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Theorem. Let π : X → B be a
proper morphism of varieties, with B
a smooth curve. If the general fiber F
of f is rationally connected, then f has
a section.

Corollary. Let X  Y be a domi-
nant map of varieties, with general fiber
F . If Y and F are rationally connected,
then X is.
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Preliminaries.

We will assume throughout that X is
a smooth, connected projective variety,
that π : X → B is a nonconstant mor-
phism to a smooth curve B, and that for
general b ∈ B the fiber Xb = π−1(b) is
rationally connected.

We may also take B ∼= P
1; the general

case will follow from this.

Finally, for simplicity we will assume
the fiber dimension of π is at least 3.
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Definition. An n-pointed stable map

(C; p1, . . . , pn; f : C → X) consists of

• a nodal curve C;
• n distinct ordered smooth points

p1, . . . , pn ∈ C; and
• a map f : C → X

such that #Aut(f ) < ∞.

For any β ∈ N1(X), the moduli space
of all such maps with C of genus g and
f∗[C] = β is denoted Mg,n(X,β).

Note that we have a map

φ : Mg,n(X,β) −→ Mg,n(B, d)

where π∗β = d · [B] (and we write d for
d · [B]).



4

Notation. Let C be a curve, E a lo-
cally free sheaf on C, p ∈ C a smooth
point and ξ ⊂ Ep a one-dimensional
subspace of the fiber Ep.

We will denote by E(ξ) the sheaf of
rational sections of E having at most
a simple pole at p in the direction of ξ
and regular elsewhere.
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Lemma. Fix C, E and an integer
n. There exists an integer N such that
if p1, . . . , pN ∈ C are general points,
ξi ⊂ Epi general one-dimensional sub-
spaces, and we set

E′ = E(ξ1 + · · · + ξN )

then for q1, . . . , qn ∈ C arbitrary, we
have

H1(C,E′(−q1 − · · · − qn)) = 0.

Proof. For some m, we have

H1(C,E(p1 + · · · + pm)) = 0.

Now just take N = rank(E)·(m+n+g)
and specialize to the case where the ξi
span the fibers of E at m+n+g points.
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Normal bundles to nodal curves.

Suppose C = D ∪D′ ⊂ X is a nodal
curve with D and D′ smooth and p =
D ∩ D′ a node of C. Let

ξ ⊂ (ND/X)p

be the one-dimensional subspace given
by TpD

′.
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We have an inclusion of sheaves

0 → ND/X → (NC/X)|D

identifying (NC/X)|D with the sheaf ND/X(ξ)
of sections of ND/X having a pole at p
in the direction ξ.

A first-order deformation σ ∈ H0(C,NC/X)

of C in X smooths the node p iff σ|D /∈
H0(D,ND/X).
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On with the argument!

Given the basic setup π : X → B,
our goal will be to construct a curve
C ⊂ X such that by deforming C in
X , we can move the branch points of
the projection

π|C : C → B

independently—in other words, such that
the map

φ : Mg,0(X,β) −→ Mg,0(B, d)

is locally dominant at the point [C].

Such a curve will be called flexible.
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Since the space of branched covers of P
1

of degree d and genus g is irreducible,
and its closure in Mg,0(P

1, d) contains

points f : C → P
1 at the boundary

consisting of d copies of P
1 each map-

ping isomorphically to the target, we
can degenerate a flexible curve to a union
of d sections of π : X → B ∼= P

1.

Note: this is the only point at which
we will use the hypothesis that B ∼=
P

1. We could avoid this by invoking
the (less well known) fact that the space
of branched covers of B is irreducible
whenever g is large relative to d and
the genus of B.
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When is a curve flexible?

Suppose C ⊂ X is a smooth curve,
with π|C : C → B simply ramified
at points p1, . . . , pb ∈ C, and suppose
that the points pi are smooth points of
the fiber of π, so that the differential

π∗ : (NC/X)pi → Tπ(pi)
P

1

is surjective. Then if

H1(C,NC/X(−p1 − · · · − pb)) = 0,

it follows that

H0(C,NC/X)։ ⊕i(NC/X)pi

and so deformations of C ⊂ X domi-
nate deformations of its branch divisor.
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Now suppose C0 ⊂ X is any smooth
curve, disjoint from the singular locus
of the map π.

Let p1, . . . , pN ∈ C0 be general points
of C0 and

ξi ∈ (NC0/X
)pi = TpiXpi

general normal directions to C0 at the
points pi. Since Xpi is rationally con-
nected, we can find a smooth rational
curve Ci ⊂ Xpi such that

• Ci ∩ C = {pi}
• TpiCi = ξi; and
• NCi/X

is generated by global sec-
tions
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Let
C = C0 ∪

⋃

i

Ci

By our Lemma, for N ≫ 0, we see
that NC is generated by global sections,
so that C can be deformed to a smooth
curve C ′, still of genus g; and moreover,
if R is the ramification divisor

H1(C,NC/X(−R)) = 0

so the same is true for C ′.



13

So what’s the problem?

Just one: the requirement that C be
disjoint from the singular locus of π. If
the singular locus of π has codimension
2 or more in X , we can just take C a
general complete intersection in X and
we’re done. But if the singular locus of
π has codimension 1—in other words, if
a fiber of π has multiple components—
this is a problem.
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This is serious: if a fiber Xq has a mul-
tiple component, then any point of C ∩
Xq is necessarily a ramification point of
π|C : C → B, and the corresponding
branch point q of π|C cannot be moved
under deformation.

And, of course, if π has an everywhere
nonreduced fiber, there can’t be any sec-
tion of π.
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To deal with this, we need a second
construction. Let C ⊂ X be any smooth
curve, ∆ ⊂ B the branch divisor of π|C ,
b ∈ B not in ∆ and p, q ∈ C ∩ Xb.
Choose a rational curve D ⊂ Xb such
that

C ∩ D = {p, q}.

After adding a collection of rational curves
Ci in fiber of π meeting C once, we can
deform the result to a smooth curve C ′,
with the property that:

The branch divisor ∆′ of π|C ′ is the
union of a small deformation of ∆ with
a pair of points near b, each having mon-
odromy exchanging the sheets contain-
ing p and q.
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In other words: given a smooth curve
C ⊂ X , we can introduce m new pairs
of branch points of π|C , each with as-
signed monodromy. We can also ensure
that the deformations resulting curve
C ′ ⊂ X move the branch points of π|C ′

freely.
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Now: let C ⊂ X be a general com-
plete intersection. Let M ⊂ B be the
locus of fibers with multiple components.
For each b ∈ M , let σb be the mon-
odromy of π|C around b, and express
σb as a product of transpositions:

σb = τb,1τb,2 . . . τb,kb

Next, for each b ∈ M and α = 1, . . . , kb
we create two new branch points with
monodromy τb,α; and for each b we let
one of each of these pairs tend to b.
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The limiting stable curve will then have
no monodromy around b ∈ M ; that is,
any component of the limit flat over B
will be branched away from M .
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For arbitrary B:

Just express B as a branched cover
g : B → P

1 of P
1, and take the “norm”

of π under g: that is, the variety Y over
P

1 whose fiber over a general p ∈ P
1 is

the product

Yb =
∏

q∈g−1(p)

Xq.

By the result for P
1, the map Y → P

1

has a section, and hence so does X →
B. (de Jong)
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A converse

Taken literally, the converse of the the-
orem is nonsense: families with any kind
of fibers may have sections. But it’s still
reasonable to ask whether the theorem
holds for any larger, geometrically de-
fined class of varieties.

For example, Serre asked if it held for
families of O-acyclic varieties—that is,
varieties X with Hi(X,OX) = 0 for all
i > 0.
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We do have the

Theorem (Graber, Mazur, Starr, -).
Let π : X → B be any morphism. If,
for any irreducible curve C ⊂ B the
restriction

πC : XC = X ×B C → C

has a section, then X contains a sub-
variety Z dominating B whose general
fiber Zb is rationally connected.
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We can apply this to the universal
family over the moduli space of of polar-
ized Enriques surfaces to conclude the

Corollary There exist one-parameter
families of Enriques surfaces without ra-
tional sections.

G. Lafon has actually constructed fam-
ilies of Enriques surfaces with everywhere
nonreduced fibers.


