
Geometry and physics of localization sums

based on joint work with A. Iqbal, R. Kenyon, D. Maulik,

N. Nekrasov, R. Pandharipande, N. Reshetikhin, C. Vafa.



Equivariant localization (Atiyah & Bott, Duistermaat & Heckman,

Berline & Vergne, . . . ) and its generalization to virtual classes

(Graber & Pandharipande) may be the single most powerful tool

currently available in enumerative geometry (. . . , Ellingsrud &

Strømme, Kontsevich, . . . ).



(C×)...

It reduces computations in T -equivariant cohomology to

contributions of torus-fixed loci.

In the case when the torus-fixed points are isolated, the result is a

finite sum.



Albeit finite, this sum may be complicated and extracting useful

information from it may not be easy.

Adopting a probabilistic viewpoint may help.
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This will be illustrated by a single example, namely . . .
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Donaldson-Thomas theory is an enumerative theory of curves in a

nonsingular projective 3-fold X.

Its relationship to the Gromov-Witten theory of the same 3-fold X

is the subject of conjectures proposed in [MNOP].



The double life of a curve

A curve in X can be viewed as either . . .

a parameterized curve,

i.e., the image of a map

from an abstract curve

to X. Or, . . .

it may be described

by its equations, i.e.

by an

ideal sheaf on X
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The natural moduli space on two sides are Kontsevich’s moduli

space of stable maps Mg(X; β) and the Hilbert scheme of curves

Hilb(X; β, χ), respectively. Here

β∈ H2(X) is the degree of curve

g = domain genus of a map

χ = Euler char of an ideal sheaf ≈ 1 − g

The geometry of these moduli spaces is very different.



One feature Mg(X; β) and Hilb(X; β, χ) share is the existence of a

virtual fundamental class (Li & Tian, Behrend & Fantechi,

Thomas) of dimension

dim [ ]vir = −β · KX .

GW and DT invariants of X are defined by evaluating natural

cohomology classes on [ ]vir.



Today, we will focus on the Calabi-Yau case KX = 0. In this case,

dim[ ]vir = 0 and there is one invariant, “the number of curves”,

in every degree and genus.

The case of general X will, probably, be discussed in Rahul’s

lecture . . .



GW/DT partition function

multi-index

Form the following generating function

ZGW (t, u) =
∑

β,g

u2g−2 tβ
∫

[Mg(X;β)•]
vir

1

and its reduced version

disconnected

Z ′
GW (t, u) = ZGW (t, u)

/

ZGW (0, u) .

Define ZDT and Z ′
DT by the same formulas with known

u2g−2
⇒ qχ
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Conjecture ([MNOP])

Z ′
GW (t, u) = Z ′

DT (t,−eiu)

has a generalization to Descendent, relative, etc. invariants of an

arbitrary smooth projective 3-fold X.



Known cases:

• X = canonical bundle of a smooth toric surface ([ORV] +

[MNOP] + Liu-Liu-Zhou)

• X = any rank 2 bundle over a smooth curve

(Bryan-Pandharipande + [OP])



noncompact

In this talk, we will explore the case X = toric CY, for which:

• GW=DT is “almost proven”,

• we can compute ZDT by localization as a sum over torus-fixed

points in Hilb(X; β, χ)

isolated



How to visualize the T -fixed points Hilb(X;β, χ)T ?



Warm-up: Hilb(C2; d, n)

By definition, it is formed by ideals I ⊂ C[x, y] such that

codim I≤k = dk + n . k � 0 degree

The torus (C∗)2 acts on Hilb(C2; d, n) by rescaling x and y.

Monomials xiyj are eigenvectors of the torus action with distinct

eigenvalues.

Torus-fixed ideals I are spanned by monomials.
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generator

d = total width of infinite rows and columns (= 2 here)

χ = renormalized area (= 9 here) .



For Hilb(C3; d, χ), torus-fixed points correspond to 3D partitions,

with possibly infinite legs along the coordinate axes:

Here d is the total

cross-section of the

infinite legs and χ

is the renormalized

volume.



Now for a picture of a torus-fixed point in Hilb(X; β, χ) assemble

3D partitions according to toric combinatorics of X.

Here is an example for X =
(

P
1
)3

not CY



Here is a CY example: X = O(−1) ⊕ O(−1) → P1

β = 2[P1]



What about the localization weight ?

The CY condition implies it always equals ±1, in fact,

ZDT =
∑

fixed points

(−q)χ (±t)β .
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McMahon
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And, indeed, it is time for a

Stat Mech 101 interruption



Bottle duality takes 3D partitions to dissolving crystal corners

⇒



Gibbs ensemble

In equilibrium, the probability of a given configuration decays

exponentially with its energy.



For a model of crystal, we can take

Energy = −µc Volume + µs Surface

chemical potential

another const> 0

Chemical potential is the energy bill for removing an atom.

When µs � 0 (low temperature), only configuration that minimize

surface (= 3D partitions) survive.



The shape of our dissolving crystal is given by the moment

polytope of X. For example, for local P1

X = O(−1) ⊕ O(−1) → P
1

the atoms are arranged like this:

Seagram distillery

Waterloo, ON
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Removing a whole row of atoms changes: degree by 1, surface by

−2, and volume by ≈ L, where L is the edge length.

L

For µs, L � 0 (large cold crystal), approximate balance occurs

when

µcL ≈ 2 µs .



Conclusion:

For X = local P1, the DT/GW partition partition function Z is the

large size, low temperature expansion of the Seagram crystal

partition function with

u = iµc genus ↔ chem potential

t = −exp (−Lµc + 2 µs) degree ↔ edge length

The statement for general toric CY X is best phrased in terms of

so-called dimers, namely . . . < omitted >

Known random partition/matrix models for GW invariants are

special/limit cases of this.



Conclusion:

For X = local P1, the DT/GW partition partition function Z is the

large size, low temperature expansion of the Seagram crystal

partition function with

u = iµc genus ↔ chem potential

t = −exp (−Lµc + 2 µs) degree ↔ edge length

The statement for general toric CY X is best phrased in terms of

so-called dimers, namely . . . < omitted >

Known random partition/matrix models for GW invariants are

special/limit cases of this.



Conclusion:

For X = local P1, the DT/GW partition partition function Z is the

large size, low temperature expansion of the Seagram crystal

partition function with

u = iµc genus ↔ chem potential

t = −exp (−Lµc + 2 µs) degree ↔ edge length

The statement for general toric CY X is best phrased in terms of

so-called dimers, namely . . . < omitted >

Known random partition/matrix models for GW invariants are

special/limit cases of this.



Did we loose sight of geometry ? . . .

Geometry reappears as the

Limit shape



Did we loose sight of geometry ? . . . Geometry reappears as the

Limit shape



The connected GW invariants are the coefficients in the expansion

of lnZ in powers of u.

The everyday life limit

u = i chem potential → 0 ,

in which individual atoms are too small to see and the macroscopic

description takes over, is known as the

Thermodynamic limit
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Law of large numbers

A nonrandom macroscopic limit shape forms ∗

⇒

∗Rigorously: as the parameter µc goes to 0, our random surface (=measure

on Lipschitz surfaces), scaled by µc in all directions, converges weakly to the

δ-measure on a single surface — the limit shape



Here is a computer simulation

of the limit shape formation

near a corner.



For our random surfaces (and all dimer models in general), the

limit shapes can be computed exactly.



For local P1, we get the

Ronkin function R of

P (z, w) = 1 + z + w + t zw

R(x, y) =
1

(2πi)2

∫∫

|z|=ex

|w|=ey

log P (z, w)
dz

z

dw

w



It may look surprising that the

limit shape is an algebraic curve

in disguise, but, in fact, this hap-

pens for any “polygonal” bound-

ary conditions [KO]

Here we see a cardioid.

Theorems about real curves are hidden here . . .
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For a general CY toric X, the limit

shape is the Ronkin function of a plane

curve P .

This plane curve P it the Hori-Vafa

mirror of X

local P1 × P1

Why mirror ?



By basic probability theory

genus 0 GW invariants of X = lim
u→0

u2 lnZ

= surface tension of the limit shape

⇒
periods of P



In the setting of instanton counting, the limit shape is the

Seiberg-Witten curve. This is how the probabilistic proof of

Nekrasov conjecture works.

For pure gauge theory, different, nonprobabilistic proofs given by

Nakajima-Yoshioka and Braverman.



All orders in the u → 0 asymptotics of lnZ (= GW invariants of all

genera) should be computable in terms of the limit shape.

This has been worked out for random matrices (Eynard), which is a

limit case of our random surfaces.



How to do without a torus action ?

Not a rhetorical question . . .
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