
Admissible Covers and Stable Maps

The Hurwitz scheme Hd,g parametrizes maps:

f : C → P1; genus(C) = g,deg(f) = d

with

b = 2g − 2 + 2d

simple ramification points.

It comes with a morphism (a covering map):

πd,g : Hd,g → Pb −∆

of degree equal to the “Hurwitz” number hd,g.

Theme: Admissible covers and stable maps

define related compactifications of Hd,g. An

explicit comparison of the intersection theories

of the two would have important applications.



What to do when branch points collide?

• Stable Maps: The limiting object is a map

f : C → P1

satisfying (Kontsevich-Manin) stability:

C has only simple nodes, and for each p ∈ P1,

f−1(p) = finite set ∪ stable marked curve

Examples: Limit points of:

H3,0

H2,1



• Admissible Covers: The limiting object is a

finite map

f : C → B(→ P1)

where B is a configuration of b points on P1:

B is a rational curve with only simple nodes,

the map to P1 has degree one, and the ex-

tra components of B are stable marked curves

(markings are nodes and branch points).

Plus a “balanced” condition on f at the nodes.

Examples: Limits of points of:

H3,0

H2,1



Theorem: (Deligne-Mumford, Kontsevich-Manin)

There is a proper (not smooth!) Deligne-Mumford

stack of stable maps of genus g, degree d:

Mg(P
1, d)

And(Fantechi-Pandharipande) πd,g extends to:

πd,g : Mg(P
1, d) → Pb

Remark: This “compactification” of Hd,g has

many extraneous components. For example:

H1,g = ∅ if g > 0, but Mg(P1,1) is covered by:

{Fg : Mg1,1×....×Mgn,1×(P1)n−∆ →Mg(P
1,1)

| g1 + ... + gn = g}

and each of these corresponds to a component

of the space of stable maps!

On the other hand:



Theorem: (Harris-Mumford, ℵ-Corti-Vistoli)

There is a smooth stack of admissible covers:

Adm
g

d→P1

This is a quotient of the symmetric group Sb

acting on the smooth stack:

Adm
g

d→P1
(t1, ..., tb)

of admissible covers with labelled (simple) branch

points, and the latter comes equipped with:

π̃d,g : Adm
g

d→P1
(t1, ..., tb) → P1[b]

to the (Fulton-MacPherson) configuration space

of b-points on P1, which is even a covering map

for a suitable “stack structure” on P1[b].

Moreover, there is a natural map:

Φd,g : Adm
g

d→P1
→Mg(P

1, d)

All of this generalizes in many directions:



• P1 can be replaced with any non-singular

projective “base” curve Σ of genus h.

• Points x1, ..., xn ∈ Σ can be fixed, together

with “profiles” (partitions) η1, ..., ηn of d over

which we require each map: f : C → B to

ramify according to ηi at xi with the stable

map (or admissible cover) conditions holding

elsewhere over Σ. Denote the spaces:

Mg(Σ, η1x1, ..., ηnxn) and Adm
g

d→Σ
(η1x1, ...., ηnxn)

• Profiles η1, ..., ηn can be chosen at variable

points of Σ with the admissible cover condition

holding over those points:

Mg(Σ, η1, ..., ηn) and Adm
g

d→Σ
(η1, ...., ηn)

• Σ can be allowed to vary in moduli:

Mg(h, η1, ..., ηn) and Adm
g

d→h
(η1, ...., ηn)



Universal Families: Over each of the moduli

spaces, there are universal maps:

CAdm → CStab
e→ Σ

π ↓ π ↓
Adm

g
d→Σ

(η1, ...., ηn) → Mg(Σ, η1, ..., ηn)

Emphasis: Adm
g

d→Σ
(η1, ...., ηn) is smooth, of

the “correct” dimension, desingularizing the

“good” component of Mg(Σ, η1, ..., ηn).

The local Gromov-Witten theory of curves vastly

generalizes the Aspinwall-Morrison formula:∫
M0(P1,d)

e
(
R1π∗e∗

(
OP1(−1)⊕OP1(−1)

))

=
1

d3

Choose line bundles L, M on Σ of degrees l, k

and profiles (and points) η1x1, ...., ηnxn on Σ



Then one (i.e. Bryan-Pandharipande) defines:

Z
g
d(h|l, m)η =

∫
[Mg(Σ,η1x1,...,ηnxn)]

eT (−R•π∗e∗L⊕M)

where eT is the equivariant Euler class for the

standard action of T = C∗×C∗ on L⊕M . And:

Zd(h|l, m)η =
∑
g

ud(g)Z
g
d(h|l, k)η

where d(g) = exp dim− d(l + k).

These generating functions give the structure

constants of a TQFT that deforms the center

of the group ring of Sd (see Bryan’s talk)

Renzo Cavalieri showed that the intersections:

A
g
d(h|l, m)η =

∫
Admg→Σ(η1x1,...,ηnxn)

eT (−R•π∗e∗L⊕M)

while different from the Z-structure constants,

determine essentially the same TQFT.



Namely, all of the difference between the two

TQFT’s is captured by the relation:

Ad(0| − 1,0)(d) = (2 sin(u/2))dZd(0| − 1,0)(d)

Note: These are the basic calculations in the

two TQFT’s. They are explicitly calculated by

(B-P) and by (Cav) entirely differently.

Moral: The contribution of the “extra” com-

ponents of stable map spaces to the integrals

of eT (−R•π∗e∗L ⊕ M) for a given g are recur-

sively determined by the corresponding inte-

grals for admissible cover spaces for smaller g.

Question: Can we see this by analyzing the

extra components of the stable map spaces?



Example: Let’s return to the simplest case:

Fg : ×n
i=1Mgi,1 ×P1[n] →Mg(P

1,1)

Here’s a concrete version of the question above.

There is a “virtual class:”

[Mg(P
1,1)] ∈ A2g(Mg(P

1,1))

arising from the deformation theory of stable

maps. Can it be expressed in a natural way as

a sum of push-forwards under the maps Fg?

Remark: Pandharipande has shown that this

is true generically. I.e. natural classes on open

sets push forward to the virtual class away from

intersections of the components.

Detailed knowledge of the decomposition of

the virtual class would explain the relation above,

but would also have more far-reaching applica-

tions. Consider again:



Φd,g : Adm
g

d→P1
→Mg(P

1, d)

thought of as a C∗-equivariant map (for the

natural scaling action of C∗ on P1). The fixed

loci on each side can be described, and there

are interesting induced maps of fixed loci:

(i) Adm
g

d→0
((d)) →Mg,1

and

(ii) Adm
g

d→0
(1) →Mg,d

The images are the loci of curves with:

(i) A (marked) Weierstrass point of order d,

and

(ii) A g1
d and d (marked) points in a divisor of

the linear series.



Thanks to Atiyah-Bott localization (and the

virtual localization theorem of Graber-Pand.),

an explicit decomposition of the virtual class

along the lines described above in degree 1

would give an explicit formula for these classes

in the tautological ring of Mg,1 and Mg,d.

Example: In degree 2, the generic version of

Pandharipande already gives formulas for the

classes, valid on the locus of smooth curves.

(i) recovers a formula in Mumford’s original

paper, but (ii) (derived by a gang of us in Utah)

seems to be new.


