Homological Mirror Symmetry for Blowups of $\mathbb{C P}^{2}$

Denis Auroux (MIT)
(joint work with L. Katzarkov, D. Orlov)
(after ideas of Kontsevich, Seidel, Hori, Vafa, ...)

See: math.AG/0404281, math.AG/0506166

Mirror Symmetry

Complex manifolds: (X, J) locally $\simeq\left(\mathbb{C}^{n}, i\right)$
Look at complex analytic cycles + holom. vector bundles, or better: coherent sheaves Intersection theory $=$ Morphisms and extensions of sheaves.

Symplectic manifolds: (Y, ω) locally $\simeq\left(\mathbb{R}^{2 n}, \sum d x_{i} \wedge d y_{i}\right)$
Look at Lagrangian submanifolds (+ flat unitary bundles): $L^{n} \subset Y^{2 n}$ with $\omega_{\mid L}=0$ (locally $\simeq \mathbb{R}^{n} \subset \mathbb{R}^{2 n} ;$ in $\operatorname{dim}_{\mathbb{R}} 2$, any embedded curve!)
Intersection theory (with quantum corrections) = Floer homology (discard intersections that cancel by Hamiltonian isotopy)

Mirror symmetry:

D-branes $=$ boundary conditions for open strings.
Homological mirror symmetry (Kontsevich): at the level of derived categories,

$$
\begin{aligned}
& \text { A-branes }=\text { Lagrangian submanifolds, } \\
& \text { B-branes }=\text { coherent sheaves. }
\end{aligned}
$$

HMS Conjecture: Calabi-Yau case

$$
X, Y \text { Calabi-Yau }\left(c_{1}=0\right) \text { mirror pair } \Rightarrow \begin{array}{ll}
D^{b} \operatorname{Coh}(X) & \simeq D \mathcal{F}(Y) \\
D \mathcal{F}(X) & \simeq D^{b} \operatorname{Coh}(Y)
\end{array}
$$

$\operatorname{Coh}(X)=$ category of coherent sheaves on X complex manifold.
$D^{b}=$ bounded derived category:
Objects $=$ complexes $0 \rightarrow \cdots \rightarrow \mathcal{E}^{i} \xrightarrow{d^{i}} \mathcal{E}^{i+1} \rightarrow \cdots \rightarrow 0$.
Morphisms $=$ morphisms of complexes (up to homotopy, + inverses of quasi-isoms)
$\mathcal{F}(Y)=$ Fukaya A_{∞}-category of (Y, ω). Roughly:
Objects $=($ some $)$ Lagrangian submanifolds $(+$ flat unitary bundles)
Morphisms: $\operatorname{Hom}\left(L, L^{\prime}\right)=C F^{*}\left(L, L^{\prime}\right)=\mathbb{C}^{\left|L \cap L^{\prime}\right|}$ if $L \pitchfork L^{\prime}$. (or $\left.\bigoplus \operatorname{Hom}\left(\mathcal{E}_{p}, \mathcal{E}_{p}^{\prime}\right)\right)$ (Floer complex, graded by Maslov index)
with: differential $d=m_{1}$; product m_{2} (composition; only associative up to homotopy); and higher products $\left(m_{k}\right)_{k \geq 3}$ (related by A_{∞}-equations).

Fukaya categories

$\operatorname{Hom}\left(L, L^{\prime}\right)=C F^{*}\left(L, L^{\prime}\right)=\mathbb{C}^{\left|L \cap L^{\prime}\right|}$ if $L \pitchfork L^{\prime} . \quad\left(\right.$ or: $\left.\underset{p \in L \cap L^{\prime}}{\bigoplus} \operatorname{Hom}\left(\mathcal{E}_{p}, \mathcal{E}_{p}^{\prime}\right)\right)$

- Differential $d=m_{1}: \operatorname{Hom}\left(L_{0}, L_{1}\right) \rightarrow \operatorname{Hom}\left(L_{0}, L_{1}\right)[1]$

$$
\left\langle m_{1}(p), q\right\rangle=\sum_{u \in \mathcal{M}(p, q)} \pm \exp \left(-\int_{D^{2}} u^{*} \omega\right)
$$

counts pseudo-holomorphic maps (in $\operatorname{dim}_{\mathbb{R}} 2$: immersed discs with convex corners)

- Product $m_{2}: \operatorname{Hom}\left(L_{0}, L_{1}\right) \otimes \operatorname{Hom}\left(L_{1}, L_{2}\right) \rightarrow \operatorname{Hom}\left(L_{0}, L_{2}\right)$
$\left\langle m_{2}(p, q), r\right\rangle$ counts pseudo-holomorphic maps

- Higher products $m_{k}: \operatorname{Hom}\left(L_{0}, L_{1}\right) \otimes \cdots \otimes \operatorname{Hom}\left(L_{k-1}, L_{k}\right) \rightarrow \operatorname{Hom}\left(L_{0}, L_{k}\right)[2-k]$
$\left\langle m_{k}\left(p_{1}, \ldots, p_{k}\right), q\right\rangle$ counts pseudo-holomorphic maps

HMS Conjecture: Fano case

X Fano $\left(c_{1}(T X)>0\right) \stackrel{\text { M.S. }}{\longleftrightarrow}$ "Landau-Ginzburg model" $\left\{\begin{array}{l}Y \text { (non-compact) manifold } \\ W: Y \rightarrow \mathbb{C} \text { "superpotential" }\end{array}\right.$

$$
\begin{aligned}
& D^{b} \operatorname{Coh}(X) \\
& D^{\pi} \mathcal{F}(X) \simeq D^{b} \operatorname{Lag}(W) \\
& \simeq D^{b} \operatorname{Sing}(W)
\end{aligned}
$$

$D^{b} \operatorname{Lag}(W)$ (Lagrangians) and $D^{b} \operatorname{Sing}(W)$ (sheaves) $=$ symplectic and complex geometries of singularities of W.
If $W: Y \rightarrow \mathbb{C}$ is a Morse function (isolated non-degenerate crit. pts):
$L_{i} \subset \Sigma_{0}$ Lagrangian sphere $=$ vanishing cycle associated to γ_{i}
 (collapses to crit. pt. by parallel transport)

Seidel: $\operatorname{Lag}\left(W,\left\{\gamma_{i}\right\}\right)$ finite, directed A_{∞}-category.
Objects: L_{1}, \ldots, L_{r}.
$\operatorname{Hom}\left(L_{i}, L_{j}\right)= \begin{cases}C F^{*}\left(L_{i}, L_{j}\right)=\mathbb{C}^{\left|L_{i} \cap L_{j}\right|} & \text { if } i<j \\ \mathbb{C} \cdot \mathrm{Id} & \text { if } i=j \\ 0 & \text { if } i>j\end{cases}$
Products: $\left(m_{k}\right)_{k \geq 1}=$ Floer theory for Lagrangians $\subset \Sigma_{0}$.

Categories of Lagrangian vanishing cycles

$L_{i} \subset \Sigma_{0}$ Lagrangian sphere $=$ vanishing cycle associated to γ_{i}
Seidel: $\operatorname{Lag}\left(W,\left\{\gamma_{i}\right\}\right) \quad$ finite, directed A_{∞}-category.
Objects: L_{1}, \ldots, L_{r}.
$\operatorname{Hom}\left(L_{i}, L_{j}\right)= \begin{cases}C F^{*}\left(L_{i}, L_{j}\right)=\mathbb{C}^{\left|L_{i} \cap L_{j}\right|} & \text { if } i<j \\ \mathbb{C} \cdot \operatorname{Id} & \text { if } i=j \\ 0 & \text { if } i>j\end{cases}$
Products: $\left(m_{k}\right)_{k \geq 1}=$ Floer theory for Lagrangians $\subset \Sigma_{0}$.

- $m_{k}: \operatorname{Hom}\left(L_{i_{0}}, L_{i_{1}}\right) \otimes \cdots \otimes \operatorname{Hom}\left(L_{i_{k-1}}, L_{i_{k}}\right) \rightarrow \operatorname{Hom}\left(L_{i_{0}}, L_{i_{k}}\right)[2-k]$ is trivial unless $i_{0}<\cdots<i_{k}$.
- m_{k} counts discs in Σ_{0} with boundary in $\bigcup L_{i}$, with coefficients $\pm \exp \left(-\int_{D^{2}} u^{*} \omega\right)$.
\bullet in our case $\pi_{2}\left(\Sigma_{0}\right)=0, \pi_{2}\left(\Sigma_{0}, L_{i}\right)=0$, so no bubbling.

Remarks:

- $\left\langle L_{1}, \ldots, L_{r}\right\rangle=$ exceptional collection generating $D^{b} L a g$.
- objects also represent Lefschetz thimbles (Lagrangian discs bounded by L_{i}, fibering above γ_{i})

Theorem. (Seidel) Changing $\left\{\gamma_{i}\right\}$ affects $\operatorname{Lag}\left(W,\left\{\gamma_{i}\right\}\right)$ by mutations; $D^{b} \operatorname{Lag}(W)$ depends only on $W:(Y, \omega) \rightarrow \mathbb{C}$.

Example 1: weighted projective planes

(Auroux-Katzarkov-Orlov, math.AG/0404281; cf. work of Seidel on $\mathbb{C P}^{2}$)
$X=\mathbb{C P}^{2}(a, b, c)=\left(\mathbb{C}^{3}-\{0\}\right) /(x, y, z) \sim\left(t^{a} x, t^{b} y, t^{c} z\right) \quad$ (Fano orbifold).
$D^{b} \operatorname{Coh}(X)$ has an exceptional collection $\mathcal{O}, \mathcal{O}(1), \ldots, \mathcal{O}(N-1)(N=a+b+c)$
(Homogeneous coords. x, y, z are sections of $\mathcal{O}(a), \mathcal{O}(b), \mathcal{O}(c))$
$\operatorname{Hom}(\mathcal{O}(i), \mathcal{O}(j)) \simeq \operatorname{deg} .(j-i)$ part of symmetric algebra $\mathbb{C}[x, y, z]$ (degs. $a, b, c)$ All in degree 0 (no Ext's); composition $=$ obvious.

Mirror: $Y=\left\{x^{a} y^{b} z^{c}=1\right\} \subset\left(\mathbb{C}^{*}\right)^{3}, W=x+y+z . \quad\left(Y \simeq\left(\mathbb{C}^{*}\right)^{2}\right.$ if $\left.\operatorname{gcd}(a, b, c)=1\right)$ $\mathbb{Z} / N(N=a+b+c)$ acts by diagonal mult., the N crit. pts. are an orbit; complex conjugation.
We choose ω invariant under \mathbb{Z} / N and complex conj. $\quad(\Rightarrow[\omega]=0$ exact $)$
Theorem. $D^{b} \operatorname{Lag}(W) \simeq D^{b} \operatorname{Coh}(X)$.
(this should extend to weighted projective spaces in all dimensions; for technical reasons we only have a partial argument when $\operatorname{dim}_{\mathbb{C}} \geq 3$).

Non-commutative deformations

$X=\mathbb{C P}^{2}(a, b, c) ; \quad Y=\left\{x^{a} y^{b} z^{c}=1\right\} \subset\left(\mathbb{C}^{*}\right)^{3}, W=x+y+z$,
Theorem. If ω is exact, then $D^{b} \operatorname{Lag}(W) \simeq D^{b} \operatorname{Coh}(X)$.
Can deform $\operatorname{Lag}(W)$ by changing $[\omega]$ (and introducing a B-field).
Choose $t \in \mathbb{C}$, and take $\int_{S^{1} \times S^{1}}[B+i \omega]=t \quad\left(S^{1} \times S^{1}=\right.$ generator of $\left.H_{2}(Y, \mathbb{Z}) \simeq \mathbb{Z}\right)$
\rightarrow deformed category $D^{b} \operatorname{Lag}(W)_{t}$.
This corresponds to a non-commutative deformation X_{t} of X : deform weighted polynomial algebra $\mathbb{C}[x, y, z]$ to

$$
y z=\mu_{1} z y, \quad z x=\mu_{2} x z, \quad x y=\mu_{3} y x, \quad \text { with } \quad \mu_{1}^{a} \mu_{2}^{b} \mu_{3}^{c}=e^{i t}
$$

Theorem. $\forall t \in \mathbb{C}, D^{b} \operatorname{Lag}(W)_{t} \simeq D^{b} \operatorname{Coh}(X)_{t}$.

Example 2: Del Pezzo surfaces

(Auroux-Katzarkov-Orlov, math.AG/0506166)
$X=\mathbb{C P}^{2}$ blown up at $k \leq 9$ points, $-K_{X}$ ample (or more generally, nef).
$D^{b} \operatorname{Coh}(X)$ has an exceptional collection $\mathcal{O}, \pi^{*} T_{\mathbb{P}^{2}}(-1), \pi^{*} \mathcal{O}_{\mathbb{P}^{2}}(1), \mathcal{O}_{E_{1}}, \ldots, \mathcal{O}_{E_{k}}$

Compositions encode coordinates of blown up points. For generic blowups, $\operatorname{Hom}\left(\mathcal{O}_{E_{i}}, \mathcal{O}_{E_{j}}\right)=0$. Infinitely close blowups give pairs of morphisms in deg. 0 and 1 (recover \mathcal{O}_{C} (-2 -curve) as a cone).

Mirror: mirror to $\mathbb{C P}^{2}$ compactifies to $\bar{M}=$ resolution of $\left\{X Y Z=T^{3}\right\} \subset \mathbb{C P}^{3}$, with elliptic fibration $W=T^{-1}(X+Y+Z): \bar{M} \rightarrow \mathbb{C} \cup\{\infty\}$.
W is Morse, with 3 crit. pts. in $\{|W|<\infty\}$; fiber at infinity has 9 components.
Mirror to $X=\operatorname{deform}(\bar{M}, W)$ to bring k of the crit. pts. over ∞ into finite part.
Get an elliptic fibration over $\left\{\left|W_{k}\right|<\infty\right\}: W_{k}: M_{k} \rightarrow \mathbb{C}$, with $3+k$ sing. fibers. (symplectic form to be specified later)
Theorem. For suitable choice of $[B+i \omega], D \operatorname{Lag}\left(W_{k}\right) \simeq D^{b} \operatorname{Coh}\left(X_{k}\right)$.

The vanishing cycles of W_{k}

Symplectic deformation parameters: $[B+i \omega] \in H^{2}\left(M_{k}, \mathbb{C}\right)$:

- Area of fiber: $\tau=\frac{1}{2 \pi} \int_{\Sigma}(B+i \omega) \longleftrightarrow$ cubic curve $\mathbb{C P}^{2} \supset E \simeq \mathbb{C} /(\mathbb{Z}+\tau \mathbb{Z})$
(all blowups are at points of E; think of E as zero set of $\beta \in H^{0}\left(\Lambda^{2} T\right)$.)
- Area of $C\left(\partial C=L_{0}+L_{1}+L_{2}\right): t=\frac{1}{2 \pi} \int_{C}(B+i \omega) \longleftrightarrow \sigma \in \operatorname{Pic}_{0}(E)$
(same parameter as in Example 1; commutative deformations correspond to $t=0$; takes values in $\mathbb{C} /(\mathbb{Z}+\tau \mathbb{Z})$.)

The vanishing cycles of W_{k}

Symplectic deformation parameters: $[B+i \omega] \in H^{2}\left(M_{k}, \mathbb{C}\right)$:

- Area of fiber: $\tau=\frac{1}{2 \pi} \int_{\Sigma}(B+i \omega) \longleftrightarrow$ cubic curve $\mathbb{C P}^{2} \supset E \simeq \mathbb{C} /(\mathbb{Z}+\tau \mathbb{Z})$
(all blowups are at points of E; think of E as zero set of $\beta \in H^{0}\left(\Lambda^{2} T\right)$.)
- Area of $C\left(\partial C=L_{0}+L_{1}+L_{2}\right): t=\frac{1}{2 \pi} \int_{C}(B+i \omega) \longleftrightarrow \sigma \in \operatorname{Pic}_{0}(E)$ (same parameter as in Example 1; commutative deformations correspond to $t=0$; takes values in $\mathbb{C} /(\mathbb{Z}+\tau \mathbb{Z})$.)
- Areas of cycles $C_{j}\left(\partial C_{j}=L_{3+j}+\ldots\right): t_{j}=\frac{1}{2 \pi} \int_{C_{j}}(B+i \omega)$, take values in $\mathbb{C} /(\mathbb{Z}+\tau \mathbb{Z})$.

$$
=\text { positions of blown up points on } E \text {. }
$$

For $t_{i}-t_{j}=0 \bmod (\mathbb{Z}+\tau \mathbb{Z}), L_{3+i}, L_{3+j}$ become Ham. isotopic, acquire $H F^{*}\left(L_{3+i}, L_{3+j}\right) \simeq H^{*}\left(S^{1}\right)$.
This corresponds to infinitely close blowups, where -2 -curves appear.

