Local geometric Langlands correspondence and representations of affine Kac-Moody algebras

(Overview of the work of Beilinson and Drinfeld)

Lecture 3

Aug. 12, 2005

1. D-algebras.

In this lecture X will be a smooth curve over \mathbb{C}. A (unital) D-algebra on X is a quasi-coherent sheaf of algebras \mathcal{A}, endowed with an additional structure of left D-module, such that the multiplication map

$$
\underset{\mathcal{O}_{X}}{\mathcal{A}} \underset{\mathcal{A}}{\otimes} \rightarrow \mathcal{A}
$$

is compatible with the D -module structure, and the map $\mathcal{O}_{X} \rightarrow \mathcal{A}$, given by the unit, respects the D -module structure.

In other words, if t is a local coordinate on X, we have an operator ∂_{t} acting on the sections of \mathcal{A}, satisfying the Leibniz rule with respect to the product on \mathcal{A}, and its action on $\mathcal{O} \hookrightarrow \mathcal{A}$ is the standard one.

In what follows, we will assume that \mathcal{A} is flat (=torsion-free) as an (O-module.

Today we will be interested in commutative D-algebras. Their geometric meaning is that their spectra are, by definition, affine D-schemes over X, i.e., schemes over X, endowed with a connection.

Let us give the most basic example of a Dscheme (D-algebra)-the jet scheme into a vector space.

Let V be a finite-dimensional vector space. Consider the commutative D-algebra

$$
\operatorname{Jets}(V):=\operatorname{Sym}_{\mathcal{O}_{X}}\left(\mathrm{D}_{X} \otimes V^{*}\right)
$$

where D_{X} denotes the sheaf of differential operators on X and V^{*} is the dual vector space to V.

By construction,

$$
\operatorname{Hom}_{\mathrm{D}-\operatorname{alg}}(\operatorname{Jets}(V), \mathcal{A}) \simeq V \otimes \Gamma(X, \mathcal{A})
$$

2. Horizontal sections.

Given a D-algebra \mathcal{A} on a curve X we can attach to it the "space" of horizontal sections, denoted $H_{\nabla}(X, \mathcal{A})$: (For us, a "space" is by definition a functor on the category of \mathbb{C}-algebras.)

Given an algebra R, we set

$$
H_{\nabla}(X, \mathcal{A})(R)=H o m_{\mathrm{D}-\mathrm{alg}}\left(\mathcal{A}, R \otimes \mathcal{O}_{X}\right)
$$

Lemma 1. The functor $H_{\nabla}(X, \mathcal{A})$ is always indrepresentable. If X is comlete, then it is representable.

For example, for $\mathcal{A}=\operatorname{Jets}(V)$, we have

$$
H_{\nabla}(X, \mathcal{A}) \simeq V \otimes \Gamma\left(X, \mathcal{O}_{X}\right)
$$

where the latter is an infinite-dimensional vector space, regarded as an ind-scheme.

Let $x \in X$ be a point, and let \mathcal{D} (resp., \mathcal{D}^{\times}) be the formal (resp., formal punctured) disc around this point. In what follows, we will denote by $R \bar{\otimes} \mathcal{O}_{\mathcal{D}}$ (resp., $R \widehat{\otimes} \mathcal{O}_{\mathcal{D}} \times$) the corresponding completed tensor products. I.e., if t is a local coordinate near x, then

$$
R \widehat{\otimes} \mathcal{O}_{\mathfrak{D}} \simeq R[[t]], R \hat{\otimes} \mathcal{O}_{\mathcal{D} \times} \simeq R((t))
$$

We define the functors of horizontal sections of \mathcal{A} over \mathcal{D} and \mathcal{D}^{\times}, respectively, by

$$
H_{\nabla}(\mathcal{D}, \mathcal{A})(R):=H o m_{\mathrm{D}-\operatorname{alg}}\left(\mathcal{A}, R \widehat{\otimes} \mathcal{O}_{\mathcal{D}}\right)
$$

and

$$
H_{\nabla}\left(\mathcal{D}^{\times}, \mathcal{A}\right)(R):=\operatorname{Hom}_{\mathrm{D}-\mathrm{alg}}\left(\mathcal{A}, R \widehat{\otimes} \mathcal{O}_{\mathcal{D}}^{\times}\right)
$$

As in the previous lemma, one shows that the functor $H_{\nabla}(\mathcal{D}, \mathcal{A})$ is representable by an affine scheme and $H_{\nabla}\left(\mathcal{D}^{\times}, \mathcal{A}\right)$ is ind-representable.

Lemma 2.

(1) $H_{\nabla}(\mathcal{D}, \mathcal{A}) \simeq \operatorname{Spec}\left(\mathcal{A}_{x}\right)$.
(2) We have a commutative diagram, where the arrows are closed embeddings:

The geometric meaning of point (1) is that horizontal sections $\mathcal{D} \rightarrow \operatorname{Spec}(\mathcal{A})$ are in a bijection with just sections of $\operatorname{Spec}(\mathcal{A})$ over x, i.e., a point in the fiber can be uniquely extended to a horizontal section on the formal neighbourhood.

The geometric meaning of point (2) is that a horizontal section of $\operatorname{Spec}(\mathcal{A})$ over a curve is unquely determined by its restriction to the formal (resp., formal punctured) disc around any given point.

Returning to the example of $\mathcal{A}=\operatorname{Jets}(V)$, we obtain that

$$
\operatorname{Jets}(V)_{x} \simeq H_{\nabla}(\mathcal{D}, \operatorname{Jets}(V)) \simeq \widehat{\mathcal{O}}_{x} \otimes V,
$$

and

$$
H_{\nabla}\left(\mathcal{D}^{\times}, \operatorname{Jets}(V)\right) \simeq \widehat{\mathcal{K}}_{x} \otimes V,
$$

where $\widehat{\mathcal{O}}_{x}$ and $\widehat{\mathcal{K}}_{x}$ are the completed local ring and field at the point x, respectively.

The first of these isomorphisms is the source of the name "jets".
3. Back to the critical level: \mathfrak{z} as a D algebra.

Recall the $\widehat{\mathfrak{g}}_{\text {crit }}$-module $\mathbb{V}_{\text {crit }}$, and the commutative algebra

$$
\mathfrak{z} \simeq \operatorname{End}\left(\mathbb{V}_{\text {crit }}\right) \simeq \mathbb{V}_{\text {crit }}^{\mathfrak{g}[t]]}
$$

We will now show that \mathfrak{z} can be realized as the fiber at $x \in X$ of some D-algebra, which we will denote by $\mathfrak{j} X$.

Recall first of all that $\mathbb{V}_{\text {crit }}$ could be realized as $\Gamma\left(G r_{G}, \delta_{1, G r_{G}} \otimes \mathcal{L}_{c r i t}\right)$, where $G r_{G}=G((t)) / G[[t]]$.

Given a curve X, there exists a scheme $G r_{G, X}$ over X, whose fiber at any given $x \in X$ identifies with $G r_{G}$, once we identify $\left.\widehat{\mathcal{O}}_{x} \simeq \mathbb{C}[[t]]\right]$.

Namely, $G r_{G, X}$ classifies the data of a point $x \in X$ and a principal G-bundle on X with a trivialization off this point. We will denote by π the projection $G r_{G, X} \rightarrow X$.

By construction, $G r_{G, X}$ carries a connection along X, i.e., it is a D-scheme. Moreover, this connection lifts onto the line bundle $\mathcal{L}_{\text {crit, } X}$.

By taking the D-module $\delta_{1_{X}, G r_{G, X}}$ on $G r_{G, X}$, we can consider the quasi-coherent sheaf

$$
\mathbb{V}_{c r i t, X}:=\pi_{*}\left(\delta_{1_{X}, G r_{G, X}} \otimes \mathcal{L}_{c r i t, X}\right)
$$

which will be a D-module on X.

The fiber of $\mathbb{V}_{c r i t, X}$ at x can be identified with the vector space underlying the representation $\mathbb{V}_{\text {crit }}$ of $\mathfrak{\mathfrak { g }}_{\text {crit }}$. Globally, $\mathbb{V}_{\text {crit }, X}$ carries an action of an appropriate sheaf of Kac-Moody algebras.

It makes sense to take $E n d_{\widehat{\mathfrak{g}}_{\text {crit }}}\left(\mathbb{V}_{\text {crit,X }}\right)$, which will again be a D-module on X. It carries a structure of an associative D-algebra, but one can show that it is in fact commutative.

This is our $\mathfrak{z x}$. By construction, its fiber at any $x \in X$ maps to \mathfrak{z}, and one shows that this map is an isomorphism, as required. Lemma 3. There exists a natural map

$$
\operatorname{Spec}(\mathfrak{Z}) \rightarrow H_{\nabla}\left(\mathcal{D}^{\times}, \mathfrak{z}_{X}\right) ;
$$

moreover this map is an isomorphism.

4. \mathfrak{z}_{X} and connections.

We will now explain the relation between \mathfrak{Z} and \breve{G}-connections on the formal punctured disc.

Along with the D-module $\delta_{1_{X}, G r_{G, X}}$ on $G r_{G, X}$, for any $V \in \operatorname{Rep}(\breve{G})$ one can consider the corresponding D-module $\mathcal{F}_{V, X}$. The direct image

$$
\pi_{*}\left(\mathcal{F}_{V, X} \otimes \mathcal{L}_{c r i t, X}\right)
$$

will be a D-module on X, and it will carry an action of the above sheaf of Kac-Moody algebras. Set

$$
\mathcal{V}_{X}:=\operatorname{Hom}_{\mathfrak{g}_{c r i t}}\left(\mathbb{V}_{c r i t, X}, \pi_{*}\left(\mathcal{F}_{V, X} \otimes \mathcal{L}_{c r i t, X}\right)\right)
$$

This will be a locally free $\mathfrak{z} X$-module, endowed with a connection along X. Generalizing the set-up of the previous lecture, we obtain that the functor

$$
V \mapsto \mathcal{V}_{X}
$$

defines a \breve{G}-torsor over the D-scheme $\operatorname{Spec}\left(\mathfrak{z}_{X}\right)$, endowed with a connection along X.

Thus, given a point of $H_{\nabla}\left(U, \mathfrak{z}_{X}\right)$, where U is X (resp., $X-x, \mathcal{D}, \mathcal{D}^{\times}$), which is the same as a horizontal homomorphism $\left.\mathfrak{z} X\right|_{U} \rightarrow \mathcal{O}_{U}$, we obtain a \breve{G}-torsor over U with a connection.

In particular, for $U=\mathcal{D}^{\times}$, we obtain the desired map

$$
H_{\nabla}\left(\mathcal{D}^{\times}, \mathfrak{z X}\right) \rightarrow \operatorname{LocSys}\left(\mathcal{D}^{\times}\right)_{G} .
$$

5. The Beilinson-Drinfeld construction of Hecke eigensheaves.

Assume now that X is complete. Let $\sigma_{\text {glob }}$ be a \breve{G}-local system on $X-x$. Let $\sigma_{l o c}$ be the restriction of $\sigma_{g l o b}$ to \mathcal{D}^{\times}, which is a point of $\operatorname{LocSys}\left(\mathcal{D}^{\times}\right)_{\breve{G}}$

Suppose that there exists an element $\chi_{g l o b} \in$ $H_{\nabla}(X-x, \mathfrak{z} X)$, such that $\sigma_{\text {glob }}$ is its image under the map

$$
H_{\nabla}\left(X-x, \mathfrak{z}_{X}\right) \rightarrow \operatorname{LocSys}(X-s)_{G} .
$$

Let χ be the image of $\chi_{g l o b}$ under the map

$$
H_{\nabla}(X-x, \mathfrak{z} X) \rightarrow H_{\nabla}\left(\mathcal{D}^{\times}, \mathfrak{z} X\right),
$$

cf. Lemma 2(2).
We can think of χ as a character of \mathfrak{Z}, and let $\widehat{\mathfrak{g}}_{\text {crit }}$-mod χ be the sub-category of $\widehat{\mathfrak{g}}_{\text {crit }}$-mod consisting of modules with this central character.

Let us recall from the first lecture that we are supposed to have a functor

$$
\mathcal{C}_{\sigma_{l o c}} \rightarrow \operatorname{Hecke}\left(\sigma_{\text {glob }}, x\right),
$$

and an equivalence

$$
\mathcal{C}_{\sigma} \simeq \widehat{\mathfrak{g}}_{c r i t}-\bmod _{\chi} .
$$

Altogether, we are supposed to have a functor

$$
\widehat{\mathfrak{g}}_{\text {crit }}-\bmod _{\chi} \rightarrow \operatorname{Hecke}\left(\sigma_{\text {glob }}, x\right) .
$$

The construction of such a functor has been carried out in the work of Beilinson and Drinfeld.

5. A localization pattern.

Let y be a scheme, acted on by the group $G((t))$. Following Beilinson and Bernstein, we have the localization functor

$$
L o c: \mathfrak{g}((t))-\bmod \rightarrow D-\bmod (y),
$$

constructed by

$$
M \mapsto \mathrm{D}_{y} \underset{U(\mathfrak{g}((t)))}{\otimes} M .
$$

Suppose that the action of $G((t))$ on y is infinitesimally transitive, i.e., $\mathfrak{g}((t))$ maps surjectively onto the tangent space to y at every point. Then we can describe explicitly the fibers of $\operatorname{Loc}(M)$.

Namely, for $y \in \mathcal{y}$, let $s t(y) \subset \mathfrak{g}((t))$ be its stabilizer. We have:

$$
\operatorname{Loc}(M)_{y} \simeq(M)_{s t(y)} .
$$

More generally, this construction applies to the category $\widehat{\mathfrak{g}}_{\kappa}$-mod, where $\widehat{\mathfrak{g}}_{\kappa}$ is a central extension of $\mathfrak{g}((t))$, which acts on a line bundle \mathcal{L}_{y}, lifting the action of $\mathfrak{g}((t))$ on y.

We apply this construction to $y=\operatorname{Bun}_{G}(x)$. The functor Loc gives rise to a functor

$$
\widehat{\mathfrak{g}}_{\text {crit }}-\bmod \rightarrow \mathrm{D}-\bmod \left(\operatorname{Bun}_{G}(x)\right) .
$$

One can describe explicitly the fibers of $\operatorname{Loc}(M)$ for $M \in \widehat{\mathfrak{g}}_{\text {crit }}$-mod:

Namely, a point of $\operatorname{Bun}_{G}(x)$ defines a twisted form of the algebra $\mathfrak{g} \otimes \Gamma\left(X-x, \mathcal{O}_{X}\right)$, denoted $\mathfrak{g}_{\text {out }}$, together with its embedding into $\widehat{\mathfrak{g}}_{\text {crit }}$. Then the fiber of $\operatorname{Loc}(M)$ at the above point of $\operatorname{Bun}_{G}(x)$ is given by the space of coinvariants $(M)_{\mathfrak{g}_{\text {out }}}$.

Thus, we obtain the functor

$$
\widehat{\mathfrak{g}}_{c r i t}-\bmod _{\chi} \rightarrow \mathrm{D}-\bmod \left(\operatorname{Bun}_{G}(x)\right) .
$$

However, the relation

$$
\pi_{*}\left(\mathcal{F}_{V, X} \otimes \mathcal{L}_{c r i t, X}\right) \simeq \mathbb{V}_{c r i t, X} \otimes_{\mathfrak{z}_{X}}^{\otimes} \mathcal{V}_{X}
$$

implies that this functor naturally factors through Hecke $\left(\sigma_{\text {glob }}, x\right)$.

