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Abelian varieties (algebraically).
Abelian variety: a projective g-dimensional variety A, with the struc-

ture of an abelian group.
Polarization on A: an ample line bundle Θ.
Principal polarization: h0(A, Θ) = 1.
We study Ag, the moduli space of principally polarized abelian varieties

of dimension g.
Denote π : Xg → Ag the universal family of abelian varieties: the

fiber over [A] is A.
The Hodge bundle on Ag is L := π∗(Ω

1
Xg/Ag

).

Abelian varieties over C.
Complex abelian variety: A = Cg/Λ for a lattice Λ = Zg +τZg, where

τ ∈ Matg×g(C), τ t = τ , Im τ > 0.
Theta function: a function of τ and z ∈ Cg:

θ(τ, z) :=
∑
n∈Zg

exp(πi(ntτn + 2ntz)).

The theta function is even in z, and automorphic w.r.t. to Λ: if v ∈ Zg +τZg,
then θ(τ, z + v) = exp(f(v, z)) θ(τ, z).

Thus the zero locus of theta is defined in the abelian variety Aτ = Cg/Zg+
τZg. Its theta divisor Θ is the principal polarization.

Ag over C, analytically.
The Siegel upper half-space Hg: all τ such that τ t = τ , Im τ > 0.
Sp(2g, Z) acts on Hg via(

A B
C D

)
◦ τ := (Aτ + B)(Cτ + D)−1.

Then Ag = Hg/Sp(2g, Z); dim Ag = g(g+1)
2

.
The Hodge bundle is L|[Aτ ] = H1,0(Aτ ).

Ag is not compact (Hg is not compact)
Question: How can one compactify Ag?

First answer. Projective embedding:
represent Ag explicitly as a quasi-projective variety, i.e. embed Ag into PN

and take the closure.
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For this, one needs a very ample line bundle. L is ample, but not very
ample.

A ρ-valued modular form, for Γ ⊂ Sp(2g, Z), and a representation
ρ : Γ → End V , is a function F : Hg → V such that

∀γ ∈ Γ, τ ∈ Hg F (γ ◦ τ) = ρ(γ) ◦ F (τ).

A (scalar) weight k modular form: for the linear representation ρ(γ) =
det(Cτ + D)k.

L is the bundle of modular forms of weight 1.

Theta constants.
Choose a, b ∈ (Z/n)g. The level n theta constant is

θ

[
a
b

]
(τ) := const θ(τ, aτ + b).

This is a modular form of weight 1/2 w.r.t. a finite index normal subgroup
Γ(2n, 4n) ⊂ Sp(2g, Z). The corresponding level cover is

Hg/Γ(2n, 4n) =: Ag(2n, 4n) → Ag.

Define a map

Thn : Ag(2n, 4n) 99K Pn2g−1

[τ ] 7→
{

θ

[
a
b

]
(τ, 0)

}
all a,b∈(Z/n)g

Theorem (Igusa, Mumford)
Thn is an embedding for all n > 1.

Taking higher level theta functions allows one to embed a single abelian
variety into a projective space. Thn(τ) is the image of the origin under such
an embedding.

Instead, one can consider the Gauss map at the origin, i.e. the map to a
Grassmannian:

Φn :Ag(2n, 4n) 99K G(g, n2g)

τ 7→
{

grad θ

[
a
b

]
(τ, z)|z=0

}
all a,b,∈(Z/n)g
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Theorem (Salvati Manni, G.- ’04)
Φn is an embedding for all n > 1.

This is the abelian variety version of the fact that any plane quartic is deter-
mined by its bitangents (Caporaso, Sernesi, ’00 Lehavi ’01) or, more generally, by
its odd theta characteristics (Caporaso, Sernesi, ’02)

Compactifying Ag.
What points should we add, and what kind of degenerate objects do they

parameterize?
Hg is not compact.

Question: What should be lim
t→∞

(
it w
wt τ

)
?

Answer 1: can take as the limit [τ ], so we add Ag−1 as a boundary compo-
nent. For i∞ i∞ w1

i∞ i∞ w2

wt
1 wt

2 τ

 we then take [τ ] ∈ Ag−2.

The Satake, or minimal compactification, is

AS
g := Ag t Ag−1 t . . . t A1 t A0.

It is highly singular; boundary points do not represent actual degenerations
of abelian varieties. Thn embeds AS

g into Pn2g−1.

Partial compactification of Ag.

Answer 2: as lim
t→∞

(
it w
wt τ

)
we take (τ, w).

The vector w is only defined up to Zg−1τ , i.e. w ∈ Aτ . Thus we get the
partial compactification

A∗g = Ag t Xg−1.

A∗g is the blowup of (the partial Satake) Ag t Ag−1 along the boundary.
The boundary is codimension one; its points represent semiabelian va-

rieties: compactify

1 → C∗ → G → B → 0, [B] ∈ Ag−1,

to a P1-bundle G̃, by adding 0 and ∞ sections, which are identified with a
shift by w.
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The principal polarization on a semiabelian variety is the blowup over
ΘAτ ∩ twΘAτ of a section of G̃.

Toroidal compactifications of Ag.
How can we get a compactification with boundary normal crossing divi-

sors? What should be

lim
t1,t2→∞

it1 x z1

x it2 z2

zt
1 zt

2 τ

?

Can certainly get (τ, z1, z2) ∈ X×2 (fiberwise)
g−2 .

Problem: How do we keep track of x, which may also go to i∞?
We need to make a choice — a so-called fan decomposition. Some common
choices are:

The Perfect cone, aka first Voronoi compactificationAg
P
: the monoidal

blowup of Satake along the boundary

The Second Voronoi compactification Ag
V
: the one to whichMg maps.

All toroidal compactifications Ag admit a morphism to AS
g . The preimage

of Ag−i ⊂ AS
g is a (C∗)

i(i−1)
2 torsor over X×i

g−i.

What kind of objects do the boundary points of Ag parameterize? Should
be some kind of semiabelian varieties 1 → (C∗)i → G → B → 0 for [B] ∈
Ag−i. What is the polarization?

Theorem (Alexeev ’99) The second Voronoi compactification Ag
V

is (a
component of) a functorial compactification; the boundary points represent

geometric objects. Ag
V

is projective.
Open problem: Which compactification does Φn induce — it embeds

A∗g(2n, 4n)?

Homology and Chow rings of Ag.
For A1 and A2 known classically.
H i

Q(A3) and H i
Q(A3) computed: (Hain ’02)

The dimensions are 1,0,1,0,1,0,2 and 1,0,1,0,1,0,2,0,1,0,1,0,1, respectively.
CH∗(A3) computed: (van der Geer ’97)

The dimensions are 1,2,4,6,4,2,1.

5



Theorem (van der Geer ’96).
The subring of CH∗

Q(Ag) generated by the Hodge classes λi := ci(L) has
only one relation:

(1 + λ1 + . . . + λg)(1− λ1 + . . . + (−1)gλg) = 1.

For CH∗
Q(Ag) have one more relation: λg = 0.

(The torsion of λg ∈ CH∗
Z(Ag), and subvarieties representing it were studied

by Ekedahl, van der Geer ’03,’04.)

Intersection theory of divisors on Ag.
Corollary (van der Geer ’97).

The intersection numbers of divisors on A3 are

L6 L5D L4D2 L3D3 L2D4 LD5 D6

1
181440

0 0 1
720

0 −203
240

−4103
144

Theorem (Erdenberger, Hulek, G.- ’05) The intersection numbers of

divisors on A4
P

are

L10 L6D4 L3D7 LD9 D10

1
907200

− 1
3780

−1759
1680

1636249
1080

101449217
1440

,

while all others are zero.
The intersection theory of divisors on A4

V
(i.e. including E) was also

determined.
Work in progress: intersection numbers of divisors on Ag

P
for all g.

Subvarieties of Ag.

λ
g(g−1)

2
+1

1 = 0 ∈ CH∗
Q(Ag) (van der Geer ’96); since λ1 is ample on Ag,

there are no complete subvarieties of Ag of codimension less than g. However,

λ
g(g−1)

2
1 6= 0, so...?

Conjecture (Oort)/Theorem (Keel, Sadun ’02).
Over C, there does not exist a complete subvariety of Ag of codimension g.

Open problems: What is the cohomological dimension of Ag? What is
the maximal dimension of a complete subvariety (since ∂AS

g is codimension g,
we know that there exist complete subvarieties of dimension g − 1).

Andreotti-Mayer loci.
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We can construct some (non-complete) loci inside Ag: Jacobians, Pryms,
. . . , but how do we get a stratification?

The Andreotti-Mayer locus Nk ⊂ Ag: those abelian varieties for which
dim Sing Θ = k.

Theorem (Andreotti, Mayer) Ng−4 contains the Jacobian locus as an
irreducible component; Ng−3 contains the hyperelliptic locus.

Theorem (Ciliberto, van der Geer ’99). For all k ≤ g − 3 we have
codim Nk ≥ k + 2.

Is this a reasonable bound for codimension?

Conjecture. Within the locus of simple abelian varieties, codim Nk ≥
(k+1)(k+2)

2
.

Open problem: Is it possible that Nk = Nk+1?
For reducible abelian varieties A = A1 × A2 have

ΘA = (A1 ×ΘA2)
⋃

(ΘA1 × A2)

and thus
Sing ΘA ⊃ ΘA1 ×ΘA2 .

Conjecture (Arbarello, De Concini) / Theorem (Ein, Lazarsfeld ’96)
Ng−2 is equal to the locus of reducible abelian varieties.

Multiplicity of the theta divisor.
Let SingkΘ := {x ∈ A | multxΘ ≥ k}.
Theorem (Kollár ’95) The pair (A, Θ) is log canonical; thus codimA SingkΘ ≥

k.
The multiplicity locus Sk: those abelian varieties for which SingkΘ is

non-empty. Note that S1 = Ag, S2 = N0, Sg+1 = ∅.
Theorem (Smith, Varley ’96)

Sg = {products of g elliptic curves}.
This is a special case of

Theorem (Ein, Lazarsfeld ’96) If for k ≥ 2 we have codimA SingkΘ = k,
then A is reducible.

Open problems:
What is the dimension of Sk?
What is the maximal k such that Sk contains irreducible varieties?

Birational geometry of Ag.
Pic(Ag) = Pic(AS

g ) = QL (Borel). Thus Pic(A∗g) = QL⊕QD.
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The canonical class is

KA∗g = (g + 1)L−D.

The slope of a divisor E = aL − bD ∈ Pic(A∗g) is s(E) = a/b: for
modular forms this is the weight divided by the generic vanishing order on
the boundary.

Theorem (Tai) Any section of mKA∗g extends to Ag
P
, so for studying

the birational geometry A∗g is good enough.

The nef cone of A∗
g.

L is ample on AS
g and thus nef on A∗g. Moreover, D|D = −2Θ (when we

identify ∂A∗g = Xg−1), and thus −D is relatively ample wrt A∗g → AS
g .

We have two obvious curve classes in A∗g: A1 × pt, and any curve in the
boundary projecting to a point in AS

g .
Theorem (Hulek ’97)

a) The cone of curves on A∗g is generated by these two curves; thus the nef
cone of A∗g is

{aL− bD|a ≥ 12b ≥ 0}.

b) For the genus 3 toroidal compactifications A3
P

= A3
V

the same result
holds.

The nef cones of A4.
In general Ag

P 6= Ag
V
. In fact Pic(Ag

P
) = QL⊕QD, while Pic(Ag

V
) is

larger.

However, there exists a morphism A4
V → A4

P
, the exceptional divisor E

of which is the other generator of Pic(A4
V
).

Theorem (Hulek, Sankaran ’02) The nef cone of A4
P

is also equal to

{aL− bD|a ≥ 12b ≥ 0},

while the nef cone of A4
V

is

{aL− bD − cE|a ≥ 12b ≥ 24c ≥ 0},

In general the nef cone of Ag
V is hard to describe, since there are many gen-

erators.
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Canonical model of Ag.
Theorem (Shepherd-Barron ’05) In any genus the nef cone of Ag

P
is the

same as that of A∗g, i.e. is {aL− bD|a ≥ 12b ≥ 0}.
Corollary (Shepherd-Barron ’05) Ag

P
is the canonical model of Ag for

g ≥ 12, since KAg
P = (g + 1)D − L is then ample.

Idea of the proof. Assume that 12L −D is not nef, i.e. there exists a curve

in Ag
P

that it intersects negatively. This curve must lie entirely in ∂Ag
P
.

By using the torus action on the stratum of Ag
P

over Ag−i ⊂ AS
g , show

that if there is a curve there, then there is such a curve that is fixed by the
torus, and there is such a curve over Ag−i−1. At the end get a curve over A0,
because there the torus action is transitive.

Kodaira dimension of Ag.
L is big and nef; thus if KA∗g = cL+effective for c > 0, Ag

P
is of general

type. How do we get effective divisors of small slope?
Product of all theta constants of level two gives slope s(θnull) = 8 + 1

2g−3 .
For the Andreotti-Mayer divisor the slope is:

s(N0) = 6 +
12

g + 1
(Mumford).

Theorem (Freitag, Tai, Mumford) Ag is of general type for g ≥ 7
Theorem (Clemens) A4 is unirational.
Theorem (Donagi; Mori, Mukai; Verra) A5 is unirational.

Question: What about A6?

New (effective) geometric divisors on Ag ⊗ C.
Constructing a divisor: Choose globally on Ag(m) some d distinct

points of order m, and consider the theta divisor shifted by these d points (call
the translates D1 . . . Dd), and consider the locus Tm,d ⊂ Ag(m) of abelian
varieties for which the intersection D1 ∩ . . . ∩ Dd is singular. Then project
this to Ag to get a locus there.

Proposition (Lehavi, G.- ’05). For d ≤ g + 1, m ≥ 3, the locus Tm,d

is a divisor.
Technical confession: when lifted to the universal family of level abelian

varieties (and when we identify the fibers of Xg(m) and Xg), translates be-
come sections of mΘ.
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Note T1,1 = N0. Other interesting cases are:
1) Tm,g−1: the intersection ∩Di is generically a smooth curve, so we get

a rational map from Ag(m) to a moduli space of curves
2) Tm,g: we are looking at the divisor of those abelian varieties for which

some of the g! intersection points of ∩Di coincide (become multiple).
3) Tm,g+1: the abelian varieties for which the intersection of g + 1 trans-

lated theta divisors is non-empty.

Computing the class of Tm,g in PicQ(A∗
g)

We need to compute the number of vertical singularities over a test curve

M = ∩Di ↪→ A ⊂ Xg(m)

↓ pM ↓ pA ↓

C = C ⊂ A∗g(m)

where Di is the universal family of translated theta divisors (they are all
numerically equivalent).

By Grothendieck-Riemann-Roch, aka Riemann-Hurwitz, this is

ch(pM!OM(KM/C)) =
1

2
pA∗

(
gDg+1 −Dgc1(TA/C)

)
For C ⊂ Ag, in the smooth locus, Mumford computed

pA∗(Θ
g+1) =

(g + 1)!

2
λ; pA∗(Θ

g) = g!.

Our divisor D = mΘ.

The universal semiabelian variety
The universal semiabelian variety

p : Xg −→ ∂A∗g −→ Ag−1 ⊂ AS
g

is described as follows.
Take [B] ∈ Ag−1. Then p−1([B]) is the birigidified Poincaré bundle on

B ×B:
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First, we take a C-bundle P → B × B such that for any point b ∈ B we
have

P |{0}×B = O; P |B×{b} = O[b]

(so it is numerically trivial on all horizontal and vertical fibers).
p−1(B) is obtained by taking the projectivization P := P(O ⊕ P ), and

gluing the 0-section to the ∞-section with a shift:

(z, b, 0) ∼ (z + b, b,∞).

The structure for Xg(m) → A∗g(m) is more involved (m copies of P glued).

The slopes
Using this description, one can compute the class pushforwards for a test

curve C ⊂ ∂A∗g(m).
Proposition (Lehavi, G.- ’05). The pushforwards are

pA∗(Dg+1) =
mg+1(g + 1)!

6
ΘB

pA∗(Dgc1(TA/C) =
mg+1g!(1− 1/m2)

3
ΘB.

Theorem (Lehavi, G.- ’05).

s(Tm,g) ≤ 6
g2 + g + 2

g2 + g − 4(1− 1/m2)

The slopes we thus get are as follows (N∗
0 = N0−2θnull, used by Mumford):

g s(KAg) s(N∗
0 ) s(T3,g)

4 5 8 8.03
5 6 7.71 7.26
6 7 7.53 6.87
7 8 7.40 6.64

. . .
∞ ∞ 6 6

Corollary (Lehavi, G.- ’05). A6 is of general type (thus determining
the Kodaira dimension for the last unknown case)
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Theorem (essentially due to Tai) The minimal slope of effective divisors
on A∗g goes to zero as g goes to infinity.

Ag in finite characteristic.
The nef cone and the canonical model results still hold.
There exists a stratification ofAg⊗Fp, by the type of the group scheme

A[p] (Ekedahl, Oort); the strata are quasi-affine.
Ag ⊗ Fp has a complete codimension g subvariety: abelian varieties that

do not have points of order p.
Let k be algebraically closed, with char k = p.

The p-rank of A ∈ Ag ⊗ Fp is f such that ]A[p](k) = pf .
Let Vf be the locus of abelian varieties of p-rank at most f . Then (van der
Geer ’96)

[Vf ] = (p− 1)(p2 − 1) · · · (pg−f − 1)λg−f ,

so the Hodge classes are effectively represented.
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