On the existence of flips

Christopher Hacon, James M${ }^{\text {c Kernan }}$

University of Utah, UCSB

Classification of projective varieties

In the classification of projective varieties, the behaviour of the canonical divisor is crucial.

Classification of projective varieties

In the classification of projective varieties, the behaviour of the canonical divisor is crucial.

We illustrate this behaviour in the case of smooth projective curves.

Smooth curves: K_{C} negative

- Classification: Isomorphic to \mathbb{P}^{1}.

Smooth curves: K_{C} negative

- Classification: Isomorphic to \mathbb{P}^{1}.
- Automorphism group: PGL(2), the group of Möbius transformations.

Smooth curves: K_{C} negative

- Classification: Isomorphic to \mathbb{P}^{1}.
- Automorphism group: PGL(2), the group of Möbius transformations.
- Fundamental group: Simply connected.

Smooth curves: K_{C} negative

- Classification: Isomorphic to \mathbb{P}^{1}.
\square Automorphism group: PGL(2), the group of Möbius transformations.
- Fundamental group: Simply connected.
- Arithmetic: Over a number field, the rational points are always dense, after a finite base extension.

Smooth curves: K_{C} zero

\square Classification: Isomorphic to a plane cubic.

Smooth curves: K_{C} zero

\square Classification: Isomorphic to a plane cubic.

- Automorphism group: itself, up to finite index.

Smooth curves: K_{C} zero

- Classification: Isomorphic to a plane cubic.
\square Automorphism group: itself, up to finite index.
■ Fundamental group: $\mathbb{Z} \oplus \mathbb{Z}$.

Smooth curves: K_{C} zero

\square Classification: Isomorphic to a plane cubic.

- Automorphism group: itself, up to finite index.
\square Fundamental group: $\mathbb{Z} \oplus \mathbb{Z}$.
- Arithmetic: Over a number field, the rational points are always dense, after a finite base extension.

Smooth curves: K_{C} positive

- Classification: An unbounded family. However if we fix the natural invariant, the degree of $K_{C}=2 g-2$, then we get a nicely behaved moduli space \mathcal{M}_{g}, with a geometrically meaningful compactification $\overline{\mathcal{M}}_{g}$.

Smooth curves: K_{C} positive

- Classification: An unbounded family. However if we fix the natural invariant, the degree of $K_{C}=2 g-2$, then we get a nicely behaved moduli space \mathcal{M}_{g}, with a geometrically meaningful compactification $\overline{\mathcal{M}}_{g}$.
- Automorphism group: finite.

Smooth curves: K_{C} positive

\square Classification: An unbounded family. However if we fix the natural invariant, the degree of $K_{C}=2 g-2$, then we get a nicely behaved moduli space \mathcal{M}_{g}, with a geometrically meaningful compactification $\overline{\mathcal{M}}_{g}$.

- Automorphism group: finite.
- Fundamental group: Complicated. Not even almost abelian.

Smooth curves: K_{C} positive

- Classification: An unbounded family. However if we fix the natural invariant, the degree of $K_{C}=2 g-2$, then we get a nicely behaved moduli space \mathcal{M}_{g}, with a geometrically meaningful compactification $\overline{\mathcal{M}}_{g}$.
- Automorphism group: finite.
- Fundamental group: Complicated. Not even almost abelian.
- Arithmetic: Over any number field, the rational points are always finite.

Quasi-projective varieties

If we want to classify arbitrary quasi-projective varieties U, first pick an embedding, $U \subset X$, such that the complement is a divisor with normal crossings.

Quasi-projective varieties

If we want to classify arbitrary quasi-projective varieties U, first pick an embedding, $U \subset X$, such that the complement is a divisor with normal crossings.

In this case the crucial invariant is the , where Δ is the sum of the boundary divisors with coefficient one.

Quasi-projective varieties

If we want to classify arbitrary quasi-projective varieties U, first pick an embedding, $U \subset X$, such that the complement is a divisor with normal crossings.

In this case the crucial invariant is the , where Δ is the sum of the boundary divisors with coefficient one.

We illustrate this behaviour in the case of curves.

Smooth curves: $K_{C}+B$ negative

\square Classification: New case, $X=\mathbb{P}^{1}, B$ is a point, $U=\mathbb{A}^{1}$.

Smooth curves: $K_{C}+B$ negative

\square Classification: New case, $X=\mathbb{P}^{1}, B$ is a point, $U=\mathbb{A}^{1}$.

- Automorphism group: $z \longrightarrow a z+b$.

Smooth curves: $K_{C}+B$ negative

\square Classification: New case, $X=\mathbb{P}^{1}, B$ is a point, $U=\mathbb{A}^{1}$.

- Automorphism group: $z \longrightarrow a z+b$.
\square Fundamental group: simply connected.

Smooth curves: $K_{C}+B$ negative

\square Classification: New case, $X=\mathbb{P}^{1}, B$ is a point, $U=\mathbb{A}^{1}$.

- Automorphism group: $z \longrightarrow a z+b$.
\square Fundamental group: simply connected.
- Arithmetic: Over a number field, the rational points are always dense.

Smooth curves: $K_{C}+B$ zero

Classification: New case, $X=\mathbb{P}^{1}, B=p+q$, $U=\mathbb{C}^{*}$.

Smooth curves: $K_{C}+B$ zero

\square Classification: New case, $X=\mathbb{P}^{1}, B=p+q$, $U=\mathbb{C}^{*}$.
\square Automorphism group: itself, up to finite index.

Smooth curves: $K_{C}+B$ zero

\square Classification: New case, $X=\mathbb{P}^{1}, B=p+q$, $U=\mathbb{C}^{*}$.
\square Automorphism group: itself, up to finite index.
\square Fundamental group: \mathbb{Z}.

Smooth curves: $K_{C}+B$ zero

\square Classification: New case, $X=\mathbb{P}^{1}, B=p+q$, $U=\mathbb{C}^{*}$.
\square Automorphism group: itself, up to finite index.

- Fundamental group: \mathbb{Z}.
- Arithmetic: Over a number field, the rational points are always dense, after a finite base extension.

Smooth curves: $K_{C}+B$ positive

- Classification: Easiest new case, $X=\mathbb{P}^{1}$,

$$
B=p+q+r, U=\mathbb{P}^{1}-\{0,1, \infty\} .
$$

Smooth curves: $K_{C}+B$ positive

\square Classification: Easiest new case, $X=\mathbb{P}^{1}$, $B=p+q+r, U=\mathbb{P}^{1}-\{0,1, \infty\}$.
\square Automorphism group: finite

Smooth curves: $K_{C}+B$ positive

- Classification: Easiest new case, $X=\mathbb{P}^{1}$, $B=p+q+r, U=\mathbb{P}^{1}-\{0,1, \infty\}$.
\square Automorphism group: finite
\square Fundamental group: F_{2}.

Smooth curves: $K_{C}+B$ positive

\square Classification: Easiest new case, $X=\mathbb{P}^{1}$, $B=p+q+r, U=\mathbb{P}^{1}-\{0,1, \infty\}$.
\square Automorphism group: finite
\square Fundamental group: F_{2}.

- Arithmetic: Over any number field, the rational points are always finite.

Smooth projective surfaces

\square Any smooth surface is birational to:

Smooth projective surfaces

\square Any smooth surface is birational to:

- \mathbb{P}^{2}.

Smooth projective surfaces

\square Any smooth surface is birational to:

- $\mathbb{P}^{2} .-K_{S}$ is ample, a Fano variety.

Smooth projective surfaces

\square Any smooth surface is birational to:

- $\mathbb{P}^{2} .-K_{S}$ is ample, a Fano variety.
- $S \longrightarrow C, g(C) \geq 1$, where the fibres are isomorphic to \mathbb{P}^{1}.

Smooth projective surfaces

- Any smooth surface is birational to:
- \mathbb{P}^{2}. $-K_{S}$ is ample, a Fano variety.
- $S \longrightarrow C, g(C) \geq 1$, where the fibres are isomorphic to $\mathbb{P}^{1} .-K_{S}$ is relatively ample, a

Smooth projective surfaces

- Any smooth surface is birational to:
- \mathbb{P}^{2}. $-K_{S}$ is ample, a Eano variety.
- $S \longrightarrow C, g(C) \geq 1$, where the fibres are isomorphic to $\mathbb{P}^{1} .-K_{S}$ is relatively ample, a
- $S \longrightarrow C$, where K_{S} is zero on the fibres.

Smooth projective surfaces

- Any smooth surface is birational to:
- \mathbb{P}^{2}. $-K_{S}$ is ample, a Eano variety.
- $S \longrightarrow C, g(C) \geq 1$, where the fibres are isomorphic to $\mathbb{P}^{1} .-K_{S}$ is relatively ample, a
- $S \longrightarrow C$, where K_{S} is zero on the fibres. If C is a curve, the fibres are elliptic curves.

Smooth projective surfaces

- Any smooth surface is birational to:
- \mathbb{P}^{2}. $-K_{S}$ is ample, a Eano variety.
- $S \longrightarrow C, g(C) \geq 1$, where the fibres are isomorphic to $\mathbb{P}^{1} .-K_{S}$ is relatively ample, a
- $S \longrightarrow C$, where K_{S} is zero on the fibres. If C is a curve, the fibres are elliptic curves.
- K_{S} is ample.

Smooth projective surfaces

\square Any smooth surface is birational to:

- $\mathbb{P}^{2} .-K_{S}$ is ample, a
- $S \longrightarrow C, g(C) \geq 1$, where the fibres are isomorphic to $\mathbb{P}^{1} .-K_{S}$ is relatively ample, a
- $S \longrightarrow C$, where K_{S} is zero on the fibres. If C is a curve, the fibres are elliptic curves.
- K_{S} is ample. S is of general type. Note that S is forced to be singular in general.

Smooth projective surfaces

- Any smooth surface is birational to:
- $\mathbb{P}^{2} .-K_{S}$ is ample, a
- $S \longrightarrow C, g(C) \geq 1$, where the fibres are isomorphic to $\mathbb{P}^{1} .-K_{S}$ is relatively ample, a
- $S \longrightarrow C$, where K_{S} is zero on the fibres. If C is a curve, the fibres are elliptic curves.
- K_{S} is ample. S is of general type. Note that S is forced to be singular in general.
- Unfortunately we can destroy this picture by blowing up. It is the aim of the MMP to reverse the process of blowing up.

The MMP

- Start with any birational model X.

The MMP

\square Start with any birational model X.

- Desingularise X.

The MMP

\square Start with any birational model X.
\square Desingularise X.

- If K_{X} is nef, then STOP.

The MMP

\square Start with any birational model X.
\square Desingularise X.
\square If K_{X} is nef, then STOP.

- Otherwise there is a curve C, such that $K_{X} \cdot C<0$.

The MMIP

\square Start with any birational model X.
\square Desingularise X.
\square If K_{X} is nef, then STOP.
\square Otherwise there is a curve C, such that $K_{X} \cdot C<0$.
\square By the Cone Theorem, there is an extremal contraction, $f: X \longrightarrow Y$, of relative Picard number one.

The MMP

\square Start with any birational model X.
\square Desingularise X.
\square If K_{X} is nef, then STOP.
\square Otherwise there is a curve C, such that $K_{X} \cdot C<0$.
\square By the Cone Theorem, there is an extremal contraction, $f: X \longrightarrow Y$, of relative Picard number one.

- If the fibres of f have dimension at least one, then STOP. We have a Mori fibre space.

The MMP

- Start with any birational model X.
\square Desingularise X.
\square If K_{X} is nef, then STOP.
\square Otherwise there is a curve C, such that $K_{X} \cdot C<0$.
\square By the Cone Theorem, there is an extremal contraction, $f: X \longrightarrow Y$, of relative Picard number one.
- If the fibres of f have dimension at least one, then STOP. We have a Mori fibre space.
\square If f is birational and the exceptional locus is a divisor, replace X by Y and keep going.

f is small

- If the locus contracted by f is not a divisor, that is, f is small, then K_{Y} is not \mathbb{Q}-Cartier, so that it does not even make sense to ask if $K_{Y} \cdot C<0$.

is small

\square If the locus contracted by f is not a divisor, that is, f is small, then K_{Y} is not \mathbb{Q}-Cartier, so that it does not even make sense to ask if $K_{Y} \cdot C<0$.

- Instead of contracting C, we try to replace X by another birational model $X^{+}, X \rightarrow X^{+}$, such that $f^{+}: X^{+} \longrightarrow Y$ is $K_{X^{+-}}$ample.

Flips

This operation is called a

Flips

- This operation is called a
- Even supposing we can perform a fip, how do we know that this process terminates?
\square This operation is called a fip.
- Even supposing we can perform a fip, how do we know that this process terminates?
- It is clear that we cannot keep contracting divisors, but why could there not be an infinite sequence of fips?

Adjunction and Vanishing I

- In higher dimensional geometry, there are two basic results, adjunction and vanishing.

Adjunction and Vanishing I

- In higher dimensional geometry, there are two basic results, adjunction and vanishing.
\square (Adjunction) In its simplest form it states that given a variety smooth X and a divisor S, the restriction of $K_{X}+S$ to S is equal to K_{S}.

Adjunction and Vanishing I

- In higher dimensional geometry, there are two basic results, adjunction and vanishing.
\square (Adjunction) In its simplest form it states that given a variety smooth X and a divisor S, the restriction of $K_{X}+S$ to S is equal to K_{S}.
- (Vanishing) The simplest form is Kodaira vanishing which states that if X is smooth and L is an ample line bundle, then $H^{i}\left(K_{X}+L\right)=0$, for $i>0$.

Adjunction and Vanishing I

\square In higher dimensional geometry, there are two basic results, adjunction and vanishing.
\square (Adjunction) In its simplest form it states that given a variety smooth X and a divisor S, the restriction of $K_{X}+S$ to S is equal to K_{S}.
\square (Vanishing) The simplest form is Kodaira vanishing which states that if X is smooth and L is an ample line bundle, then $H^{i}\left(K_{X}+L\right)=0$, for $i>0$.
\square Both of these results have far reaching generalisations, whose form dictates the main definitions of the subject.

Singularities in the MMP

\square Let X be a normal variety. We say that a divisor $\Delta=\sum_{i} a_{i} \Delta_{i}$ is a boundary, if $0 \leq a_{i} \leq 1$.

Singularities in the MMP

\square Let X be a normal variety. We say that a divisor $\Delta=\sum_{i} a_{i} \Delta_{i}$ is a boundary, if $0 \leq a_{i} \leq 1$.
\square Let $g: Y \longrightarrow X$ be a birational map. Suppose that $K_{X}+\Delta$ is \mathbb{Q}-Cartier. Then we may write

$$
K_{Y}+\Gamma=g^{*}\left(K_{X}+\Delta\right) .
$$

Singularities in the MMP

\square Let X be a normal variety. We say that a divisor $\Delta=\sum_{i} a_{i} \Delta_{i}$ is a boundary, if $0 \leq a_{i} \leq 1$.
\square Let $g: Y \longrightarrow X$ be a birational map. Suppose that $K_{X}+\Delta$ is \mathbb{Q}-Cartier. Then we may write

$$
K_{Y}+\Gamma=g^{*}\left(K_{X}+\Delta\right) .
$$

\square We say that the pair (X, Δ) is if the coefficients of Γ are always less than one.

Singularities in the MMP

\square Let X be a normal variety. We say that a divisor $\Delta=\sum_{i} a_{i} \Delta_{i}$ is a boundary, if $0 \leq a_{i} \leq 1$.
\square Let $g: Y \longrightarrow X$ be a birational map. Suppose that $K_{X}+\Delta$ is \mathbb{Q}-Cartier. Then we may write

$$
K_{Y}+\Gamma=g^{*}\left(K_{X}+\Delta\right) .
$$

\square We say that the pair (X, Δ) is if the coefficients of Γ are always less than one.

- We say that the pair (X, Δ) is if the coefficients of the exceptional divisor of Γ are always less than or equal to one.

Adjunction II

To apply adjunction we need a component S of coefficient one.

Adjunction II

\square To apply adjunction we need a component S of coefficient one.
\square So suppose we can write $\Delta=S+B$, where S has coefficient one. Then

$$
\left.\left(K_{X}+S+B\right)\right|_{S}=K_{S}+D .
$$

Adjunction II

\square To apply adjunction we need a component S of coefficient one.

- So suppose we can write $\Delta=S+B$, where S has coefficient one. Then

$$
\begin{aligned}
& \left.\quad\left(K_{X}+S+B\right)\right|_{S}=K_{S}+D \\
& \text { if } K_{X}+S+B \text { is plt then } K_{S}+D \text { is klt. }
\end{aligned}
$$

Vanishing II

- We want a form of vanishing which involves boundaries.

Vanishing II

- We want a form of vanishing which involves boundaries.
- If we take a cover with appropriate ramification, then we can eliminate any component with coefficient less than one.

Vanishing II

- We want a form of vanishing which involves boundaries.
- If we take a cover with appropriate ramification, then we can eliminate any component with coefficient less than one.
\square (Kawamata-Viehweg vanishing) Suppose that $K_{X}+\Delta$ is klt and L is a line bundle such that $L-\left(K_{X}+\Delta\right)$ is big and nef. Then, for $i>0$,

$$
H^{i}(X, L)=0
$$

Three main Conjectures

Conjecture. (Existence) Suppose that $K_{X}+\Delta$ is kawamata log terminal. Let $f: X \longrightarrow Y$ be a small extremal contraction.
Then the flip of f exists.

Three main Conjectures

Conjecture. (Existence) Suppose that $K_{X}+\Delta$ is kawamata log terminal. Let $f: X \longrightarrow Y$ be a small extremal contraction.
Then the flip of f exists.

Conjecture. () There is no infinite sequence of kawamata log terminal flips.

Three main Conjectures

Conjecture. (Existence) Suppose that $K_{X}+\Delta$ is kawamata log terminal. Let $f: X \longrightarrow Y$ be a small extremal contraction.
Then the flip of f exists.

Conjecture. () There is no infinite sequence of kawamata log terminal flips.

Conjecture. () Suppose that $K_{X}+\Delta$ is kawamata log terminal and nef. Then $K_{X}+\Delta$ is semiample.

Some interesting consequences

Abundance implies that a smooth projective variety X is uniruled or $\kappa(X) \geq 0$. BDPP have shown that if X is not uniruled then K_{X} is pseudo-effective.

Some interesting consequences

Abundance implies that a smooth projective variety X is uniruled or $\kappa(X) \geq 0$. BDPP have shown that if X is not uniruled then K_{X} is pseudo-effective.

Kawamata has shown that these three conjectures imply Iitaka's conjecture on the additivity of the Kodaira dimension.

Some interesting consequences

Abundance implies that a smooth projective variety X is uniruled or $\kappa(X) \geq 0$. BDPP have shown that if X is not uniruled then K_{X} is pseudo-effective.

Kawamata has shown that these three conjectures imply Iitaka's conjecture on the additivity of the Kodaira dimension.

Karu has shown that the first two conjectures imply the existence of a geometrically meaningful compactification of the moduli space of varieties of general type.

History and possible future

\square Mori proved the existence of fips for threefolds, with Δ empty and X terminal.

History and possible future

\square Mori proved the existence of fips for threefolds, with Δ empty and X terminal.
\square Shokurov and Kollár proved the existence of threefold fips, using Mori's result.

History and possible future

\square Mori proved the existence of fips for threefolds, with Δ empty and X terminal.

- Shokurov and Kollár proved the existence of threefold fips, using Mori's result.
\square Much more recently, Shokurov proved the existence of fourfold fips, and at the same time gave a simple proof of the existence of threefold fips.

History and possible future

\square Mori proved the existence of fips for threefolds, with Δ empty and X terminal.

- Shokurov and Kollár proved the existence of threefold fips, using Mori's result.
- Much more recently, Shokurov proved the existence of fourfold fips, and at the same time gave a simple proof of the existence of threefold fips.
- Kawamata proved the termination of threefold fips, and Shokurov/Birkar have proved that acc for the set of \log discrepancies/thresholds implies termination.

History and possible future

\square Mori proved the existence of fips for threefolds, with Δ empty and X terminal.

- Shokurov and Kollár proved the existence of threefold fips, using Mori's result.
- Much more recently, Shokurov proved the existence of fourfold fips, and at the same time gave a simple proof of the existence of threefold fips.
- Kawamata proved the termination of threefold fips, and Shokurov/Birkar have proved that acc for the set of \log discrepancies/thresholds implies termination.
\square I predict that these three conjectures, existence, termination and abundance, will be proved within five years.

Existence of flips

Theorem. (Hacon-) Flips exist in dimension n if real flips terminate in dimension $n-1$.

Existence of flips

Theorem. (Hacon-) Flips exist in dimension n if real flips terminate in dimension $n-1$.

Real fips means that we allow the coefficients of Δ to be real. Since a small perturbation of ample is ample, existence of real fips is equivalent to existence of rational fips.

Existence of flips

Theorem. (Hacon-) Flips exist in dimension n if real flips terminate in dimension $n-1$.

Real fips means that we allow the coefficients of Δ to be real. Since a small perturbation of ample is ample, existence of real fips is equivalent to existence of rational fips.

No such implication holds for termination.

Existence of flips

Theorem. (Hacon-) Flips exist in dimension n if real flips terminate in dimension $n-1$.

Real fips means that we allow the coefficients of Δ to be real. Since a small perturbation of ample is ample, existence of real ffps is equivalent to existence of rational fips.

No such implication holds for termination. In practice, however, most proofs of the termination of rational flps, extend to the case of real coefficients.

Existence of flips

Theorem. (Hacon-) Flips exist in dimension n if real flips terminate in dimension $n-1$.

Real fips means that we allow the coefficients of Δ to be real. Since a small perturbation of ample is ample, existence of real fips is equivalent to existence of rational fips.

No such implication holds for termination. In practice, however, most proofs of the termination of rational fips, extend to the case of real coefficients. In particular Shokurov has proved that real fips terminate in dimension three. This gives a new proof of the existence of fips in dimension four.

Finite Generation

Start with a small birational contraction $f: X \longrightarrow Z$, such that $-\left(K_{X}+\Delta\right)$ is ample. We want $X \rightarrow X^{+}$, where $f^{+}: X^{+} \longrightarrow Y$ is $K_{X^{+}}+\Delta^{+}$-ample.

Finite Generation

Start with a small birational contraction $f: X \longrightarrow Z$, such that $-\left(K_{X}+\Delta\right)$ is ample. We want $X \rightarrow X^{+}$, where $f^{+}: X^{+} \longrightarrow Y$ is $K_{X^{+}}+\Delta^{+}$-ample.

Suppose that the ring $R=\bigoplus_{m \in \mathbb{N}} f_{*} \mathcal{O}_{X}\left(m k\left(K_{X}+\Delta\right)\right)$ is finitely generated. Then $X^{+}=\operatorname{Proj}_{Z} R$.

Some consequences

- The fip exists iff the ring

$$
R=R(X, D)=\bigoplus_{m \in \mathbb{N}} H^{0}\left(X, \mathcal{O}_{X}(m D)\right)
$$

where $D=k\left(K_{X}+\Delta\right)$, is a finitely generated A-algebra, where $Z=\operatorname{Spec} A$.

Some consequences

- The fip exists iff the ring

$$
R=R(X, D)=\bigoplus_{m \in \mathbb{N}} H^{0}\left(X, \mathcal{O}_{X}(m D)\right)
$$

where $D=k\left(K_{X}+\Delta\right)$, is a finitely generated A-algebra, where $Z=\operatorname{Spec} A$.
\square In particular, if the fip exists it is unique.

Some consequences

- The fip exists iff the ring

$$
R=R(X, D)=\bigoplus_{m \in \mathbb{N}} H^{0}\left(X, \mathcal{O}_{X}(m D)\right)
$$

where $D=k\left(K_{X}+\Delta\right)$, is a finitely generated A-algebra, where $Z=\operatorname{Spec} A$.

- In particular, if the fip exists it is unique.
- Shokurov proved that if one assumes termination of fips in dimension $n-1$, then to prove the existence of fips, it suffices to prove the existence of

Some consequences

- The fip exists iff the ring

$$
R=R(X, D)=\bigoplus_{m \in \mathbb{N}} H^{0}\left(X, \mathcal{O}_{X}(m D)\right)
$$

where $D=k\left(K_{X}+\Delta\right)$, is a finitely generated A-algebra, where $Z=\operatorname{Spec} A$.

- In particular, if the fip exists it is unique.
- Shokurov proved that if one assumes termination of fips in dimension $n-1$, then to prove the existence of fips, it suffices to prove the existence of
- For a pl fip, $K_{X}+\Delta$ is plt, $S=\llcorner\Delta\lrcorner$ is irreducible and $-S$ is ample.

Restricted algebras

- The advantage of trying to prove the existence of pl fips is that one can restrict to S and try to apply induction. Set $\left.\left(K_{X}+\Delta\right)\right|_{S}=K_{S}+\Theta$.

Restricted algebras

- The advantage of trying to prove the existence of pl fips is that one can restrict to S and try to apply induction. Set $\left.\left(K_{X}+\Delta\right)\right|_{S}=K_{S}+\Theta$.
\square Consider the restriction maps
$R(X, D) \longrightarrow R(S, B)$
where
$B=k\left(K_{S}+\Theta\right)$.

Call the image R_{S}, the

Restricted algebras

- The advantage of trying to prove the existence of pl fips is that one can restrict to S and try to apply induction. Set $\left.\left(K_{X}+\Delta\right)\right|_{S}=K_{S}+\Theta$.
\square Consider the restriction maps
$R(X, D) \longrightarrow R(S, B) \quad$ where $\quad B=k\left(K_{S}+\Theta\right)$.
Call the image R_{S}, the
- If these maps were surjective, then the result would be easy. Just run the MMP on S, until $K_{S}+\Theta$ is nef and apply the base point free theorem.

Restricted algebras

- The advantage of trying to prove the existence of pl fips is that one can restrict to S and try to apply induction. Set $\left.\left(K_{X}+\Delta\right)\right|_{S}=K_{S}+\Theta$.
\square Consider the restriction maps
$R(X, D) \longrightarrow R(S, B) \quad$ where $\quad B=k\left(K_{S}+\Theta\right)$.
Call the image R_{S}, the
- If these maps were surjective, then the result would be easy. Just run the MMP on S, until $K_{S}+\Theta$ is nef and apply the base point free theorem.
\square This is too much to expect.

Restricted algebras

- The advantage of trying to prove the existence of pl fips is that one can restrict to S and try to apply induction. Set $\left.\left(K_{X}+\Delta\right)\right|_{S}=K_{S}+\Theta$.
\square Consider the restriction maps
$R(X, D) \longrightarrow R(S, B) \quad$ where $\quad B=k\left(K_{S}+\Theta\right)$.
Call the image R_{S}, the
- If these maps were surjective, then the result would be easy. Just run the MMP on S, until $K_{S}+\Theta$ is nef and apply the base point free theorem.
\square This is too much to expect.
\square However, something like this does happen.

Generalities on finite generation

- Let R be a graded A-algebra, and let $R_{(d)}=\bigoplus_{m \in \mathbb{N}} R_{d n}$. Then R is finitely generated iff $R_{(d)}$ is finitely generated.

Generalities on finite generation

- Let R be a graded A-algebra, and let $R_{(d)}=\bigoplus_{m \in \mathbb{N}} R_{d n}$. Then R is finitely generated iff $R_{(d)}$ is finitely generated.
- The kernel of the restriction map is principal. So R is finitely generated iff R_{S} is finitely generated.

Generalities on finite generation

- Let R be a graded A-algebra, and let $R_{(d)}=\bigoplus_{m \in \mathbb{N}} R_{d n}$. Then R is finitely generated iff $R_{(d)}$ is finitely generated.
- The kernel of the restriction map is principal. So R is finitely generated iff R_{S} is finitely generated.
Let $m D=N_{m}+G_{m}$ be the decomposition of $m D$ into its mobile and fixed parts.

Generalities on finite generation

- Let R be a graded A-algebra, and let
$R_{(d)}=\bigoplus_{m \in \mathbb{N}} R_{d n}$. Then R is finitely generated iff $R_{(d)}$ is finitely generated.
- The kernel of the restriction map is principal. So R is finitely generated iff R_{S} is finitely generated.
- Let $m D=N_{m}+G_{m}$ be the decomposition of $m D$ into its mobile and fixed parts.
- Let M_{m} be the restriction of N_{m} to S.

Generalities on finite generation

- Let R be a graded A-algebra, and let
$R_{(d)}=\bigoplus_{m \in \mathbb{N}} R_{d n}$. Then R is finitely generated iff $R_{(d)}$ is finitely generated.
- The kernel of the restriction map is principal. So R is finitely generated iff R_{S} is finitely generated.
- Let $m D=N_{m}+G_{m}$ be the decomposition of $m D$ into its mobile and fixed parts.
\square Let M_{m} be the restriction of N_{m} to S.
\square Finite generation is a property of the sequence M_{\bullet}, even up to a birational map.

What is true

\square There is a resolution $g: Y \longrightarrow X$, such that if T is the strict transform of S, the following is true:

What is true

\square There is a resolution $g: Y \longrightarrow X$, such that if T is the strict transform of S, the following is true:
\square There is a normal crossings divisor Γ on Y such that the moving part of $m G$ is equal the moving part of the pullback of $m D$, where $G=k\left(K_{Y}+\Gamma\right)$.

What is true

\square There is a resolution $g: Y \longrightarrow X$, such that if T is the strict transform of S, the following is true:

- There is a normal crossings divisor Γ on Y such that the moving part of $m G$ is equal the moving part of the pullback of $m D$, where $G=k\left(K_{Y}+\Gamma\right)$.
\square There is a convex sequence of divisors Θ_{\bullet} on T, such that the moving part of $m k\left(K_{T}+\Theta_{m}\right)$ is equal to $M_{m}=\left.N_{m}\right|_{T}$.

What is true

\square There is a resolution $g: Y \longrightarrow X$, such that if T is the strict transform of S, the following is true:

- There is a normal crossings divisor Γ on Y such that the moving part of $m G$ is equal the moving part of the pullback of $m D$, where $G=k\left(K_{Y}+\Gamma\right)$.
\square There is a convex sequence of divisors Θ_{\bullet} on T, such that the moving part of $m k\left(K_{T}+\Theta_{m}\right)$ is equal to $M_{m}=\left.N_{m}\right|_{T}$.
- The limit Θ is klt, but the coefficients of Θ are real.

What is true

\square There is a resolution $g: Y \longrightarrow X$, such that if T is the strict transform of S, the following is true:

- There is a normal crossings divisor Γ on Y such that the moving part of $m G$ is equal the moving part of the pullback of $m D$, where $G=k\left(K_{Y}+\Gamma\right)$.
\square There is a convex sequence of divisors Θ_{\bullet} on T, such that the moving part of $m k\left(K_{T}+\Theta_{m}\right)$ is equal to $M_{m}=\left.N_{m}\right|_{T}$.
- The limit Θ is klt, but the coefficients of Θ are real.
- To prove the existence of Θ_{0}, we use the methods of multiplier ideal sheaves, due to Siu and Kawamata.

Characterisitic sequence

\square Note that the mobile sequence is additive, so that $M_{i}+M_{j} \leq M_{i+j}$, corresponding to the multiplication map $R_{i} \otimes R_{j} \longrightarrow R_{i+j}$.

Characterisitic sequence

- Note that the mobile sequence is additive, so that $M_{i}+M_{j} \leq M_{i+j}$, corresponding to the multiplication map $R_{i} \otimes R_{j} \longrightarrow R_{i+j}$.
\square Set $D_{i}=M_{i} / i . D_{\bullet}$ is called the

Characterisitic sequence

\square Note that the mobile sequence is additive, so that $M_{i}+M_{j} \leq M_{i+j}$, corresponding to the multiplication map $R_{i} \otimes R_{j} \longrightarrow R_{i+j}$.
\square Set $D_{i}=M_{i} / i . D_{\bullet}$ is called the

- Note D_{\bullet} is

$$
\frac{i D_{i}}{(i+j)}+\frac{j D_{j}}{(i+j)} \leq D_{i+j} .
$$

Characterisitic sequence

\square Note that the mobile sequence is additive, so that $M_{i}+M_{j} \leq M_{i+j}$, corresponding to the multiplication map $R_{i} \otimes R_{j} \longrightarrow R_{i+j}$.
\square Set $D_{i}=M_{i} / i . D_{\bullet}$ is called the

- Note D_{\bullet} is

$$
\frac{i D_{i}}{(i+j)}+\frac{j D_{j}}{(i+j)} \leq D_{i+j} .
$$

- Let D be the limit. If M_{i} is free, then R is finitely generated iff $D=D_{m}$, some m.

Stabilisation

There are two ways in which M_{\bullet} might vary.

Stabilisation

\square There are two ways in which M_{\bullet} might vary.
\square For each m, there is a model $h_{m}: T_{m} \longrightarrow T$ on which the mobile part of $m k\left(K_{T}+\Theta_{m}\right)$ becomes free.

Stabilisation

\square There are two ways in which M_{\bullet} might vary.

- For each m, there is a model $h_{m}: T_{m} \longrightarrow T$ on which the mobile part of $m k\left(K_{T}+\Theta_{m}\right)$ becomes free.
- Unfortunately, for each m, we might need to go higher and higher. This is clearly an issue of birational geometry.

Stabilisation

\square There are two ways in which M_{\bullet} might vary.
\square For each m, there is a model $h_{m}: T_{m} \longrightarrow T$ on which the mobile part of $m k\left(K_{T}+\Theta_{m}\right)$ becomes free.

- Unfortunately, for each m, we might need to go higher and higher. This is clearly an issue of birational geometry.
- Even if there is a single model, on which everything is free, the sequence might vary. This happens even on \mathbb{P}^{1}.

Different models

\square We run the $\left(K_{T}+\Theta\right)$-MMP.

Different models

\square We run the $\left(K_{T}+\Theta\right)$-MMP.
\square At the end, there is a model $T \rightarrow T^{\prime}$, on which $K_{T^{\prime}}+\Theta^{\prime}$ is semiample.

Different models

\square We run the $\left(K_{T}+\Theta\right)$-MMP.
\square At the end, there is a model $T \rightarrow T^{\prime}$, on which $K_{T^{\prime}}+\Theta^{\prime}$ is semiample.

- Since Θ_{m} is close to Θ, there are finitely many models, $T^{\prime} \rightarrow T_{i}, i=1,2 \ldots, k$, on which $m k\left(K_{T}+\Theta_{m}\right)$ becomes free as well.

Different models

\square We run the $\left(K_{T}+\Theta\right)$-MMP.
\square At the end, there is a model $T \rightarrow T^{\prime}$, on which $K_{T^{\prime}}+\Theta^{\prime}$ is semiample.
\square Since Θ_{m} is close to Θ, there are finitely many models, $T^{\prime} \rightarrow T_{i}, i=1,2 \ldots, k$, on which $m k\left(K_{T}+\Theta_{m}\right)$ becomes free as well.

- Thus there is a model $W \longrightarrow T$ on which the mobile part of $m k\left(K_{T}+\Theta_{m}\right)$ is free, and the limit D of the characteristic sequence is semiample.

Different models

\square We run the $\left(K_{T}+\Theta\right)$-MMP.
\square At the end, there is a model $T \rightarrow T^{\prime}$, on which $K_{T^{\prime}}+\Theta^{\prime}$ is semiample.

- Since Θ_{m} is close to Θ, there are finitely many models, $T^{\prime} \rightarrow T_{i}, i=1,2 \ldots, k$, on which $m k\left(K_{T}+\Theta_{m}\right)$ becomes free as well.
\square Thus there is a model $W \longrightarrow T$ on which the mobile part of $m k\left(K_{T}+\Theta_{m}\right)$ is free, and the limit D of the characteristic sequence is semiample.
\square By a result of Shokurov, this proves that the restricted algebra is finitely generated.

Saturation

\square Let $X=\mathbb{P}^{2}$ and let $g: Y \longrightarrow X$ be the blow up at a point p, with exceptional divisor E. Let D be the strict transform of a line through p.

Saturation

- Let $X=\mathbb{P}^{2}$ and let $g: Y \longrightarrow X$ be the blow up at a point p, with exceptional divisor E. Let D be the strict transform of a line through p.
\square Then $|D|$ corresponds to the set of lines through p, but $|D+E|$ corresponds to the set of all lines in \mathbb{P}^{2}.

Saturation

- Let $X=\mathbb{P}^{2}$ and let $g: Y \longrightarrow X$ be the blow up at a point p, with exceptional divisor E. Let D be the strict transform of a line through p.
\square Then $|D|$ corresponds to the set of lines through p, but $|D+E|$ corresponds to the set of all lines in \mathbb{P}^{2}.
\square We say that a divisor D is with respect to E if

$$
\operatorname{Mov}\ulcorner D+E\urcorner \leq \operatorname{Mov} D .
$$

Saturation

- Let $X=\mathbb{P}^{2}$ and let $g: Y \longrightarrow X$ be the blow up at a point p, with exceptional divisor E. Let D be the strict transform of a line through p.
- Then $|D|$ corresponds to the set of lines through p, but $|D+E|$ corresponds to the set of all lines in \mathbb{P}^{2}.
\square We say that a divisor D is with respect to E if

$$
\operatorname{Mov}\ulcorner D+E\urcorner \leq \operatorname{Mov} D .
$$

$\square D$ is not saturated with respect to E, as above.

Saturation

Let $X=\mathbb{P}^{2}$ and let $g: Y \longrightarrow X$ be the blow up at a point p, with exceptional divisor E. Let D be the strict transform of a line through p.
\square Then $|D|$ corresponds to the set of lines through p, but $|D+E|$ corresponds to the set of all lines in \mathbb{P}^{2}.
\square We say that a divisor D is with respect to E if

$$
\operatorname{Mov}\ulcorner D+E\urcorner \leq \operatorname{Mov} D .
$$

$\square D$ is not saturated with respect to E, as above.
\square If $g: Y \longrightarrow X$ is any birational morphism, then the pullback of any divisor from Y is saturated with respect to any effective and g-exceptional divisor.

An application of vanishing

Thus for all i and j, and all effective divisors E, exceptional for $g: Y \longrightarrow X$,

$$
\operatorname{Mov}\left\ulcorner\frac{j}{i} N_{i}+E\right\urcorner \leq N_{j} .
$$

An application of vanishing

\square Thus for all i and j, and all effective divisors E, exceptional for $g: Y \longrightarrow X$,

$$
\operatorname{Mov}\left\ulcorner\frac{j}{i} N_{i}+E\right\urcorner \leq N_{j} .
$$

\square Set $F^{\prime}=K_{Y}+T-g^{*}\left(K_{X}+\Delta\right), F=\left.F^{\prime}\right|_{T \text {. }}$, Then $\ulcorner F\urcorner=0$ and $H^{1}\left(Y,\left\ulcorner\stackrel{j}{i} N_{i}+F^{\prime}-T\right\urcorner\right)=0$.

An application of vanishing

\square Thus for all i and j, and all effective divisors E, exceptional for $g: Y \longrightarrow X$,

$$
\operatorname{Mov}\left\ulcorner\frac{j}{i} N_{i}+E\right\urcorner \leq N_{j} .
$$

\square Set $F^{\prime}=K_{Y}+T-g^{*}\left(K_{X}+\Delta\right), F=\left.F^{\prime}\right|_{T .}$, Then $\ulcorner F\urcorner=0$ and $H^{1}\left(Y,\left\ulcorner\stackrel{j}{i} N_{i}+F^{\prime}-T\right\urcorner\right)=0$.
\square By vanishing, this implies that

$$
\operatorname{Mov}\left\ulcorner\frac{j}{i} M_{i}+F\right\urcorner \leq M_{j} .
$$

Diophantine approximation

- If $X=C$ a curve, then D_{m} is a finite sum $\sum b_{m, k} p_{k}$,
$b_{m, k} \geq 0$, converging to $\sum b_{k} p_{k}$, and $F=\sum a_{k} p_{k}$.

Diophantine approximation

- If $X=C$ a curve, then D_{m} is a finite sum $\sum b_{m, k} p_{k}$, $b_{m, k} \geq 0$, converging to $\sum b_{k} p_{k}$, and $F=\sum a_{k} p_{k}$.
- Either C is affine or a copy of \mathbb{P}^{1}, and so if $M \geq 0$, then $\operatorname{Mov} M=M$.

Diophantine approximation

- If $X=C$ a curve, then D_{m} is a finite sum $\sum b_{m, k} p_{k}$, $b_{m, k} \geq 0$, converging to $\sum b_{k} p_{k}$, and $F=\sum a_{k} p_{k}$.
- Either C is affine or a copy of \mathbb{P}^{1}, and so if $M \geq 0$, then $\operatorname{Mov} M=M$.
\square So, suppressing k, we have

$$
\left\ulcorner j b_{i}+a\right\urcorner \leq j b_{j} \leq j b \quad \text { where } \quad a>-1 .
$$

Diophantine approximation

- If $X=C$ a curve, then D_{m} is a finite sum $\sum b_{m, k} p_{k}$, $b_{m, k} \geq 0$, converging to $\sum b_{k} p_{k}$, and $F=\sum a_{k} p_{k}$.
- Either C is affine or a copy of \mathbb{P}^{1}, and so if $M \geq 0$, then $\operatorname{Mov} M=M$.
\square So, suppressing k, we have

$$
\left\ulcorner j b_{i}+a\right\urcorner \leq j b_{j} \leq j b \quad \text { where } \quad a>-1 .
$$

\square Letting $i \rightarrow \infty,\ulcorner j b+a\urcorner \leq b$, so that b is rational, and this easily implies $b_{m}=b$, for $m \gg 0$.

Diophantine approximation

- If $X=C$ a curve, then D_{m} is a finite sum $\sum b_{m, k} p_{k}$, $b_{m, k} \geq 0$, converging to $\sum b_{k} p_{k}$, and $F=\sum a_{k} p_{k}$.
- Either C is affine or a copy of \mathbb{P}^{1}, and so if $M \geq 0$, then $\operatorname{Mov} M=M$.
\square So, suppressing k, we have

$$
\left\ulcorner j b_{i}+a\right\urcorner \leq j b_{j} \leq j b \quad \text { where } \quad a>-1 .
$$

\square Letting $i \rightarrow \infty,\ulcorner j b+a\urcorner \leq b$, so that b is rational, and this easily implies $b_{m}=b$, for $m \gg 0$.
\square The same argument goes through, almost word for word, for $n \geq 2$, provided one has a model Y, on which everything is free. But this is what we proved.

