A GENERALISATION OF THE

HORI-VAFA CONJECTURE

Ionuţ Ciocan-Fontanine, University of Minnesota Joint work with Aaron Bertram and Bumsig Kim References:
"Two proofs of a conjecture of Hori and Vafa", math.AG/0304403 (Duke Math. J, 2005)
"Gromov-Witten invariants for abelian and nonabelian quotients", math.AG/0407254

Outline

1) GW-invariants, twisted GW-invariants.
2) J-functions, Quantum Lefschetz.
3) Abelian and non-abelian GIT quotients
4) The Grassmannian and the Hori-Vafa Conjecture.
5) General conjectures.

6) The J-function of a generalized flag manifold.

1. GW-invariants, TWisted GW-invariants

Y smooth, projective variety over $\mathbb{C}, \quad d \in H_{2}(Y, \mathbb{Z})$
$\bar{M}_{g, n}(Y, d)=$ moduli space (stack) of stable maps
A point $\left[C,\left\{p_{i}\right\}, f\right] \in \bar{M}_{g, n}(Y, d)$ is given by

- a (conn., proj.) nodal curve C of (arithmetic) genus g, with n marked points $p_{1}, \ldots, p_{n} \in C^{\text {nonsing }}$ - a map $f: C \rightarrow Y$ with $f_{*}[C]=d$. stable $=$ finite automorphism group

Have evaluation maps

$$
e v_{j}: \bar{M}_{g, n}(Y, d) \rightarrow Y, \quad e v_{j}\left(\left[C,\left\{p_{i}\right\}, f\right]\right)=f\left(p_{j}\right)
$$

and "tautological" line bundles \mathcal{L}_{j} on $\bar{M}_{g, n}(Y, d)$:
fiber of \mathcal{L}_{j} over $\left[C,\left\{p_{i}\right\}, f\right]$ is $T_{p_{j}}^{*} C$.

$$
\psi_{j}:=c_{1}\left(\mathcal{L}_{j}\right)
$$

Definition. The $G W$-invariants of Y are
$\left\langle\tau_{a_{1}} \gamma_{1}, \ldots, \tau_{a_{n}} \gamma_{n}\right\rangle_{g, d}:=\int_{\left[\bar{M}_{g, n}(Y, d)\right]^{\mathrm{vir}}} \prod_{i=1}^{n}\left(\psi_{i}^{a_{i}} \cdot e v_{i}^{*} \gamma_{i}\right)$
where $\gamma_{i} \in H^{2 *}(Y)$ are (homogeneous) cohomology classes, a_{i} are nonnegative integers and $\left[\bar{M}_{g, n}(Y, d)\right]^{\text {vir }}$ is the virtual fundamental class.

If all $a_{i}=0$, the invariants $\left\langle\gamma_{1}, \ldots, \gamma_{n}\right\rangle_{g, d}$ are called primary, and intuitively should "count" curves in Y subject to incidence conditions. Otherwise, they are called gravitational descendents.

Today: $g=0$, will drop from notation.

Twisted GW-invariants (cf. Coates-Givental).

 Let V be a vector bundle on Y. The diagram$$
\begin{aligned}
& \bar{M}_{0, n+1}(Y, d) \xrightarrow{e=e v_{n+1}} Y \\
& \quad \pi \downarrow \\
& \bar{M}_{0, n}(Y, d)
\end{aligned}
$$

determines

$$
V_{n, d}=\left[R^{0} \pi_{*} e^{*} V\right]-\left[R^{1} \pi_{*} e^{*} V\right]
$$

in the K-group of vector bundles of $\bar{M}_{0, n}(Y, d)$. It has virtual rank (given by Riemann-Roch formula):

$$
\operatorname{vrk}\left(V_{n, d}\right):=\operatorname{rk}(V)+\int_{d} c_{1}(V) .
$$

and "top Chern class"

$$
c_{\mathrm{top}}\left(V_{n, d}\right)=c_{\mathrm{vrk}}\left(V_{n, d}\right)
$$

Define $G W$-invariants of Y twisted by the Euler class of V by

$$
\begin{gathered}
\left\langle\tau_{a_{1}}\left(\gamma_{1}\right), \cdots, \tau_{a_{n}}\left(\gamma_{n}\right)\right\rangle_{d, V}:= \\
\int_{\left[\bar{M}_{0, n}(Y, d)\right]^{\mathrm{virt}}} \prod_{i=1}^{n}\left(\psi_{i}^{a_{i}} e v_{i}^{*}\left(\gamma_{i}\right)\right) c_{\mathrm{top}}\left(V_{n, d}\right)
\end{gathered}
$$

Example: If V is generated by global sections and $Z=Z(s) \subset Y$ is the zero locus of a "transversal" section s of V, then $\langle\ldots\rangle_{d, V}$ are (untwisted) GWinvariants of Z : in this case $V_{n, d}$ is an honest vector bundle and

$$
i_{*}\left[\bar{M}_{0, n}(Z, d)\right]^{\mathrm{virt}}=\left[\bar{M}_{0, n}(Y, d)\right]^{\mathrm{virt}} \cap c_{\mathrm{top}}\left(V_{n, d}\right)
$$

with $i: Z \hookrightarrow Y$ the inclusion.

2. J-functions, Quantum Lefschetz.

Let $J_{Y, d} \in H^{*}(Y)\left[\hbar^{-1}\right]$ defined by

$$
\int_{Y} \gamma \cdot J_{Y, d}=\sum_{a=0}^{\infty} \hbar^{-a-2}\left\langle\tau_{a}(\gamma)\right\rangle_{d}
$$

for all $\gamma \in H^{2 *}(Y)$.
Denote $\left(t_{0}, \mathbf{t}\right)$ a general element of

$$
H^{0}(Y, \mathbb{C}) \oplus H^{2}(Y, \mathbb{C})
$$

Define Givental's J-function of Y by

$$
J_{Y}\left(t_{0}, \mathbf{t}\right)=e^{\left(t_{0}+\mathbf{t}\right) / \hbar} \sum_{d} e^{\int_{d} \mathbf{t}} J_{Y, d}
$$

(generating function for the 1-pt. invariants)

Also have V-twisted J-fcn.:

$$
\begin{gathered}
J_{Y, d, V} \in H^{*}(Y)\left[\hbar^{-1}\right] \\
\int_{Y} \gamma \cdot J_{Y, d, V} \cdot c_{\text {top }}(V)=\sum_{a=0}^{\infty} \hbar^{-a-2}\left\langle\tau_{a}(\gamma)\right\rangle_{d, V} \\
J_{Y, V}\left(t_{0}, \mathbf{t}\right)=e^{\left(t_{0}+\mathbf{t}\right) / \hbar} \sum_{d} e^{\int_{d} \mathbf{t}} J_{Y, d, V}
\end{gathered}
$$

Quantum Lefschetz. $Z \subset Y$ complete intersection, i.e. Z is the zero locus of a section of a decomposable vector bundle $V=\oplus_{i=1}^{m} M_{i}$, with M_{i} nef line bundles.

There is a universal formula expressing $J_{Y, V}$ - hence (most of) J_{Z} - in terms of J_{Y}. Precisely:

For a curve class $d \in H_{2}(Y)$ put $f_{i}=\int_{d} c_{1}\left(M_{i}\right)$ and

$$
\chi_{d}(V):=\prod_{i=1}^{m} \prod_{l=1}^{f_{i}}\left(c_{1}\left(M_{i}\right)+l \hbar\right) .
$$

Theorem (... Y.P. Lee, Coates-Givental). $J_{Y, V}$

 is obtained from$$
I_{Y, V}:=e^{\left(t_{0}+\mathbf{t}\right) / \hbar} \sum_{d} e^{\int_{d} \mathbf{t}} \chi_{d}(V) J_{Y, d}
$$

by explicit change of variables ("mirror transformation"). If $c_{1}(Z)$ is positive enough, then $J_{Y, V}=I_{Y, V}$.

Example. $Y=\mathbb{P}^{n-1}, H$ the hyperplane class.
$J_{\mathbb{P}^{n-1}}=e^{\left(t_{0}+t H\right) / \hbar} \sum_{d \geq 0} e^{d t} \frac{1}{\prod_{l=1}^{d}(H+l \hbar)^{n}}$ (Givental)
Take $n=5, V=\mathcal{O}(5)$.

$$
I_{\mathbb{P}^{4}, \mathcal{O}(5)}=e^{\left(t_{0}+t H\right) / \hbar} \sum_{d \geq 0} e^{d t} \frac{\prod_{k=1}^{5 d}(5 H+l \hbar)}{\prod_{l=1}^{d}(H+l \hbar)^{5}}
$$

In this case

Q. Lefschetz \leftrightarrow mirror formula of Candelas et.al.

Some remarks:

- If V is indecomposable, $\underline{\text { no }}$ "universal" correcting class $\chi_{d}(V)$ is known.
- The only class of Y^{\prime} 's for which J was known in general is the class of smooth toric varieties (due to Givental).
- Q. Lefschetz should be thought of as some kind of highly nontrivial functorial property of J-functions.

Another, much easier, functoriality is $J_{Y_{1} \times Y_{2}}=J_{Y_{1}} J_{Y_{2}}$, e.g.

$$
\begin{gathered}
J_{\left(\mathbb{P}^{n-1}\right)^{r}}=e^{\left(t_{0}+t_{1} H_{1}+\cdots+t_{r} H_{r}\right) / \hbar} \times \\
\times \sum_{d_{i} \geq 0} e^{d_{1} t_{1}+\cdots+d_{r} t_{r}} \frac{1}{\prod_{i=1}^{r} \prod_{l=1}^{d_{i}}\left(H_{i}+l \hbar\right)^{n}}
\end{gathered}
$$

3. GIT QUotients

X - smooth, projective variety over \mathbb{C} (main case to keep in mind: $X=\mathbb{P}^{N}$).
G - reductive algebraic group acting on X.
T - fixed max. torus in G.
Will assume that (for a linearized ample line bundle)
$X^{s s}(T)=X^{s}(T), X^{s s}(G)=X^{s}(G)$, and that T and G act freely on the stable points, so that the GIT quotients $X / / G=X^{s}(G) / G$ and $X / / T=X^{s}(T) / T$ are smooth projective varieties.

Ellingsrud-Strømme, Martin, Kirwan: Cohomology of $X / / G$ and that of $X / / T$ are closely related.
R - root system for G, T
$W=N(T) / T$ the Weyl group; acts on $X / / T$.
A root $\alpha \in R$ gives a T-rep \mathbb{C}_{α}, hence a line bundle $L_{\alpha}=\mathbb{C}_{\alpha} \times_{T} X^{s}(T)$ on $X / / T$. Put

$$
E:=\oplus_{\alpha \in R} L_{\alpha}
$$

Theorem (Martin's Integration Formula).

$$
\int_{X / / G} \gamma=\frac{1}{|W|} \int_{X / / T} \tilde{\gamma} c_{\mathrm{top}}(E)
$$

Here $\gamma \in H^{*}(X / / G), \tilde{\gamma}$ is a lift to $H^{*}(X / / T)^{W}$ (i.e., γ and $\tilde{\gamma}$ come from the same G-equivariant cohomology class on X via the Kirwan maps.)

Example: $X:=\mathbb{P}\left(\operatorname{Hom}\left(\mathbb{C}^{r}, \mathbb{C}^{n}\right)\right)=\mathbb{P}\left(M a t_{r \times n}(\mathbb{C})\right)$. $G=G L_{r}(\mathbb{C})$ acts by left multiplication.
$X / / G=G(r, n)$, Grassmannian of r-planes in \mathbb{C}^{n}. It has universal sequence

$$
0 \rightarrow \mathcal{S} \rightarrow \mathcal{O}^{n} \rightarrow \mathcal{Q} \rightarrow 0
$$

of vector bundles, with $\operatorname{rank}(\mathcal{S})=r$.
Denote H_{1}, \ldots, H_{r} the Chern roots of \mathcal{S}^{*}. Then

$$
H^{*}(G(r, n)) \cong \mathbb{C}\left[H_{1}, \ldots, H_{r}\right]^{S_{r}} /\left(h_{n-r+1}, \ldots, h_{n}\right)
$$

h_{j} - the j th complete symmetric function of H_{1}, \ldots, H_{r}.

Let $T \subset G$ denote the subgroup of diagonal invertible $r \times r$ matrices; then $X / / T=\left(\mathbb{P}^{n-1}\right)^{r}$.

Put $H_{i}:=\operatorname{pr}_{i}^{*}(H) \in H^{*}\left(\left(\mathbb{P}^{n-1}\right)^{r}\right)$, with $H \in H^{*}\left(\mathbb{P}^{n-1}\right)$ the hyperplane class.

$$
H^{*}\left(\left(\mathbb{P}^{n-1}\right)^{r}\right) \cong \mathbb{C}\left[H_{1}, \ldots, H_{r}\right] /\left(H_{1}^{n}, \ldots, H_{r}^{n}\right)
$$

The lift of a cohomology class in $G(r, n)$ represented by a symmetric polynomial in the H_{i} 's is the class represented by the same polynomial in the cohomology of $\left(\mathbb{P}^{n-1}\right)^{r}$.

The other objects we introduced are explicitly

$$
\begin{aligned}
& R=\{(i, j) \mid 1 \leq i, j \leq r, i \neq j\} \\
& L_{(i, j)}=\operatorname{pr}_{i}^{*}\left(\mathcal{O}_{\mathbb{P}^{n-1}}(1)\right) \otimes p r_{j}^{*}\left(\mathcal{O}_{\mathbb{P}^{n-1}}(-1)\right) \\
& c_{\text {top }}(E)=\prod_{i \neq j}\left(H_{i}-H_{j}\right)
\end{aligned}
$$

4. The Grassmannian and HV Conjecture.

Theorem (B,-,K).

$$
J_{G(r, n)}=e^{\left(t_{0}+t\left(H_{1}+\cdots+H_{r}\right)\right) / \hbar} \sum_{d \geq 0} e^{d t} J_{d}
$$

where

$$
J_{d}=\sum_{d_{1}+\ldots+d_{r}=d} \frac{(-1)^{(r-1) d} \prod_{i<j}\left(H_{i}-H_{j}+\left(d_{i}-d_{j}\right) \hbar\right)}{\prod_{i<j}\left(H_{i}-H_{j}\right) \prod_{i=1}^{r} \prod_{l=1}^{d_{i}}\left(H_{i}+l \hbar\right)^{n}}
$$

It is very easy to see that $J_{G(r, n)}$ is obtained (up to an overall invertible factor) from $J_{\left(\mathbb{P}^{n-1}\right)^{r}}$ by applying to it the "Vandermonde operator"

$$
\mathcal{D}_{\Delta}=\prod_{i<j}\left(\hbar \frac{\partial}{\partial t_{i}}-\hbar \frac{\partial}{\partial t_{j}}\right)
$$

then "symmetrizing" by setting $t_{i}=t+\pi(r-1) \sqrt{-1}$ and dividing by the class $\prod_{i<j}\left(H_{i}-H_{j}\right)$. This is the original conjecture of Hori and Vafa.

Another way of seeing the formula as relating $J_{G(r, n)}$ and $J_{\left(\mathbb{P}^{n-1}\right)^{r}}$ is as an analogue of quantum Lefschetz:

Recall that on $\left(\mathbb{P}^{n-1}\right)^{r}$ we have the bundle

$$
E=\oplus_{i \neq j} L_{(i, j)} .
$$

Now $L_{(i, j)}=p r_{i}^{*}\left(\mathcal{O}_{\mathbb{P}^{n-1}}(1)\right) \otimes p r_{j}^{*}\left(\mathcal{O}_{\mathbb{P}^{n-1}}(-1)\right)$ is not nef: for a curve class $\left(d_{1}, \ldots, d_{r}\right)$ we have

$$
f_{i j}=\int_{\left(d_{1}, \ldots, d_{r}\right)} c_{1}\left(L_{(i, j)}\right)=d_{i}-d_{j} .
$$

Nevertheless, we can still define

$$
\chi_{\left(d_{1}, \ldots, d_{r}\right)}(E):=\prod_{i, j} \frac{\prod_{l=-\infty}^{f_{i j}}\left(c_{1}\left(L_{(i, j)}\right)+l \hbar\right)}{\prod_{l=-\infty}^{0}\left(c_{1}\left(L_{(i, j)}\right)+l \hbar\right)},
$$

and our Theorem says in this notation

$$
J_{G(r, n), d}=\sum_{d_{1}+\cdots+d_{r}=d} \chi_{\left(d_{i}\right)}(E) J_{\left(\mathbb{P}^{n-1}\right)^{r},\left(d_{i}\right)} .
$$

5. GENERAL CONJECTURES

Let $X / / G$ and $X / / T$ be GIT quotients as before, with the bundle $E=\oplus_{\alpha} L_{\alpha}$ on $X / / T$ etc.

For curve classes $d \in H_{2}(X / / G)$ and $\widetilde{d} \in H_{2}(X / / T)$ write $\widetilde{d} \mapsto d$ if

$$
\int_{d} H=\int_{\widetilde{d}} \widetilde{H}
$$

for every divisor class $H \in H^{2}(X / / G)$ with lift $\widetilde{H} \in$ $H^{2}(X / / T)^{W}$.

Conjecture 1.

$$
\begin{gathered}
\left\langle\tau_{a_{1}}\left(\gamma_{1}\right), \tau_{a_{2}}\left(\gamma_{2}\right), \ldots, \tau_{a_{n}}\left(\gamma_{n}\right)\right\rangle_{d}^{X / / G}= \\
\frac{1}{|W|} \sum_{\tilde{d} \rightarrow d}\left\langle\tau_{a_{1}}\left(\tilde{\gamma}_{1}\right), \tau_{a_{2}}\left(\tilde{\gamma}_{2}\right), \ldots, \tau_{a_{n}}\left(\tilde{\gamma}_{n}\right)\right\rangle_{\tilde{d}, E}^{X / / T}
\end{gathered}
$$

By work of Coates-Givental, Conj. 1 implies

Conjecture 2. $\left(t_{0}, \mathbf{t}\right) \in H^{0}(X / / G, \mathbb{C}) \oplus H^{2}(X / / G, \mathbb{C})$.
Define

$$
I_{X / / G}=e^{\left(t_{0}+\mathbf{t}\right) / \hbar} \sum_{d} e^{\int_{d} \mathbf{t}} \sum_{\tilde{d} \rightarrow d} \chi_{\tilde{d}}(E) J_{X / / T, \tilde{d}}
$$

Then there is an explicit change of variables

$$
\left(t_{0}, \mathbf{t}\right) \rightarrow f\left(t_{0}, \mathbf{t}\right)
$$

s.t.

$$
J_{X / / G}\left(t_{0}, \mathbf{t}\right)=I_{X / / G}\left(f\left(t_{0}, \mathbf{t}\right)\right)
$$

If $c_{1}(X / / T)$ is positive enough, then no change of variables is needed for the equality of J and I.

There are useful extensions of these conjectures involving an additional twisting:

Let V be a finite dim'l vector space with linear G action, i.e., a G-representation. It can be viewed also as a T-rep. It induces vector bundles V_{G} on $X / / G$ and V_{T} on $X / / T$. Note that V_{T} is decomposable, since any T-rep. is completely reducible. Write $V_{T}=$ $\oplus_{i} M_{i}$ and assume each M_{i} is a nef line bundle.

Conjecture 1'.

$$
\begin{gathered}
\left\langle\tau_{a_{1}}\left(\gamma_{1}\right), \tau_{a_{2}}\left(\gamma_{2}\right), \ldots, \tau_{a_{n}}\left(\gamma_{n}\right)\right\rangle_{d, V_{G}}^{X / / G}= \\
\frac{1}{|W|} \sum_{\tilde{d} \rightarrow d}\left\langle\tau_{a_{1}}\left(\tilde{\gamma}_{1}\right), \tau_{a_{2}}\left(\tilde{\gamma}_{2}\right), \ldots, \tau_{a_{n}}\left(\tilde{\gamma}_{n}\right)\right\rangle_{\tilde{d}, E \oplus V_{T}}^{X / / T}
\end{gathered}
$$

20

Conjecture 2'. Put
$I_{X / / G, V}=e^{\left(t_{0}+\mathbf{t}\right) / \hbar} \sum_{d} e^{\int_{d} \mathbf{t}} \sum_{\tilde{d} \rightarrow d} \chi_{\tilde{d}}(E) \chi_{\tilde{d}}\left(V_{T}\right) J_{X / / T, \tilde{d}}$

Then there is an explicit change of variables

$$
\left(t_{0}, \mathbf{t}\right) \rightarrow f\left(t_{0}, \mathbf{t}\right)
$$

s.t.

$$
J_{X / / G, V_{G}}\left(t_{0}, \mathbf{t}\right)=I_{X / / G, V}\left(f\left(t_{0}, \mathbf{t}\right)\right)
$$

If $c_{1}(X / / T)-\sum_{i} c_{1}\left(M_{i}\right)$ is positive enough, then no change of variables is needed.

Theorem (B,-,K). Conjecture 1' holds for 1-point invariants and $X / / G=G\left(s_{1}, n\right) \times \cdots \times G\left(s_{l}, n\right)$, $X / / T=\prod_{i=1}^{l}\left(\mathbb{P}^{n-1}\right)^{s_{i}}$. Conjecture 2' also holds for these $X / / G$ and $X / / T$.

The proof is done by localization on moduli spaces of 1-pointed stable maps for the actions of the torus $T^{\prime}:=\left(\left(\mathbb{C}^{*}\right)^{n}\right)^{l}$.
6. J-FCNS OF ISOTROPIC FLAG MFLDS

The above theorem gives closed formulas for J-functions of zero loci of sections of homogeneous vector bundles on $\prod_{i=1}^{l} G\left(s_{i}, n\right)$. Important examples are

- isotropic (partial) flag mflds. of types A, B, C, D.
- the moduli space of rk. 2 vector bundles with fixed determinant of odd degree on a (hyperelliptic) curve of genus $g \geq 2$.

Two examples will show how straightforward is to obtain these formulas.

Example 1: The Lagrangian Grassmannian.
Consider the standard symplectic form ω on $\mathbb{C}^{2 n}$. The Lagrangian Grassmannian $L G_{n}$ parametrizes maximal (i.e., n-dimensional) subspaces in $\mathbb{C}^{2 n}$ which are isotropic for ω. Let S be the universal subbundle on the regular Grassmannian $G(n, 2 n)$. The form ω induces a section of the bundle $\Lambda^{2} S^{*}$ and $L G_{n}$ is the zero locus of this section.

So in this case $V_{G}=\Lambda^{2} S^{*}$ and it is immediate that the corresponding bundle V_{T} on $\left(\mathbb{P}^{2 n-1}\right)^{n}$ is

$$
\bigoplus_{1 \leq i<j \leq n} \mathcal{O}\left(H_{i}+H_{j}\right)
$$

Hence we get

Theorem.

$$
\begin{gathered}
J_{d, L G_{n}}=\sum_{d_{1}+\ldots+d_{n}=d}\left(\prod_{n \geq i>j \geq 1} \frac{\prod_{k=0}^{d_{i}+d_{j}}\left(H_{i}+H_{j}+k \hbar\right)}{\left(H_{i}+H_{j}\right)}\right) \\
\left(\frac{(-1)^{(n-1) d} \prod_{n \geq i>j \geq 1}\left(H_{i}-H_{j}+\left(d_{i}-d_{j}\right) \hbar\right)}{\prod_{n \geq i>j \geq 1}\left(H_{i}-H_{j}\right) \prod_{i=1}^{n} \prod_{k=1}^{d_{i}}\left(H_{i}+k \hbar\right)^{2 n}}\right)
\end{gathered}
$$

Example 2: Type A partial flag varieties.

$$
F:=F l\left(s_{1}, \ldots, s_{l}, n=s_{l+1}\right) \text { parametrizes flags of }
$$ subspaces

$$
\mathbb{C}^{s_{1}} \subset \cdots \subset \mathbb{C}^{s_{l}} \subset \mathbb{C}^{n}
$$

On each Grassmannian $G\left(s_{i}, n\right)$ consider the universal sequence

$$
0 \rightarrow \mathcal{S}_{i} \rightarrow \mathcal{O}^{n} \rightarrow \mathcal{Q}_{i} \rightarrow 0
$$

On the product $\prod_{i=1}^{l} G\left(s_{i}, n\right)$ take the vector bundle

$$
\oplus_{i=1}^{l-1} \operatorname{Hom}\left(S_{i}, Q_{i+1}\right)=\oplus_{i=1}^{l-1}\left(S_{i}^{*} \otimes Q_{i+1}\right)
$$

It has a natural section σ coming from composing $0 \rightarrow \mathcal{S}_{i} \rightarrow \mathcal{O}^{n}$ with $\mathcal{O}^{n} \rightarrow \mathcal{Q}_{i+1} \rightarrow 0$ and F is the zero locus of σ.

When restricted to F, the bundles S_{i} give the universal sequence of subbundles on F and the Chern classes of their duals generate the cohomology ring of F.

For each $1 \leq i \leq l+1$ let

$$
H_{i, j}, \quad j=1, \ldots, s_{i}
$$

be the Chern roots of S_{i}^{*}. (in particular, all $H_{l+1, j}=$ 0.)

Also use $H_{i, j}$ to denote the hyperplane classes on the corresponding abelian quotient

$$
\mathbb{P}:=\left(\mathbb{P}^{n-1}\right)^{s_{1}} \times \cdots \times\left(\mathbb{P}^{n-1}\right)^{s_{l}}
$$

A curve class on F is given by $\left(d_{1}, \ldots, d_{l}\right), d_{i} \geq 0$, while a curve class on \mathbb{P} is

$$
\left(d_{1,1}, \ldots, d_{1, s_{1}}, \ldots, d_{l, 1} \ldots, d_{l, s_{l}}\right)
$$

Theorem. For curve classes $\vec{d}=\left(d_{1}, \ldots, d_{l}\right)$ on F, $J_{\vec{d}}^{F}$ is given by
$\sum_{\sum d_{i, j}=d_{i}} \prod_{i=1}^{l}\left(\prod_{1 \leq j \neq j^{\prime} \leq s_{i}} \frac{\prod_{k=-\infty}^{d_{i, j}-d_{i, j^{\prime}}}\left(H_{i, j}-H_{i, j^{\prime}}+k \hbar\right)}{\prod_{k=-\infty}^{0}\left(H_{i, j}-H_{i, j^{\prime}}+k \hbar\right)}\right.$.
$\left.\prod_{1 \leq j \leq s_{i},} \frac{\prod_{k=-\infty}^{0}\left(H_{i, j}-H_{i+1, j^{\prime}}+k \hbar\right)}{\prod_{k=-\infty}^{d_{i, j}-d_{i+1, j^{\prime}}}\left(H_{i, j}-H_{i+1, j^{\prime}}+k \hbar\right)}\right)$

The general case is a combination of the previous two examples: an isotropic flag variety is the zero section on an appropriate product of Grassmannians of a bundle which is the direct sum of Hom bundles and either the second symmetric power, or the second exterior power of appropriate universal bundles.

