x1 is rationally connected, so too is this space, F . By [GHS03], to see that the

fiber ev−1
∆ (x1, x2) is rationally connected, we can prove that the general fiber of the

projection to F is rationally connected. But this is exactly the space of degree (e−1)

curves (parameterized by the good component Me−1,2) passing through (x1, x2) and
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so is rationally connected by induction. This completes the outline of the proof of

rational simple connectedness.

Step 2: We now proceed by induction on m. Let m > 2 and fix an integer e ≥

em + 2. Set e′ = e + m, then a general point of a general fiber of ev|M : Me′α,m ⊂

M0,m(X, e′) → Xm is contained in a rational curve which intersects the boundary

∆1,(e′−1) in a smooth point.

Proof: This follows directly from Lemma 4.7.19 because X admits m twisting surfaces

of type (1, e).

Step 3: In fact, the general point of a general fiber of ev|M is contained in a rational

curve intersecting the boundary divisor ∆2,(e′−2) in a smooth point.

Proof: The proof is similar to Lemma 4.7.17 and Lemma 4.7.19, and in fact follows

from these Lemmas using the more degenerate boundary ∆1,1,(e′−2). To be more

precise, consider the three evaluation maps eva : Me′·α,m → Xm, evb : M1·α,2 ×X
M(e′−1)·α,m → Xm, and evc : M1·α,2 ×X M1·α,2 ×X M(e′−2)·α,m → Xm. The fibers of

these evaluation maps over a common general point form a nested triple of varieties.

Lemma 4.7.19 implies that we can connect a general point of a fiber of ev : Me′·α,m+1 →

Xm+1 to a point of ∆1,(e′−1) along a rational curve (and similarly for e′−1). Moreover

these boundary points may be taken to be smooth points of the moduli space. The

first fact implies that the MRC quotient of a strong desingularization of fiber of eva

(resp. evb) is dominated by the MRC quotient of a strong desingularization of the

corresponding fiber of evb (resp. evc). This is true using the exact same argument

found in Lemma 4.7.20. By transitivity, the MRC quotient strict transform of the

fiber of evc dominates the strong desingularization of the fiber of eva. Since the

general point of the fiber of evc is a smooth point of Me′·α,m+1, this MRC quotient

is dominated by the transform of ∆2,e′−2. Less formally, given a reduced curve C in

class |F ′ + (e′ − 2)F | attached to two additional fibers, we may first smooth out C

and one of the fibers (keeping the attachment point with the other fiber fixed) along
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a P1; then the resulting curve may also be smoothed out along a P1 (and all resulting

curves may be considered general points of their moduli spaces). The argument above

implies that we may in fact do this along a single rational curve.

Step 4: The general fiber of ev∆ : M2·α,2 ×X M(e′−2)·α,m → X × Xm−1 is rationally

connected.

Proof: Fix a general point (p, (p1, . . . , pm−1)) ∈ X × Xm−1). By the induction hy-

pothesis, the fiber of e−1(p1, . . . , pm−1) of e : M(e′−2)·α,(m−1) → Xm−1 is rationally con-

nected. We may consider the composition E : M(e′−2)·α,m → M(e′−2)·α,(m−1) → Xm−1

where the first map forgets the last marked point. The general fiber of this compo-

sition is generically smooth over e−1((p1, . . . , pm−1). A conic bundle over a rationally

connected variety is rationally connected, so a general fiber of E is also rationally con-

nected. We then conclude that fiber over E−1(p1, . . . , pm−1) is rationally connected

as well. The space ev−1
∆ (p, (p1, . . . , pm−1)) projects onto E−1(p1, . . . , pm−1). The fiber

of this projection is the space of conics through p and what may be taken to be a

general point on X, p′. By Step 1, this space is rationally connected.

Step 5: A general point of a general fiber of ev|M is rationally connected.

Proof: By Step 4, a general point of ev∆ : M2·α,2 ×X M(e′−2)·α,m → X × Xm−1 is

rationally connected. By Step 3, a general point of the fiber of ev∆ can be connected

to a general point of ev|M along a P1 (in the fiber). The proof then follows from

another application of Lemma 4.7.20 where we take V to be a general fiber of ev∆

and W to be the corresponding fiber of ev|M .

Lemma 4.7.17. Suppose f : Σ → X is an m twisting surface of type (e1, e2) and

write e = e2 +me1. The map f induces a morphism (of stacks):

M0,n(Σ, F ′ +mF )→M0,n(X, e).

Points corresponding to reduced divisors D ∈ |OΣ(F ′ + mF )| with n distinct smooth
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marked points are smooth points in M0,n(X, e). Call Um,m+1 the open subset of

M0,m+1(Σ, F ′+mF ) parameterizing smooth divisors in the corresponding curve class

with m + 1 distinct marked points. Let Mm+1 be the component of M0,m+1(X, e)

containing the image of Um,m+1. A general point of Mm+1 is contained in a map

g : P1 →Mm+1 contained in a fiber of ev :M0,m+1(X, e)→ Xm+1 and intersecting a

general point of the image ofM(Σ, τF,F ′) where τe1,e2 corresponds to ”combs” consist-

ing of a handle of curve class F ′, m teeth of class F and one marked point on each

tooth and a marked point on the handle.

Proof. We outline the proof, see [dS06] Lemma 8.3. For a reduced divisor D as above,

the normal bundle ND/Σ is globally generated. Because NΣ/X is globally generated,

so is ND/X , from which the smoothness statement follows. Because the surface is

m-twisting, a general deformation of D is followed by a deformation of Σ (on X),

which remains an m twisting surface. By a parameter count, a divisor C which is

the union of F ′ and m distinct fibers (and may be taken general in its moduli space)

deforms to a smooth divisor in |F ′ + mF | while fixing (m + 1) points. Since it is

moving in its linear system, we may assume it is doing so along a P1. What’s more,

the deformation of D may be taken to be a general point of Mm+1 and we may further

assume that a P1 connects it to a smooth point of the boundary.

Lemma 4.7.18. In the Lemma above, we have that Mm+1 is actually the good com-

ponent Me·α (here e = e2 + me1). Moreover, the image of M(Σ, τe1,e2) is contained

in the boundary of this good component.

Proof. This follows because all curves on Σ are free. Then there is a curve in Mm+1

whose irreducible components are free, smooth curves parameterized by the good

component Mei·α,0 for various ei. This characterizes the good component.

Lemma 4.7.19. Assume there exist m-twisting surfaces on X of type (e1, e2). Writ-
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ing e = e2 +me1, a general point of a general fiber of the evaluation map,

ev : Me·α,m+1 ⊂M0,m+1(X, e)→ Xm+1

is contained in a rational curve intersecting the image of the boundary

Me1·α,2 ×X M(e−e1)·α,m+1 →Me·α,m+1,

in a smooth point of the fiber. Thus, the image ∆e1,(e−e1) of the boundary map inter-

sects the domain of definition of the MRC fibration of a strong resolution of the fiber

and in particular, dominates the MRC quotient of this resolution.

Proof. This follows almost directly from Lemma4.7.17. Indeed, we already know a

general point of the fiber of ev is contained in a rational curve intersectingM(Σ, τe1,e2)

in a smooth point. Recall that this locus parameterizes combs C whose handle C0

has degree e2 and whose m teeth have degree e1 (with the appropriate markings). We

let B0 be one of the teeth, marked additionally at the point of attachment, and we

let B1 be the union of the handle and all the other teeth, also marked additionally

at this point of attachment. Then the pair (B0, B1) is parameterized by a point of

Me1·α,2 ×X M(e−e1)·α,m+1 and the image in Me·α,m+1 is exactly the original comb C.

In other words, M(Σ, τe1,e2) is contained in ∆e1,(e−e1) and so the rational curve from

Lemma 4.7.17 does indeed intersect ∆e1,(e−e1), and it does so in a smooth point.

Lemma 4.7.20. Suppose that V ⊂ W are projective varieties satisfying i) V ∩

W nonsing 6= ∅. ii) V is rationally connected. iii) codim(V,W ) = 1. iv) For a general

point v ∈ V , there is a f : P1 → W such that f(0) = v but f(P1) + V . Then W is

also rationally connected.

Proof. To prove the Lemma, use the existence of the MRC quotient for a strong

resolution W̃ of W which exists by [Kol96]. This is a rational map φ : W̃ 99K Q

such that a general fiber of the map is an equivalence class for the relation “being

connected by a rational curve on W̃”. By definition, there is some open set U of
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W̃ such that the restriction of φ to U is regular, proper, and every rational curve in

W̃ intersecting U is contained in U . Since the resolution is an isomorphism over the

smooth locus of W , the strict transform of a rational curve through a generic point of

Wsmooth meeting V now meets Ṽ . In other words, a general point of W̃ is contained

in a rational curve meeting Ṽ . By the preceding remarks then, Ṽ meets the generic

fiber of φU . That is, Ṽ meets U and φU(U ∩ Ṽ ) is dense in Q. However, since V is

rationally connected, so is Ṽ so that Q must be a point. This implies that W̃ is also

rationally connected, so that W is as well.. For a slightly more formal proof, refer to

[dS06] Lemmas 8.5 and 8.6.

Remark 4.7.21. A Different Method?

Having created this family of curves M on ev−1(x) for a general x ∈ X, one could

apply the method of forming an algebraic quotient as follows: Take the closure of M

in the appropriate Hilbert Scheme, call it M . Then we have the following diagram:

C

π

��

f // ev−1(x)

M

Here C is the restriction of the universal object over the Hilbert Scheme. Since both

the maps π and f are proper, the method explained in Kollár’s book [Kol96] gives an

open set U ⊂ ev−1(x), a variety Y and a proper map g : U → Y . This map has the

property that its fibers are equivalence classes under the relation of “being connected

by curves in M”. In other words, if two points can be connected by a chain of curves

from M then they map to the same point of Y . The advantage of this method is that

the map g is proper, so that all of the curves Cy,σ,x must be completely contained

in U (since they are contracted by g by construction). The same argument applied

above will show that Y must be a point. Now however, it is not clear how to proceed.

Simply because two general points are connected by chains of curves from M , we are

not able to (immediately) conclude that given a point y ∈ C, then the positive parts

of φ ∈ M̃2r passing through y point in “all directions” at y.
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We give an example to show what could go wrong. Suppose X = P2 and let M be

the set of all lines through a fixed point p ∈ X. The algebraic method will give that

the quotient is a point, because any two points in X can be connected by a chain of

curves in M (at most 2 clearly). Applying the distribution method though, we will

see that the quotient is a P1 because at a general point of X the curves in M only

point in 1 direction. The point x is a singular point for the associated distribution.

It is not clear how to avoid such a situation in the case in which we are interested.

A solution to this problem though, would imply the result for all degree d smooth

hypersurfaces in Pd2 .

4.8 Appendix : Twisting Surfaces

The information in this section is all contained in [dS06]. Due to the central nature

it plays in the work above, the main definitions and results are recorded here for

convenience/completeness.

A ruled surface is a map π : Σ→ P1 such that each fiber is P1. Ruled surfaces are well

known to be isomorphic to projective bundles Σ ∼= P(O ⊕O(−h)) (see [Har77] V.2).

The integer h will be called the h-type of the ruled surface. Denote by F the class of a

fiber and E the curve class with minimal self intersection, E2 = −h. Denote by F ′ the

divisor class E+hF . It is the unique curve class such that F ′ ·E = 0. If X ⊂ Pn is a

hypersurface, a map h : Σ→ X induces a morphism (π, h) : Σ→ P1×X. When (π, h)

is finite, the vertical normal sheaf Nh is defined to be Coker (TΣ → (π, f)∗TP1×X).

Suppose there is a ruled surface on X and a curve class in the ruled surface. Given

a deformation of the curve in X, when is there a deformation of the surface which

contains the deformation of the curve? The following answer motivates the definition

of twisting surfaces.

Lemma 4.8.1. ([dS06] 7.4) Let h : Σ→ X be a ruled surface as above such that (π, h)
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is finite. Suppose that Nh is globally generated and that H1(Σ,Nh(−F ′ − nF )) = 0

for some positive integer n. Free curves on Σ map to free curves on X. If D is a

reduced curve in |O(F ′ + nF )| then for every infinitesimal deformation of D in X

there is an infinitesimal deformation of Σ in X containing the given deformation of

D.

Definition 4.8.2. For an integer n > 0, a ruled surface π : Σ → P1 with a map

h : Σ→ X is a n-twisting surface in X if

1) h∗TX is globally generated.

2) The map (π, h) is finite and H1(Σ,Nh(−F ′ − nF )) = 0.

A twisting surface h : Σ→ X is said to be of class (β1, β2) if β1 = h∗F and β2 = h∗F
′.

On a hypersurface X ⊂ Pn, these curve classes are identified with integers.

Remark 4.8.3. The work above concerns itself with the existence of twisting surfaces

of h-type 0. These are surfaces which are isomorphic to P1 × P1. In this case, the

minimal curve class is identified with sections of the map π and F ′ = E.

The existence of 1-twisting surfaces of a given class implies the existence of 1-twisting

surfaces of “larger” classes. Similarly, the existence of 1 and 2 twisting surfaces implies

the existence of m-twisting surfaces for all integers m > 0.

Lemma 4.8.4. ([dS06] Lemma 7.6 and Corollary 7.7)

• Suppose that f : Σ → X is a 1-twisting of h-type 0 and class (a, b). Then for

every pair of positive integers (d1, d2) there is a 1-twisting surface of h-type 0

and class (d1a, d2b).

• Suppose that f1 : Σ1 → X is a 1-twisting surface of h-type 0 and class (a, b) and

f2 : Σ2 → X is a 2-twisting surface of h-type 0 and class (a, c). Further, suppose

that f1 and f2 map their respective fiber classes to points parameterized by the

same irreducible component of M0,0(X, a). Then for every positive integer m
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and every non-negative integer r there exists an m-twisting surface f : Σ→ X

of h-type 0 and class (a, rb + (m − 1)c). Moreover, the restriction of f to the

fiber F parameterizes curves in the same components as f1 and f2 above.

• For every 1 ≤ l ≤ n, every n twisting surface is also l twisting.

Remark 4.8.5. The 1-twisting surfaces produced in Section 4.5 are quadric surfaces

with h-type 0 and class (1, 1).
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contenus dans une intersection complète, Math. Ann. 312 (1998), no. 3,
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[KSCT07] Stefan Kebekus, Luis Solá Conde, and Matei Toma, Rationally connected

foliations after Bogomolov and McQuillan, J. Algebraic Geom. 16 (2007),

no. 1, 65–81. MR MR2257320 (2007m:14047)

[LG01] V. Lakshmibai and N. Gonciulea, Flag varieties, expanded ed., Editeurs

Des Sciences et Des Arts, Travaux en Cours, vol. 63, Hermann, 2001,

Includes the Michigan lectures (1974) on curves and their Jacobians, With

contributions by Enrico Arbarello.

[Res] Bruce Resnick, Patterns of dependence among powers of polynomials, elec-

tronic preprint: http://www.math.uiuc.edu/ reznick/paper41.pdf.

[Ser06] Edoardo Sernesi, Deformations of algebraic schemes, Grundlehren der

Mathematischen Wissenschaften [Fundamental Principles of Mathemat-

ical Sciences], vol. 334, Springer-Verlag, Berlin, 2006. MR MR2247603

(2008e:14011)

[She09] Mingmin Shen, Foliations and rational connectedness in positive charac-

teristic, Submitted., 2009.

[Tse36] C. Tsen, Quasi-algebraische-abgeschlossene funktionenkorper, J. Chinese

Math. 1 (1936), 81–92.

[Voi07] Claire Voisin, Hodge theory and complex algebraic geometry. I, english

ed., Cambridge Studies in Advanced Mathematics, vol. 76, Cambridge

University Press, Cambridge, 2007, Translated from the French by Leila

Schneps. MR MR2451566


	1 Introduction
	2 Rational Curves on Hypersurfaces
	2.1 Introduction
	2.2 Kontsevich Moduli Space
	2.2.1 Preliminaries on Deformation Theory
	2.2.2 Remarks on Conics
	2.2.3 Canonical Components

	2.3 A study of Conics on X Using Hilbert Schemes
	2.3.1 Incidence Correspondences
	2.3.2 Conics Through General Points

	2.4 An Extended Example
	2.4.1 Fermat Hypersurfaces
	2.4.2 Lines on Fermat Hypersurfaces
	2.4.3 Lines Through Clumped Points
	2.4.4 Conics in the Bend and Break Range
	2.4.5 Cubics in the Bend and Break Range
	2.4.6 High Degree Curves on Low Degree Fermat Hypersurfaces
	2.4.7 Remarks Concerning Conics on Fermat Hypersurfaces not Included in the Bend and Break Range

	2.5 Appendix: Some Representable Functors
	2.5.1 Well Known Facts
	2.5.2 Well Known Extensions of Well Known Facts


	3 Complete Families of Rational Curves
	3.1 Introduction and Main Theorem
	3.1.1 Discussion
	3.1.2 Outline of Proof

	3.2 Reductions
	3.3 Proof of Theorem 3.1.1 in High Degrees
	3.4 The Proof for Conics
	3.5 Appendix - Divisors on the Flag Variety

	4 Cubics and Rational Simple Connectedness
	4.1 Introduction
	4.2 The Fano Scheme of Lines
	4.3 Planes on Cubic Hypersurfaces
	4.3.1 Planes and Quadric Surfaces

	4.4 Deformation Theory
	4.5 Cohomological Arguments and 1-Twisting Surfaces
	4.6 The Foliation
	4.7 2-Twisting Surfaces
	4.8 Appendix : Twisting Surfaces 

	Bibliography

