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Theorem (Tsen). If K is the function
field of a curve over C, and X ⊂ P

n
K

any hypersurface of degree d ≤ n over
K, then X has a K-rational point.

We can say that the correct extension
to the category of all varieties of the
condition “d ≤ n” for hypersurfaces is
“rationally connected.”
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Theorem (Lang). If K is the function
field of an r-dimensional variety over C,
and X ⊂ P

n
K any hypersurface of de-

gree d satisfying dr ≤ n, then X has a
K-rational point.

Question. What is the correct exten-
sion to the category of all varieties of the
condition “dr ≤ n” for hypersurfaces?

For example, is there a geometrically
defined class of varieties such that any
morphism π : X → S to a surface S
whose general fiber belongs to this class
necessarily has a rational section?
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Such a class must necessarily be con-
tained in the class of rationally connected
varieties. So if we fiber S over a curve
B, we can find sections of X → S over
each fiber of S → B.

The question is, can we choose these
sections consistently?

This raises in turn another question:
when is the space of curves on a given
variety itself rationally connected?
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What about hypersurfaces? Here we
have a very interesting coincidence:

Theorem (Starr, -) Let X ⊂ P
n be

a general hypersurface of degree d. If
d2 + d + 1 < n, then for each degree
e the space of rational curves of degree
e on X is itself a rationally connected
variety.

(We’re not sure if the inequality in the
theorem is sharp. But the correct in-
equality is almost certainly of the form
d2 + O(d) ≤ n.)
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More generally, Barry Mazur proposes
a formal analogy, between homotopy the-
ory on the one hand and algebraic ge-
ometry on the other:

connected←→ rationally connected

components←→ mrc quotient

loop space←→ space of curves

π1 ←→ mrc quotient of the space of
curves



6

So, for example, the analog of “sim-
ply connected” would be the condition
that “X is rationally connected and the
space of rational curves on X is ratio-
nally connected.”
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There are many, many problems with
this—especially the dependence of the
geometry of the space of rational curves
on the class.

By way of good news, we have the

Example: Let X be a cubic threefold.
Evidence suggests that the mrc quotient
of the space of rational curves of degree
d on X stabilizes (after d = 2) to the in-
termediate jacobian of X , with the mrc
fibration the Abel-Jacobi map. (Roth,
Starr, -)



8

By way of bad news, we have the

Example: Let X be a cubic fourfold.
de Jong and Starr have shown that the
dimension of the mrc quotient of the
space of rational curves of degree d on
X goes to ∞ with d.
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It seems clear that the question of find-
ing rational sections of families over higher-
dimensional bases is trickier than the
one-dimensional case—for one thing, non-
trivial Brauer-Severi varieties exist. The
best work to date on this problem has
been by de Jong and Starr.
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Cubic fourfolds

The question of rationality of cubic
fourfolds is an intriguing one—for one
thing, as we said there is some indica-
tion that cubic fourfolds may provide
an example where the condition of ra-
tionality is neither open nor closed.

For the following, X ⊂ P
5 will be a

smooth cubic fourfold.
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Classically, it was known that some
smooth cubic fourfolds are rational. For
example, if X contains two skew 2-planes
Γ and Λ, we get a birational map

Γ× Λ ! X

defined by sending a pair (p, q) ∈ Γ×Λ
to the third point of intersection of the
line pq with X .

More generally, if X contains a quar-
tic scroll S, we get a similar map from
the symmetric square of S to X :

S2 = S × S/Σ2 ! X

sending a chord pq to S to its residual
intersection with X .
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Note: this map is birational by virtue of
the fact that the chords to S fill up P5

exactly once, i.e., a general point of P
5

lies on a unique chord to S. As far as I
know, the quartic scroll and the quintic
del Pezzo are the only surfaces in P

5

with this property.

Question Are there any others? More
generally, are there any k-folds X ⊂
P

2k+1 (other than rational normal scrolls)
with the analogous property?
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To understand more about X , we have
to look at its Hodge structure. The
Hodge diamond of X is

1
0 0

0 1 0
0 0 0 0

0 1 21 1 0
0 0 0 0

0 1 0
0 0

1

(1)

So the primitive Hodge structure of
X in dimension 4—that is, the orthog-
onal complement of the square ω2 of the
hyperplane class—is a weight 2 Hodge
structure of dimensions (1, 20, 1).



14

Theorem (Voisin). The Torelli map
for cubic fourfolds is an open immer-
sion.

In particular, for a very general X ,
the primitive Hodge structure HS(X)
is irreducible; and the fundamental class
of any surface S ⊂ X is a multiple of
the hyperplane class squared.
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Now, two facts: first, the

Theorem (Abramovich, Karu, Mat-
suki, Wlodarczyk). Any birational map
can be factored into blow-ups and blow-
downs.

More elementary is the fact that when
we blow up a fourfold along a surface
S, we introduce a copy of the weight 2
Hodge structure of S as a direct sum-
mand of the weight 4 Hodge structure
of the fourfold.
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What all this means is that if X is
a very general cubic fourfold—so that
HS(X) is irreducible—and X is ratio-
nal, the Hodge structure of X must ap-
pear as a summand of the Hodge struc-
ture of an algebraic surface S somewhere.
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On the other hand. . .

Suppose we consider now not a very
general cubic fourfold, but one that con-
tains a surface S with class α indepen-
dent from ω2.

If we look at the orthogonal comple-
ment 〈ω2, α〉⊥ ⊂ H4(X), this has the
same dimensions (1, 19, 1) and the same
signature (2, 19) as the primitive Hodge
structure of a polarized K3 surface!

Such a cubic fourfold (with choice of
sublattice 〈ω2, α〉 ⊂ H4(X)) is called a
special cubic fourfold; the the orthog-
onal complement 〈ω2, α〉⊥ ⊂ H4(X) is
called the special Hodge structure.
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Theorem (Hassett) For each d ≡ 0, 2
(mod 6), d 6= 6, the special cubic four-
folds of discriminant d form an irreducible
divisor Cd in the moduli spaceM of cu-
bic fourfolds.
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The next question would be, when is
the special Hodge structure of such a cu-
bic fourfold actually the primitve Hodge
structure of a polarized K3 surface? Has-
sett answers this, too:

Theorem (Hassett). For [X ] ∈ Cd,
the special Hodge structure of X is iso-
morphic to the primitive Hodge struc-
ture of a K3 surface if and only if

• 4 does not divide d;
• 9 does not divide d; and
• The only primes other than 2 and 3
dividing d are congruent to 1 (mod 3).
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Of course, if we are going to obtain
X from P

4 by a series of blow-ups and
blow-downs, it’s not enough that the
Hodge structure of X be (a summand
of) the Hodge structure of a surface S;
there also has to be a family of rational
curves on X parametrized by S. This
also occurs:

Theorem (Hassett). For infinitely many
d, if X is the cubic fourfold correspond-
ing to a general point of Cd then the
Fano variety of lines on X is isomor-
phic to the symmetric square S2 of a
K3 surface S.
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Finally, Hassett has shown that there
is an infinite series of families of rational
cubic fourfolds. Each family has codi-
mension 2 in the moduli space of cubic
fourfolds, and they are all contained in
C8.
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In sum: the rationality of cubic four-
folds remains a deep mystery. But if I
had to bet, I’d guess the locus of ratio-
nal cubic fourfolds formed a countable
union of proper subvarieties of the mod-
uli spaceM.


