2005 AMS Summer Institute on Algebraic Geometry Seattle, WA

Moduli Spaces in the Derived Category of a K3 surface

Daniele Arcara University of Utah July 29, 2005 (joint work with Aaron Bertram)

PLAN OF THE TALK

- Review of stability for vector bundles.
- Stability conditions on the derived category.
- Examples of stable objects.
- Moduli spaces of stable objects.

SLOPE-STABILITY FOR BUNDLES

The **slope** of a vector bundle E over a smooth curve C is

$$\mu(E) := \frac{\deg F}{\mathsf{rk}F}.$$

A vector bundle E over a smooth curve C is **stable** if

 $\mu(F) < \mu(E)$

for every proper subbundle $F \subset E$.

There exists a similar definition for a torsionfree sheaf E over a smooth surface S with respect to the slope

$$\mu_H(E) := \frac{c_1(E) \cdot H}{\mathsf{rk}E},$$

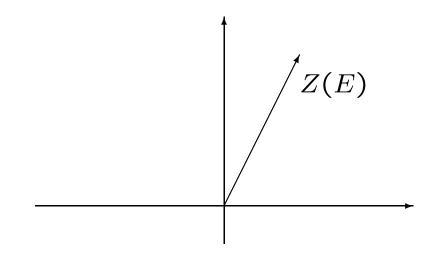
where H is a fixed ample divisor class on S.

CENTRAL CHARGE FOR CURVES

For a coherent sheaf E over a smooth curve C, define

 $Z(E) = -\deg E + i \operatorname{rk} E =: \rho e^{i\pi\phi} \in \mathbb{C},$

where $\rho \ge 0$ and $\phi = \phi(Z(E)) \in [0,2)$ is the "**phase**" of Z(E).



Then E is stable if and only if

 $\phi(Z(F)) < \phi(Z(E))$

for every proper subbundle $F \subset E$.

PROPERTIES OF Z(E)

(0) $Z(E \oplus F) = Z(E) + Z(F)$.

- (1) $Z(E) = 0 \Leftrightarrow E = 0$ and $\phi(Z(E)) \in (0,1]$ for all $E \neq 0$.
- (2) If E, E' are stable of phases $\phi \ge \phi'$, then Hom $_{\mathcal{O}_C}(E, E') = \begin{cases} \mathbb{C} & \text{if } E \simeq E' \\ 0 & \text{otherwise} \end{cases}$
- (3) Harder-Narasimhan filtration

$$0 \subset E_1 \subset \cdots \subset E_n = E,$$

$$\phi(Z(E_1/0)) > \cdots > \phi(Z(E_n/E_{n-1}))$$

(4) Moduli spaces $\mathcal{M}_C(r, d)$ which are projective when r and d are coprime.

NOTATION

From now on, S is a smooth K3 surface over \mathbb{C} . Recall that $\omega_S \simeq \mathcal{O}_S$ and $H^1(S, \mathcal{O}_S) = 0$.

We also assume that $Pic(S) \simeq \mathbb{Z}$, generated by an ample line bundle $\mathcal{O}_S(1)$.

Let $H := c_1(\mathcal{O}_S(1))$. Then $H^2 = 2g - 2$, where g is, by definition, the "**genus**" of S.

CENTRAL CHARGES FOR SURFACES (I)

Bridgeland introduced a notion of stability in the derived category of bounded complexes of coherent sheaves on S. It generalizes the notion of slope-stability for torsion-free sheaves.

For each real number $\alpha > 0$, define the **central** charge Z_{α} as

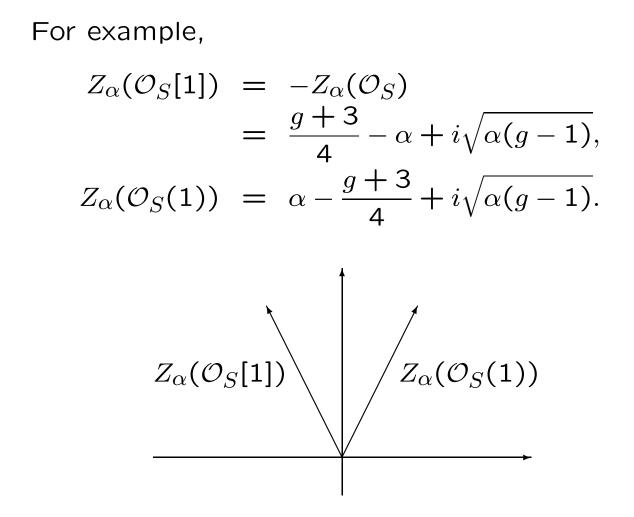
$$Z_{\alpha}(E) := -\int_{S} e^{-\left(\frac{H}{2} + i\sqrt{\frac{\alpha}{g-1}}H\right)} \operatorname{ch}(E) \sqrt{\operatorname{td}(S)},$$

which simplifies into

$$Z_{\alpha}(E) = r\left(\alpha - \frac{g+3}{4}\right) - \operatorname{ch}_{2}(E) + \frac{1}{2}c_{1}(E) \cdot H + i\sqrt{\frac{\alpha}{g-1}}(c_{1}(E) \cdot H - r(g-1)),$$

where r = rkE.

CENTRAL CHARGES FOR SURFACES (II)



Note that $\alpha > (g+3)/4$ in this picture. When $\alpha < (g+3)/4$, $Z_{\alpha}(\mathcal{O}_S[1])$ has positive real part and $Z_{\alpha}(\mathcal{O}_S(1))$ has negative real part.

STABILITY CONDITIONS IN THE DERIVED CATEGORY

If we consider coherent sheaves as in the case of a smooth curve, the central charges Z_{α} do not satisfy the nice properties (1)-(4) we had.

The idea is to replace the abelian category of coherent sheaves with a "tilting" A.

A stability condition in $\mathcal{D}(S)$ is a pair $(\mathcal{A}, Z_{\alpha})$ of an abelian subcategory of $\mathcal{D}(S)$ (which is the core of a *t*-structure) together with a central charge Z_{α} satisfying certain conditions.

An object $E \in \mathcal{A}$ is then said to be α -stable if

$$\phi(Z_{\alpha}(F)) < \phi(Z_{\alpha}(E))$$

for all proper subobjects $F \subset E$ in \mathcal{A} .

DEFINITION OF ${\mathcal A}$

Every coherent sheaf E has a HN-filtration

Tors $(E) = E_0 \subset E_1 \subset \cdots \subset E_n = E$,

$$\mu_H(E_1/E_0) > \cdots > \mu_H(E_n/E_{n-1}),$$

where $\mu_H(E) := (c_1(E) \cdot H) / \operatorname{rk} E$.

Let \mathcal{T} consist of all coherent sheaves E such that $\mu_H(E/E_{n-1}) > g-1$ (this includes all torsion sheaves), and let \mathcal{F} consist of all torsion-free sheaves such that $\mu_H(E_1) \leq g-1$.

Every coherent sheaf E is an extension

 $0 \longrightarrow T \longrightarrow E \longrightarrow F \longrightarrow 0$

with $T \in \mathcal{T}$ and $F \in \mathcal{F}$.

Let \mathcal{A} be the set of all objects $E \in \mathcal{D}(S)$ such that

 $\mathcal{H}^{0}(E) \in \mathcal{T}, \mathcal{H}^{-1}(E) \in \mathcal{F}, \mathcal{H}^{i}(E) = 0$ otherwise.

IDEA OF TILTING

	$\mathcal{C}oh[1]$		$\mathcal{C}oh$		$\mathcal{C}oh[-1]$	
$\mathcal{F}[2]$	$\mathcal{T}[1]$	$\mathcal{F}[1]$	\mathcal{T}	${\cal F}$	$\mathcal{T}[-1]$	$\mathcal{F}[-1]$
$\mathcal{A}[1]$		\mathcal{A}		$\mathcal{A}[-1]$		

EXAMPLES (I)

- $\mathcal{O}_S(1) \in \mathcal{A}$ because $\mu_H(\mathcal{O}_S(1)) = 2(g-1) > g-1$.
- $\mathcal{O}_S \notin \mathcal{A}$ because $\mu_H(\mathcal{O}_S) = 0 \leq g 1$. We have that $\mathcal{O}_S[1] \in \mathcal{A}$.
- All torsion sheaves are in \mathcal{A} .
- If Z is a 0-dimensional subscheme of S, the short exact sequence

 $(1) \qquad 0 \longrightarrow \mathcal{I}_Z \longrightarrow \mathcal{O}_S \longrightarrow \mathcal{O}_Z \longrightarrow 0$

of coherent sheaves becomes the short exact sequence

 $0 \longrightarrow \mathcal{O}_Z \longrightarrow \mathcal{I}_Z[1] \longrightarrow \mathcal{O}_S[1] \longrightarrow 0$

in \mathcal{A} , where the map $\mathcal{O}_Z \to \mathcal{I}_Z[1]$ is exactly the extension (1) in the sense that

 $\mathcal{O}_Z \simeq (\mathcal{I}_Z \to \mathcal{O}_S) \longrightarrow (\mathcal{I}_Z \to 0) = \mathcal{I}_Z[1].$

EXAMPLES (II)

• Given a section $s \in H^0(S, \mathcal{O}_S(1))$, the short exact sequence

$$0 \longrightarrow \mathcal{O}_S \xrightarrow{\cdot s} \mathcal{O}_S(1) \longrightarrow \omega_C \longrightarrow 0$$

of coherent sheaves becomes the short exact sequence

$$0 \longrightarrow \mathcal{O}_S(1) \longrightarrow \omega_C \longrightarrow \mathcal{O}_S[1] \longrightarrow 0$$

in \mathcal{A} .

• If Z is a 0-dimensional subscheme of S, then $\mathcal{I}_Z^{\vee}[1] \in \mathcal{A}$, where E^{\vee} denotes the derived dual $R\mathcal{H}om(E, \mathcal{O}_S)$. Indeed,

$$\mathcal{H}^{-1}(\mathcal{I}_Z^{\vee}[1]) = \mathcal{H}om_{\mathcal{O}_S}(\mathcal{I}_Z, \mathcal{O}_S) \simeq \mathcal{O}_S \in \mathcal{F}$$
 and

$$\mathcal{H}^{0}(\mathcal{I}_{Z}^{\vee}[1]) = \mathcal{E}xt_{S}^{1}(\mathcal{I}_{Z}, \mathcal{O}_{S}) \simeq \mathcal{O}_{Z} \in \mathcal{T}.$$

STABLE OBJECTS

For each real number $\alpha > 0$ (or $\alpha > 1/4$ if g is even), an object $E \in \mathcal{A}$ is α -stable if

 $\phi(Z_{\alpha}(F)) < \phi(Z_{\alpha}(E))$

for every proper subobject $F \subset E$ in \mathcal{A} .

Recall that

$$Z_{\alpha}(E) = r\left(\alpha - \frac{g+3}{4}\right) - \operatorname{ch}_{2}(E) + \frac{1}{2}c_{1}(E) \cdot H + i\sqrt{\frac{\alpha}{g-1}}(c_{1}(E) \cdot H - r(g-1)),$$

and \mathcal{A} consists of objects such that $\mathcal{H}^{0}(E) \in \mathcal{T}, \mathcal{H}^{-1}(E) \in \mathcal{F}, \mathcal{H}^{i}(E) = 0$ otherwise, with

• $T''="\{\mu_H(E/E_{n-1})>g-1\}$ and

•
$$\mathcal{F}''='' \{\mu_H(E_1) \leq g-1\}.$$

PROPERTIES OF Z_{α}

Proposition (Bridgeland, A.-Bertram). For each $\alpha > 0$, or $\alpha > 1/4$ if g is even, the central charge Z_{α} satisfies the following properties as a function on A:

(1) $Z_{\alpha}(E) = 0 \Leftrightarrow E = 0$ and $\phi(Z_{\alpha}(E)) \in (0, 1]$ for all $E \neq 0$.

(2) If E, E' are α -stable of phases $\phi \ge \phi'$, then Hom $_{\mathcal{A}}(E, E') = \begin{cases} \mathbb{C} & \text{if } E \simeq E' \\ 0 & \text{otherwise} \end{cases}$

(3) Harder-Narasimhan filtration

$$0 \subset E_1 \subset \cdots \subset E_n = E,$$

$$\phi(Z_\alpha(E_1/0)) > \cdots > \phi(Z_\alpha(E_n/E_{n-1})).$$

EXAMPLES OF α -STABILITY

• If E is a semi-stable sheaf such that

 $c_1(E) \cdot H = \mathsf{rk}E(g-1),$

then $E \in \mathcal{A}$ and E has maximal phase for all α . Note that $\mathsf{rk}E$ is even in this case.

• If Z is a 0-dimensional subscheme of S, $\mathcal{I}_{Z}[1]$ is not α -stable because of the short exact sequence

$$0 \longrightarrow \mathcal{O}_Z \longrightarrow \mathcal{I}_Z[1] \longrightarrow \mathcal{O}_S[1] \longrightarrow 0$$

in \mathcal{A} .

Proposition (A.-Bertram '05). The following objects of A are α -stable for all α :

 $\mathcal{O}_S(1), \quad \mathcal{O}_S[1], \quad \mathcal{I}_Z(1), \quad \mathcal{I}_Z^{\vee}[1],$ where Z is a 0-dimensional subscheme of S.

SAMPLE PROOF (I)

Let $p \in S$, and let us prove that $\mathcal{I}_p^{\vee}[1]$ is α -stable for all α .

Let $F \subset \mathcal{I}_p^{\vee}[1]$ be a subobject in \mathcal{A} , and let Q be the quotient. The short exact sequence

$$0 \longrightarrow F \longrightarrow \mathcal{I}_p^{\vee}[1] \longrightarrow Q \longrightarrow 0$$

in $\ensuremath{\mathcal{A}}$ induces a long exact sequence of cohomologies

$$0 \longrightarrow \mathcal{H}^{-1}(F) \longrightarrow \mathcal{O}_{S} \longrightarrow \mathcal{H}^{-1}(Q) \longrightarrow$$
$$\longrightarrow \mathcal{H}^{0}(F) \longrightarrow \mathcal{O}_{p} \longrightarrow \mathcal{H}^{0}(Q) \longrightarrow 0$$

with $\mathcal{H}^{-1}(F), \mathcal{H}^{-1}(Q) \in \mathcal{F}$ and $\mathcal{H}^{0}(F), \mathcal{H}^{0}(Q) \in \mathcal{T}$.

Since $\mathcal{H}^{-1}(Q) \in \mathcal{F}$ is torsion-free, we have that either $\mathcal{H}^{-1}(F) = \mathcal{O}_S$ or $\mathcal{H}^{-1}(F) = 0$.

Also, since \mathcal{O}_p surjects onto $\mathcal{H}^0(Q)$, we have that either $\mathcal{H}^0(Q) = \mathcal{O}_p$ or $\mathcal{H}^0(Q) = 0$.

SAMPLE PROOF (II)

Case I: $\mathcal{H}^{-1}(F) = \mathcal{O}_S$. Then $\mathcal{H}^{-1}(Q) \in \mathcal{F}$ and $\mathcal{H}^0(F) \in \mathcal{T}$ have the same μ_H , which forces $\mathcal{H}^{-1}(Q) = 0$ and $\mathcal{H}^0(F)$ is a torsion sheaf. Since $F \neq E$, $\mathcal{H}^0(F) = 0$, and F does not destibilize E.

Case II: $\mathcal{H}^{-1}(F) = 0$. We have an exact sequence

$$0 \longrightarrow \mathcal{O}_S \longrightarrow \mathcal{H}^{-1}(Q) \longrightarrow \mathcal{H}^0(F) \longrightarrow T \longrightarrow 0$$

with T either \mathcal{O}_p or 0, and therefore

$$(r_Q - 1)(g - 1) = r_F(g - 1) < c_1(\mathcal{H}^0(F)) \cdot H$$

= $c_1(\mathcal{H}^{-1}(Q)) \cdot H \le r_Q(g - 1).$

Since $c_1(\mathcal{H}^{-1}(Q)) \cdot H \in 2(g-1)\mathbb{Z}$, this implies that

$$c_1(\mathcal{H}^{-1}(Q)) \cdot H = r_Q(g-1)$$

and r_Q is even, making Q an object of maximal slope.

[NOTE: We skipped a step]

FLAT FAMILIES

A flat family of objects in \mathcal{A} over a base B is an object $\mathcal{E} \in \mathcal{D}(S \times B)$ such that

$$Li_{S \times \{x\}}^* \mathcal{E} \in \mathcal{A}$$

for all $x \in B$.

If *B* is smooth and projective, Abramovich and Polishchuk constructed (a *t*-structure whose core is) an abelian subcategory \mathcal{A}_B of $\mathcal{D}(S \times B)$ which contains all of the flat families.

MODULI SPACES

We are interested in the moduli spaces

 $\mathcal{M}_{\alpha} := \mathcal{M}_{\alpha}(0, H, g-1)$

of α -stable objects $E \in \mathcal{A}$ of fixed invariants

$$\mathsf{rk}E = 0, c_1(E) = H, \mathsf{ch}_2(E) = g - 1.$$

These invariants are chosen in such a way that $\phi(Z_{\alpha}(E)) = 1/2$ for all α , and therefore E is α -stable if and only if

$$Re(Z_{\alpha}(F)) > 0$$

for all proper subobjects $F \subset E$ in \mathcal{A} .

For $\alpha >> 0$, an object $E \in \mathcal{A}$ is α -stable if and only if it is a torsion-free sheaf L_C of rank 1 supported on a curve $C \in |\mathcal{O}_S(1)|$ of degree 2g - 2, i.e.,

$$\mathcal{M}_{\alpha} \simeq \operatorname{Pic}_{2g-2} \rightarrow |\mathcal{O}_{S}(1)|,$$

the relative Picard variety over $|\mathcal{O}_S(1)|$.

FIRST CRITICAL VALUE

Recall that we have the short exact sequences

$$0 \longrightarrow \mathcal{O}_S(1) \longrightarrow \omega_C \longrightarrow \mathcal{O}_S[1] \longrightarrow 0$$

in \mathcal{A} .

Since

$$Re(Z_{\alpha}(\mathcal{O}_{S}(1))) = \alpha - \frac{g+3}{4},$$

the sheaves of the form ω_C are not α -stable if $\alpha \leq (g+3)/4$.

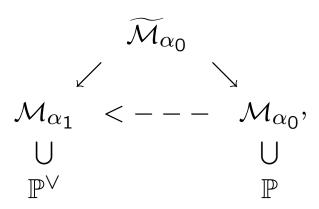
Proposition (A.-Bertram '05). For all $\alpha > (g+3)/4$,

$$\mathcal{M}_{\alpha} \simeq \operatorname{Pic}_{2g-2} \rightarrow |\mathcal{O}_{S}(1)|.$$

Moreover, the sheaves of the form ω_C are the only ones that become α -unstable on the other side of this critical value.

MUKAI FLOPS (I)

Theorem (A.-Bertram '05). Choose $\alpha_0 > (g+3)/4$ and $\alpha_1 < (g+3)/4$ (with α_1 close enough to (g+3)/4). There exists a Mukai flop

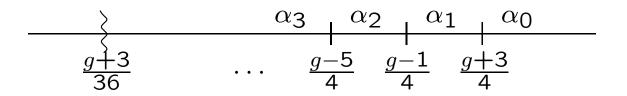


where $\mathbb{P} := \mathbb{P}(H^0(S, \mathcal{O}_S(1)))$. Note that $\mathbb{P}^{\vee} \simeq \mathbb{P}(\operatorname{Ext}_S^2(\mathcal{O}_S(1), \mathcal{O}_S)) \simeq \mathbb{P}(\operatorname{Ext}_A^1(\mathcal{O}_S(1), \mathcal{O}_S[1]))$. Moreover, there exists a universal family in $\mathcal{D}(S \times \mathcal{M}_{\alpha_1})$. It is a sheaf, but it is not flat over \mathcal{M}_{α_1} .

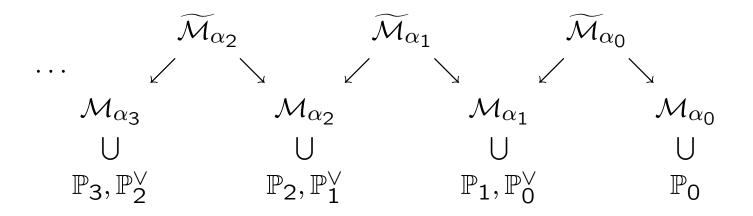
Note that the moduli space \mathcal{M}_{α_1} can be identified with the moduli space $\mathcal{M}(g-1, H, 1-g)$ of stable sheaves of rank g-1, first Chern class H, and second Chern character 1-g, via a Fourier-Mukai transform.

MUKAI FLOPS (II)

Critical values:



Theorem (A.-Bertram '05). There exist Mukai flops



where each of the \mathbb{P}_i 's is a projective bundle over Hilb^{*i*}(S) × Hilb^{*i*}(S) with fibers isomorphic to Ext¹_{\mathcal{A}}($\mathcal{I}_Z(1), \mathcal{I}_W^{\vee}[1]$) over a point (Z, W).