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Classification of projective varieties

In the classification of projective varieties, the behaviour
of the canonical divisor is crucial.

We illustrate this behaviour in the case of smooth
projective curves.
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Smooth curves: KC negative

Classification: Isomorphic to P1.

Automorphism group: PGL(2), the group of
Möbius transformations.

Fundamental group: Simply connected.

Arithmetic: Over a number field, the rational points
are always dense, after a finite base extension.
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Smooth curves: KC zero

Classification: Isomorphic to a plane cubic.

Automorphism group: itself, up to finite index.

Fundamental group: Z ⊕ Z.

Arithmetic: Over a number field, the rational points
are always dense, after a finite base extension.
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Smooth curves: KC positive

Classification: An unbounded family. However if we
fix the natural invariant, the degree of KC = 2g − 2,
then we get a nicely behaved moduli space Mg, with
a geometrically meaningful compactification Mg.

Automorphism group: finite.

Fundamental group: Complicated. Not even almost
abelian.

Arithmetic: Over any number field, the rational
points are always finite.
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Quasi-projective varieties

If we want to classify arbitrary quasi-projective varieties
U , first pick an embedding, U ⊂ X , such that the
complement is a divisor with normal crossings.

In this case the crucial invariant is the log divisor
KX + ∆, where ∆ is the sum of the boundary divisors
with coefficient one.

We illustrate this behaviour in the case of curves.
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Smooth curves: KC + B negative

Classification: New case, X = P1, B is a point,
U = A1.

Automorphism group: z −→ az + b.

Fundamental group: simply connected.

Arithmetic: Over a number field, the rational points
are always dense.
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Smooth curves: KC + B zero

Classification: New case, X = P1, B = p + q,
U = C∗.

Automorphism group: itself, up to finite index.

Fundamental group: Z.

Arithmetic: Over a number field, the rational points
are always dense, after a finite base extension.
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Smooth curves: KC + B positive

Classification: Easiest new case, X = P1,
B = p + q + r, U = P1 − {0, 1,∞}.

Automorphism group: finite

Fundamental group: F2.

Arithmetic: Over any number field, the rational
points are always finite.
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Smooth projective surfaces

Any smooth surface is birational to:

• P2. −KS is ample, a Fano variety.

• S −→ C, g(C) ≥ 1, where the fibres are isomorphic
to P1. −KS is relatively ample, a Fano fibration.

• S −→ C, where KS is zero on the fibres. If C is a
curve, the fibres are elliptic curves.

• KS is ample. S is of general type. Note that S is
forced to be singular in general.

Unfortunately we can destroy this picture by
blowing up. It is the aim of the MMP to reverse the
process of blowing up.
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The MMP

Start with any birational model X .

Desingularise X .

If KX is nef, then STOP.

Otherwise there is a curve C, such that KX ·C < 0.

By the Cone Theorem, there is an extremal
contraction, f : X −→ Y , of relative Picard number
one.

If the fibres of f have dimension at least one, then
STOP. We have a Mori fibre space.

If f is birational and the exceptional locus is a
divisor, replace X by Y and keep going.
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f is small

If the locus contracted by f is not a divisor, that is, f
is small, then KY is not Q-Cartier, so that it does not
even make sense to ask if KY · C < 0.

Instead of contracting C, we try to replace X by
another birational model X+, X 99K X+, such that
f+ : X+ −→ Y is KX+-ample.

X
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Flips

This operation is called a flip.

Even supposing we can perform a flip, how do we
know that this process terminates?

It is clear that we cannot keep contracting divisors,
but why could there not be an infinite sequence of
flips?
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Adjunction and Vanishing I

In higher dimensional geometry, there are two basic
results, adjunction and vanishing.

(Adjunction) In its simplest form it states that given
a variety smooth X and a divisor S, the restriction of
KX + S to S is equal to KS .

(Vanishing) The simplest form is Kodaira vanishing
which states that if X is smooth and L is an ample
line bundle, then H i(KX + L) = 0, for i > 0.

Both of these results have far reaching
generalisations, whose form dictates the main
definitions of the subject.
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Singularities in the MMP

Let X be a normal variety. We say that a divisor
∆ =

∑
i ai∆i is a boundary, if 0 ≤ ai ≤ 1.

Let g : Y −→ X be a birational map. Suppose that
KX + ∆ is Q-Cartier. Then we may write

KY + Γ = g∗(KX + ∆).

We say that the pair (X, ∆) is klt if the coefficients
of Γ are always less than one.

We say that the pair (X, ∆) is plt if the coefficients
of the exceptional divisor of Γ are always less than
or equal to one.
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Adjunction II

To apply adjunction we need a component S of
coefficient one.

So suppose we can write ∆ = S + B, where S has
coefficient one. Then

(KX + S + B)|S = KS + D.

Moreover if KX + S + B is plt then KS + D is klt.
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Vanishing II

We want a form of vanishing which involves
boundaries.

If we take a cover with appropriate ramification,
then we can eliminate any component with
coefficient less than one.

(Kawamata-Viehweg vanishing) Suppose that
KX + ∆ is klt and L is a line bundle such that
L − (KX + ∆) is big and nef. Then, for i > 0,

H i(X, L) = 0.
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Three main Conjectures

Conjecture. (Existence) Suppose that KX + ∆ is
kawamata log terminal. Let f : X −→ Y be a small
extremal contraction.
Then the flip of f exists.

Conjecture. (Termination) There is no infinite sequence
of kawamata log terminal flips.

Conjecture. (Abundance) Suppose that KX + ∆ is
kawamata log terminal and nef.
Then KX + ∆ is semiample.
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Some interesting consequences

Abundance implies that a smooth projective variety X is
uniruled or κ(X) ≥ 0. BDPP have shown that if X is not
uniruled then KX is pseudo-effective.

Kawamata has shown that these three conjectures imply
Iitaka’s conjecture on the additivity of the Kodaira
dimension.

Karu has shown that the first two conjectures imply the
existence of a geometrically meaningful compactification
of the moduli space of varieties of general type.
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History and possible future

Mori proved the existence of flips for threefolds,
with ∆ empty and X terminal.

Shokurov and Kollár proved the existence of
threefold flips, using Mori’s result.

Much more recently, Shokurov proved the existence
of fourfold flips, and at the same time gave a simple
proof of the existence of threefold flips.

Kawamata proved the termination of threefold flips,
and Shokurov/Birkar have proved that acc for the set
of log discrepancies/thresholds implies termination.

I predict that these three conjectures, existence,
termination and abundance, will be proved within
five years.
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Existence of flips

Theorem. (Hacon-) Flips exist in dimension n if real
flips terminate in dimension n − 1.

Real flips means that we allow the coefficients of ∆ to be
real. Since a small perturbation of ample is ample,
existence of real flips is equivalent to existence of
rational flips.

No such implication holds for termination. In practice,
however, most proofs of the termination of rational flips,
extend to the case of real coefficients. In particular
Shokurov has proved that real flips terminate in
dimension three. This gives a new proof of the existence
of flips in dimension four.

On the existence of flips – p.21



Existence of flips

Theorem. (Hacon-) Flips exist in dimension n if real
flips terminate in dimension n − 1.

Real flips means that we allow the coefficients of ∆ to be
real. Since a small perturbation of ample is ample,
existence of real flips is equivalent to existence of
rational flips.

No such implication holds for termination. In practice,
however, most proofs of the termination of rational flips,
extend to the case of real coefficients. In particular
Shokurov has proved that real flips terminate in
dimension three. This gives a new proof of the existence
of flips in dimension four.

On the existence of flips – p.21



Existence of flips

Theorem. (Hacon-) Flips exist in dimension n if real
flips terminate in dimension n − 1.

Real flips means that we allow the coefficients of ∆ to be
real. Since a small perturbation of ample is ample,
existence of real flips is equivalent to existence of
rational flips.

No such implication holds for termination.

In practice,
however, most proofs of the termination of rational flips,
extend to the case of real coefficients. In particular
Shokurov has proved that real flips terminate in
dimension three. This gives a new proof of the existence
of flips in dimension four.

On the existence of flips – p.21



Existence of flips

Theorem. (Hacon-) Flips exist in dimension n if real
flips terminate in dimension n − 1.

Real flips means that we allow the coefficients of ∆ to be
real. Since a small perturbation of ample is ample,
existence of real flips is equivalent to existence of
rational flips.

No such implication holds for termination. In practice,
however, most proofs of the termination of rational flips,
extend to the case of real coefficients.

In particular
Shokurov has proved that real flips terminate in
dimension three. This gives a new proof of the existence
of flips in dimension four.

On the existence of flips – p.21



Existence of flips

Theorem. (Hacon-) Flips exist in dimension n if real
flips terminate in dimension n − 1.

Real flips means that we allow the coefficients of ∆ to be
real. Since a small perturbation of ample is ample,
existence of real flips is equivalent to existence of
rational flips.

No such implication holds for termination. In practice,
however, most proofs of the termination of rational flips,
extend to the case of real coefficients. In particular
Shokurov has proved that real flips terminate in
dimension three. This gives a new proof of the existence
of flips in dimension four.

On the existence of flips – p.21



Finite Generation

Start with a small birational contraction f : X −→ Z,
such that −(KX + ∆) is ample. We want X 99K X+,
where f+ : X+ −→ Y is KX+ + ∆+-ample.
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Z.

Suppose that the ring R =
⊕

m∈N f∗OX(mk(KX + ∆))
is finitely generated. Then X+ = ProjZ R.

On the existence of flips – p.22



Finite Generation

Start with a small birational contraction f : X −→ Z,
such that −(KX + ∆) is ample. We want X 99K X+,
where f+ : X+ −→ Y is KX+ + ∆+-ample.

X
φ

- X+

@
@

@
@

@
@

@

f

R 	�
�

�
�

�
�

�

f+

Z.

Suppose that the ring R =
⊕

m∈N f∗OX(mk(KX + ∆))
is finitely generated. Then X+ = ProjZ R.

On the existence of flips – p.22



Some consequences

The flip exists iff the ring

R = R(X, D) =
⊕

m∈N

H0(X,OX(mD)),

where D = k(KX + ∆), is a finitely generated
A-algebra, where Z = Spec A.

In particular, if the flip exists it is unique.

Shokurov proved that if one assumes termination of
flips in dimension n − 1, then to prove the existence
of flips, it suffices to prove the existence of pl flips.

For a pl flip, K X + ∆ is plt, S = x∆y is irreducible
and −S is ample.
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Restricted algebras

The advantage of trying to prove the existence of pl
flips is that one can restrict to S and try to apply
induction. Set (KX + ∆)|S = KS + Θ.

Consider the restriction maps

R(X, D) −→ R(S, B) where B = k(KS+Θ).

Call the image RS , the restricted algebra.

If these maps were surjective, then the result would
be easy. Just run the MMP on S, until KS + Θ is nef
and apply the base point free theorem.

This is too much to expect.

However, something like this does happen.
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Generalities on finite generation

Let R be a graded A-algebra, and let
R(d) =

⊕
m∈N Rdn. Then R is finitely generated iff

R(d) is finitely generated.

The kernel of the restriction map is principal. So R
is finitely generated iff RS is finitely generated.

Let mD = Nm + Gm be the decomposition of mD
into its mobile and fixed parts.

Let Mm be the restriction of Nm to S.

Finite generation is a property of the sequence M•,
even up to a birational map.
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What is true

There is a resolution g : Y −→ X , such that if T is
the strict transform of S, the following is true:

There is a normal crossings divisor Γ on Y such that
the moving part of mG is equal the moving part of
the pullback of mD, where G = k(KY + Γ).

There is a convex sequence of divisors Θ• on T ,
such that the moving part of mk(KT + Θm) is equal
to Mm = Nm|T .

The limit Θ is klt, but the coefficients of Θ are real.

To prove the existence of Θ•, we use the methods of
multiplier ideal sheaves, due to Siu and Kawamata.

On the existence of flips – p.26



What is true

There is a resolution g : Y −→ X , such that if T is
the strict transform of S, the following is true:

There is a normal crossings divisor Γ on Y such that
the moving part of mG is equal the moving part of
the pullback of mD, where G = k(KY + Γ).

There is a convex sequence of divisors Θ• on T ,
such that the moving part of mk(KT + Θm) is equal
to Mm = Nm|T .

The limit Θ is klt, but the coefficients of Θ are real.

To prove the existence of Θ•, we use the methods of
multiplier ideal sheaves, due to Siu and Kawamata.

On the existence of flips – p.26



What is true

There is a resolution g : Y −→ X , such that if T is
the strict transform of S, the following is true:

There is a normal crossings divisor Γ on Y such that
the moving part of mG is equal the moving part of
the pullback of mD, where G = k(KY + Γ).

There is a convex sequence of divisors Θ• on T ,
such that the moving part of mk(KT + Θm) is equal
to Mm = Nm|T .

The limit Θ is klt, but the coefficients of Θ are real.

To prove the existence of Θ•, we use the methods of
multiplier ideal sheaves, due to Siu and Kawamata.

On the existence of flips – p.26



What is true

There is a resolution g : Y −→ X , such that if T is
the strict transform of S, the following is true:

There is a normal crossings divisor Γ on Y such that
the moving part of mG is equal the moving part of
the pullback of mD, where G = k(KY + Γ).

There is a convex sequence of divisors Θ• on T ,
such that the moving part of mk(KT + Θm) is equal
to Mm = Nm|T .

The limit Θ is klt, but the coefficients of Θ are real.

To prove the existence of Θ•, we use the methods of
multiplier ideal sheaves, due to Siu and Kawamata.

On the existence of flips – p.26



What is true

There is a resolution g : Y −→ X , such that if T is
the strict transform of S, the following is true:

There is a normal crossings divisor Γ on Y such that
the moving part of mG is equal the moving part of
the pullback of mD, where G = k(KY + Γ).

There is a convex sequence of divisors Θ• on T ,
such that the moving part of mk(KT + Θm) is equal
to Mm = Nm|T .

The limit Θ is klt, but the coefficients of Θ are real.

To prove the existence of Θ•, we use the methods of
multiplier ideal sheaves, due to Siu and Kawamata.

On the existence of flips – p.26



Characterisitic sequence

Note that the mobile sequence is additive, so that
Mi + Mj ≤ Mi+j , corresponding to the
multiplication map Ri ⊗ Rj −→ Ri+j .

Set Di = Mi/i. D• is called the characteristic
sequence.

Note D• is convex,

iDi

(i + j)
+

jDj

(i + j)
≤ Di+j.

Let D be the limit. If Mi is free, then R is finitely
generated iff D = Dm, some m.
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Stabilisation

There are two ways in which M• might vary.

For each m, there is a model hm : Tm −→ T on
which the mobile part of mk(KT + Θm) becomes
free.

Unfortunately, for each m, we might need to go
higher and higher. This is clearly an issue of
birational geometry.

Even if there is a single model, on which everything
is free, the sequence might vary. This happens even
on P1.
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Different models

We run the (KT + Θ)-MMP.

At the end, there is a model T 99K T ′, on which
KT ′ + Θ′ is semiample.

Since Θm is close to Θ, there are finitely many
models, T ′

99K Ti, i = 1, 2 . . . , k, on which
mk(KT + Θm) becomes free as well.

Thus there is a model W −→ T on which the
mobile part of mk(KT + Θm) is free, and the limit
D of the characteristic sequence is semiample.

By a result of Shokurov, this proves that the
restricted algebra is finitely generated.
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Saturation

Let X = P2 and let g : Y −→ X be the blow up at a
point p, with exceptional divisor E. Let D be the
strict transform of a line through p.

Then |D| corresponds to the set of lines through p,
but |D +E| corresponds to the set of all lines in P2.

We say that a divisor D is saturated with respect to
E if

MovpD + Eq ≤ Mov D.

D is not saturated with respect to E, as above.

If g : Y −→ X is any birational morphism, then the
pullback of any divisor from Y is saturated with
respect to any effective and g-exceptional divisor.
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An application of vanishing

Thus for all i and j, and all effective divisors E,
exceptional for g : Y −→ X ,

Movp
j

i
Ni + Eq ≤ Nj.

Set F ′ = KY + T − g∗(KX + ∆), F = F ′|T ., Then
pFq = 0 and H1(Y, p j

i
Ni + F ′ − Tq) = 0.

By vanishing, this implies that

Movp
j

i
Mi + Fq ≤ Mj.
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Diophantine approximation

If X = C a curve, then Dm is a finite sum
∑

bm,kpk,
bm,k ≥ 0, converging to

∑
bkpk, and F =

∑
akpk.

Either C is affine or a copy of P1, and so if M ≥ 0,
then Mov M = M .

So, suppressing k, we have

pjbi + aq ≤ jbj ≤ jb where a > −1.

Letting i → ∞, pjb + aq ≤ b, so that b is rational,
and this easily implies bm = b, for m � 0.

The same argument goes through, almost word for
word, for n ≥ 2, provided one has a model Y , on
which everything is free. But this is what we proved.
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