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The moduli spaces of stable bundles on a Riemann surface have been so exhaustively
studied and discussed in recent years that one cannot help wondering what is new to say
about them. However, the present paper will seek, not to present new results, but to
illuminate old ones from a slightly new angle. It closely follows expository lectures given at
the 1995 summer school on Geometry and Physics in Odense, which attempted to explain not
only the main results on the topology of the moduli spaces, but also the simplest and least
technical proofs of those results. To make this feasible in a course of four lectures, the rank
was assumed to be 2, and the construction of the moduli spaces, as well as the Narasimhan-
Seshadri theorem, were taken for granted. This allowed each result to be proved from either
the holomorphic or the symplectic point of view, depending on convenience, which greatly
simplified the presentation. In this context, however, it often turned out that the simplest
proof of a theorem is not the most familiar one. In particular, the notion of a connection
is not necessary and is never mentioned. The reader should therefore think of the present
approach as complementing, in a very small way, the magisterial work of Atiyah and Bott
[4], where connections play a leading role.

The paper begins by introducing the theory of stable bundles from the point of view of
algebraic geometry. The rigors of the construction of the moduli space are omitted, but two
major results are fully proved by algebraic methods: Grothendieck’s classification of vector
bundles on CP1 , and Atiyah and Bott’s theorem giving generators for the cohomology ring
of the moduli space.

However, the reader unfamiliar with algebraic geometry is urged to persevere, since the
remaining sections are mostly symplectic and topological, and use only a few key facts from
the early sections. The link between the algebraic and topological points of view is provided
by the Narasimhan-Seshadri theorem, which allows stable bundles to be identified, in a
certain sense, with representations of the fundamental group of the Riemann surface.

This theorem is stated in general, but afterwards the paper focuses on the topology of
the moduli space in the special case of rank 2 and degree 1. In fact, two moduli spaces
become involved: the original moduli space M g , and the subspace N g consisting of bundles
with fixed determinant, which in some respects is more fundamental. Using the simplest
methods, and proving as much as possible, formulas are derived for the Betti numbers, the
cohomology pairings, and the Hilbert polynomials of these moduli spaces—the latter being
the rank 2, degree 1 case of the celebrated Verlinde formula. The paper concludes by stating
the presentation of the cohomology ring that has recently been derived using methods akin
to those described here.
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The notation in this paper is straightforward and should cause no confusion, with the
possible exception of cohomology H∗ . This is used to denote three different things. First,
if Z is a space and R a ring, H∗(Z,R) denotes cohomology with coefficients in R . If no
ring is named, Q is understood. Second, if G is a group and ρ a module, H∗(G, ρ), or just
H∗(ρ) for short, denotes group cohomology with coefficients in ρ . Finally, if M is a complex
manifold and S a sheaf, H∗(M,S), or H∗(S) for short, denotes holomorphic cohomology
with coefficients in S . Ideally, no confusion should result despite the abuse of notation.

One more notational remark only: recall that the Pauli spin matrices are given by

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

Basic observations

Fix a compact Riemann surface X of genus g . To any complex vector bundle E over X is
associated an integer, the degree degE = c1(E)[X] . This integer actually gives a complete
topological classification of complex vector bundles on X .

Proposition. Topological vector bundles over X are classified up to isomorphism by their
rank and degree.

Proof. Isomorphism classes of rank r bundles correspond to homotopy classes of maps from
X to the classifying space BGL(r,C) = BU(r), which is an infinite complex Grassmannian.
By the cellular approximation theorem [51, p. 404], such maps and their homotopies are
homotopic to maps and homotopies with image in the 3-skeleton of BU(r), which is CP1 ⊂
CPr . But maps X → CP1 are determined up to homotopy by their degree. 2

The topological classification of bundles is thus accomplished with a discrete invari-
ant. However, the classification of holomorphic bundles is not so simple, and continuous
parameters are involved. For example, it was known classically that isomorphism classes
of degree 0 holomorphic line bundles are parametrized by the Jacobian torus JacX =
H1(X,O)/H1(X,Z). The complex structure on the Jacobian is the right one in the sense
that, given a complex manifold T and a holomorphic line bundle over T ×X whose restric-
tion to t × X has degree 0 for t ∈ T , the induced map T → JacX is holomorphic. The
Jacobian is therefore said to be a moduli space of degree 0 line bundles on X , in the holo-
morphic category. (This rough definition is adequate for the purposes of gauge theory, but a
proper algebro-geometric definition is slightly more delicate; see [47, 49].) With this elegant
example to whet the appetite, one is tempted to look for moduli spaces of holomorphic
vector bundles of higher rank.

The jump phenomenon

It is clear from the outset, however, that the general picture will not be so simple. More
precisely, there is in general no Hausdorff moduli space of all holomorphic vector bundles of
a given rank and degree, for the following reason.
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Let L be a line bundle over X of positive degree. By Riemann-Roch, H1(X,L−1) 6= 0,
so let V ⊂ H1(X,L−1) be any 1-dimensional subspace. Certainly V ∗ ⊂ H0(V,O), so the
identity determines a natural class

I ∈ V ∗ ⊗ V ⊂ H0(V,O)⊗H1(X,L−1) ⊂ H1(V ×X, π∗2L−1) = Ext1(V ×X;O, π∗2L),

where π2 is the projection on X . There is hence a natural extension

0 −→ O −→ E −→ π∗2L −→ 0

of line bundles on V ×X such that E|t×X is the extension

0 −→ O −→ Et −→ L −→ 0

determined by t ∈ V . For t, t′ 6= 0, Et ∼= Et′ , but certainly Et 6∼= E0 = O ⊕ L in general.
For example, there is a tautological sequence

0 −→ O(−1) −→ O ⊕O −→ O(1) −→ 0

on CP1 , but O(−1)⊕O(1) 6∼= O ⊕O because there is no holomorphic map O(1)→ O .
So there is a family {Et | t ∈ V } of rank 2 bundles over X which for nonzero t are all

isomorphic, but different from E0 . This is the so-called jump phenomenon; it reveals that,
in any moduli space of bundles, E0 must be in the closure of Et , so the moduli space cannot
be Hausdorff.

Stable bundles

There are at least two ways around the problem. One is to replace the notion of a moduli
space with that of a moduli stack ; this is a far-reaching generalization of an algebraic variety,
in the spirit of schemes or algebraic spaces. The stack of vector bundles can in some sense be
shown to be smooth, and much of the machinery of algebraic geometry can be generalized to
stacks, but the subject is inevitably very technical and much better known to, say, number
theorists than to gauge theorists; see Vistoli [56] or Faltings and Chai [20] for this point of
view. A second approach, historically the older of the two, and more compatible with gauge
theory, is to exclude a few unstable bundles having bad properties.

Definition. A holomorphic bundle E over X is stable (resp. semistable) if for all proper
holomorphic subbundles F ⊂ E ,

degF

rankF
<

degE

rankE
(resp. ≤ ).

For example, the bundle E0 of the previous section is destabilized by L .

Lemma (“Stable implies simple”). If E , E ′ are stable of the same rank and degree,
then H0(Hom(E,E ′)) = C if E ∼= E ′ , 0 otherwise.

Proof. If E 6∼= E ′ and 0 6= f ∈ H0(Hom(E,E ′)), then ker f and im f are proper coherent
subsheaves of E and E ′ , and either deg ker f/ rank ker f or deg im f/ rank im f is greater
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than or equal to degE/ rankE . The minimal subbundles of E and E ′ containing these
subsheaves have the same rank and at least the same degree; hence one of them is destabi-
lizing. Similarly, if g : E → E ′ is an isomorphism, the same argument applied to f − λg
shows that it must always have maximal or zero rank, so f = λg for some λ ∈ C . 2

Analogous to the Jordan-Hölder decomposition in group theory, a semistable bundle has
a composition series or Harder-Narasimhan filtration

E = E0 ⊃ E1 ⊃ E2 ⊃ · · · ⊃ 0

of destabilizing bundles of maximal rank. Like the Jordan-Hölder decomposition, it is unique
up to reordering, that is, GrE =

⊕
iEi/Ei+1 is well-defined up to isomorphism. Two

semistable bundles E,E ′ are said to be S-equivalent if GrE ∼= GrE ′ . Note that if E is
stable, then GrE ∼= E ; hence stable bundles are S-equivalent if and only if E ∼= E ′ .

It turns out that discarding the unstable bundles and identifying the S-equivalent semi-
stable bundles is enough to overcome problems like the jump phenomenon and produce a
good moduli space.

Theorem. For fixed X , r , d, there exists a connected moduli space M g of S-equivalence
classes of rank r , degree d semistable bundles over X , which is a complex projective variety,
having dimension r2(g − 1) + 1 when g ≥ 2.

This theorem, proved by Mumford [40] in the early 1960’s, is the foundation not only of
these lectures but of a vast amount of work on bundles over Riemann surfaces. However,
the proof is technical and relies on several deep results and methods in algebraic geometry,
so we content ourselves with the following.

Outline of proof. Let d >> 0. Then every semistable E of degree d has H1(E) = 0, since
for any nonzero f ∈ H0(Hom(E,KX)), the minimal bundle containing ker f is destabiliz-
ing. Hence by Riemann-Roch, dimH0(E) = χ(E) = d + r(1 − g). By general results of
Grothendieck [25], there exists a projective variety, the so-called Quot scheme, parametrizing
surjections Oχ → E → 0, where E is a coherent sheaf over X of rank r and degree d . The
group GL(χ,C) acts naturally on Oχ and hence on Quot. Since this is a reductive group,
the fundamental theorem of geometric invariant theory [42, 47] implies that there are Zariski
open stable and semistable subsets Quots ⊂ Quotss ⊂ Quot such that Quotss /GL(χ,C) is
a polarized projective variety and Quots /GL(χ,C) ⊂ Quotss /GL(χ,C) is an orbit space.
The Hilbert-Mumford numerical criterion [42, 47] allows the stable and semistable subsets
to be computed explicitly, and they turn out to coincide exactly with the loci where E is a
stable or semistable bundle.

The above account begs the question why the Quot scheme exists, since it can itself be
viewed as a moduli space, parametrizing pairs consisting of a sheaf over X together with
a surjection from Oχ . Very roughly, there exists yet another variety, the Hilbert scheme,
parametrizing curves of genus g and degree d in the Grassmannian Grχ−r(Cχ), and the
Quot scheme is the closure of the locus of curves isomorphic to X . Certainly if the curve
is isomorphic to X , the pull-back of the tautological sequence on the Grassmannian gives a
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surjection Oχ → E of the desired kind. We must leave all further details on Quot schemes
to Grothendieck [25], and on the existence of Hilbert schemes to Mumford [41]. A readable
sketch of the latter topic can be found in Harris [28]. 2

Observations and remarks

(1) If E is stable (resp. semistable), then so is E ⊗ L for any line bundle L . Hence
tensoring by L induces an isomorphism between the moduli spaces in degree d and d +
r degL . Consequently, the moduli space M g depends only on the residue class of d modulo
r .

(2) As suggested in the outline above, the open set in the Quot scheme where E is a
bundle can be identified with the holomorphic maps of degree d from X to a Grassman-
nian. Hence for f in this open set, the tangent space Tf Quot is naturally isomorphic to
H0(Hom(ker f, E)). Now there is a long exact sequence

0 −→ H0(Hom(E,E)) −→ H0(Hom(Oχ, E)) −→ H0(Hom(ker f, E))

−→ H1(Hom(E,E)) −→ H1(Hom(Oχ, E)) −→ · · · .

The last term is Cχ⊗H1(E), which is 0 for d >> 0, the second is Hom(Cχ,Cχ) = gl(χ,C),
and the third is Tf Quot. Moreover it is not hard to check that the map gl(χ,C)→ Tf Quot
is the infinitesimal action. Hence for E stable (where the moduli space is an orbit space)
the tangent space TEM

g is naturally isomorphic to H1(EndE). Since H0(EndE) = C by
the “stable implies simple” lemma, this means that M g is smooth at the stable points, and
the dimension of M g as given in the theorem can be computed by Riemann-Roch. In fact,
the smooth locus of M g is exactly the stable locus except when g = 2, r = 2, and d is
even; see Narasimhan and Ramanan [43].

(3) If r and d are coprime, then for obvious numerical reasons stability and semistability
are equivalent. Hence in this case M g is smooth as well as compact.

(4) For many purposes, it would be convenient if there were a holomorphic bundle U
over M g ×X which was universal in the sense that U |E×X ∼= E for all E . When r and d
are coprime, this is indeed the case; the construction goes roughly as follows. A universal
bundle U certainly exists over Quots×X ; it can be pulled back from the tautological bundle
over the Grassmannian by the evaluation map, for example. If this bundle descended to the
quotient, it would be the desired U , but it does not because the diagonal C∗ ⊂ GL(χ,C)
stabilizes Quots but acts with weight 1 on U . However, if π1 is projection on Quots , and
p ∈ X is a fixed point, then U|Quots×p and the direct image (R1π1)U are vector bundles
over Quots of rank r and d + r(1 − g) respectively, both acted on by C∗ with weight 1.
Their top exterior powers are therefore acted on with weights r and d + r(1 − g), so if r
and d are coprime, there is a line bundle L over Quots such that π∗1L⊗U is acted on with
weight 0. But Kempf’s descent lemma [17] asserts that for a holomorphic bundle to descend
to the quotient by a group action, it suffices for all stabilizers to act trivially.

On the other hand, when (r, d) 6= 1, there is no universal bundle on the stable locus, or
even a Zariski open subset; see Ramanan [48].
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Finally, note that even when it exists, the universal bundle U is not unique, since for
any line bundle L over M g , π∗1L⊗ U also has the universal property.

(5) There is a natural holomorphic map det : M g → JacdX , where JacdX is the
torus parametrizing degree d line bundles, given by detE = ΛrE . For all Λ,Λ′ ∈ JacdX ,
det−1 Λ ∼= det−1 Λ′ by the argument of remark 1. The space N g = det−1(Λ) is in some ways
more fundamental than M g : for example, it will later become clear that, in some sense, all
the interesting cohomology of M g is contained in N g .

(6) The reader might enjoy verifying that all the above remarks apply in particular to
JacdX . For example, the universal bundle described in remark 4 is just the Poincaré line
bundle on JacdX ×X .

Bundles on the Riemann sphere

One might wonder why the dimension calculation in the theorem above includes the hy-
pothesis that g ≥ 2. This is because, when g is 0 or 1, there may be no stable bundles at
all. The case g = 0, for example, is covered by the following theorem.

Theorem (Grothendieck). Let E be a holomorphic vector bundle over CP1 . Then there
exist integers ni , unique up to reordering, such that E ∼=

⊕
iO(ni).

Consequently, there are no stable bundles on CP1 , and the moduli space of semistable
bundles is a point if r divides d , and empty otherwise. Although the proof of this theorem
is something of a digression, we give it anyway, if only to show that one of Grothendieck’s
theorems has an easy proof.

Proof. The uniqueness of ni follows easily from the vanishing of H0(O(n)) for n < 0.
To prove existence, note first that by Riemann-Roch, H0(E(−n)) 6= 0 for n sufficiently

small, so there is a nonzero map O(n) → E . Let D be the vanishing divisor of this map;
then replacing n by n + |D| gives a nowhere zero map O(n) → E . By induction on the
rank, assume the quotient splits, so there is an exact sequence

0 −→ O(n) −→ E −→
⊕
i

O(ni) −→ 0

for some ni . If there is a nowhere zero map O(k)→ E , then either O(k) = O(n) or there
is a nonzero map O(k) → O(ni) for some ni . Therefore k is bounded above, so assume
that n is maximal among such k .

We claim n− ni > −2 for all i . If not, then H0(O(ni− n− 1)) 6= 0 for some i , so there
is a nonzero map O(n+ 1)→ O(ni)→

⊕
iO(ni). Tensoring the exact sequence above and

taking the long exact sequence yields

· · · −→ H0(Hom(O(n+ 1), E)) −→ H0(Hom(O(n+ 1),
⊕
i

O(ni))) −→ H1(O(−1)) −→ · · ·

The last term is zero, so our nonzero map comes from a nonzero map O(n+1)→ E . Let D
be the vanishing divisor of this map; then there is a nowhere zero map O(n+ 1 + |D|)→ E ,
contradicting the maximality of n . This proves the claim.
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The extension class of the exact sequence is in H1(
⊕
iO(n− ni)), but the claim implies

this is zero. Hence the exact sequence splits, which completes the proof of the theorem. 2

The classification of vector bundles on an elliptic curve is a little more complicated, but
simple enough to characterize the moduli space as a symmetric product of the curve. It was
carried out by Atiyah [3]; for a modern account, see Tu [54].

Generators of the cohomology ring of M g

Even at this early stage, we can already prove a profound theorem on the cohomology ring
of M g . Suppose that (r, d) = 1, so that M g is smooth and compact, and there exists a
universal bundle U over M g ×X . Let {ai, bi}gi=1 be the standard collection of loops on X
forming a basis for H1(X,Z), so that the dual basis in H1(X,Z) satisfies aiaj = 0, bibj = 0,
and aibj = δijx , where x is the fundamental cohomology class of X . Decompose the Chern
classes ck(U) ∈ H2k(M g ×X,Z) into their Künneth components : that is, write

ck(U) = αkx+
g∑
i=1

(ψi,ka
i + ψi+g,kb

i) + βk

where αk ∈ H2k−2(M g,Z), ψi,k ∈ H2k−1(M g,Z), and βk ∈ H2k(M g,Z).

Theorem (Atiyah and Bott). The ring H∗(M g,Q) is generated over Q by these
classes.

Atiyah and Bott’s original proof involved equivariant cohomology and the gauge group;
we offer a deliciously simple alternative, due to Beauville [7], following Ellingsrud and
Strømme [19].

Proof. For any compact manifold M , the diagonal ∆ ⊂M×M has Poincaré dual
∑
i π
∗
1e
i⊗

π∗2ei , where {ei} is an additive basis for H∗(M,Q) and {ei} is the dual basis with respect to
the intersection pairing 〈a, b〉 = (ab)[M ] . For any j ,

∑
i π
∗
1e
i⊗π∗2(eie

j) = π∗1e
j⊗π∗2m , where

m is the fundamental cohomology class of M . Hence if
∑
i π
∗
1e
i ⊗ π∗2ei can be expressed

in terms of pull-backs of Künneth components from both factors, then π∗1e
j ⊗ π∗2m can be

expressed in terms of pull-backs of Künneth components from the first factor, so ej can
be expressed in terms of Künneth components on M , as desired. Therefore it suffices to
express the Poincaré dual of ∆ ⊂M g ×M g in terms of the Künneth components.

Choose an effective divisor D on X with no multiple points such that for all stable E ,
F represented in M g , H1(X,Hom(E,F )⊗O(D)) = 0. Let

M g ×M g ×X
π1↙ ↓π2 ↘p

M g ×X M g ×X M g ×M g

be the projections, and let U1 = π∗1U and U2 = π∗2U be the pull-backs of the universal
bundle. Then tensoring

0 −→ O −→ O(D) −→ OD −→ 0
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with Hom(U1, U2) and pushing down by p yields

0 −→ p∗(Hom(U1, U2)) −→ p∗(Hom(U1, U2)⊗O(D)) −→ p∗(Hom(U1, U2)⊗OD) −→ · · ·

The hypothesis on D implies that the last two terms above are vector bundles; call them E
and F , respectively. The induced map on the fibers at (E,F ) is the right-hand map in the
exact sequence

0 −→ H0(Hom(E,F )) −→ H0(Hom(E,F )⊗O(D)) −→ H0(Hom(E,F )⊗OD).

Because stable bundles are simple, H0(Hom(E,F )) is nonzero if and only if (E,F ) ∈ ∆.
So ∆ is the degeneracy locus of the map E → F , at least up to multiplicity. (In fact, the
multiplicity is 1, but since everything is over Q , this is not needed.) Notice that by Riemann-
Roch, the expected codimension rankF−rank E+1 of the degeneracy locus is r2(g−1)+1,
which is the actual codimension. This is precisely the setting in which Porteous’s formula
[2, p. 86] allows the Poincaré dual of the degeneracy locus to be expressed in terms of the
Chern classes of E and F . So it remains to express the latter in terms of the Künneth
components.

But
F =

⊕
p∈D

Hom(U1, U2)|Mg×Mg×p,

so c(F) can actually be expressed in terms of the βk alone. On the other hand, by the
Grothendieck-Riemann-Roch theorem [29, Appendix A],

ch E = p∗(ch Hom(U1, U2)⊗O(D) tdX)

= p∗(chU∗1 chU2(1 + (|D|+ 1− g)x)),

which implies that c(E) can also be expressed in terms of the Künneth components. 2

The Narasimhan-Seshadri theorem

At this point we leave the realm of algebraic geometry and turn to another, more topological
view of stable bundles.

Recall that, in terms of the loops {ai, bi} introduced in the last section, the fundamental
group of X is given by

π1(X) = 〈ai, bi〉gi=1/(
∏
i

[ai, bi]).

This is because X may be viewed topologically as a quotient of a 4g -gon by an equivalence
relation on the boundary. The generators ai and bi are the images of the sides in the
quotient, and the relation involving commutators reflects the contractibility of the boundary
regarded as a loop on the 4g -gon.

Now let ρ : π1(X) → U(r) be any representation, and consider the diagonal action
induced by ρ of π1(X) on X̃ × Cr , where X̃ is the universal cover of X . The quotient
Eρ = (X̃ × Cr)/π1(X) is naturally a rank r vector bundle over X . Moreover, its tran-
sition functions are locally constant, so it carries a natural holomorphic structure. Notice
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that, since the induced representation det ρ : π1(X) → U(1) is homotopic to the trivial
representation, the line bundle ΛrEρ = Edet ρ is topologically trivial, so degEρ = 0.

We are now in the position to state the following deep theorem.

Theorem (Narasimhan and Seshadri). (1) For any ρ, Eρ ∼= GrE for some semistable
E ; (2) ρ is irreducible if and only if E is stable; (3) for any semistable E of degree 0, there
exists ρ, unique up to conjugation, such that Eρ ∼= GrE .

There are two proofs of the theorem; the original proof of Narasimhan and Seshadri [44]
used algebraic methods to show that the bundles coming from representations are open and
closed in the stable bundles, while a more recent proof, due to Donaldson [14], constructs
the representation as an absolute minimum of the Yang-Mills functional on connections on
the bundle.

In fact, the theorem as stated by Narasimhan and Seshadri applies to bundles of any
degree, not just 0. The statement above can be generalized to arbitrary degree in the
following way.

Let D ⊂ X be an embedded closed unit disc, let 1
2
D be the disc of radius 1

2
inside it, and

let Y = X\1
2
D . Removing a disc from X destroys the contractibility of the boundary of

the 4g -gon, so the fundamental group π1(Y ) is just the free group 〈ai, bi〉 on 2g generators.
Let ξ = e2πi/r , and let ρ : π1(Y ) → U(r) be a representation such that ρ(∂D) = ξd for
some d ∈ Z . As before, the quotient (Ỹ × Cr)/π1(Y ) is a holomorphic vector bundle over
Y . Give it the obvious trivialization on a chart wrapping 11

2
times around the annulus

Y ∩ D ; then the transition function on the self-overlap of this chart is ξd . Then glue in a
trivialization on D having transition function zd/r to the self-overlapping chart. This yields
a well-defined holomorphic vector bundle Eρ over all of X , with degEρ = d . The obvious
analogue of the theorem stated above then applies to this situation.

So let µg : U(r)2g → U(r) be given by (Ai, Bi) 7→
∏
i[Ai, Bi] ; then the Narasimhan-

Seshadri theorem induces a bijection M g → µ−1g (ξd)/U(r), where U(r) acts on µ−1g (ξd)
by conjugation on all factors. We will take for granted not only the Narasimhan-Seshadri
theorem, but a mild strengthening of it which is widely used but somewhat cumbersome to
prove.

Proposition. The bijection M g → µ−1g (ξd)/U(r) is a homeomorphism, and restricts to a
diffeomorphism on the stable locus.

Thus even though M g is highly dependent on the complex structure of X a priori, it
can be identified with a space independent of the complex structure.

The results of this section apply equally to the fixed-determinant space N g introduced
in remark 5, if U(r) is replaced with SU(r).

Topological construction of End U

When the rank and degree are coprime, the construction of the section above can be
performed globally on M g . By this we mean the following. The group π1(Y ) acts on
µ−1g (ξd) × Ỹ × Cr , the action on Cr being determined by the coordinate in µ−1g (ξd). The
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quotient is a vector bundle over µ−1g (ξd) × Y , to which the conjugation action of U(r) on
µ−1g (ξd) lifts naturally. Since the gluing construction of the last section was canonical given
the disc D , one may glue this bundle to a trivial bundle over µ−1g (ξd)×D to yield a bundle
over µ−1g (ξd) × X , to which the U(r)-action again lifts naturally. The diagonal subgroup
U(1) ⊂ U(r) acts nontrivially on this bundle, but trivially on its endomorphism bundle. The
latter bundle is therefore the pull-back of a bundle EndU over M g ×X provided that the
stabilizer of every point is the diagonal U(1), which is the case precisely when (r, d) = 1.

The bundle EndU is in some sense universal: after all, EndU |ρ×X naturally carries the
holomorphic structure of Eρ , which varies continuously in ρ , so EndU is a family of stable
holomorphic bundles. Because stable implies simple, if E and F are isomorphic stable
bundles, then EndE ∼= EndF canonically. Hence EndU may be canonically identified
with the bundle of the same name constructed earlier by algebro-geometric methods.

This new construction, however, used only representations of π1(Y ). Hence any orienta-
tion-preserving homeomorphism f : X → X fixing D induces a map f̂ : M g → M g which
lifts to a natural isomorphism (f̂ × f)∗ EndU ∼= EndU . Moreover, f̂ depends only on
the action of f on π1(Y ), so any homeomorphism isotopic to the identity acts trivially.
Thus M g and EndU are acted upon by the mapping class group Γg , that is, the group of
orientation-preserving homeomorphisms of X modulo those isotopic to the identity.

All the results of this section hold for N g as well, if U(r) is replaced by SU(r).

The symplectic structure

We have seen that the moduli space M g and the universal endomorphism bundle EndU
can be constructed without using the complex structure on X . Next we will see that the
same is true of the Kähler form on M g .

Since M g can be constructed as a smooth manifold by representation-theoretic meth-
ods, it is natural to look for a representation-theoretic analogue of the deformation theory
described in remark 2 above. This does indeed exist; it identifies the tangent space TρM

g

with the group cohomology H1(π1(X), ad ρ). This makes sense, because ad ρ descends to a
representation of π1(X). Explicitly, it is just the first cohomology of the complex

u(r) −→ u(r)2g −→ u(r)

where the former map is the derivative of conjugation at (Ai, Bi), and the latter is the
derivative of µg . So from the representation-theoretic point of view, the smoothness of M g

when (r, d) = 1 follows from the surjectivity of the second map, or equivalently, the fact
that ξd is a regular value of µg ; this is proved, for example, by Igusa [30].

Since X is an Eilenberg-Mac Lane space, H2(π1(X),R) = H2(X,R) = R . Combin-
ing the cup product and the symmetric form 〈A,B〉 = 1

4π2 trAB gives a non-degenerate
antisymmetric map

H1(ad ρ)⊗H1(ad ρ)
∪−→ H2(ad ρ⊗ ad ρ)

〈 , 〉−→ H2(R) = R,

which determines a non-degenerate 2-form ω on M g .
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Theorem (Goldman). The form ω is closed, and coincides with the Kähler form arising
from any complex structure on X .

The theorem shows that the symplectic structure on M g , like the universal bundle, is
essentially independent of the complex structure. It is surprisingly difficult: Goldman’s
original proof [22] used infinite-dimensional quotients in the style of Atiyah and Bott, and
it was only quite recently that a purely finite-dimensional proof was provided by Karshon
[34].

All the results of this section hold for N g as well, if u(r) is replaced by su(r).

The Betti numbers of N g

From now on, we will assume that r = 2 and d = 1. This is the simplest interesting case
where r and d are coprime. Considerably more is known here than in general, and the
proofs are simpler.

Our goal will be to gather as much topological information as possible on M g and N g ,
focusing on the latter space. We will start off by computing its Betti numbers, in the form
of the Poincaré polynomial Pt(N

g) =
∑
i t
i dimH i(N g,Q).

Let f : N g → [−1, 1] be given by (Ai, Bi) 7→ 1
2

trAg , which is well-defined since the
trace is conjugation-invariant. Then U(1) acts on f−1(−1, 1) as follows. If Ag 6= ±I , then
there is a unique homomorphism φ : U(1) → SU(2) such that Ag ∈ φ({Im z > 0}). Let
λ · (Ai, Bi) = (A1, B1, . . . , Ag, Bg · φ(λ)).

Proposition (Goldman). This action preserves the symplectic form ω , and it has
moment map i

π
arccos f .

Proof. See Goldman [23] and Jeffrey and Weitsman [32]. 2

For definitions and properties of moment maps, see the paper by Jeffrey in the present
volume. The key point is that, for a global symplectic U(1)-action on a compact manifold,
the moment map (times −i) is a Bott-Morse function which is perfect, meaning that the
Morse inequalities are equalities [4, 36]. In the present case, however, the U(1)-action does
not extend over f−1(±1), and 1

π
arccos f is not even differentiable there. Nevertheless, the

following is true.

Theorem. The map f is a perfect Bott-Morse function on N g .

It was first noticed that f had to be perfect by Jeffrey and Weitsman [33], simply
by comparing the left-hand side of its Morse inequalities with the known formula for the
Poincaré polynomial. In the next section we shall outline a direct proof, to be given in full
in [53]. Before doing so, however, let us identify the critical submanifolds and compute the
Poincaré polynomial using the theorem.

First, let S+ = f−1(1). As the absolute maximum of f , S+ is of course a critical
submanifold. It is exactly the locus where Ag = I ; hence Bg may be arbitrary, and the
product of the first g − 1 commutators must be −I , so S+ = (µ−1g−1(−I) × SU(2))/SU(2),
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which is an SU(2)-bundle over N g−1 . This is an adjoint, not a principal bundle, so it may
have a section without being trivial. Indeed, Bg = I determines such a section; hence
the Euler class vanishes and so by the Gysin sequence Pt(S+) = (1 + t3)Pt(N

g−1). Since
dimS+ = 6g − 9 and dimN g = 6g − 6, S+ has index 3.

Exactly the same is true of S− = f−1(−1), except that it is the absolute minimum of f ,
the locus where Ag = −I , and hence has index 0.

Within f−1(−1, 1), on the other hand, the critical points of f are the critical points of
1
π

arccos f , which is the moment map of the U(1)-action. They are therefore exactly the

fixed points of that action, and hence are represented by 2g -tuples (Ai, Bi) ∈ SU(2)2g that
are conjugate to (A1, B1, . . . , Ag, Bg · φ(λ)) for all λ ∈ U(1). It is straightforward to check
that these are all conjugate to 2g -tuples such that Ag = iσ3 , Bg = iσ2 (where σj are the
Pauli spin matrices: see introduction) and the remaining Ai and Bi are diagonal. Hence
the only other critical value is 1

2
tr iσ3 , which is 0, and S0 is a 2g − 2-torus. Because there

is an involution Ag 7→ −Ag on N g changing the sign of f , the upward and downward flows
from S0 must have the same dimension, so S0 has index 2g − 2.

The main consequence of the theorem is then the following.

Corollary. The Poincaré polynomial of N g is

Pt(N
g) =

(1 + t3)2g − t2g(1 + t)2g

(1− t2)(1− t4)
.

Proof. Since N1 is a point, Pt(N
1) = 1 as desired. It follows from the theorem and the

discussion above that

Pt(N
g) = (1 + t3)2Pt(N

g−1) + t2g−2(1 + t)2g−2.

This gives a recursion for Pt(N
g), which is satisfied by the formula. 2

This is the Harder-Narasimhan formula, first computed by other means by Newstead
[45], Harder and Narasimhan [27] and Atiyah and Bott [4]. It implies in particular that the
Euler characteristic of N g vanishes, since it equals P−1(N

g).

Proof of the above theorem

To begin the proof of the theorem, we give two lemmas describing the structure of N g near
S± . The results are stronger than we need here, but they will also be used later in computing
the characteristic numbers of N g .

Lemma. The map µ−1g (−I)→ SU(2)×SU(2) given by (Ai, Bi) 7→ (Ag, Bg) is a submersion
at the locus where Ag = ±I .

Proof. This means that the infinitesimal map ker dµg → su(2)×su(2) induced by projection
of su(2)2g on the last two factors is surjective when Ag = ±I . A computation shows that
in this case,

dµg(ai, bi) = dµg−1(a1, . . . , bg−1) + ag −BgagB
−1
g .
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But as mentioned before, −I is a regular value of µg−1 . Hence dµg−1 is surjective and so
ag and bg can take any values for (ai, bi) ∈ ker dµg . 2

Lemma (“Local model”). There is an SU(2)-equivariant diffeomorphism between a
neighborhood of S± ⊂ µ−1g (−I) and a neighborhood of µ−1g−1(−I)×{I}×SU(2) ⊂ µ−1g−1(−I)×
SU(2) × SU(2), identifying the map of the previous lemma with the projection on the last
two factors.

Proof. This follows immediately from the previous lemma using the equivariant version of
the tubular neighborhood theorem for submanifolds [5, Thm. 2.2.1]. 2

At last we proceed to sketch a proof of the theorem.

Outline of proof. In Witten’s approach to Morse theory [10, 57], one defines a chain complex
with a basis in one-to-one correspondence with the critical points of a Morse function on a
manifold M , and a d operator given by counting the number of flow lines between them. The
cohomology of this complex is then isomorphic to H∗(M,Q). Suppose, however, that one has
not a Morse function, but only a Bott-Morse function. This means that the critical points,
instead of being isolated, form a union of submanifolds, and the Hessian is non-degenerate
on the normal bundles. In this case, the chain complex gets replaced by a spectral sequence
whose Eij

−∞ term is Hj(Ci,Q), where Ci is the critical submanifold of index i ; see for
example Fukaya [21]. The spectral sequence starts at −∞ for ease of indexing, but only
finitely many differentials are nonzero. This spectral sequence then abuts to H∗(M,Q),
meaning that Hk(M,Q) ∼=

⊕
i+j=k E

ij
∞ .

The differentials in the spectral sequence are given roughly as follows. Let Cjk be the
space of downward flow lines from Cj to Ck , and let p : Cjk → Cj and q : Cjk → Ck be the
flows at time ±∞ . Then dj−k = p∗q

∗ . This is only a rough definition for two reasons. First,
Cjk is not generally compact, so as usual, a judicious compactification must be chosen to
get the right answer. Second, before acting with dk , one takes cohomology with respect to
dj for all j < k , so it must be checked that dk descends to the cohomology.

A Bott-Morse function is perfect if and only if all differentials vanish. The moment map
of a circle action, for example, is perfect because U(1) acts freely on Cjk , and p and q factor
through the quotient map r :

Cjk

Cj
↗p ↑
→r Cjk/U(1)
↘q ↓
Ck

The differential dj−k then vanishes because in a U(1)-bundle, r∗r
∗ = 0.

In the present case, C0 = S− , C3 = S+ , and C2g−2 = S0 . The only differentials which
can possibly be nonzero are those corresponding to downward flows, namely d5−2g , d3 , and
d2g−2 .

Consider first d2g−2 . Here the maps are p : C2g−2,0 → S0 and q : C2g−2,0 → S− . But
the argument from the moment map case no longer works, since the fibers of the principal
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U(1)-bundle are not collapsed by q . Rather, they go to the fibers of the Hopf fibration on the
SU(2) fibers of the bundle π : S− → N g−1 . This follows easily from the “local model” lemma.
The composition πq , however, does therefore collapse the U(1) fibers, so by the moment
map argument p∗q

∗π∗ = 0. By the Gysin sequence, H∗(S−) = π∗H∗(N g−1)⊕ σπ∗H∗(N g−1)
for a certain class σ ∈ H3(S−), and kerπ∗ = π∗H∗(N g−1). So it suffices to show that p∗q

∗

annihilates σπ∗H∗(N g−1).
There is a symplectomorphism of N g induced by a half-twist of the g th handle of the

Riemann surface X . Explicitly, it is given by Ag 7→ AgBgA
−1
g B−1g A−1g and Bg 7→ AgB

−1
g A−1g .

This fixes f and S0 , acts trivially on π∗H∗(N g−1), and is compatible with p∗q
∗ , but it

changes the sign of σ . Hence for reasons of parity σπ∗H∗(N g−1) must be annihilated by
p∗q
∗ , as desired.
Next consider d5−2g . Now the maps are p : C3,2g−2 → S+ and q : C3,2g−2 → S0 . Because

of the symmetry Ag 7→ −Ag , the space of flows is isomorphic to that considered before,
but the pull-backs and push-forwards go the opposite way. The moment map argument
now shows that π∗p∗q

∗ = 0. It therefore suffices to show that p∗q
∗ has no component

in σπ∗H∗(N g−1). This again follows from a parity argument, once one notices that the
half-twist symplectomorphism reverses the orientation of S+ , but not the space of flows.

Finally, consider d3 . Now the maps are p : C3,0 → S+ and q : C3,0 → S− . Since H∗(S±)
both split in two, p∗q

∗ has four components. Three of these vanish by the moment map and
parity arguments above; all that remains is the component σπ∗H∗(N g−1)→ σπ∗H∗(N g−1).

It is not too hard to show that σ ∈ H3(S+) and σ ∈ H3(S−) are both restrictions
of the same global class σ ∈ H3(N g). In fact, σ is the restriction to N g of the class
ψ2g,2 ∈ H3(M g). (It is what will be called ψ2g later in the paper.) Since p and q are
homotopy equivalent as maps C3,0 → N g , this implies that p∗σ = q∗σ . Then by the
push-pull formula, for any η ∈ H∗(N g−1),

p∗q
∗(σπ∗η) = p∗(q

∗σ)(q∗π∗η) = p∗(p
∗σ)(q∗π∗η) = σ(p∗q

∗π∗η);

but p∗q
∗π∗η was already shown to vanish. 2

Remarks on the proof

In fact, additional information about the cohomology can be obtained by the same argu-
ment. For example, consider the action of (Z/2)2g on N g given by (δi, εi) · (Ai, Bi) =
((−1)δiAi, (−1)εiBi).

Lemma. The induced action of (Z/2)2g on H∗(N g,Q) is trivial.

Proof. The action of (Z/2)2g−2 on the first 2g − 2 factors preserves the U(1)-action, the
map f and so on. The whole Morse theory argument of the last section can therefore be
(Z/2)2g−2 -graded. But since (Z/2)2g−2 acts trivially on σ and on H∗(S0), by induction the
whole grading is trivial. Hence (Z/2)2g−2 acts trivially on H∗(N g).

The last two factors are really no harder. After all, the choice of an ordering on the
handles of X was arbitrary. For example, the whole Morse theory argument still works if f
is replaced by 1

2
trA1 , and so on. 2
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The next result explains why, for cohomological purposes, it is reasonable to concentrate
on the fixed-determinant space N g rather than M g .

Theorem. As rings, H∗(M g,Q) ∼= H∗(T 2g,Q)⊗H∗(N g,Q).

Proof. The torus T 2g is essentially the Jacobian: it is the moduli space M g with r = 1, or
equivalently, H1(X,U(1)). There is a natural map κ : T 2g ×N g →M g given by the tensor
product. Indeed, M g = (T 2g ×N g)/(Z/2)2g , where (Z/2)2g acts diagonally on T 2g and N g

as above. The induced action on H∗(T 2g,Q) is certainly trivial, and the induced action on
H∗(N g,Q) is trivial by the lemma above. But the rational cohomology of a quotient by a
finite group is the invariant part of the rational cohomology (see Grothendieck [24]), so this
completes the proof. 2

This result actually holds for arbitrary coprime rank and degree; see Harder and Nara-
simhan [27] or Atiyah and Bott [4].

Our methods can also be used to prove the following useful fact.

Proposition. The space N g is simply connected.

Proof. Since N1 is a point, certainly π1(N
1) = 1. So assume by induction that g > 1 and

π1(N
g−1) = 1. The absolute maximum S+ of f then has codimension 3, and the locus of

points flowing down to S0 has codimension 2g−2 ≥ 2, so any loop in N g may be perturbed
to miss these loci. The downward Morse flow of f then takes the loop to S− , which, as an
SU(2)-bundle over N g−1 , is simply connected by the exact homotopy sequence. 2

Finally, let us double-check the example g = 2. In this case, the Harder-Narasimhan
formula says Pt(N

2) = 1 + t2 + 4t3 + t4 + t6 . On the other hand, N2 can be described
explicitly via algebraic geometry. Any Riemann surface of genus 2 can be expressed as a
double cover of the Riemann sphere, branched at 6 points. Rotate the sphere so that all 6
points are 6=∞ , and call them x1, . . . , x6 ∈ C .

Theorem (Newstead). In this setting, N2 ∼= Q1 ∩Q2 , where

Q1 = {[zi] ∈ CP5 |
∑
i

z2i = 0}, Q2 = {[zi] ∈ CP5 |
∑
i

xiz
2
i = 0}.

Proof. See [46]. 2

Applying the Lefschetz hyperplane theorem [26, p. 156] first to Q1 , then to Q1 ∩Q2 im-
plies that Pt(N

2) = 1+t2+mt3+t4+t6 for some m . Then a calculation using the adjunction
formula [26] implies that c3(N

2)[N2] = 0. Since c3(N
2)[N2] is the Euler characteristic of

N2 , this implies that m = 4, as desired.
Incidentally, a generalization of this theorem, due to Desale and Ramanan [12], gives an

explicit description of N g for a Riemann surface of arbitrary genus which is hyperelliptic,
that is, a double branched cover of the Riemann sphere.
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Generators of the cohomology ring of N g

As we have already done for H∗(M g,Q), let us now look for generators of H∗(N g) in terms
of Künneth components. Let U be a universal bundle over N g ×X , and let 2α ∈ H2(N g),
4ψi ∈ H3(N g), and −β ∈ H4(N g) be the Künneth components of c2(EndU). (The scalars
are inserted to agree with the conventions of Newstead [46].) Using EndU is preferable to
U itself, because it is uniquely defined, so these classes are canonical. The following is then
an analogue—indeed, historically a predecessor—of the theorem of Atiyah and Bott stated
earlier.

Theorem (Newstead). The ring H∗(N g,Q) is generated by α, β , and the ψi .

Proof. Since H∗(N g) is a quotient ring of H∗(M g) as seen above, it is generated as a ring by
the Künneth components of c1(U) and c2(U). The Harder-Narasimhan formula implies that
Pt(N

g) = 1 + t2 +O(t3), that is, H1(N g) = 0 and H2(N g) is 1-dimensional. Since H1 = 0,
the Chern classes may be written as c1(U) = x+β1 and c2(U) = α2x+

∑g
i=1 ψia

i+ψi+gb
i+β2 ;

it is then easy to check α = 2α2− β1 and β = β2
1 − 4β2 . Since H2 is 1-dimensional, β1 and

α2 are dependent; hence to prove the theorem, it suffices to show α 6= 0 for g ≥ 2, which is
accomplished by the lemma below. 2

Lemma. For g ≥ 2, there is a holomorphic map f : CP1 → N g such that f ∗α is the
fundamental class of CP1 .

Proof. Recall that N g = det−1(Λ) for some line bundle Λ of degree 1. By Riemann-Roch,
dimH1(X,Λ−1) = g ; let V ⊂ H1(X,Λ−1) be a 2-dimensional subspace. As in the example
of the jump phenomenon, the identity determines a natural class

I ∈ V ∗ ⊗ V ⊂ H0(PV,O(1))⊗H1(X,Λ−1)

⊂ H1(PV ×X, π∗1O(1)⊗ π∗2Λ−1) = Ext1(PV ×X; π∗1O(1), π∗2Λ),

which gives an extension

0 −→ π∗1O(1) −→ F −→ π∗2Λ −→ 0.

Regard this as a holomorphic family of extensions over X whose extension class at [t] ∈ PV
is t . All of these extensions are stable bundles of determinant Λ. After all, any proper
subbundle except O must have a nonzero map to Λ, which cannot be an isomorphism as
that would split the extension; hence its degree must be ≤ 0.

So there is a holomorphic map f : PV → N g such that f ∗ EndU ∼= EndF . Hence f ∗α
is half the Künneth component of EndF in H2(PV,Q). From the extension above, the
Chern roots of F are the fundamental classes v and x of PV and X respectively; hence
c2(EndF ) = −(v + x)2 and the result follows. 2

Notice that because α = 2α2 − β1 as stated in the proof, α is actually an integral class.
And because α restricts to the fundamental class of PV , it is indivisible in H2(N g,Z). But
since N g is simply connected, by [39, A.1] H2(N g,Z) is torsion-free. Since its rank is 1, it
follows that α generates H2(N g,Z).
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There are alternative interpretations of both α and β . For example, β can be defined as
−c2(E), where E is the rank 4 vector bundle over N g defined by (µ−1g (−I)×EndC2)/SU(2).
Indeed, the topological construction of EndU shows that E is isomorphic to EndU |Ng×p
for any p ∈ X . Likewise, α can be defined as twice the cohomology class of the symplectic
form ω . Certainly by the previous theorem, α is some nonzero multiple of [ω] . We leave it
as an exercise to show that the scalar is 2.

To conclude the section, here is a consequence of the above theorem which turns out to
be useful in evaluating Casson’s invariant [1, p. 130].

Since the group of automorphisms of the ring H∗(X,Z) is the symplectic group Sp(2g,Z),
the action of the mapping class group Γg on H∗(X,Z) induces a homomorphism Γg →
Sp(2g,Z). Its kernel is known as the Torelli group. Now recall that Γg acts naturally on
N g , and hence on H∗(N g,Q).

Theorem. The Torelli group acts trivially on H∗(N g,Q).

Proof. Let f : X → X be a homeomorphism representing an element of the Torelli group,
and let f̂ : N g → N g be the induced map. By the topological construction of EndU ,
(f̂ × f)∗ EndU ∼= EndU , so the Chern classes of EndU are fixed by (f̂ × f)∗ . Hence α , β ,
and the ψi are fixed by f , and the result follows by Newstead’s theorem. 2

Consequently, the Γg -action on H∗(N g,Q) descends to an Sp(2g,Z)-action.

Characteristic numbers

Continuing our study of the ring structure of H∗(N g,Q), we will now seek to evaluate the
characteristic numbers or cohomology pairings. These are the numbers defined by expressions
of the form (αmβn

∏
i ψ

pi
i )[N g] where 2m+4n+3

∑
i pi = 6g−6. They are interesting for two

reasons. First, they are the analogues of many gauge-theory invariants defined as cohomology
pairings on moduli spaces, such as the Donaldson, Gromov, and Seiberg-Witten invariants.
Second, since Poincaré duality means that a cohomology class ζ ∈ Hk(N g) is 0 if and only
if (ζη)[N g] = 0 for all η ∈ H6g−6−k(N g), the characteristic numbers in principle determine
the entire structure of the ring. Indeed, a complete set of relations has been worked out in
this fashion by Zagier [59].

Our strategy will be to evaluate first those pairings for which pi = 0, that is, those of the
form (αmβn)[N g] . We will follow an approach, essentially due to Donaldson [14], that fits
in well with our other arguments. This will occupy the next three sections. The pairings for
pi 6= 0 will be derived relatively easily from these in the penultimate section of the paper.

For τ ∈ (0, 1), let S2
τ be the 2-sphere of radius 1

2
− 1

π
arccos τ in R3 , centered at

(0, 0, 1
2
), with the standard symplectic form. The circle group U(1) acts on S2

τ by rota-
tion, with moment map given by the third coordinate. Let N g

τ be the symplectic reduction
of f−1(−1, 1)×S2

τ by U(1). This is a compact symplectic manifold with a natural symplec-
tic U(1)-action; as a topological space, it is f−1(−τ, τ) with the U(1)-orbits in f−1(±τ)
collapsed. It is a simple example of a symplectic cut [38].
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Let ωτ be the symplectic form on N g
τ , and let ατ denote twice the cohomology class

of ωτ . The map f descends to a map fτ : N g
τ → R with image [−τ, τ ] , and the moment

map for the U(1)-action is 1
π

arccos fτ . Also, the rank 4 bundle E of the previous section
is acted on naturally by U(1) over f−1(−1, 1) and therefore descends to a bundle Eτ over
N g
τ . Let βτ = −c2(Eτ ).

Proposition. For 2m+ 4n = 6g − 6,

lim
τ→1

αmτ β
n
τ [N g

τ ] = αmβn[N g].

Proof. The limit in the upward Morse flow on the original space N g induces a homotopy
equivalence f−1(1

2
, 1]→ S+ . Hence the restriction E|f−1( 1

2
,1] is pulled back from E|S+ . But

E|S+ = (µ−1g−1(−I) × SU(2) × EndC2)/SU(2), so it is pulled back from N g−1 . Similarly,
E|f−1[−1,− 1

2
) is pulled back from N g−1 via the downward Morse flow. It follows from Chern-

Weil theory [39, Appendix C] that β = −c2(E) is represented by a 4-form φ which on
f−1[−1,−1

2
) and f−1(1

2
, 1] is pulled back from N g−1 . As mentioned once before, the local

model lemma implies that the Morse flow takes U(1)-orbits to fibers of the Hopf fibration
in the SU(2)-fibers of S± over N g−1 . Hence the compositions f−1(1

2
, 1]→ S+ → N g−1 and

f−1[−1,−1
2
)→ S− → N g−1 collapse the U(1)-orbits in their domains. The form φ therefore

vanishes along those orbits, so for τ > 1
2
, it descends after averaging to a closed 4-form φτ

representing βτ on the symplectic cut N g
τ . On the other hand, ω is already U(1)-invariant,

so
αmτ β

n
τ [N g

τ ] =
∫
Ng
τ

ωmτ φ
n
τ =

∫
f−1(−τ,τ)

ωmφn.

As τ → 1, this clearly approaches
∫
Ng ωmφn = αmβn[N g] . 2

The localization formula

Things are now in good shape, because we can work on N g
τ , which has a global U(1)-action.

In particular, we may apply the localization formula of Berline and Vergne [4, 8]. This states
that, if a torus acts on a compact manifold M with fixed-point set having components Fi ,
and η is an equivariant cohomology class, then

η[M ] =
∑
i

η|Fi
e(νFi/M)

[Fi],

where e(νFi/M) denotes the equivariant Euler class of the normal bundle, oriented compatibly
with chosen orientations on M and Fi .

The fixed-point set of the U(1)-action on N g
τ has three components: the absolute maxima

and minima of fτ , denoted F+ and F− , and a component F0 ⊂ f−1τ (0), which for all
practical purposes may be identified with S0 . Both ατ and βτ extend to U(1)-equivariant
cohomology classes, say α̃τ and β̃τ . Indeed, ατ is twice the class of the symplectic form ωτ ,
which becomes equivariantly closed when the moment map is added; so α̃τ = ατ+ 2

π
arccos f .
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And βτ = −c2(Eτ ); since Eτ admits a lifting of the U(1)-action, β̃τ is its equivariant second
Chern class.

Since F± and F0 are fixed by U(1), the equivariant cohomology is naturally a polynomial
ring: H∗U(1)(F±) ∼= H∗(F±)[u] and H∗U(1)(F0) ∼= H∗(F0)[u] . The classes on the right-hand
side of the localization formula are therefore Laurent series in u . The evaluation is performed
by taking the constant term and applying it to the fundamental class in the usual way; see
for example Atiyah and Bott [4]. We now set out to compute the right-hand side explicitly.
Let N g

τ and the fixed-point components Fi be oriented so that ωτ is positive definite on
each.

Lemma. (a) The restriction of ωτ to F0 is 2θ ∈ H2(F0), where θ is a class such that
θg−1[F0] = (g−1)!; (b) the normal bundle νF0/Ng has equivariant Euler class (−1)g−1u2g−2 .

Proof. For any ρ ∈ F0 , the representation ad ρ splits as ζ⊕ξ , corresponding to the splitting
su(2) ∼= R ⊕ C into diagonal and off-diagonal matrices. It is straightforward to check that
TF0 ⊂ TN g is H1(ζ) ⊂ H1(ad ρ), so that νF0/Ng = H1(ξ), and that the U(1)-action is
induced from scalar multiplication on ξ . Moreover, in the complex

su(2)
d1−→ su(2)2g

d2−→ su(2)

computing H1(ad ρ), a computation shows that the differentials restrict on ζ to d1(t) =
(0, . . . , 0, 2t) and d2(ai, bi) = 2ag . Hence the 2g−2 coordinates a1, b1, . . . , ag−1, bg−1 descend
to a basis of H1(ζ). Since ζ is trivial on these factors, the cup product is just the standard
symplectic form on R2g−2 . Also, the form 〈A,B〉 = 1

4π2 trAB on diagonal matrices is
〈aσ3, bσ3〉 = 1

2π2ab . Hence ωτ restricts to 1
2π2

∑
i dai ∧ dbi on F0 . In other words, F0 splits

as a product of 2-tori, and ωτ = 2θ , where θ is the sum of the unit volume forms on the
2-tori. Then certainly θg−1[F0] = (g − 1)!, so the proof of (a) is complete. (By the way, the
diligent reader might find this a good point to solve the exercise posed in the last section
but one.)

The restrictions of the differentials to ξ are more complicated, but the last two compo-
nents are given by d1(t) = (. . . ,−2t, t̄− t) and d2(0, . . . , 0, ag, bg) = ag − āg + 2b̄g , where t ,
ag , and bg are now complex numbers. Hence if ag = 0 and ai, bi are arbitrary for i < g ,
then there is a unique bg such that d2(ai, bi) = 0. This fixes an isomorphism C2g−2 ∼= H1(ξ)
which depends continuously on ρ , with U(1) acting with weight 1 on each coordinate. This
shows that νF0/Ng is trivial, and acted on with weight 1 relative to the trivialization.

The cup product H1(ξ) ⊗H1(ξ) → H2(ξ ⊗ ξ) is linear over C , but the form 〈A,B〉 =
1

4π2 trAB on off-diagonal matrices is〈(
0 a
−ā 0

)
,

(
0 b
−b̄ 0

)〉
= − 1

2π2
Re ab̄.

Hence the orientation on νF0/Ng coming from C2g−2 differs from that induced by the sym-
plectic orientations on F0 and N g by a factor of (−1)g−1 . So the equivariant Euler class
with respect to the symplectic orientation is (−1)g−1u2g−2 , as claimed in (b). 2
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Lemma. (a) Both F+ and F− are diffeomorphic to the fibred product with itself of the
S2 -bundle (µ−1g−1(−I)× S2)/SU(2) over N g−1 ; (b) as rings,

H∗(F±) ∼= H∗(N g−1)[h1, h2]/(h
2
1 − β/4, h22 − β/4);

(c) regarded as the total space of a U(1)-bundle over F± , f−1(±τ) has first Chern class
h1 + h2 ; (d) the cohomology class of ωτ |F± is α/2 + (1− τ)(h1 + h2).

Proof. Parts (a) and (c) follow straightforwardly from the local model lemma: the point is
that, on µ−1g−1(−I) × (SU(2)\{I}) × SU(2), the relevant U(1)-action involves only the last
two factors and is completely explicit.

The S2 -bundle over N g−1 is isomorphic to PU |Ng−1×p for p ∈ X , where U is the
universal bundle; this follows from the topological construction of EndU . Since

(c21 − 4c2)(U |Ng−1×p) = −c2(EndU |Ng−1×p) = β,

part (b) follows from standard facts on the cohomology rings of projective bundles [11, §20].
It is easy to check that on N g , the restriction of ω to S± is π∗ω , where π : S± → N g−1

is the projection. Hence as τ approaches 1, the cohomology class [ωτ ]|F± approaches α/2.
On the other hand, the first theorem of Duistermaat and Heckman [18, Thm. 1.1], applied
to N g

τ ′ for τ ′ > τ , asserts that [ωτ ]|F± is an affine function of τ with derivative the first
Chern class given in part (c). This implies part (d). 2

Proposition. (1) α̃τ |F± = α+ 2(1− τ)(h1 + h2) + 2
π

arccos(±τ)u; (2) α̃τ |F0 = 4θ+ u; (3)

β̃τ |F± = β ; (4) β̃τ |F0 = u2 .

Proof. Since α̃τ = ατ + 2
π

arccos f , (1) follows from part (d) of the last lemma, and (2)
follows from part (a) of the one before that.

Since Eτ restricted to µ−1g (±τ)/U(1) descends from µ−1g (±τ), certainly β̃τ |F± = βτ |F± .
But this equals the pull-back from N g−1 of β by, for example, the proof of the proposition
in the last section.

Finally, to prove (4), it suffices to calculate the equivariant second Chern class of the
bundle Eτ restricted to F0 , or equivalently, of E restricted to S0 . Now the explicit formula
Ag = iσ3 , Bg = iσ2 , Ai , Bi diagonal for i < g gives a lifting of S0 to µ−1g (−I). Because

of this lifting, E|S0 is the trivial bundle S0 × EndC2 . But it is not equivariantly trivial.
Indeed, since Ag is diagonal, λ ∈ U(1) acts by Bg 7→ Bg diag(λ, λ−1). To restore Bg = iσ2 ,
one must conjugate by a square root diag(λ1/2, λ−1/2); this acts on EndC2 with weights 0,
0, 1, and −1, so the equivariant Chern roots of the bundle are 0,0, u and −u , and hence
β̃τ |F0 = −u2 . 2

This leaves only the normal bundles to F± to be determined. But it follows from part
(c) of the last lemma that they are h∓ u , where h is short for h1 + h2 .

Cohomological calculations

At last we are ready to apply the localization formula. Putting together all the results of
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the last two sections,

αmβn[N g] = lim
τ→1

αmτ β
n
τ [N g

τ ]

= lim
τ→1

∑
i

αmτ β
n
τ |Fi

e(νFi/Ng
τ
)

[Fi]

= lim
τ→1

(α + 2(1− τ)h+ 2
π

arccos(−τ)u)mβn

h+ u
[F−]

+ lim
τ→1

(α + 2(1− τ)h+ 2
π

arccos(τ)u)mβn

h− u
[F+]

+ lim
τ→1

(4θ + u)mu2n

(−1)g−1u2g−2
[F0].

When τ → 1, there are no terms in u left in the numerator of the class on F+ , so the
constant term in its Laurent expansion is 0. Hence

αmβn[N g] =
(α + 2u)mβn

h+ u
[F−] +

(4θ + u)mu2n

(−1)g−1u2g−2
[F0]

=
1

u
(α + 2u)mβn

∞∑
i=0

(
−h
u

)i
[F−] +

(4θ + u)mu2n

(−1)g−1u2g−2
[F0]

=
∞∑
i=0

(−1)i
(
m
i+1

)
2i+1 αm−i−1βnhi [F−] + (−1)g−1

(
m
g−1

)
(4θ)g−1 [F0].

The last term is easily evaluated using θg−1[F0] = (g − 1)!. The terms in the sum, on
the other hand, can be evaluated with the help of part (b) of the last lemma. Indeed, this
implies that for j > 0, h2j = 1

2
βj + 2βj−1h1h2 and h2j−1 = βj−1h , but also that for any

η ∈ H∗(N g−1), η[F±] = 0, ηh[F±] = 0, and ηh1h2[F±] = η[N g−1] . Hence in the sum, only
those terms where i is even make a nonzero contribution; so

αmβn[N g] =

[m−1
2 ]∑
j=1

(
m

2j+1

)
22j+2 αm−2j−1βn+j[N g−1] + (−1)g−1 22g−2 m!

(m−g+1)! ,

unless n ≥ g , or equivalently m < g − 1, for then
(
m
g−1

)
= 0 and hence the last term

disappears. Since n ≥ g certainly implies n + j ≥ g − 1 for all positive j , applying the
equation recursively then shows that αmβn[N g] = 0 whenever n ≥ g .

To deduce the remaining pairings, first repackage them as follows. Let k = g − 1 − n
and note that 2k = m− g + 1; then let

Igk =
(−1)g

22g−2m!
αmβn[N g].

The recursion above then becomes

Igk +
k∑
j=1

22j

(2j + 1)!
Ig−1k−j =

1

(2k)!
,
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the sum only needing to run up to k because of the vanishing deduced above. Now
22j/(2j + 1)! = Coeffu2j sinh(2u)/(2u) and 1/(2k)! = Coeffu2k coshu . Hence the solution
to the recursion is

Igk = Coeff
u2k

2u coshu

sinh(2u)
= Coeff

u2k

u

sinhu
,

the first term playing the role of j = 0 in the sum. These coefficients can be expressed
in terms of Bernoulli numbers: indeed, Igk = (22k − 2)B2k/(2k)! (see for example Milnor
and Stasheff [39, Appendix B], but beware of their conflicting notation for the Bernoulli
numbers). Hence for m ≥ g − 1

αmβn[N g] = (−1)g 22g−2m! Coeff
um−g+1

u

sinhu

= (−1)g 22g−2 m!
(m−g+1)! (2m−g+1 − 2)Bm−g+1.

The SU(2) Verlinde formula

As an application of the above formula, we revisit the holomorphic category and study the
spaces of holomorphic sections of line bundles on N g . The Picard group of N g can be
identified with H1(N g,O×), where O× is the sheaf of nowhere zero holomorphic functions.
The short exact sequence

0 −→ Z 2πi−→ O exp−→ O× −→ 0

yields the long exact sequence

· · · −→ H1(N g,O) −→ H1(N g,O×)
c1−→ H2(N g,Z) −→ H2(N g,O) −→ · · ·

We saw earlier that H2(N g,Z) ∼= Z , with generator α . Let L be a holomorphic line bundle
with c1(L) = α . A calculation like that used to show α 6= 0 implies that c1(KNg) = −2α .
Kodaira vanishing then implies that for all k ≥ 0, H i(N g,Lk) = 0 for all i > 0, so that
dimH0(N g,Lk) = χ(N g,Lk). In particular, H1(N g,O) = H2(N g,O) = 0, so PicN g ∼= Z ,
generated by L .

For any positive line bundle on a projective variety, the function χ(N g,Lk) is a poly-
nomial, the so-called Hilbert polynomial. The Hirzebruch-Riemann-Roch theorem [29, Ap-
pendix A] states that

χ(N g,Lk) = (chLk tdN g)[N g]

= (exp(kα) tdN g)[N g].

But the Todd class is defined in terms of the Chern roots as

td =
∏

Chern
roots ξ

ξ

1− e−ξ

=
∏
ξ

exp(ξ/2)
ξ/2

sinh ξ/2
.
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Since (ξ/2)/(sinh ξ/2) is an even function of ξ , the second half of the product can be
expressed formally in terms of the Pontrjagin roots, while the first half can be expressed in
terms of c1 :

td = exp(c1/2)
∏

Pontrjagin
roots ζ

√
ζ/2

sinh
√
ζ/2

.

As was explained long ago in remark 2, the tangent space to M g at E is H1(X,EndE).
The splitting EndE = O ⊕ End0E into scalar and trace-free parts corresponds to the
splitting TM g = det∗ T JacX ⊕ TN g . Hence the tangent bundle to N g is the direct image
(R1π1) End0 U , where U is the universal bundle and π1 : N g ×X → N g is the projection.
The Grothendieck-Riemann-Roch theorem can then be used to show that

ch2n(TN g) = (2n)! 2(g − 1)βn,

and consequently,
ch2n(TN g ⊕ T ∗N g) = 4(g − 1)βn,

c(TN g ⊕ T ∗N g) = (1− β)2g−2,

and
p(TN g) = (1 + β)2g−2;

see Newstead [46] for details. Hence 2g − 2 of the Pontrjagin roots are β and the rest are
0. The Hirzebruch-Riemann-Roch theorem and the formula for the characteristic numbers
derived in the last section, after a little calculation, give

χ(N g,Lk) = exp(k + 1)α

( √
β/2

sinh
√
β/2

)2g−2

[N g]

= (−1)g Coeff
x3g−3

[
((k + 1)x)g−1

(
x

sinhx

)2g−2 (2k + 2)x

sinh(2k + 2)x

]

= (−1)g(4(k + 1))g−1 Res
x=0

[(
1

2 sinhx

)2g−2 (2k + 2)x

sinh(2k + 2)x
dx

]
.

First substituting z = e2x , then applying the residue theorem, yields

χ(N g,Lk) = (−1)g(4(k + 1))g−1 Res
z=1

[
zg−1

(z − 1)2g−2
(2k + 2)zk+1

z2k+2 − 1

dz

z

]

= (−4(k + 1))g−1
∑

λ2k+2=1
λ 6=1

Res
z=λ

[
zg−1

(z − 1)2g−2
(2k + 2)zk+1

z2k+2 − 1

dz

z

]

= (−4(k + 1))g−1
∑

λ2k+2=1
λ 6=1

− λg−1λk+1

(λ− 1)2g−2

= (k + 1)g−1
2k+1∑
j=1

(−1)j+1(
sin jπ

2k+2

)2g−2 ,
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which is the SU(2) Verlinde formula in the degree 1 case [55, 52].
A formula like this one was originally obtained by Verlinde [55] in the degree 0 case.

He used a very different method, namely a “factorization” or “gluing” principle, arising
from conformal field theory and giving a recursion in the genus. The calculation above is
essentially due to Zagier [52, 59]. However, similar formulas were obtained earlier by Dowker
[15, 16] in another context.

The U(2) Verlinde formula

From this formula, a corresponding formula for M g follows easily, as pointed out by Donagi
and Tu [13]. Indeed, let κ : JacX × N g → M g be the map given by the tensor product.
This is a holomorphic principal bundle over M g with structure group (Z/2)2g , as identified
with the square roots of unity in JacX . Since H1(N g,O) = 0, by [29, III Ex. 12.6]
Pic(JacX × N g) = Pic JacX × PicN g . So if Θ is a fixed theta-divisor on JacX , any
P ∈ PicM g pulls back to π∗1(O(jΘ) ⊗ ξ) ⊗ π∗2Lk for some j , k , and ξ ∈ Pic0 JacX . We
will compute the holomorphic cohomology of P in the case where j and k are positive.

By Kodaira vanishing and the Künneth formula, dimH i(JacX×N g, κ∗P) = 0 for i > 0,
while for i = 0 it is χ(JacX,O(jΘ)⊗ ξ)χ(N g,Lk). By Riemann-Roch applied to JacX ,

χ(JacX,O(jΘ)⊗ ξ) = ch(O(jΘ)⊗ ξ) td JacX [JacX] = exp(jΘ)[JacX] = jg.

On the other hand, because (Z/2)2g is discrete, κ∗κ
∗P is a rank 22g vector bundle and

satisfies H i(M g, κ∗κ
∗P) ∼= H i(JacX ×N g, κ∗P). Moreover, by the push-pull formula,

κ∗κ
∗P = P ⊗ κ∗κ∗O .
Let g : JacX → JacdX be given by g(L) = L2 ⊗ Λ, where Λ is the line bundle such

that N g = det−1(Λ). Then the square

JacX ×N g κ−→ M gyπ1 ydet
JacX

g−→ JacdX

commutes, so κ∗O = det∗ g∗O . But the natural (Z/2)2g -action on g∗O decomposes it as a
sum of 1-dimensional weight spaces:

g∗O =
⊕

ζ∈Pic0 JacX
ζ2∼=O

ζ.

Since P⊗det∗ ζ is topologically equivalent to P , and the higher cohomology again vanishes,

dimH0(M g, κ∗κ
∗P) =

∑
ζ

dimH0(M g,P ⊗ det∗ ζ)

= 22g dimH0(M g,P).

Consequently,
dimH0(M g,P) = (j/4)g dimH0(N g,Lk).
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Combining this with the formula at the end of the last section yields the U(2) Verlinde
formula in the degree 1 case.

It is worth remarking that Verlinde and the other physicists who worked on these spaces
of holomorphic sections obtained much more than a formula for their dimension. If the
surface X is fixed as a smooth manifold up to diffeotopy (that is, diffeomorphic isotopy),
then its complex structures are parametrized by Teichmüller space. This is therefore the
base of a vector bundle whose fiber is the space of holomorphic sections on the moduli space,
with respect to the given complex structure. The physicists found a canonical projectively
flat connection on this bundle, or equivalently, since Teichmüller space is contractible, a
canonical trivialization of its projectivization. So the spaces of holomorphic sections coming
from different complex structures can be identified with one another, up to a scalar. Since
these spaces are regarded in physics as the “quantizations” of the moduli spaces, one may,
somewhat fancifully, think of the projectively flat connection as a quantum analogue of the
Narasimhan-Seshadri theorem.

Characteristic numbers (reprise)

So far, we have computed those characteristic numbers involving only α and β . We shall
now explain how to include the ψi as well. The material in this section is drawn from [52].

Proposition. The cohomology pairing (αmβn
∏
i ψ

pi
i )[N g] is 0 unless pi = pi+g ≤ 1 for

1 ≤ i ≤ g .

Proof. Since ψi, ψi+g ∈ H3(N g), certainly ψ2
i = ψ2

i+g = 0, so pi, pi+g ≤ 1 is necessary to
get a nonzero pairing. Now any homeomorphism f : X → X induces a symplectomorphism
f̂ : N g → N g , so

f̂ ∗(αmβn
∏
i

ψpii )[N g] = (αmβn
∏
i

ψpii )[N g].

But topologically, (f̂ × f)∗ EndU ∼= EndU , so f̂ ∗α = α , f̂ ∗β = β , and∑
i

f̂ ∗ψif
∗ai + f̂ ∗ψi+gf

∗bi =
∑
i

ψia
i + ψi+gb

i.

If f is a half twist of the j th handle, then f ∗aj = −aj and f ∗bj = −bj , but the other ai

and bi are fixed; so f̂ ∗ψj = −ψj , f̂ ∗ψj+g = −ψj+g , and f̂ ∗ψi = ψi otherwise. Hence pj = 1,
pj+g = 0 implies

(αmβn
∏
i

ψpii )[N g] = −(αmβn
∏
i

ψpii )[N g] = 0,

and similarly if pj = 0, pj+g = 1. 2

Every appearance of ψi in a nonzero pairing must therefore be matched by an appearance
of ψi+g ; so let γi = ψiψi+g for 1 ≤ i ≤ g .

Proposition. If i1, . . . , ip are distinct, then (αmβnγi1 · · · γip)[N g] is independent of the
choice of i1, . . . , ip .
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Proof. Similar to the previous proposition, but using a diffeomorphism interchanging the
relevant handles. 2

In the following proposition, the notation 〈Ai〉∗ denotes the Poincaré dual of the locus
where Ai = I .

Proposition. For 1 ≤ i ≤ g , ψi = 〈Ai〉∗ and ψi+g = 〈Bi〉∗ .

Proof. By definition, if U is a universal bundle, then the Künneth component of c2(EndU)
in H3(N g)⊗H1(X) is 4

∑g
i=1 ψia

i + ψi+gb
i . If ai and bi are regarded as loops on X , this

means that c2(EndU |Ng×ai) = 4ψia
i , and similarly for bi .

The universal cover of ai is R , so the topological construction of EndU |Ng×ai amounts
to the following. There is a vector bundle Ui over µ−1g (−I) × ai defined as the quotient

(µ−1g (−I) × R × C2)/Z , where the action is given by n · (ρ, t, v) = (ρ, t + n, ρ(ai)
nv). The

action of SU(2) on µ−1g (−I) lifts naturally to Ui , and EndUi descends to U |Ng×ai . But by
its construction, Ui is pulled back from a vector bundle over SU(2)×ai , defined as a quotient
(SU(2)×R×C2)/Z . It is easy to check that the second Chern class of this latter bundle is the
fundamental class, which of course equals the Poincaré dual of {I} ⊂ SU(2) times ai . Hence
c2(Ui) = 〈Ai〉∗ai . Since Ui has structure group SU(2), c2(EndUi) = 4c2(Ui) = 4〈Ai〉∗ai .
Since pull-back is Poincaré dual to inverse image, c2(EndU |Ng×ai) = 4〈Ai〉∗ai also. The
proof for bi is of course similar. 2

Since the loci where Ai = I and Bi = I intersect transversely, this proposition implies
that γi is Poincaré dual to the locus where Ai = I = Bi . This locus can be identified with
N g−1 , and α and β on N g restrict to their counterparts on N g−1 . Thus the proposition im-
plies the following corollary, which completes the computation of the characteristic numbers
of N g .

Corollary. For 2m+ 4n+ 6
∑
i pi = 6g − 6,

(αmβn
∏
i

γpii )[N g] = (αmβn)[N g−p],

where p =
∑
pi . In particular for 2m+ 4n+ 6p = 6g − 6,

(αmβnγp)[N g] =
2pg!

(g − p)!
(αmβn)[N g−p],

where γ = 2
∑
i γi .

In particular, for any η ∈ H2g−6(N g), βgη[N g] = 0. It follows from Poincaré duality
that βg = 0. This confirms an old conjecture of Newstead [46].

In a remarkable work, Witten [58] has given general formulas for the characteristic num-
bers in arbitrary rank, which include all the rank 2 formulas stated in this paper. A rigorous
proof of Witten’s formulas has recently been announced by Jeffrey and Kirwan [31].
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The relations in the cohomology ring

In this final section, rather than try to prove anything more, we will merely state a few of
the recent results on the relations in the cohomology ring of N g .

The earliest conjectures on the relations between the generators of H∗(N g) go back to
unpublished work of Mumford [4], who pointed out the following. Let KX be the canonical
bundle of X and P be the Poincaré line bundle over JacX ×X , and consider the bundle
E = (π1 × π3)

∗U ⊗ (π2 × π3)
∗P ⊗ π∗3KX over N g × JacX × X , where πi represent the

projections on the various factors. Then by Riemann-Roch, F = (π1 × π2)∗E is a rank
2g − 1 bundle over N g × JacX . For any η ∈ H∗(JacX) and any i ≥ 0, (π1)∗(ci(F) · η)
can be evaluated using the Grothendieck-Riemann-Roch theorem as a polynomial in the
generators α , β , and the ψi . For i > 2g− 1, this must vanish, giving relations between the
generators.

Mumford conjectured that these generated all the relations in the cohomology ring.
This indeed turns out to be true, as was proved much later by Kirwan [37]. But there is
considerable redundancy among the Mumford relations. In fact, the shape of the Harder-
Narasimhan formula suggests that the cohomology ring is isomorphic to the quotient of
Q[α, β]⊗Λ∗(ψi), whose Poincaré polynomial is given by the first term of the formula, by the
ideal freely generated over Q[α, β] by the Mumford relations for i = 2g only, whose Poincaré
polynomial would be exactly the second term of the formula. This question remains open.

More recently, the following very explicit characterization of the ring has been obtained
by several authors [6, 35, 50, 59].

Theorem. As an Sp(2g,Z)-algebra,

H∗(N g,Q) ∼=
g⊕

k=0

Λk
0H

3(N g)⊗Q[α, β, γ]/Ig−k

where
Λk

0 = ker γg−k+1 : ΛkH3(N g)→ Λ2g−k+2H3(N g)

and Ik is generated by the 3 nonzero elements of

k∏
i=1

α (k − i)2 0

β 0 2(k−i)
k−i+1

γ 0 0

 .

Theoretical physicists have recently introduced the notion of quantum cohomology, which
is a deformation of the ring structure of the cohomology of a smooth complex variety with
negative canonical bundle, depending on a parameter q . Recent physical work of Bershadsky
et al. [9] indicates that the quantum cohomology of N g is characterized by the theorem
above, but with the matrix entry β replaced with β+(−1)k−i+18q . A rigorous mathematical
proof of this fact has been announced by Siebert and Tian.
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