Rational Simple-Connectedness and Rational Points

JASON STARR

Joint work with A. J. de Jong

I. Three Problems

Problem 1: (Hilbert scheme/Chow variety problem)

Let k be alg. closed. Give examples of smooth, projective k-schemes X such that:

(i) X is "close to being rational", and

(ii) the Hilbert schemes/Chow varieties of rational curves on X are also "close to being rational."

Problem 2: (Existence of rational points)

Let (K, X) be a pair of a field K—typically not alg. closed—and a smooth, projective, geometrically integral K-scheme. Give sufficient conditions on (K, X) for X to have a K-rational point.

Problem 3: (Period-Index Problem)

Let (K, D) be a pair of a field K and a division algebra D whose center is K. Find a relationship b/w $\text{index}(D) := \sqrt{\text{dim}_K(D)}$ and $\text{period}(D) := \text{order of } [D] \text{ in the Brauer group of } K$.
Observation. Problem 2 (existence of rational points) is related to the Brauer group of K:

There is a short-exact-sequence

$$\text{Pic}(X) \to \text{Pic}(X_{\overline{K}}) \to \text{Gal}(\overline{K}/K) \to \text{Br}(K)$$

If X has a K-rational point, then δ_K is zero.

So δ_K is "a Brauer obstruction" (but almost certainly not "the only cohomological obstruction").

Explanation. "Close to being rational" equals "rationally connected": A smooth projective scheme X over an alg. closed field k is rationally connected if there exists an integral k-scheme M and a k-morphism $u : M \times \mathbb{P}^1 \to X$ whose associated morphism $u^{(2)} : M \times \mathbb{P}^1 \times \mathbb{P}^1 \to X \times X$ is dominant:

$$(m, t_1, t_2) \mapsto (u(m, t_1), u(m, t_2)).$$

Equivalent Formulation in Char. 0: X is RC iff X is connected and there exists:

$$f : \mathbb{P}^1 \to X$$

such that $f^*(T_X)$ is ample.

"very free rational curve"
Some Answers:

Problem 1. (B. Kim & R. Pandharipande). If X is a projective homogeneous space, every connected component of the space of rational curves on X is rational (builds on earlier work of Katsylo and Hirschowitz).

(J. Harris & -). If $d^2 \leq n$ and X is a general hypersurface of degree d in \mathbb{P}^n, then for every $e \in \mathbb{Z}$,

$$\text{ev}: \bar{M}_{0,2}(X, e) \rightarrow X \times X$$

$$\{(f, t_1, t_2) \mid f: \mathbb{P}^1 \rightarrow X \text{ degree } e, (f(t_1), t_2) \mapsto (f(t_1), f(t_2)) \}$$

is surjective and the geometric generic fiber is rationally connected (+ e, which I will come back to.)

(A.J. de Jong & -). If $d^2 \leq n+1$ (i.e., the extra cases when $d^2 = n+1$), the conclusion still holds. But this method does not give $+ e$.

(A.J. de Jong & -). A very simple argument gives the conclusion $+ e$ for Grassmannians, orthogonal Grassmannians & symplectic Grassmannians.

Open Problem. What about "Grassmannians = for algebraic groups, i.e., G/maximal parabolic. Most important case: $G = E_8"
PROBLEM 2. (C. Tsen) If \(K/k \) is the function field of a curve over an alg. closed field, and if \(X \subset \mathbb{P}^n_K \) is a hypersurface of degree \(\leq n \), then \(X \) has a \(K \)-rational point.

(C. Tsen, S. Lang). If \(K/k \) is the function field of an \(r \)-fold and \(X \subset \mathbb{P}^n_K \) is a hypersurface of degree \(d \) satisfying \(d^r \leq n \), then \(X \) has a \(K \)-rational point.

(T. Graber, J. Harris & -- in char. 0; A.J. de Jong & -- in char. \(p \)). If \(K/k \) is the function field of a curve and \(X \subset \overline{K} \) is (separably) rationally connected, then \(X \) has a \(K \)-rational point.

Problem 3. (C. Tsen) If \(K/k \) is the function field of a curve, the Brauer group is trivial, i.e., \(\text{index}(D) = \text{period}(D)^0 \).

Challenge. Deduce this from previous Tsen's theorem!

(A.J. de Jong) If \(K/k \) is the function field of a surface and \(\text{char}(k) \) does not divide \(\text{period}(D) \), then \(\text{index}(D) = \text{period}(D)^1 \).
EXPLANATION OF "+ ε": Existence of a very twisting family of pointed lines, i.e.,

where \(i \) is a closed immersion of a flat family of lines in \(X \), \(\sigma \) is a section of \(\pi := \text{pr}_X \circ i \) and

(i) the normal bundle of \(i \), \(N \), is \(\pi \)-relatively globally generated, i.e., \(N\xi_\sigma \) is globally generated for \(\xi_\sigma \);
(ii) \(\pi_X(N(-\sigma(P'))) \) is ample, and,
(iii) \((\sigma(P'), \sigma(P'))_\xi \geq 0 \).

This condition is close to a very free rational curve in \(\overline{M}_{0,1}(X,1) \) (but it is stronger).

III. Connection by Problems 2+3: A division algebra \(D \) of index \(n \) determines a (fppt) \(PGL_n \)-torsor \(T \) over \(K \). For every integer \(1 \leq l \leq n \), there is a \(K \)-scheme \(T_{\text{Grass}}(l,n) \) representing the functor of right ideals in \(D \) of rank \(ln \). \(\beta_k \) is zero iff \(l \cdot [D] \) is zero in \(\text{Br}(K) \).
To prove \(\text{index}(D) = \text{period}(D) \), it suffices to prove that for \(X = \text{a twisted form of Grass}(\mathbb{C}) \), if \(\mathcal{E}_X \) is zero, then \(X \) has a \(K \)-rational point; this then implies \(D \) has a right ideal of rank \(\ln \Rightarrow 2 \) equality, i.e. period \(\text{(D)} \) = index \(\text{(D)} \).

Question: What additional hypotheses are necessary so that \(\mathcal{E}_X = 0 \) implies \(X \) has a \(K \)-rational point? Do these hypotheses hold for \(X = \text{twisted form of Grass}(\mathbb{C}) \)?

IV.

One Answer

(possibly not the "final answer")

1. **Hypothesis 1.** \(\mathcal{E}_X \) is zero.
2. **Hypothesis 2.** \(\text{Pic}(X_K) \cong \mathbb{Z} \).
3. **Hypothesis 3.**
 1. \(\forall e > 0 \), ev: \(\overline{M}_{0,2}(X_K, e) \to X_K \) is surj. & the geom. generic fiber is RC.
 2. There exists a very twisting family of pointed lines on \(X_K \).

\((i) + (ii) \) Together \(\approx \) Rationally simply-connected
The last hypothesis involves a "fibered projective model":

\[X \xrightarrow{f} B \xrightarrow{\pi} S \]

f and \(\pi \) surjective, projective morphisms, \(k(B) \) equals \(K \) and \(X_{k(B)} \) equals \(X \).

Hypothesis 4. There exists a fibered projective model \(X/B/S \) satisfying,

(i) For a dense open \(S^0 \subset S \), \(B^0 := S^0 \times_B B \to S^0 \)
and \(X^0 := S^0 \times_S X \to B^0 \) are both smooth, and

(ii) The evaluation morphism,

\[\text{ev} : \overline{M}_{0,1}(X^0/B^0, 1) \to X^0 \]

where

\[\{(b, L, x) \mid b \in B^0, L \subset f^{-1}(b), x \in L \text{ a point} \} \]

is smooth and the geometric fibers are \(R.C. \).

THEOREM (de Jong & -). Let \(K/k \) be the function field of a surface over an alg. closed field of char. 0. Let \(X \) be a smooth, proj. \(K \)-scheme.
Under Hypotheses 1 - 4, \(X \) has a \(K \)-rational point.
Using a slight trick, every twisted form of \(\text{Gross}(E,n) \) can be reduced to \(X \) satisfying Hypotheses 1-4. So this gives another proof of the Period-Index Theorem in char. 0.

(In fact, de Jong and I can reduce the positive characteristic case — with no condition that \(\text{char}(k) \nmid \text{period}(D) \) — to the char. 0 case; but that’s another story.)
V. Very Rough Sketch of Proof

- As Joe Harris explained in his Lecture 3, there is a scheme \(\text{Sec}(X^0/B^0/\mathcal{S}^0) = \{(s, s') | s \circ s' \}

- \(s : B_s \to X_s \) a section of \(f_s : X_s \to B_s \).

- To prove \(X^0 \to B^0 \) has a rational section, it is equivalent to prove \(\text{Sec}(X^0/B^0/\mathcal{S}^0) \to \mathcal{S}^0 \) has a rational section.

- Since \(\mathcal{S}^0 \) is a curve, by the "RC fibration theorem", it suffices to find a subvariety \(Y \subset \text{Sec}(X^0/B^0/\mathcal{S}^0) \) s.t. \(Y \to \mathcal{S}^0 \) is (essentially) a rationally connected fibration.

- Consider the irreducible components of \(\text{Sec}(X^0/B^0/\mathcal{S}^0) \) (of which there are countably many). The idea is to prove that as the components increase (roughly, as the degrees of the section curves increase) the fibers of \(\text{I}_s \to \mathcal{S}^0 \) become "more rationally connected", i.e., the dimn of the MRC fibration drops.

- This (essentially) no longer concerns \(\mathcal{S}^0 \); it only concerns the geometric generic fiber of \(\text{Sec} \to \mathcal{S}^0 \).
Hypothesis 3(ii) (essentially) implies the MRC quotients of I_ω are non-increasing:

\[I_{\omega, \mu} = \{ \text{line} \} \xrightarrow{\text{all deformations of } \begin{array}{c}
\hline
\end{array}} I_\omega. \]

Simplifying Hypothesis:
\[g(B) = 0 \]

The very twisting family guarantees we can find P^3's in I_ω, intersecting $I_{\omega, \omega}$, \Rightarrow MRC qtt of I_ω dominates MRC eff of I_ω.

- Hypothesis 3(i) implies the MRC quotients of I_ω actually decrease: Given $\sigma_1, \sigma_2 \in I_\omega$, form

\[\overline{M}_{0,2}(X,\xi) \times_{\text{ev}, X \times X, \sigma_1 \times \sigma_2} B = \{ (b, g, t_1, t_2) \mid g : P^1 \rightarrow f \}
\]

By Hyp 3(i), this is an RC fibration over B. By "RC fibration thm", there is a section.
A section is the same as a diagram

\[\Sigma = \text{rational surface whose general fiber over } B \text{ is } \leq 1 \text{P}, \sigma_1(B), \sigma_2(B) \text{ contained in } \Sigma. \]

If the images of \(\sigma_1(B), \sigma_2(B) \) under the "Abel map" are equal, then

\([\sigma_1(B)] - [\sigma_2(B)] \in \text{CH}_1(\Sigma) \) is linearly equivalent to a linear combination of irreducible parts of fibers of \(\Sigma \to B \), i.e.,

\[\text{linearly equivalent} \]

Each comb is a point in some \(I_{x,y} \).
So these points in \(I_{x,y} \) are rationally connected.
\(\Rightarrow I_{x,y} \) is more rationally connected than \(I_x \).

- Eventually, "MRC \(q^+ (I_x) = \text{Pic}_e(B) \), which then implies \(I_x \to \text{Pic}_e(B) \) is a BC fibration.
- Since \(\text{Pic}_e(B) \) certainly has a point over \(k(C) \), the theorem follows from the BC fibration theorem.