Local geometric Langlands correspondence and representations of affine Kac-Moody algebras

(Joint work with Edward Frenkel)

Lecture 2

Aug. 11, 2005

1. Affine algebras and representations.

Let \mathfrak{g} be a simple Lie algebra over \mathbb{C} , and G the corresponding adjoint group. We consider the loop algebra $\mathfrak{g}((t))$, and for any symmetric ad-invariant pairing $\kappa : \mathfrak{g} \otimes \mathfrak{g} \to \mathbb{C}$ we have the Kac-Moody central extension

$$0 \to \mathbb{C} \to \widehat{\mathfrak{g}}_{\kappa} \to \mathfrak{g}((t)) \to 0,$$

which splits as a vector space, and the bracket is given by the formula

 $[x \otimes f(t), y \otimes g(t)] = \kappa(x, y) \cdot \operatorname{Res}_{t=0}(df(t) \cdot g(t)) + [x, y] \otimes (f(t) \cdot g(t)).$

We define the category $\hat{\mathfrak{g}}_{\kappa}$ -mod to have as objects (discrete) vector spaces M, endowed with an action of $\hat{\mathfrak{g}}_{\kappa}$ as a Lie algebra, such that the following conditions are satisfied:

- The element $1 \in \mathbb{C} \subset \hat{\mathfrak{g}}_{\kappa}$ acts on M as the identity operator.
- For every $m \in M$ there exists an integer n, such that for all $n' \geq n$, the elements $x \otimes t^{n'} \in \mathfrak{g}((t)) \subset \widehat{\mathfrak{g}}_{\kappa}$ annihilate m.

Let us give the most basic example of an object of $\hat{\mathfrak{g}}_{\kappa}$ -mod—the vacuum module, denoted \mathbb{V}_{κ} . It is generated by a single vector $\mathbf{1} \in \mathbb{V}_{\kappa}$, which is annihilated by the subalgebra $\mathfrak{g}[[t]] \subset \mathfrak{g}((t)) \subset \hat{\mathfrak{g}}_{\kappa}$.

Functorially, the vacuum module is characterized by the property

$$Hom_{\widehat{\mathfrak{g}}_{\kappa}-\mathrm{mod}}(\mathbb{V}_{\kappa},M)=M^{\mathfrak{g}[[t]]}.$$

2. The center and the critical level.

Let us recall that the center of the category \mathfrak{g} -mod of modules over the finite-dimensional algebra \mathfrak{g} , which is isomorphic to the center of the universal enveloping algbera $U(\mathfrak{g})$, is isomorphic to the sub-algebra $U(\mathfrak{g})^{\mathfrak{g}}$ of ad-invariants in $U(\mathfrak{g})$.

Since the adjoint action of \mathfrak{g} on $U(\mathfrak{g})$ is locally finite, and since the category of finitedimensional representations of \mathfrak{g} is semi-simple, we obtain

$gr(Z(U(\mathfrak{g}))) \simeq (gr(U(\mathfrak{g})))^{\mathfrak{g}} \simeq \operatorname{Sym}(\mathfrak{g})^{\mathfrak{g}},$

where the associated graded is taken with respect to the PBW filtration on $U(\mathfrak{g})$.

Do we have a similar statement in the affine case? The answer is that *a priori* no, because we no longer have the semi-simplicity statement for the corresponding category.

Let $Z(\hat{\mathfrak{g}}_{\kappa}\operatorname{-mod})$ denote the center of the category $\hat{\mathfrak{g}}_{\kappa}\operatorname{-mod}$, or, which is the same, the center of the corresponding completed universal enveloping algebra. It carries a filtration induced by the PBW filtration. We always have an embedding

 $gr\left(Z(\hat{\mathfrak{g}}_{\kappa}\operatorname{-mod})\right) \hookrightarrow (\operatorname{Sym}(\mathfrak{g}((t))))^{\mathfrak{g}((t))}$ (1) Lemma 1. If $\kappa \neq \kappa_{crit} = -\frac{Killing}{2}$, then $Z(\hat{\mathfrak{g}}_{\kappa}\operatorname{-mod}) \simeq \mathbb{C}.$

Theorem 1. [Feigin-Frenkel] For $\kappa = \kappa_{crit}$, the map (1) is an isomorphism.

From now on we shall fix $\kappa = \kappa_{crit}$; we will use a short-hand notation $\hat{\mathfrak{g}}_{crit}$ -mod for $\hat{\mathfrak{g}}_{\kappa_{crit}}$ -mod. We will denote the algebra $Z(\hat{\mathfrak{g}}_{crit}$ -mod) by 3.

Consider the action of \mathfrak{Z} on \mathbb{V}_{crit} . Along with Lemma 1 and Theorem 1 one shows the following:

Lemma 2. The map

$$\mathfrak{Z} \to End_{\widehat{\mathfrak{g}}_{crit}} \operatorname{-mod}(\mathbb{V}_{crit}) \simeq (\mathbb{V}_{crit})^{\mathfrak{g}[[t]]}$$

is surjective.

Let us denote by \mathfrak{z} the quotient of \mathfrak{Z} through which it acts on \mathbb{V}_{crit} . We have:

Theorem 2. The map (1) induces an isomorphism

$$gr(\mathfrak{z}) \to (gr(\mathbb{V}_{crit}))^{\mathfrak{g}[[t]]}$$

Let us denote by $\hat{\mathfrak{g}}_{crit}$ -mod^{reg} the subcategory of $\hat{\mathfrak{g}}_{crit}$ -mod, consisting of modules, on which the action of 3 factors through 3. This is the category that we will be interested in today.

3. D-modules on the affine Grassmannian.

We consider the affine Grassmannian $Gr_G := G((t))/G[[t]]$. This is a strict ind-scheme of ind-finite type , i.e., it can represented as a union of finite-dimensional schemes, each being a closed subscheme in the next one.

Hence, it makes sense to speak about the category of D-modules on Gr_G ; we will denote it by D-mod (Gr_G) .

The group G((t)) acts naturally on Gr_G . Let us denote by $Sph_G := D\operatorname{-mod}(Gr_G)^{G[[t]]}$ the category of D-modules on Gr_G , equivariant with respect to the subgroup $G[[t]] \subset G((t))$.

The convolution product makes Sph_G into a monoidal category, which acts on D-mod (Gr_G) :

Consider the ind-scheme $G((t)) \times Gr_G$, which G[[t]]maps to Gr_G using the action map. If \mathcal{F}' is an object of D-mod (Gr_G) and \mathcal{F} is a G[[t]]equivariant D-module on Gr_G , we can form their twisted product

$$\mathfrak{F}'\widetilde{\boxtimes}\mathfrak{F}\in\mathsf{D}\operatorname{-mod}(G((t))\underset{G[[t]]}{\times}Gr_G),$$

taking \mathcal{F}' along the first multiple and $\mathcal F$ along the second one.

We define $\mathcal{F}' \star \mathcal{F} \in D\text{-mod}(Gr_G)$ to be the direct image of $\mathcal{F}' \widetilde{\boxtimes} \mathcal{F}$. A priori, this would be an object of the derived category, but one can show that it is acyclic off degree 0, i.e., it is a single D-module.

If \mathcal{F}' was also G[[t]]-equivariant, then so will be the result of the convolution.

The following theorem (due to Drinfeld, Ginzburg, Lusztig, Mirković and Vilonen) is the basis for geometric Langlands duality: **Theorem 3.** The monoidal category Sph_G has a natural commutativity constraint, and the resulting tensor category is equivalent to that of algebraic representations of \check{G} .

We shall denote the functor $\operatorname{Rep}(\check{G}) \to Sph_G$ by $V \mapsto \mathcal{F}_V$.

Thus, we obtain that the category $\text{Rep}(\check{G})$ acts as a monoidal category on $D\text{-mod}(Gr_G)$. According to the previous lecture, this means, by definition, that $D\text{-mod}(Gr_G)$ is a category over the stack pt $/\check{G}$.

4. Critically twisted global sections.

Recall that to every integral (and in particular, critical) value of κ , there corresponds a line bundle \mathcal{L}_{κ} on Gr_{G} , such that the action of $\mathfrak{g}((t))$ on Gr_{G} lifts to an action of $\hat{\mathfrak{g}}_{\kappa}$ on \mathcal{L}_{κ} .

Given a D-module ${\mathcal F}$ on ${\cal G}r_G$, we can consider the vector space

$$\Gamma_{\kappa}(Gr_G, \mathfrak{F}) := \Gamma(Gr_G, \mathfrak{F} \otimes \mathfrak{L}_{\kappa}),$$

and it will be an object of $\hat{\mathfrak{g}}_{\kappa}$ -mod.

For example, if we take \mathcal{F} to be the δ -function δ_{1,Gr_G} at the point $1 \in Gr_G$, we obtain

$$\Gamma_{\kappa}(Gr_G, \delta_{1, Gr_G}) \simeq \mathbb{V}_{\kappa}.$$

From this, we obtain: Lemma 3. For any $\mathcal{F} \in \mathsf{D}\text{-}\mathsf{mod}(Gr_G)$,

 $\Gamma_{crit}(Gr_G, \mathfrak{F}) \in \widehat{\mathfrak{g}}_{crit} \operatorname{-mod}^{reg}$.

We shall now state a theorem, which is at the origin of the relation, discovered originally by Feigin and Frenkel, of the algebras \mathfrak{Z} and \mathfrak{Z} and the stack $LocSys(\mathfrak{D}^{\times})_{\breve{G}}$.

Theorem 4. For $V \in \text{Rep}(\check{G})$, the object

 $\Gamma_{crit}(Gr_G, \mathcal{F}_V) \in \widehat{\mathfrak{g}}_{crit} \operatorname{-mod}^{reg}$

is isomorphic to $\mathbb{V}_{crit} \underset{\mathfrak{z}}{\otimes} \mathcal{V}$ for some locally free \mathfrak{z} -module \mathcal{V} .

As a corollary we obtain: **Lemma 4.** For any $\mathcal{F} \in \mathsf{D}\text{-}\mathsf{mod}(Gr_G)$ and V as above, we have

$$\Gamma_{crit}(Gr_G, \mathcal{F} \star \mathcal{F}_V) \simeq \Gamma_{crit}(Gr_G, \mathcal{F}) \underset{\mathfrak{Z}}{\otimes} \mathcal{V}.$$

The above lemma implies that the assignment $V \mapsto \mathcal{V}$ is a monoidal functor from the category $\operatorname{Rep}(\check{G})$ to that of locally free modules over \mathfrak{z} . It is fairly easy to show that this functor is compatible with the commutativity constraints.

Hence, the data of such functor is equivalent to that of a torsor $\mathcal{P}_{\check{G}}$ (i.e., a principal bundle) over $Spec(\mathfrak{z})$ with respect to \check{G} , such that for $V \in \operatorname{Rep}(\check{G})$, what we denoted by \mathcal{V} is the corresponding associated vector bundle.

5. A localization conjecture at the critical level.

Let us recall the theorem of Beilinson and Bernstein that says that the category of \mathfrak{g} -modules with a given central character is equivalent to the category of twisted D-modules on the flag variety G/B.

What we are going to state now is a conjecture, that is supposed to give a similar description to the category \hat{g}_{crit} -mod^{reg} in terms of D-modules on Gr_G .

In terms of the previous lecture, this conjecture is the combination of two statements:

$$\mathfrak{C} \underset{LocSys(\mathfrak{D}^{\times})_{\check{G}}}{\times} Spec(\mathfrak{Z}) \simeq \hat{\mathfrak{g}}_{crit} \operatorname{-mod}$$

and

$$\mathcal{C} \underset{LocSys(\mathcal{D}^{\times})_{\check{G}}}{\times} LocSys(\mathcal{D}^{\times})_{\check{G}}^{reg} \simeq \mathsf{D}\operatorname{-mod}(Gr_G).$$

By the construction of the map $Spec(\mathfrak{Z}) \rightarrow LocSys(\mathfrak{D}^{\times})_{\tilde{G}}$ (that we have not yet explained), the composition

$$Spec(\mathfrak{z}) \to Spec(\mathfrak{Z}) \to LocSys(\mathfrak{D}^{\times})_{\check{G}}$$

equals

$$Spec(\mathfrak{z}) \to \operatorname{pt}/\check{G} \simeq LocSys(\mathcal{D}^{\times})^{reg}_{\check{G}} \hookrightarrow LocSys(\mathcal{D}^{\times})_{\check{G}},$$

where the first arrow corresponds to the torsor $\mathcal{P}_{\tilde{G}}$, introduced above.

We obtain that

$$\widehat{\mathfrak{g}}_{crit}$$
-mod^{reg} $\simeq \widehat{\mathfrak{g}}_{crit}$ -mod $\underset{Spec(\mathfrak{Z})}{\times} Spec(\mathfrak{Z})$

should be equivalent to

$$\mathsf{D}\operatorname{-mod}(Gr_G) \underset{\operatorname{pt}/\check{G}}{\times} Spec(\mathfrak{z}).$$

Here is a way to reformulate this conjecture:

Let $Hecke(Gr_G)$ denote the category, whose objects are D-modules \mathcal{F} on Gr_G , endowed with an action of the algebra \mathfrak{z} by endomorphisms, and a system of isomorphisms

$$\mathfrak{F}\star\mathfrak{F}_V\simeq\mathfrak{F}\underset{\mathfrak{z}}{\otimes}\mathfrak{V},$$

for $V \in \text{Rep}(\check{G})$, comptible with tensor products of representations. Morphisms in this category are D-module morphisms that respect the other pieces of structure.

In fact $Hecke(Gr_G)$ is, by definition, equivalent to $D-mod(Gr_G) \underset{pt/\check{G}}{\times} Spec(\mathfrak{z}).$

Conjecture 1. The category $Hecke(Gr_G)$ is equivalent to $\hat{\mathfrak{g}}_{crit}$ -mod^{reg}.

Corollary 1. For every pair of central characters $\chi_1, \chi_2 \in Spec(\mathfrak{z})$, there exists a canonical equivalence of the categories

 $\widehat{\mathfrak{g}}_{crit}\operatorname{-mod}_{\chi_1}\simeq \widehat{\mathfrak{g}}_{crit}\operatorname{-mod}_{\chi_2}$

for every choice of an isomorphisms of \check{G} -torsors $(\mathcal{P}_{\check{G}})_{\chi_1} \simeq (\mathcal{P}_{\check{G}})_{\chi_2}.$