# Local geometric Langlands correspondence and representations of affine Kac-Moody algebras 

## (Joint work with Edward Frenkel) <br> Lecture 2

Aug. 11, 2005

## 1. Affine algebras and representations.

Let $\mathfrak{g}$ be a simple Lie algebra over $\mathbb{C}$, and $G$ the corresponding adjoint group. We consider the loop algebra $\mathfrak{g}((t))$, and for any symmetric ad-invariant pairing $\kappa: \mathfrak{g} \otimes \mathfrak{g} \rightarrow \mathbb{C}$ we have the Kac-Moody central extension

$$
0 \rightarrow \mathbb{C} \rightarrow \widehat{\mathfrak{g}}_{\kappa} \rightarrow \mathfrak{g}((t)) \rightarrow 0
$$

which splits as a vector space, and the bracket is given by the formula
$[x \otimes f(t), y \otimes g(t)]=\kappa(x, y) \cdot \operatorname{Res}_{t=0}(d f(t) \cdot g(t))+$ $[x, y] \otimes(f(t) \cdot g(t))$.

We define the category $\widehat{\mathfrak{g}}_{\kappa}$-mod to have as objects (discrete) vector spaces $M$, endowed with an action of $\mathfrak{g}_{\kappa}$ as a Lie algebra, such that the following conditions are satisfied:

- The element $1 \in \mathbb{C} \subset \widehat{\mathfrak{g}}_{\kappa}$ acts on $M$ as the identity operator.
- For every $m \in M$ there exists an integer $n$, such that for all $n^{\prime} \geq n$, the elements $x \otimes t^{n^{\prime}} \in \mathfrak{g}((t)) \subset \hat{\mathfrak{g}}_{\kappa}$ annihilate $m$.

Let us give the most basic example of an object of $\widehat{\mathfrak{g}}_{\kappa}$-mod-the vacuum module, denoted $\mathbb{V}_{\kappa}$. It is generated by a single vector $1 \in \mathbb{V}_{\kappa}$, which is annihilated by the subalgebra $\mathfrak{g}[[t]] \subset \mathfrak{g}((t)) \subset$ $\widehat{\mathfrak{g}}_{\kappa}$.

Functorially, the vacuum module is characterized by the property

$$
\operatorname{Hom}_{\widehat{\mathfrak{g}}_{\kappa}-\bmod }\left(\mathbb{V}_{\kappa}, M\right)=M^{\mathfrak{g}[[t]]}
$$

## 2. The center and the critical level.

Let us recall that the center of the category $\mathfrak{g}$-mod of modules over the finite-dimensional algebra $\mathfrak{g}$, which is isomorphic to the center of the universal enveloping algbera $U(\mathfrak{g})$, is isomorphic to the sub-algebra $U(\mathfrak{g})^{\mathfrak{g}}$ of ad-invariants in $U(\mathfrak{g})$.

Since the adjoint action of $\mathfrak{g}$ on $U(\mathfrak{g})$ is locally finite, and since the category of finitedimensional representations of $\mathfrak{g}$ is semi-simple, we obtain

$$
\operatorname{gr}(Z(U(\mathfrak{g}))) \simeq(\operatorname{gr}(U(\mathfrak{g})))^{\mathfrak{g}} \simeq \operatorname{Sym}(\mathfrak{g})^{\mathfrak{g}},
$$

where the associated graded is taken with respect to the PBW filtration on $U(\mathfrak{g})$.

Do we have a similar statement in the affine case? The answer is that a priori no, because we no longer have the semi-simplicity statement for the corresponding category.

Let $Z\left(\widehat{\mathfrak{g}}_{\kappa}-\bmod \right)$ denote the center of the category $\widehat{\mathfrak{g}}_{\kappa}$-mod, or, which is the same, the center of the corresponding completed universal enveloping algebra. It carries a filtration induced by the PBW filtration. We always have an embedding

$$
\begin{equation*}
\operatorname{gr}\left(Z\left(\widehat{\mathfrak{g}}_{\kappa}-\bmod \right)\right) \hookrightarrow(\operatorname{Sym}(\mathfrak{g}((t))))^{\mathfrak{g}((t))} \tag{1}
\end{equation*}
$$

Lemma 1. If $\kappa \neq \kappa_{\text {crit }}=-\frac{\text { Killing }}{2}$, then

$$
Z\left(\widehat{\mathfrak{g}}_{\kappa}-\bmod \right) \simeq \mathbb{C}
$$

Theorem 1. [Feigin-Frenkel] For $\kappa=\kappa_{\text {crit }}$, the map (1) is an isomorphism.

From now on we shall fix $\kappa=\kappa_{\text {crit }}$; we will use a short-hand notation $\widehat{\mathfrak{g}}_{\text {crit }}$-mod for $\widehat{\mathfrak{g}}_{\kappa_{\text {crit }}}$-mod. We will denote the algebra $Z\left(\mathfrak{g}_{\text {crit }}-\mathrm{mod}\right)$ by $\mathfrak{Z}$.

Consider the action of $\mathfrak{Z}$ on $\mathbb{V}_{\text {crit }}$. Along with Lemma 1 and Theorem 1 one shows the following:
Lemma 2. The map

$$
\mathfrak{Z} \rightarrow \operatorname{End}_{\widehat{\mathfrak{g}}_{\text {crit }}-\bmod }\left(\mathbb{V}_{\text {crit }}\right) \simeq\left(\mathbb{V}_{\text {crit }}\right)^{\mathfrak{g}[[t]]}
$$

is surjective.
Let us denote by $\mathfrak{z}$ the quotient of $\mathfrak{Z}$ through which it acts on $\mathbb{V}_{\text {crit }}$. We have:
Theorem 2. The map (1) induces an isomorphism

$$
g r(\mathfrak{z}) \rightarrow\left(g r\left(\mathbb{V}_{c r i t}\right)\right)^{\mathfrak{g}[[t]]} .
$$

Let us denote by $\widehat{\mathfrak{g}}_{\text {crit }}$-mod ${ }^{\text {reg }}$ the subcategory of $\mathfrak{g}_{\text {crit }}$-mod, consisting of modules, on which the action of $\mathfrak{Z}$ factors through $\mathfrak{z}$. This is the category that we will be interested in today.

## 3. D-modules on the affine Grassmannian.

We consider the affine Grassmannian $G r_{G}:=$ $G((t)) / G[[t]]$. This is a strict ind-scheme of ind-finite type, i.e., it can represented as a union of finite-dimensional schemes, each being a closed subscheme in the next one.

Hence, it makes sense to speak about the category of D-modules on $G r_{G}$; we will denote it by $\mathrm{D}-\mathrm{mod}\left(G r_{G}\right)$.

The group $G((t))$ acts naturally on $G r_{G}$. Let us denote by $S p h_{G}:=\mathrm{D}-\bmod \left(G r_{G}\right)^{G[[t]]}$ the category of D-modules on $G r_{G}$, equivariant with respect to the subgroup $G[[t]] \subset G((t))$.

The convolution product makes $S p h_{G}$ into a monoidal category, which acts on D-mod $\left(G r_{G}\right)$ :

Consider the ind-scheme $G((t)) \underset{G[[t]]}{\times} G r_{G}$, which maps to $G r_{G}$ using the action map. If $\mathcal{F}^{\prime}$ is an object of $\mathrm{D}-\bmod \left(G r_{G}\right)$ and $\mathcal{F}$ is a $G[[t]]-$ equivariant D -module on $G r_{G}$, we can form their twisted product

$$
\mathcal{F}^{\prime} \tilde{\boxtimes} \mathcal{F} \in \mathrm{D}-\bmod \left(G((t)) \underset{G[[t]]}{\times} G r_{G}\right),
$$

taking $\mathcal{F}^{\prime}$ along the first multiple and $\mathcal{F}$ along the second one.

We define $\mathcal{F}^{\prime} \star \mathcal{F} \in \mathrm{D}-\bmod \left(G r_{G}\right)$ to be the direct image of $\mathcal{F}^{\prime} \tilde{\boxtimes} \mathcal{F}$. A priori, this would be an object of the derived category, but one can show that it is acyclic off degree 0 , i.e., it is a single D-module.

If $\mathcal{F}^{\prime}$ was also $G[[t]]$-equivariant, then so will be the result of the convolution.

The following theorem (due to Drinfeld, Ginzburg, Lusztig, Mirković and Vilonen) is the basis for geometric Langlands duality:

Theorem 3. The monoidal category $S p h_{G}$ has a natural commutativity constraint, and the resulting tensor category is equivalent to that of algebraic representations of $\breve{G}$.

We shall denote the functor $\operatorname{Rep}(\breve{G}) \rightarrow S p h_{G}$ by $V \mapsto \mathcal{F}_{V}$.

Thus, we obtain that the category $\operatorname{Rep}(\breve{G})$ acts as a monoidal category on $\mathrm{D}-\bmod \left(G r_{G}\right)$. According to the previous lecture, this means, by definition, that $\mathrm{D}-\bmod \left(G r_{G}\right)$ is a category over the stack pt $/ G$.

## 4. Critically twisted global sections.

Recall that to every integral (and in particular, critical) value of $\kappa$, there corresponds a line bundle $\mathcal{L}_{\kappa}$ on $G r_{G}$, such that the action of $\mathfrak{g}((t))$ on $G r_{G}$ lifts to an action of $\hat{\mathfrak{g}}_{\kappa}$ on $\mathcal{L}_{\kappa}$.

Given a D-module $\mathcal{F}$ on $G r_{G}$, we can consider the vector space

$$
\Gamma_{\kappa}\left(G r_{G}, \mathcal{F}\right):=\left\ulcorner\left(G r_{G}, \mathcal{F} \otimes \mathcal{L}_{\kappa}\right),\right.
$$

and it will be an object of $\hat{\mathfrak{g}}_{\kappa}$-mod.
For example, if we take $\mathcal{F}$ to be the $\delta$-function $\delta_{1, G r_{G}}$ at the point $1 \in G r_{G}$, we obtain

$$
\Gamma_{\kappa}\left(G r_{G}, \delta_{1, G r_{G}}\right) \simeq \mathbb{V}_{\kappa} .
$$

From this, we obtain:
Lemma 3. For any $\mathcal{F} \in \mathrm{D}-\bmod \left(G r_{G}\right)$,

$$
\Gamma_{c r i t}\left(G r_{G}, \mathcal{F}\right) \in \widehat{\mathfrak{g}}_{\text {crit }}-\text { mod }^{r e g} .
$$

We shall now state a theorem, which is at the origin of the relation, discovered originally by Feigin and Frenkel, of the algebras $\mathfrak{Z}$ and $\mathfrak{z}$ and the stack $\operatorname{LocSys}\left(\mathcal{D}^{\times}\right)_{G}$.
Theorem 4. For $V \in \operatorname{Rep}(\underset{G}{( })$, the object

$$
\Gamma_{c r i t}\left(G r_{G}, \mathcal{F}_{V}\right) \in \widehat{\mathfrak{g}}_{\text {crit }}-\mathrm{mod}^{r e g}
$$

is isomorphic to $\mathbb{V}_{\text {crit }} \otimes \mathcal{Z}$ Vor some locally free $\mathfrak{z}$-module $\mathcal{V}$.

As a corollary we obtain:
Lemma 4. For any $\mathcal{F} \in \mathrm{D}-\bmod \left(G r_{G}\right)$ and $V$ as above, we have

$$
\Gamma_{c r i t}\left(G r_{G}, \mathcal{F} \star \mathcal{F}_{V}\right) \simeq \Gamma_{c r i t}\left(G r_{G}, \mathcal{F}\right) \underset{\mathfrak{z}}{\otimes} \mathcal{V} .
$$

The above lemma implies that the assignment $V \mapsto \mathcal{V}$ is a monoidal functor from the category $\operatorname{Rep}(\breve{G})$ to that of locally free modules over $\mathfrak{z}$. It is fairly easy to show that this functor is compatible with the commutativity constraints.

Hence, the data of such functor is equivalent to that of a torsor $\mathcal{P}_{G}$ (i.e., a principal bundle) over $\operatorname{Spec}(\mathfrak{z})$ with respect to $G$, such that for $V \in \operatorname{Rep}(\breve{G})$, what we denoted by $V$ is the corresponding associated vector bundle.
5. A localization conjecture at the critical level.

Let us recall the theorem of Beilinson and Bernstein that says that the category of $\mathfrak{g}$-modules with a given central character is equivalent to the category of twisted D-modules on the flag variety $G / B$.

What we are going to state now is a conjecture, that is supposed to give a similar description to the category $\widehat{\mathfrak{g}}_{\text {crit }}$-modreg in terms of D-modules on $G r_{G}$.

In terms of the previous lecture, this conjecture is the combination of two statements:

$$
\mathcal{C}_{\text {LocSys }(\mathcal{D} \times)_{\overparen{\tilde{C}}}}^{\times} \operatorname{Spec}(\mathfrak{Z}) \simeq \widehat{\mathfrak{g}}_{\text {crit }}-\bmod
$$

and

$$
\mathrm{C}_{\text {LocSys }\left(\mathcal{D}^{\times}\right)_{\tilde{G}}}^{\times} \operatorname{LocSys}\left(\mathcal{D}^{\times}\right)_{\widetilde{G}}^{r e g} \simeq \mathrm{D}-\bmod \left(G r_{G}\right) .
$$

By the construction of the map $\operatorname{Spec}(\mathfrak{Z}) \rightarrow$ $\operatorname{LocSys}\left(\mathcal{D}^{\times}\right)_{\breve{G}}$ (that we have not yet explained), the composition

$$
\operatorname{Spec}(\mathfrak{z}) \rightarrow \operatorname{Spec}(\mathfrak{Z}) \rightarrow \operatorname{LocSys}\left(\mathcal{D}^{\times}\right)_{\breve{G}}
$$

equals
$\operatorname{Spec}(\mathfrak{z}) \rightarrow \mathrm{pt} / \breve{G} \simeq \operatorname{LocSys}\left(\mathcal{D}^{\times}\right)_{\widetilde{G}}^{r e g} \hookrightarrow \operatorname{LocSys}\left(\mathcal{D}^{\times}\right)_{G}$,
where the first arrow corresponds to the torsor $\mathcal{P}_{\breve{G}}$, introduced above.

We obtain that

$$
\widehat{\mathfrak{g}}_{\text {crit }}-\mathrm{mod}^{r e g} \simeq \widehat{\mathfrak{g}}_{\text {crit }}-\bmod \underset{\operatorname{Spec}(\mathfrak{z})}{\times} \operatorname{Spec}(\mathfrak{z})
$$

should be equivalent to

$$
\mathrm{D}-\bmod \left(G r_{G}\right) \underset{\mathrm{pt} / \overleftarrow{G}}{\times} \operatorname{Spec}(\mathfrak{z}) .
$$

Here is a way to reformulate this conjecture:

Let $\operatorname{Hecke}\left(G r_{G}\right)$ denote the category, whose objects are D-modules $\mathcal{F}$ on $G r_{G}$, endowed with an action of the algebra $\mathfrak{z}$ by endomorphisms, and a system of isomorphisms

$$
\mathcal{F} \star \mathcal{F}_{V} \simeq \mathcal{F} \underset{\mathfrak{z}}{\otimes} \mathcal{V},
$$

for $V \in \operatorname{Rep}(\breve{G})$, comptible with tensor products of representations. Morphisms in this category are D-module morphisms that respect the other pieces of structure.

In fact $\operatorname{Hecke}\left(G r_{G}\right)$ is, by definition, equivalent to $\mathrm{D}-\bmod \left(G r_{G}\right) \underset{\text { pt } / \mathscr{G}}{\times} \operatorname{Spec}(\mathfrak{z})$.
Conjecture 1. The category Hecke $\left(G r_{G}\right)$ is equivalent to $\widehat{\mathfrak{g}}_{\text {crit }}-\mathrm{mod}^{\text {reg }}$.
Corollary 1. For every pair of central characters $\chi_{1}, \chi_{2} \in \operatorname{Spec}(\mathfrak{z})$, there exists a canonical equivalence of the categories

$$
\widehat{\mathfrak{g}}_{\text {crit }}-\bmod _{\chi_{1}} \simeq \widehat{\mathfrak{g}}_{\text {crit }}-\bmod _{\chi_{2}}
$$

for every choice of an isomorphisms of $\breve{G}$-torsors $\left(\mathcal{P}_{\breve{G}}\right)_{\chi_{1}} \simeq\left(\mathcal{P}_{\breve{G}}\right)_{\chi_{2}}$.

