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1. D-algebras.

In this lecture X will be a smooth curve over C.

A (unital) D-algebra on X is a quasi-coherent

sheaf of algebras A, endowed with an addi-

tional structure of left D-module, such that

the multiplication map

A ⊗
OX

A → A

is compatible with the D-module structure, and

the map OX → A, given by the unit, respects

the D-module structure.

In other words, if t is a local coordinate on X,

we have an operator ∂t acting on the sections

of A, satisfying the Leibniz rule with respect

to the product on A, and its action on O ↪→ A

is the standard one.

In what follows, we will assume that A is flat

(=torsion-free) as an O-module.
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Today we will be interested in commutative

D-algebras. Their geometric meaning is that

their spectra are, by definition, affine D-schemes

over X, i.e., schemes over X, endowed with a

connection.

Let us give the most basic example of a D-

scheme (D-algebra)–the jet scheme into a vec-

tor space.

Let V be a finite-dimensional vector space.

Consider the commutative D-algebra

Jets(V ) := SymOX
(DX ⊗V ∗),

where DX denotes the sheaf of differential op-

erators on X and V ∗ is the dual vector space

to V .

By construction,

HomD-alg(Jets(V ), A) ' V ⊗ Γ(X, A).
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2. Horizontal sections.

Given a D-algebra A on a curve X we can at-

tach to it the ”space” of horizontal sections,

denoted H∇(X, A): (For us, a ”space” is by

definition a functor on the category of C-algebras.)

Given an algebra R, we set

H∇(X, A)(R) = HomD-alg(A, R⊗ OX).

Lemma 1.The functor H∇(X, A) is always ind-

representable. If X is comlete, then it is rep-

resentable.

For example, for A = Jets(V ), we have

H∇(X, A) ' V ⊗ Γ(X, OX),

where the latter is an infinite-dimensional vec-

tor space, regarded as an ind-scheme.
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Let x ∈ X be a point, and let D (resp., D×)

be the formal (resp., formal punctured) disc

around this point. In what follows, we will de-

note by R⊗̂OD (resp., R⊗̂OD×) the correspond-

ing completed tensor products. I.e., if t is a

local coordinate near x, then

R⊗̂OD ' R[[t]], R⊗̂OD× ' R((t)).

We define the functors of horizontal sections

of A over D and D×, respectively, by

H∇(D, A)(R) := HomD-alg(A, R⊗̂OD)

and

H∇(D×, A)(R) := HomD-alg(A, R⊗̂O×D).

As in the previous lemma, one shows that the

functor H∇(D, A) is representable by an affine

scheme and H∇(D×, A) is ind-representable.
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Lemma 2.

(1) H∇(D, A) ' Spec(Ax).

(2) We have a commutative diagram, where
the arrows are closed embeddings:

H∇(X, A) −→ H∇(D, A)y y
H∇(X − x, A) −→ H∇(D×, A).

The geometric meaning of point (1) is that
horizontal sections D → Spec(A) are in a bi-
jection with just sections of Spec(A) over x,
i.e., a point in the fiber can be uniquely ex-
tended to a horizontal section on the formal
neighbourhood.

The geometric meaning of point (2) is that
a horizontal section of Spec(A) over a curve
is unquely determined by its restriction to the
formal (resp., formal punctured) disc around
any given point.
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Returning to the example of A = Jets(V ), we

obtain that

Jets(V )x ' H∇(D, Jets(V )) ' Ôx ⊗ V,

and

H∇(D×, Jets(V )) ' K̂x ⊗ V,

where Ôx and K̂x are the completed local ring

and field at the point x, respectively.

The first of these isomorphisms is the source

of the name ”jets”.
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3. Back to the critical level: z as a D-

algebra.

Recall the ĝcrit-module Vcrit, and the commu-

tative algebra

z ' End(Vcrit) ' Vg[[t]]
crit .

We will now show that z can be realized as the

fiber at x ∈ X of some D-algebra, which we

will denote by zX.

Recall first of all that Vcrit could be realized as

Γ(GrG, δ1,GrG
⊗Lcrit), where GrG = G((t))/G[[t]].

Given a curve X, there exists a scheme GrG,X

over X, whose fiber at any given x ∈ X identi-

fies with GrG, once we identify Ôx ' C[[t]]].
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Namely, GrG,X classifies the data of a point

x ∈ X and a principal G-bundle on X with a

trivialization off this point. We will denote by

π the projection GrG,X → X.

By construction, GrG,X carries a connection

along X, i.e., it is a D-scheme. Moreover, this

connection lifts onto the line bundle Lcrit,X.

By taking the D-module δ1X ,GrG,X
on GrG,X,

we can consider the quasi-coherent sheaf

Vcrit,X := π∗(δ1X ,GrG,X
⊗ Lcrit,X),

which will be a D-module on X.

The fiber of Vcrit,X at x can be identified with

the vector space underlying the representation

Vcrit of ĝcrit. Globally, Vcrit,X carries an action

of an appropriate sheaf of Kac-Moody alge-

bras.
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It makes sense to take Endĝcrit
(Vcrit,X), which

will again be a D-module on X. It carries a

structure of an associative D-algebra, but one

can show that it is in fact commutative.

This is our zX. By construction, its fiber at

any x ∈ X maps to z, and one shows that this

map is an isomorphism, as required.

Lemma 3. There exists a natural map

Spec(Z) → H∇(D×, zX);

moreover this map is an isomorphism.
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4. zX and connections.

We will now explain the relation between Z and
Ǧ-connections on the formal punctured disc.

Along with the D-module δ1X ,GrG,X
on GrG,X,

for any V ∈ Rep(Ǧ) one can consider the cor-
responding D-module FV,X. The direct image

π∗(FV,X ⊗ Lcrit,X)

will be a D-module on X, and it will carry an
action of the above sheaf of Kac-Moody alge-
bras. Set

VX := Homĝcrit
(Vcrit,X , π∗(FV,X ⊗ Lcrit,X)).

This will be a locally free zX-module, endowed
with a connection along X. Generalizing the
set-up of the previous lecture, we obtain that
the functor

V 7→ VX

defines a Ǧ-torsor over the D-scheme Spec(zX),
endowed with a connection along X.
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Thus, given a point of H∇(U, zX), where U is

X (resp., X − x, D, D×), which is the same

as a horizontal homomorphism zX |U → OU , we

obtain a Ǧ-torsor over U with a connection.

In particular, for U = D×, we obtain the desired

map

H∇(D×, zX) → LocSys(D×)Ǧ.

12



5. The Beilinson-Drinfeld construction of
Hecke eigensheaves.

Assume now that X is complete. Let σglob be
a Ǧ-local system on X − x. Let σloc be the
restriction of σglob to D×, which is a point of
LocSys(D×)Ǧ

Suppose that there exists an element χglob ∈
H∇(X−x, zX), such that σglob is its image under
the map

H∇(X − x, zX) → LocSys(X − s)Ǧ.

Let χ be the image of χglob under the map

H∇(X − x, zX) → H∇(D×, zX),

cf. Lemma 2(2).

We can think of χ as a character of Z, and let
ĝcrit -modχ be the sub-category of ĝcrit -mod
consisting of modules with this central charac-
ter.
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Let us recall from the first lecture that we are

supposed to have a functor

Cσloc → Hecke(σglob, x),

and an equivalence

Cσ ' ĝcrit -modχ .

Altogether, we are supposed to have a functor

ĝcrit -modχ → Hecke(σglob, x).

The construction of such a functor has been

carried out in the work of Beilinson and Drin-

feld.
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5. A localization pattern.

Let Y be a scheme, acted on by the group

G((t)). Following Beilinson and Bernstein, we

have the localization functor

Loc : g((t)) -mod → D −mod(Y),

constructed by

M 7→ DY ⊗
U(g((t)))

M.

Suppose that the action of G((t)) on Y is in-

finitesimally transitive, i.e., g((t)) maps sur-

jectively onto the tangent space to Y at ev-

ery point. Then we can describe explicitly the

fibers of Loc(M).

Namely, for y ∈ Y, let st(y) ⊂ g((t)) be its

stabilizer. We have:

Loc(M)y ' (M)st(y).
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More generally, this construction applies to the

category ĝκ -mod, where ĝκ is a central exten-

sion of g((t)), which acts on a line bundle LY,

lifting the action of g((t)) on Y.

We apply this construction to Y = BunG(x).

The functor Loc gives rise to a functor

ĝcrit -mod → D-mod(BunG(x)).

One can describe explicitly the fibers of Loc(M)

for M ∈ ĝcrit -mod:

Namely, a point of BunG(x) defines a twisted

form of the algebra g⊗ Γ(X − x, OX), denoted

gout, together with its embedding into ĝcrit.

Then the fiber of Loc(M) at the above point of

BunG(x) is given by the space of coinvariants

(M)gout.
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Thus, we obtain the functor

ĝcrit -modχ → D-mod(BunG(x)).

However, the relation

π∗(FV,X ⊗ Lcrit,X) ' Vcrit,X ⊗
zX

VX

implies that this functor naturally factors through

Hecke(σglob, x).
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