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PLAN OF THE TALK

• Review of stability for vector bundles.

• Stability conditions on the derived cate-

gory.

• Examples of stable objects.

• Moduli spaces of stable objects.



SLOPE-STABILITY

FOR BUNDLES

The slope of a vector bundle E over a smooth

curve C is

µ(E) :=
degF

rkF
.

A vector bundle E over a smooth curve C is

stable if

µ(F) < µ(E)

for every proper subbundle F ⊂ E.

There exists a similar definition for a torsion-

free sheaf E over a smooth surface S with re-

spect to the slope

µH(E) :=
c1(E) · H

rkE
,

where H is a fixed ample divisor class on S.



CENTRAL CHARGE

FOR CURVES

For a coherent sheaf E over a smooth curve

C, define

Z(E) = −degE + i rkE =: ρeiπφ ∈ C,

where ρ ≥ 0 and φ = φ(Z(E)) ∈ [0,2) is the

“phase” of Z(E).
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Then E is stable if and only if

φ(Z(F)) < φ(Z(E))

for every proper subbundle F ⊂ E.



PROPERTIES OF Z(E)

(0) Z(E ⊕ F) = Z(E) + Z(F).

(1) Z(E) = 0 ⇔ E = 0 and φ(Z(E)) ∈ (0,1]

for all E 6= 0.

(2) If E, E′ are stable of phases φ ≥ φ′, then

Hom OC
(E, E′) =





C if E ≃ E′

0 otherwise

(3) Harder-Narasimhan filtration

0 ⊂ E1 ⊂ · · · ⊂ En = E,

φ(Z(E1/0)) > · · · > φ(Z(En/En−1)).

(4) Moduli spaces MC(r, d) which are projec-

tive when r and d are coprime.



NOTATION

From now on, S is a smooth K3 surface over

C. Recall that ωS ≃ OS and H1(S,OS) = 0.

We also assume that Pic(S) ≃ Z, generated by

an ample line bundle OS(1).

Let H := c1(OS(1)). Then H2 = 2g−2, where

g is, by definition, the “genus” of S.



CENTRAL CHARGES

FOR SURFACES (I)

Bridgeland introduced a notion of stability in

the derived category of bounded complexes of

coherent sheaves on S. It generalizes the no-

tion of slope-stability for torsion-free sheaves.

For each real number α > 0, define the central

charge Zα as

Zα(E) := −
∫

S
e
−

(
H
2 +i

√
α

g−1H
)

ch(E)
√

td(S),

which simplifies into

Zα(E) = r

(
α −

g + 3

4

)
− ch2(E)+

1

2
c1(E) ·H+

+i

√
α

g − 1
(c1(E) · H − r(g − 1)),

where r = rkE.



CENTRAL CHARGES

FOR SURFACES (II)

For example,

Zα(OS[1]) = −Zα(OS)

=
g + 3

4
− α + i

√
α(g − 1),

Zα(OS(1)) = α −
g + 3

4
+ i

√
α(g − 1).

-
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Zα(OS(1))Zα(OS[1])

Note that α > (g + 3)/4 in this picture. When

α < (g +3)/4, Zα(OS[1]) has positive real part

and Zα(OS(1)) has negative real part.



STABILITY CONDITIONS

IN THE

DERIVED CATEGORY

If we consider coherent sheaves as in the case

of a smooth curve, the central charges Zα do

not satisfy the nice properties (1)-(4) we had.

The idea is to replace the abelian category of

coherent sheaves with a “tilting” A.

A stability condition in D(S) is a pair (A, Zα)

of an abelian subcategory of D(S) (which is the

core of a t-structure) together with a central

charge Zα satisfying certain conditions.

An object E ∈ A is then said to be α-stable if

φ(Zα(F)) < φ(Zα(E))

for all proper subobjects F ⊂ E in A.



DEFINITION OF A

Every coherent sheaf E has a HN-filtration

Tors (E) = E0 ⊂ E1 ⊂ · · · ⊂ En = E,

µH(E1/E0) > · · · > µH(En/En−1),

where µH(E) := (c1(E) · H)/ rkE.

Let T consist of all coherent sheaves E such

that µH(E/En−1) > g − 1 (this includes all tor-

sion sheaves), and let F consist of all torsion-

free sheaves such that µH(E1) ≤ g − 1.

Every coherent sheaf E is an extension

0−→T−→E−→F−→0

with T ∈ T and F ∈ F.

Let A be the set of all objects E ∈ D(S) such

that

H0(E) ∈ T ,H−1(E) ∈ F ,Hi(E) = 0 otherwise.



IDEA OF TILTING

Coh[1] Coh Coh[−1]

F[2] T [1] F[1] T F T [−1]F[−1]

A[1] A A[−1]



EXAMPLES (I)

• OS(1) ∈ A because µH(OS(1)) = 2(g−1) >

g − 1.

• OS 6∈ A because µH(OS) = 0 ≤ g − 1. We

have that OS[1] ∈ A.

• All torsion sheaves are in A.

• If Z is a 0-dimensional subscheme of S, the

short exact sequence

0−→IZ−→OS−→OZ−→0(1)

of coherent sheaves becomes the short ex-

act sequence

0−→OZ−→IZ[1]−→OS[1]−→0

in A, where the map OZ → IZ[1] is exactly

the extension (1) in the sense that

OZ ≃ (IZ → OS)−→(IZ → 0) = IZ[1].



EXAMPLES (II)

• Given a section s ∈ H0(S,OS(1)), the short

exact sequence

0−→OS
·s

−→OS(1)−→ωC−→0

of coherent sheaves becomes the short ex-

act sequence

0−→OS(1)−→ωC−→OS[1]−→0

in A.

• If Z is a 0-dimensional subscheme of S,

then I∨
Z[1] ∈ A, where E∨ denotes the de-

rived dual RHom(E,OS). Indeed,

H−1(I∨
Z[1]) = HomOS

(IZ,OS) ≃ OS ∈ F

and

H0(I∨
Z[1]) = Ext1S(IZ,OS) ≃ OZ ∈ T .



STABLE OBJECTS

For each real number α > 0 (or α > 1/4 if g is

even), an object E ∈ A is α-stable if

φ(Zα(F)) < φ(Zα(E))

for every proper subobject F ⊂ E in A.

Recall that

Zα(E) = r

(
α −

g + 3

4

)
− ch2(E)+

1

2
c1(E) ·H+

+i

√
α

g − 1
(c1(E) · H − r(g − 1)),

and A consists of objects such that

H0(E) ∈ T ,H−1(E) ∈ F ,Hi(E) = 0 otherwise,

with

• T “=”{µH(E/En−1) > g − 1} and

• F“=”{µH(E1) ≤ g − 1}.



PROPERTIES OF Zα

Proposition (Bridgeland, A.-Bertram). For

each α > 0, or α > 1/4 if g is even, the central

charge Zα satisfies the following properties as

a function on A:

(1) Zα(E) = 0 ⇔ E = 0 and φ(Zα(E)) ∈ (0,1]

for all E 6= 0.

(2) If E, E′ are α-stable of phases φ ≥ φ′, then

HomA(E, E′) =





C if E ≃ E′

0 otherwise

(3) Harder-Narasimhan filtration

0 ⊂ E1 ⊂ · · · ⊂ En = E,

φ(Zα(E1/0)) > · · · > φ(Zα(En/En−1)).



EXAMPLES OF α-STABILITY

• If E is a semi-stable sheaf such that

c1(E) · H = rkE(g − 1),

then E ∈ A and E has maximal phase for

all α. Note that rkE is even in this case.

• If Z is a 0-dimensional subscheme of S,

IZ[1] is not α-stable because of the short

exact sequence

0−→OZ−→IZ[1]−→OS[1]−→0

in A.

Proposition (A.-Bertram ’05). The follow-

ing objects of A are α-stable for all α:

OS(1), OS[1], IZ(1), I∨
Z[1],

where Z is a 0-dimensional subscheme of S.



SAMPLE PROOF (I)

Let p ∈ S, and let us prove that I∨
p [1] is α-

stable for all α.

Let F ⊂ I∨
p [1] be a subobject in A, and let Q

be the quotient. The short exact sequence

0−→F−→I∨
p [1]−→Q−→0

in A induces a long exact sequence of coho-

mologies

0−→H−1(F)−→OS−→H−1(Q)−→

−→H0(F)−→Op−→H0(Q)−→0

with H−1(F),H−1(Q) ∈ F and H0(F),H0(Q) ∈

T .

Since H−1(Q) ∈ F is torsion-free, we have that

either H−1(F) = OS or H−1(F) = 0.

Also, since Op surjects onto H0(Q), we have

that either H0(Q) = Op or H0(Q) = 0.



SAMPLE PROOF (II)

Case I: H−1(F) = OS. Then H−1(Q) ∈ F and

H0(F) ∈ T have the same µH, which forces

H−1(Q) = 0 and H0(F) is a torsion sheaf.

Since F 6= E, H0(F) = 0, and F does not

destibilize E.

Case II: H−1(F) = 0. We have an exact se-

quence

0−→OS−→H−1(Q)−→H0(F)−→T−→0

with T either Op or 0, and therefore

(rQ − 1)(g − 1) = rF (g − 1) < c1(H
0(F)) · H

= c1(H
−1(Q)) · H ≤ rQ(g − 1).

Since c1(H
−1(Q)) · H ∈ 2(g − 1)Z, this implies

that

c1(H
−1(Q)) · H = rQ(g − 1)

and rQ is even, making Q an object of maximal

slope.

[NOTE: We skipped a step]



FLAT FAMILIES

A flat family of objects in A over a base B is

an object E ∈ D(S × B) such that

Li∗S×{x}E ∈ A

for all x ∈ B.

If B is smooth and projective, Abramovich and

Polishchuk constructed (a t-structure whose

core is) an abelian subcategory AB of D(S×B)

which contains all of the flat families.



MODULI SPACES

We are interested in the moduli spaces

Mα := Mα(0, H, g − 1)

of α-stable objects E ∈ A of fixed invariants

rkE = 0, c1(E) = H, ch2(E) = g − 1.

These invariants are chosen in such a way that

φ(Zα(E)) = 1/2 for all α, and therefore E is

α-stable if and only if

Re(Zα(F)) > 0

for all proper subobjects F ⊂ E in A.

For α >> 0, an object E ∈ A is α-stable if and

only if it is a torsion-free sheaf LC of rank 1

supported on a curve C ∈ |OS(1)| of degree

2g − 2, i.e.,

Mα ≃ Pic2g−2 → |OS(1)|,

the relative Picard variety over |OS(1)|.



FIRST CRITICAL VALUE

Recall that we have the short exact sequences

0−→OS(1)−→ωC−→OS[1]−→0

in A.

Since

Re(Zα(OS(1))) = α −
g + 3

4
,

the sheaves of the form ωC are not α-stable if

α ≤ (g + 3)/4.

Proposition (A.-Bertram ’05). For all α >

(g + 3)/4,

Mα ≃ Pic2g−2 → |OS(1)|.

Moreover, the sheaves of the form ωC are the

only ones that become α-unstable on the other

side of this critical value.



MUKAI FLOPS (I)

Theorem (A.-Bertram ’05). Choose α0 >

(g + 3)/4 and α1 < (g + 3)/4 (with α1 close

enough to (g + 3)/4). There exists a Mukai

flop

M̃α0

ւ ց

Mα1 < −−− Mα0⋃ ⋃

P∨ P

,

where P := P(H0(S,OS(1))). Note that P∨ ≃

P(Ext 2
S(OS(1),OS)) ≃ P(Ext 1

A(OS(1),OS[1])).

Moreover, there exists a universal family in

D(S × Mα1). It is a sheaf, but it is not flat

over Mα1.

Note that the moduli space Mα1 can be identi-

fied with the moduli space M(g−1, H,1−g) of

stable sheaves of rank g − 1, first Chern class

H, and second Chern character 1 − g, via a

Fourier-Mukai transform.



MUKAI FLOPS (II)

Critical values:

g+3
4

g−1
4

g−5
4· · ·g+3

36

α0α1α2α3

Theorem (A.-Bertram ’05).There exist Mu-

kai flops

M̃α2 M̃α1 M̃α0

· · · ւ ց ւ ց ւ ց

Mα3 Mα2 Mα1 Mα0⋃ ⋃ ⋃ ⋃

P3, P∨
2 P2, P∨

1 P1, P∨
0 P0

where each of the Pi’s is a projective bundle

over Hilb i(S)×Hilb i(S) with fibers isomorphic

to Ext 1
A(IZ(1), I∨

W [1]) over a point (Z, W ).


