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1. Affine algebras and representations.

Let g be a simple Lie algebra over C, and G
the corresponding adjoint group. We consider
the loop algebra g((t)), and for any symmetric
ad-invariant pairing k : g® g — C we have the
Kac-Moody central extension

0—C—gs—g() —0,

which splits as a vector space, and the bracket
IS given by the formula

[z ® f(1),y ® g(t)] = k(z,y) - Res;=o(df (1) - g(£))+
[z, y] @ (f () - g(¢)).

We define the category g, -mod to have as ob-
jects (discrete) vector spaces M, endowed with
an action of g, as a Lie algebra, such that the
following conditions are satisfied:



e The element 1 € C C g, acts on M as the
identity operator.

e For every m € M there exists an integer
n, such that for all n/ > n, the elements
@t € g((t)) C gk annihilate m.

et us give the most basic example of an object
of g -mod—the vacuum module, denoted V. It
IS generated by a single vector 1 € V., which is
annihilated by the subalgebra g[[t]] C g((t)) C

k-

Functorially, the vacuum module is character-
ized by the property

Homg,, mod(Vi, M) = MUl



2. The center and the critical level.

Let us recall that the center of the category
g-mod of modules over the finite-dimensional
algebra g, which is isomorphic to the center of
the universal enveloping algbera U(g), is iso-
morphic to the sub-algebra U(g)? of ad-invariants

in U(g).

Since the adjoint action of g on U(g) is lo-
cally finite, and since the category of finite-
dimensional representations of g is semi-simple,
we obtain

gr(Z(U(g))) ~ (gr(U(9)))? ~ Sym(g)?,

where the associated graded is taken with re-
spect to the PBW filtration on U(g).



Do we have a similar statement in the affine
case? The answer is that a priori no, because
we no longer have the semi-simplicity state-
ment for the corresponding category.

Let Z(gx-mod) denote the center of the cate-
gory gx-mod, or, which is the same, the center
of the corresponding completed universal en-
veloping algebra. It carries a filtration induced
by the PBW filtration. We always have an em-
bedding

gr (Z(§x-mod)) — (Sym(g((¢))))¥E) (1)

Lemma 1. If kK # Kkppp = —Kigmg, then

Z(§x-mod) ~ C.

Theorem 1. [Feigin-Frenkel] For kK = k.r;, the
map (1) is an isomorphism.



From now on we shall fix kK = k.5, We will use
a short-hand notation g.,;; -mod for gg,.., -mod.
We will denote the algebra Z(g..;; -mod) by 3.

Consider the action of 3 on V,..;;. Along with
Lemma 1 and Theorem 1 one shows the fol-
lowing:

Lemma 2. The map

3 - Endgcm’t‘mOd (Vcrit) = (Vcrit)g[[t”
IS surjective.

Let us denote by 3 the quotient of 3 through
which it acts on V..;;. We have:

Theorem 2. The map (1) induces an isomor-
phism

gr(3) = (gr(Vera))? 1.

Let us denote by g..;; -mod”®¥ the subcategory
of g.r;+ -Mmod, consisting of modules, on which
the action of 3 factors through 3. This is the
category that we will be interested in today.
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3. D-modules on the affine Grassmannian.

We consider the affine Grassmannian Grg =
G((t))/G[[t]]. This is a strict ind-scheme of
ind-finite type , i.e., it can represented as a
union of finite-dimensional schemes, each be-
ing a closed subscheme in the next one.

Hence, it makes sense to speak about the cat-
egory of D-modules on Grg; we will denote it
by D-mOd(GT(;).

The group G((t)) acts naturally on Grg. Let us
denote by Sphg := D-mod(Grs)ClH the cat-
egory of D-modules on Grg, equivariant with
respect to the subgroup G[[t]] C G((1)).

The convolution product makes Sphg into a
monoidal category, which acts on D-mod(Grg):



Consider the ind-scheme G((t)) x Grg, which
G[¢]]

maps to Grg using the action map. If F is
an object of D-mod(Grg) and F is a GJ[t]]-
equivariant D-module on Grg, we can form
their twisted product
FXNTF ¢ D-mod(G((t)) x Grg),
G[t]]

taking 3’ along the first multiple and J along
the second one.

We define ¥ «F € D-mod(Grg) to be the di-
rect image of F'XF. A priori, this would be
an object of the derived category, but one can
show that it is acyclic off degree O, i.e., it is a
single D-module.

If ¥ was also G[[t]]-equivariant, then so will be
the result of the convolution.

The following theorem (due to Drinfeld, Ginzburg,
Lusztig, Mirkovi¢ and Vilonen) is the basis for
geometric Langlands duality:



Theorem 3. The monoidal category Sphg has
a natural commutativity constraint, and the
resulting tensor category is equivalent to that
of algebraic representations of G.

We shall denote the functor Rep(G) — Sphg
by V — 97‘/.

Thus, we obtain that the category Rep(G) acts
as a monoidal category on D-mod(Grg). Ac-
cording to the previous lecture, this means, by
definition, that D-mod(Grg) is a category over
the stack pt /G.



4. Critically twisted global sections.

Recall that to every integral (and in particu-
lar, critical) value of k, there corresponds a
line bundle L, on Grg, such that the action of
g((t)) on Grg lifts to an action of gx on L.

Given a D-module F on Grg, we can consider
the vector space

I_/Q(G""G,gj) — I_(GTG,?(@LKJ),

and it will be an object of g,-mod.

For example, if we take F to be the §-function
01,Gr, at the point 1 € Grg, we obtain

I_/q;(G'r'G, 517GTG) ~ VK;.

From this, we obtain:
Lemma 3. For any F € D-mod(Grg),

rcrit(GrG7 F) € Gerit -mod".
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We shall now state a theorem, which is at the
origin of the relation, discovered originally by
Feigin and Frenkel, of the algebras 3 and 3 and
the stack LocSys(D*)x.

Theorem 4. For V € Rep(G), the object

rcm’t(GTGa SjV) € Gerit -mod"’
is isomorphic to V..;; ® V for some locally free
3

3-module V.

As a corollary we obtain:
Lemma 4. For any ¥ € D-mod(Grg) and V as
above, we have

Cerit(Grg, F« Fy) = T it (Grg, F) ? V.
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The above lemma implies that the assignment
V +— Vis a monoidal functor from the category
Rep(G) to that of locally free modules over 3.
It is fairly easy to show that this functor is com-
patible with the commutativity constraints.

Hence, the data of such functor is equivalent
to that of a torsor P~ (i.e., a principal bun-
dle) over Spec(3) with respect to G, such that
for V € Rep(G), what we denoted by V is the
corresponding associated vector bundle.
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5. A localization conjecture at the critical
level.

et us recall the theorem of Beilinson and Bern-
stein that says that the category of g-modules
with a given central character is equivalent to
the category of twisted D-modules on the flag
variety G/B.

What we are going to state now is a conjec-
ture, that is supposed to give a similar descrip-
tion to the category g..;-mod™¥ in terms of
D-modules on Grg.

In terms of the previous lecture, this conjecture
IS the combination of two statements:

¢ X Spec(3) = Gerit -Mod

LocSys(D*)
and
C X LocSys(@X)%eg ~ D-mod(Grg).
LocSys(D*)
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By the construction of the map Spec(3) —
LocSys(D™)~ (that we have not yet explained),
the composition

Spec(3) — Spec(3) — LocSys(D™)
equals
Spec(3) — pt /G ~ LocSys(er)gg — LocSys(D™) x,

where the first arrow corresponds to the torsor
Pe, introduced above.
We obtain that

Oerit -mod"J ~ Jerit -Mod X Spec(ﬁ)
Spec(3)

should be equivalent to

D-mod(Grg) x Spec(3).
pt /G

Here is a way to reformulate this conjecture:
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Let Hecke(Gry) denote the category, whose
objects are D-modules F on Grg, endowed with
an action of the algebra 3 by endomorphisms,
and a system of isomorphisms

97*97‘/295@’\7,
3

for V € Rep(G), comptible with tensor prod-
ucts of representations. Morphisms in this cat-
egory are D-module morphisms that respect
the other pieces of structure.

In fact Hecke(Grg) is, by definition, equivalent
to D-mod(Grg) x  Spec(3).

pt /G
Conjecture 1. The category Hecke(Gre) is equiv-
alent to g.,;; -mod”¢9.
Corollary 1. For every pair of central charac-
ters x1,x2 € Spec(3), there exists a canonical
equivalence of the categories

Gcrit ~MOdy; =~ Gerit ~MOdy,
for every choice of an isomorphisms of G-torsors
(Pedx1 = (Pe)xe-
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