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1. Classical local Langlands correspon-

dence.

Let G be a split reductive group over a ground

field k. In this section k will be a finite field

Fq. We will consider the local field k((t)) and

we will consider the group G((t))k, which is by

definition the group of k((t))-points of G.

It will be important for the sequel that G((t))

exists as an algebro-geometric object–it is a

group ind-scheme, and G((t))k can be also in-

terpreted as the group of k-points of G((t)).

The natural topology on k((t)) makes G((t))k

into a topological group. One is interested

in the category Rep(G((t))k, C) of continuous

representations of G((t))k on C-vector spaces.
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Local Langlands correspondence is a way to

describe the set of isomorphism classes of ir-

reducible objects in Rep(G((t))k, C).

One should remark that contrary to the case

of the finite group Gk, it is interesting to study

Rep(G((t))k, C) as a category, and not just ir-

reducibles in it. I.e., one can study projec-

tive modules, Exts, etc. Unfortunately, I don’t

know how to describe Rep(G((t))k, C) in terms

of Langlands parameters.

Let us return to the irreducibles, and consider

first the commutative case G = GL(1). Ir-

reducible representations of GL(1, k((t)))) are

the same as characters of k((t))×, and Class

Field Theory tells us that those are in bijection

with characters of the Galois (or rather Weil)

group Gal(k((t))) of the local field k((t)).
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Let Ǧ be the Langlands dual group of G; this

is a reductive group, defined combinatorially

from the root data of G. Classical local Lang-

lands correspondence is a generalization of Class

Field Theory.

It asserts that there is a relation between the

following the set Irr (Rep(G((t))k, C)) of irre-

ducibles in Rep(G((t))k, C) and the set of con-

jugacy classes of homomorphisms

σloc : Gal(k((t))) → Ǧ(Q`).

This relation is not a bijection, even on the

conjectural level. However, certain more pre-

cise statements are known. E.g., for G =

GL(n), the above relation induces a bijection

between the subset of cuspidal representations

in Irr (Rep(G((t))k, C)) and the subset of irre-

ducible homomorphisms σloc as above, the lat-

ter being the same as irreducible n-dimensional

`-adic representations of Gal(k((t))).
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2. Action of groups on categories.

We shall now take k to be an algebraically

closed field of characteristic 0, e.g., k = C, and

consider the group ind-scheme G((t)) over k.

It is possible to say what an algebrtaic repre-

sentation of G((t)) is, but it is fairly easy to

show that all such representations are essen-

tially trivial.

Therefore, we have to look for an alternative

notion of representation. Our guiding principle

is that the passage ”classical” ⇒ ”geometric”

is associated with going one step up in the

hierarchy

{Elements}, {Objects}, {Categories}, {2-Cat.}

Thus, instead of looking for ordinary represen-

tations of G((t)), which are, by definition, vec-

tor spaces with an action of G((t)), we will look

for representations of G((t)) on categories.
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Let H be an algebraic group over k (such as G),

or more generally, a group ind-scheme (such

as G((t))). If C is an abelian k-linear category,

there is a notion of action of H on C. In fact,

there are two such notions– weak and strong

(or Harish-Chandra) actions.

For example, if H acts on a scheme Y, we have

a weak action of H on the category QCoh(Y)

of quasi-coherent sheaves on Y. In addition,

we have a strong action of H on the category

D-mod(Y) of D-modules on Y.

Naively, an action of H on C assigns to every

point h ∈ H a functor C → C with some natural

associativity properties. Rigorously, to have a

weak action of H on C, we must have an al-

gebraic family of such functors, parametrized

by H. An action is strong if this family is in-

finitesimally trivialized.
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In most examples C is a category of modules
over an associative (topological) algebra A.
Then a weak action of H on C amounts to
an action of H on A by automorphisms. A
weak action is strong if the induced action of
the Lie algebra h of H is inner, i.e., comes from
a homomorphism h → A.

We stipulate that a geometric replacement of
the notion of representation of the topological
group G((t))k will be the notion of abelian k-
linear category endowed with an action of the
group ind-scheme G((t)). We will call such a
category a ”1-representation of G((t))”. An
object of such a category (i.e., a D-module on
a scheme on which G((t)) acts) is an analog
of a vector in a vector space, underlying a rep-
resentation of G((t))k.

If C1 and C2 are two categories acted on by G,
there is a natural notion of a functor C1 → C2
commuting with the G-action. Thus, we ob-
tain the 2-category of 1-representations, which
is a geometric replacement of Rep(G((t))k, C).
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3. Categories over stacks

In order to be able to speak about geometric

local Langlands correspondence, we need to

introduce one more abstract notion: that of

an abelian category over a stack.

Let C be an abelian category. The center of

C, denoted Z(C), is by definition the algebra of

endomorphisms of the identity functor on C.

I.e., an element of Z(C) is a rule that assigns

to every object X ∈ C its endomorphism, in a

way functorial in X.

Such systems of endomorphisms can be natu-

rally composed, making Z(C) into an associa-

tive algebra. However, it is a simple exercise

to show that Z(C) is in fact commutative. For

example, if C is the category of R-modules,

where R is a ring, then Z(C) ' Z(R).
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Let A be a commutative ring. We say that
C is A-linear, or that C is a category over the
affine scheme Spec(A) if we are given a ho-
momorphism A → Z(C). This is equivalent to
endowing the group Hom(X, Y ) with a struc-
ture of A-module functorially in X, Y ∈ C.

Let now A → A′ be a homomorphism of com-
mutative rings and let C be a category over
S := Spec(A). Then there exists a canonically
constructed category C′ over S′ := Spec(A′),
universal with respect to a certain natural prop-
erty, which we will call ”the base change” of C

with respect to S′, and denote by C×
S

S′.

Let now Y be a stack (in the faithfully flat
topology). A sheaf of categories Csh over Y is
a rule that attaches to every affine scheme S

and an S-point Y, a category CS over S, and for
a map S′ → S of affine schemes, an equivalence

CS′ ' CS ×
S

S′,
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where CS′ is the category, corresponding to the
induced S′-point of Y. We need these data to
satisfy some natural associativity properties.

If Csh is a sheaf of categories over Y, we can
consider the category Γ(Y, Csh) of its global
sections. We shall say that an abelian category
C is a category over Y if there exists (or, rather,
we are given) a sheaf of categories Csh as above
and an equivalence C ' Γ(Y, Csh). For example,
the category of quasi-coherent sheaves over Y

is a category over Y.

In particular, if y is a k-point of Y, the corre-
sponding category CSpec(k) should be thought
of as the fiber of C over y.

An instructive example of this situation is when
Y is the classifying stack pt /H, where H is an
affine algebraic group. It is a good exercise to
show that a strcuture on C of category over
pt /H is equivalent to an action on C of the
tensor category of finite-dimensional represen-
tations of H.
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4. Representations of local Galois groups.

In the case when k was the finite field Fq,

the appropriate object to consider was the set

of conjugacy classes of homomorphisms from

Gal(k((t))) to Ǧ(Q`).

This set can be also described as the set of

isomorphism classes of `-adic local systems on

Spec(k((t))) with respect to Ǧ. By the lat-

ter we mean a tensor functor from the cate-

gory of finite-dimensional algebraic representa-

tions of Ǧ to the category of `-adic sheaves on

Spec(k((t))).

In the geometric context, instead of the `-adic

sheaves on Spec(k((t))) we will consider the

category of holonomic D-modules. The lat-

ter are by definition finite-dimensional k((t))-

vector spaces, endowed with an action of ∂t,

satisfying the Leibniz rule.
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Thus, we obtain the notion of Ǧ-local system

on the formal punctured disc D× := Spec(k((t))).

However, by contrast with the classical situa-

tion, we will consider the collection of all Ǧ-

local system on D× as an algebro-geometric

object. This is a (non-algebraic) stack, which

we will denote by LocSys(D×)Ǧ.

One can describe LocSys(D×)Ǧ explictly as fol-

lows. Let ǧ denote the Lie algebra of Ǧ. One

can describe LocSys(D×)Ǧ as the quotient of

the space Ω1(D)⊗ ǧ of ǧ-valued 1-forms on D×

by the gauge action of Ǧ((t)).

For future use, let us remark that LocSys(D×)Ǧ

contains as a closed sub-stack the locus of

tamely ramified (i.e., regular singular) local sys-

tems with unipotent monodromy, which we will

denote by LocSys(D×)nilp
Ǧ

.
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The sub-stack LocSys(D×)nilp
Ǧ

is algebraic, and

it is isomorphic to Ň/Ǧ, where Ň ⊂ Ǧ is the

cone of nilpotent elements.

In its turn, LocSys(D×)nilp
Ǧ

contains a closed

sub-stack, corresponding to regular local sys-

tems (i.e., those without monodromy), which

we will denote by LocSys(D×)reg
Ǧ

, and which is

isomorphic to the classifying stack pt /Ǧ.
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5. Local geometric Langlands correspon-

dence.

We are now ready to formulate what we mean

by local geometric Langlands correspondence.

We conjecture that there exists a (universal in

a certain sense) abelian category C, which is

acted on by G((t)), and which is a category

over the stack LocSys(D×)Ǧ, in a way, com-

patible with the G((t))-action.

For an individual Ǧ-local system σloc, which is

the same as a k-point of LocSys(D×)Ǧ, the

fiber of C over this point, denoted Cσloc, should

be thought of as a geometric analog of the

irreducible representation of G((t))k if k were

a finite field, corresponding to a given homo-

morphism of Gal(k((t))) into Ǧ(Q`).

At the moment we can neither construct the

category C, nor even characterize it uniquely.
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However, we have predictions concerning some

of its derivatives.

Namely, let Creg and Cnilp be the categories,

obtained by restricting C to the sub-stacks

LocSys(D×)reg
Ǧ

and LocSys(D×)nilp
Ǧ

, respectively.

Let GrG = G((t))/G[[t]] and FlG = G((t))/I

be the affine Grassmannian of the group G and

the affine flag variety, respectively, where I ⊂
G[[t]] is the Iwahori subgroup. Let D-mod(GrG)

and D-mod(FlG) be the corresponding cate-

gories of D-modules. Both these categories

are naturally acted on by G((t)).

The Satake equivalence, which will be reviewed

later, implies that D-mod(GrG) is naturally a

category over the stack pt /Ǧ.

We conjecture that Creg ' D-mod(GrG), as

categories with an action of G((t)).
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The statement involving Cnilp is more compli-

cated, since it involves passing to the realm of

triangulated categories.

Let ˜̌
N be the Springer resolution of Ň. Accord-

ing to the work of Arkhipov and Bezrukavnikov,

the derived category D(D-mod(FlG)) is a cat-

egory over the stack ˜̌
N/Ǧ. We conjecture that

D(Cnilp) ×
Ň/Ǧ

˜̌
N/Ǧ ' D(D-mod(FlG)).
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6. Global geometric Langlands correspon-
dence: the unramified case.

Let now X be a smooth projective curve over k.
Let BunG denote the moduli stack of principal
G-bundles on X. Let us recall the formulation
of global geometric Langlands correspondence.

Let σglob be a Ǧ-local system on X. We will
think of it as a tensor functor from the cate-
gory of finite-dimensional representations of Ǧ

to that of finite rank vector bundles on X with
a connection.

For for a finite-dimensional representation V of
Ǧ, we will denote by Vσglob the corresponding
D-module on X.

Recall that given a finite-dimensional represen-
tation V of Ǧ, there exists a naturally defined
Hecke functor

HV : D(BunG) → D(BunG ×X),
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where D(·) denotes the derived category of D-

modules on a given stack.

An object F ∈ D(BunG) is called a Hecke eigen-

sheaf with respect to σglob if for every V as

above we are given an isomorphism

HV (F) ' F � Vσglob,

compatible with tensor products of represen-

tations.

Hecke eigen-sheaves on BunG with respect to a

fixed σglob form a triangulated category, which

we shall denote by Hecke(σglob).

The global geometric Langlands correspondence

predicts that (at least when σglob is sufficiently

generic), the category Hecke(σglob) is equiva-

lent to the derived category of the category

of k-vector spaces. In particular, it contains a

distinguished object Fσglob, corresponding to k

itself.
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7. Global geometric Langlands correspon-
dence with ramification, and the relation
between local and global.

Let now σglob be a Ǧ-local system on the punc-
tured curve X − {x1, ..., xn}.

(Note that by restricting σglob to the punctured
disc D×

i around each xi we obtain a point σloc,i

of the corresponding stack LocSys(D×
i )Ǧ.)

Let BunG(x1, ..., xn) be the moduli stack of G-
bundles on X with a full level structure at the
points x1, ..., xn. We still have the Hecke func-
tors HV that map D(BunG(x1, ..., xn)) to

D(BunG(x1, ..., xn)× (X − {x1, ..., xn})),
and therefore it makes sense to introduce the
triangulated category Hecke(σglob, x1, ..., xn) of
D-modules on BunG(x1, ..., xn), which satisfy
the Hecke property

HV (F) ' F � Vσglob.
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By construction, Hecke(σglob, x1, ..., xn) is en-

dowed with an action of G((t)).

Assume now that σglob as above is generic.

In this case we conjecture that the category

Hecke(σglob, x1, ..., xn) introduced above is equiv-

alent to ⊗
i

D(Cσloc,i),

where σloc,i are the corresponding local local

systems, and each Cσloc,i is the fiber of C over

it.

Such a relation is parallel to the relation be-

tween local and global Langlands correspon-

dences in the classical setting.

20



8. Relation to representations at the crit-

ical level.

Although at the moment we cannot construct

the category C, we conjecture that it has a

close relationship to the category of represen-

tations of affine Kac-Moody algebras at the

critical level, which we will now explain.

We consider the loop algebra g((t)) and its

Kac-Moody extension gcrit

0 → k → ĝcrit → g((t)) → 0,

corresponding to the critical value of the pair-

ing κ : g⊗ g → k, i.e., κ = −Killing
2 .

We consider the category ĝcrit -mod. The cen-

ter of this category, Z(ĝcrit -mod) can be de-

scribed explicitly, and it was done in the works

of Feigin and Frenkel.
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As will be explained later there exists a natural

map

Spec (Z(ĝcrit -mod)) → LocSys(D×)Ǧ.

We will study the category ĝcrit -mod, and our

guiding principle will be the following conjec-

ture:

ĝcrit -mod ' C ×
LocSys(D×)Ǧ

Spec (Z(ĝcrit -mod)) .


